linux/drivers/net/e1000e/ich8lan.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2011 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 * 82562G 10/100 Network Connection
  31 * 82562G-2 10/100 Network Connection
  32 * 82562GT 10/100 Network Connection
  33 * 82562GT-2 10/100 Network Connection
  34 * 82562V 10/100 Network Connection
  35 * 82562V-2 10/100 Network Connection
  36 * 82566DC-2 Gigabit Network Connection
  37 * 82566DC Gigabit Network Connection
  38 * 82566DM-2 Gigabit Network Connection
  39 * 82566DM Gigabit Network Connection
  40 * 82566MC Gigabit Network Connection
  41 * 82566MM Gigabit Network Connection
  42 * 82567LM Gigabit Network Connection
  43 * 82567LF Gigabit Network Connection
  44 * 82567V Gigabit Network Connection
  45 * 82567LM-2 Gigabit Network Connection
  46 * 82567LF-2 Gigabit Network Connection
  47 * 82567V-2 Gigabit Network Connection
  48 * 82567LF-3 Gigabit Network Connection
  49 * 82567LM-3 Gigabit Network Connection
  50 * 82567LM-4 Gigabit Network Connection
  51 * 82577LM Gigabit Network Connection
  52 * 82577LC Gigabit Network Connection
  53 * 82578DM Gigabit Network Connection
  54 * 82578DC Gigabit Network Connection
  55 * 82579LM Gigabit Network Connection
  56 * 82579V Gigabit Network Connection
  57 */
  58
  59#include "e1000.h"
  60
  61#define ICH_FLASH_GFPREG                0x0000
  62#define ICH_FLASH_HSFSTS                0x0004
  63#define ICH_FLASH_HSFCTL                0x0006
  64#define ICH_FLASH_FADDR                 0x0008
  65#define ICH_FLASH_FDATA0                0x0010
  66#define ICH_FLASH_PR0                   0x0074
  67
  68#define ICH_FLASH_READ_COMMAND_TIMEOUT  500
  69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
  70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
  71#define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
  72#define ICH_FLASH_CYCLE_REPEAT_COUNT    10
  73
  74#define ICH_CYCLE_READ                  0
  75#define ICH_CYCLE_WRITE                 2
  76#define ICH_CYCLE_ERASE                 3
  77
  78#define FLASH_GFPREG_BASE_MASK          0x1FFF
  79#define FLASH_SECTOR_ADDR_SHIFT         12
  80
  81#define ICH_FLASH_SEG_SIZE_256          256
  82#define ICH_FLASH_SEG_SIZE_4K           4096
  83#define ICH_FLASH_SEG_SIZE_8K           8192
  84#define ICH_FLASH_SEG_SIZE_64K          65536
  85
  86
  87#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
  88/* FW established a valid mode */
  89#define E1000_ICH_FWSM_FW_VALID         0x00008000
  90
  91#define E1000_ICH_MNG_IAMT_MODE         0x2
  92
  93#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
  94                                 (ID_LED_DEF1_OFF2 <<  8) | \
  95                                 (ID_LED_DEF1_ON2  <<  4) | \
  96                                 (ID_LED_DEF1_DEF2))
  97
  98#define E1000_ICH_NVM_SIG_WORD          0x13
  99#define E1000_ICH_NVM_SIG_MASK          0xC000
 100#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
 101#define E1000_ICH_NVM_SIG_VALUE         0x80
 102
 103#define E1000_ICH8_LAN_INIT_TIMEOUT     1500
 104
 105#define E1000_FEXTNVM_SW_CONFIG         1
 106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
 107
 108#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
 109#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
 110#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
 111
 112#define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
 113
 114#define E1000_ICH_RAR_ENTRIES           7
 115
 116#define PHY_PAGE_SHIFT 5
 117#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
 118                           ((reg) & MAX_PHY_REG_ADDRESS))
 119#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
 120#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
 121
 122#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
 123#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
 124#define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
 125
 126#define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
 127
 128#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
 129
 130/* SMBus Address Phy Register */
 131#define HV_SMB_ADDR            PHY_REG(768, 26)
 132#define HV_SMB_ADDR_MASK       0x007F
 133#define HV_SMB_ADDR_PEC_EN     0x0200
 134#define HV_SMB_ADDR_VALID      0x0080
 135
 136/* PHY Power Management Control */
 137#define HV_PM_CTRL              PHY_REG(770, 17)
 138
 139/* PHY Low Power Idle Control */
 140#define I82579_LPI_CTRL                 PHY_REG(772, 20)
 141#define I82579_LPI_CTRL_ENABLE_MASK     0x6000
 142
 143/* Strapping Option Register - RO */
 144#define E1000_STRAP                     0x0000C
 145#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
 146#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
 147
 148/* OEM Bits Phy Register */
 149#define HV_OEM_BITS            PHY_REG(768, 25)
 150#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
 151#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
 152#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
 153
 154#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
 155#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
 156
 157/* KMRN Mode Control */
 158#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
 159#define HV_KMRN_MDIO_SLOW      0x0400
 160
 161/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
 162/* Offset 04h HSFSTS */
 163union ich8_hws_flash_status {
 164        struct ich8_hsfsts {
 165                u16 flcdone    :1; /* bit 0 Flash Cycle Done */
 166                u16 flcerr     :1; /* bit 1 Flash Cycle Error */
 167                u16 dael       :1; /* bit 2 Direct Access error Log */
 168                u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
 169                u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
 170                u16 reserved1  :2; /* bit 13:6 Reserved */
 171                u16 reserved2  :6; /* bit 13:6 Reserved */
 172                u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
 173                u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
 174        } hsf_status;
 175        u16 regval;
 176};
 177
 178/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
 179/* Offset 06h FLCTL */
 180union ich8_hws_flash_ctrl {
 181        struct ich8_hsflctl {
 182                u16 flcgo      :1;   /* 0 Flash Cycle Go */
 183                u16 flcycle    :2;   /* 2:1 Flash Cycle */
 184                u16 reserved   :5;   /* 7:3 Reserved  */
 185                u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
 186                u16 flockdn    :6;   /* 15:10 Reserved */
 187        } hsf_ctrl;
 188        u16 regval;
 189};
 190
 191/* ICH Flash Region Access Permissions */
 192union ich8_hws_flash_regacc {
 193        struct ich8_flracc {
 194                u32 grra      :8; /* 0:7 GbE region Read Access */
 195                u32 grwa      :8; /* 8:15 GbE region Write Access */
 196                u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
 197                u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
 198        } hsf_flregacc;
 199        u16 regval;
 200};
 201
 202/* ICH Flash Protected Region */
 203union ich8_flash_protected_range {
 204        struct ich8_pr {
 205                u32 base:13;     /* 0:12 Protected Range Base */
 206                u32 reserved1:2; /* 13:14 Reserved */
 207                u32 rpe:1;       /* 15 Read Protection Enable */
 208                u32 limit:13;    /* 16:28 Protected Range Limit */
 209                u32 reserved2:2; /* 29:30 Reserved */
 210                u32 wpe:1;       /* 31 Write Protection Enable */
 211        } range;
 212        u32 regval;
 213};
 214
 215static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
 216static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 217static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 218static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 219static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 220                                                u32 offset, u8 byte);
 221static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 222                                         u8 *data);
 223static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 224                                         u16 *data);
 225static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 226                                         u8 size, u16 *data);
 227static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
 228static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 229static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
 230static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 231static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 232static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 233static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 234static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 235static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 236static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 237static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 238static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 239static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 240static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 241static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 242static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 243static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 244static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 245static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 246static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 247
 248static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 249{
 250        return readw(hw->flash_address + reg);
 251}
 252
 253static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 254{
 255        return readl(hw->flash_address + reg);
 256}
 257
 258static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 259{
 260        writew(val, hw->flash_address + reg);
 261}
 262
 263static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 264{
 265        writel(val, hw->flash_address + reg);
 266}
 267
 268#define er16flash(reg)          __er16flash(hw, (reg))
 269#define er32flash(reg)          __er32flash(hw, (reg))
 270#define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
 271#define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
 272
 273/**
 274 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 275 *  @hw: pointer to the HW structure
 276 *
 277 *  Initialize family-specific PHY parameters and function pointers.
 278 **/
 279static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 280{
 281        struct e1000_phy_info *phy = &hw->phy;
 282        u32 ctrl, fwsm;
 283        s32 ret_val = 0;
 284
 285        phy->addr                     = 1;
 286        phy->reset_delay_us           = 100;
 287
 288        phy->ops.read_reg             = e1000_read_phy_reg_hv;
 289        phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
 290        phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
 291        phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
 292        phy->ops.write_reg            = e1000_write_phy_reg_hv;
 293        phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
 294        phy->ops.power_up             = e1000_power_up_phy_copper;
 295        phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
 296        phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 297
 298        /*
 299         * The MAC-PHY interconnect may still be in SMBus mode
 300         * after Sx->S0.  If the manageability engine (ME) is
 301         * disabled, then toggle the LANPHYPC Value bit to force
 302         * the interconnect to PCIe mode.
 303         */
 304        fwsm = er32(FWSM);
 305        if (!(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 306                ctrl = er32(CTRL);
 307                ctrl |=  E1000_CTRL_LANPHYPC_OVERRIDE;
 308                ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
 309                ew32(CTRL, ctrl);
 310                udelay(10);
 311                ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 312                ew32(CTRL, ctrl);
 313                msleep(50);
 314
 315                /*
 316                 * Gate automatic PHY configuration by hardware on
 317                 * non-managed 82579
 318                 */
 319                if (hw->mac.type == e1000_pch2lan)
 320                        e1000_gate_hw_phy_config_ich8lan(hw, true);
 321        }
 322
 323        /*
 324         * Reset the PHY before any access to it.  Doing so, ensures that
 325         * the PHY is in a known good state before we read/write PHY registers.
 326         * The generic reset is sufficient here, because we haven't determined
 327         * the PHY type yet.
 328         */
 329        ret_val = e1000e_phy_hw_reset_generic(hw);
 330        if (ret_val)
 331                goto out;
 332
 333        /* Ungate automatic PHY configuration on non-managed 82579 */
 334        if ((hw->mac.type == e1000_pch2lan)  &&
 335            !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 336                msleep(10);
 337                e1000_gate_hw_phy_config_ich8lan(hw, false);
 338        }
 339
 340        phy->id = e1000_phy_unknown;
 341        switch (hw->mac.type) {
 342        default:
 343                ret_val = e1000e_get_phy_id(hw);
 344                if (ret_val)
 345                        goto out;
 346                if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 347                        break;
 348                /* fall-through */
 349        case e1000_pch2lan:
 350                /*
 351                 * In case the PHY needs to be in mdio slow mode,
 352                 * set slow mode and try to get the PHY id again.
 353                 */
 354                ret_val = e1000_set_mdio_slow_mode_hv(hw);
 355                if (ret_val)
 356                        goto out;
 357                ret_val = e1000e_get_phy_id(hw);
 358                if (ret_val)
 359                        goto out;
 360                break;
 361        }
 362        phy->type = e1000e_get_phy_type_from_id(phy->id);
 363
 364        switch (phy->type) {
 365        case e1000_phy_82577:
 366        case e1000_phy_82579:
 367                phy->ops.check_polarity = e1000_check_polarity_82577;
 368                phy->ops.force_speed_duplex =
 369                        e1000_phy_force_speed_duplex_82577;
 370                phy->ops.get_cable_length = e1000_get_cable_length_82577;
 371                phy->ops.get_info = e1000_get_phy_info_82577;
 372                phy->ops.commit = e1000e_phy_sw_reset;
 373                break;
 374        case e1000_phy_82578:
 375                phy->ops.check_polarity = e1000_check_polarity_m88;
 376                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 377                phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 378                phy->ops.get_info = e1000e_get_phy_info_m88;
 379                break;
 380        default:
 381                ret_val = -E1000_ERR_PHY;
 382                break;
 383        }
 384
 385out:
 386        return ret_val;
 387}
 388
 389/**
 390 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 391 *  @hw: pointer to the HW structure
 392 *
 393 *  Initialize family-specific PHY parameters and function pointers.
 394 **/
 395static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 396{
 397        struct e1000_phy_info *phy = &hw->phy;
 398        s32 ret_val;
 399        u16 i = 0;
 400
 401        phy->addr                       = 1;
 402        phy->reset_delay_us             = 100;
 403
 404        phy->ops.power_up               = e1000_power_up_phy_copper;
 405        phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
 406
 407        /*
 408         * We may need to do this twice - once for IGP and if that fails,
 409         * we'll set BM func pointers and try again
 410         */
 411        ret_val = e1000e_determine_phy_address(hw);
 412        if (ret_val) {
 413                phy->ops.write_reg = e1000e_write_phy_reg_bm;
 414                phy->ops.read_reg  = e1000e_read_phy_reg_bm;
 415                ret_val = e1000e_determine_phy_address(hw);
 416                if (ret_val) {
 417                        e_dbg("Cannot determine PHY addr. Erroring out\n");
 418                        return ret_val;
 419                }
 420        }
 421
 422        phy->id = 0;
 423        while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 424               (i++ < 100)) {
 425                msleep(1);
 426                ret_val = e1000e_get_phy_id(hw);
 427                if (ret_val)
 428                        return ret_val;
 429        }
 430
 431        /* Verify phy id */
 432        switch (phy->id) {
 433        case IGP03E1000_E_PHY_ID:
 434                phy->type = e1000_phy_igp_3;
 435                phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 436                phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 437                phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 438                phy->ops.get_info = e1000e_get_phy_info_igp;
 439                phy->ops.check_polarity = e1000_check_polarity_igp;
 440                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 441                break;
 442        case IFE_E_PHY_ID:
 443        case IFE_PLUS_E_PHY_ID:
 444        case IFE_C_E_PHY_ID:
 445                phy->type = e1000_phy_ife;
 446                phy->autoneg_mask = E1000_ALL_NOT_GIG;
 447                phy->ops.get_info = e1000_get_phy_info_ife;
 448                phy->ops.check_polarity = e1000_check_polarity_ife;
 449                phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 450                break;
 451        case BME1000_E_PHY_ID:
 452                phy->type = e1000_phy_bm;
 453                phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 454                phy->ops.read_reg = e1000e_read_phy_reg_bm;
 455                phy->ops.write_reg = e1000e_write_phy_reg_bm;
 456                phy->ops.commit = e1000e_phy_sw_reset;
 457                phy->ops.get_info = e1000e_get_phy_info_m88;
 458                phy->ops.check_polarity = e1000_check_polarity_m88;
 459                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 460                break;
 461        default:
 462                return -E1000_ERR_PHY;
 463                break;
 464        }
 465
 466        return 0;
 467}
 468
 469/**
 470 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 471 *  @hw: pointer to the HW structure
 472 *
 473 *  Initialize family-specific NVM parameters and function
 474 *  pointers.
 475 **/
 476static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 477{
 478        struct e1000_nvm_info *nvm = &hw->nvm;
 479        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 480        u32 gfpreg, sector_base_addr, sector_end_addr;
 481        u16 i;
 482
 483        /* Can't read flash registers if the register set isn't mapped. */
 484        if (!hw->flash_address) {
 485                e_dbg("ERROR: Flash registers not mapped\n");
 486                return -E1000_ERR_CONFIG;
 487        }
 488
 489        nvm->type = e1000_nvm_flash_sw;
 490
 491        gfpreg = er32flash(ICH_FLASH_GFPREG);
 492
 493        /*
 494         * sector_X_addr is a "sector"-aligned address (4096 bytes)
 495         * Add 1 to sector_end_addr since this sector is included in
 496         * the overall size.
 497         */
 498        sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 499        sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 500
 501        /* flash_base_addr is byte-aligned */
 502        nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
 503
 504        /*
 505         * find total size of the NVM, then cut in half since the total
 506         * size represents two separate NVM banks.
 507         */
 508        nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
 509                                << FLASH_SECTOR_ADDR_SHIFT;
 510        nvm->flash_bank_size /= 2;
 511        /* Adjust to word count */
 512        nvm->flash_bank_size /= sizeof(u16);
 513
 514        nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 515
 516        /* Clear shadow ram */
 517        for (i = 0; i < nvm->word_size; i++) {
 518                dev_spec->shadow_ram[i].modified = false;
 519                dev_spec->shadow_ram[i].value    = 0xFFFF;
 520        }
 521
 522        return 0;
 523}
 524
 525/**
 526 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 527 *  @hw: pointer to the HW structure
 528 *
 529 *  Initialize family-specific MAC parameters and function
 530 *  pointers.
 531 **/
 532static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
 533{
 534        struct e1000_hw *hw = &adapter->hw;
 535        struct e1000_mac_info *mac = &hw->mac;
 536
 537        /* Set media type function pointer */
 538        hw->phy.media_type = e1000_media_type_copper;
 539
 540        /* Set mta register count */
 541        mac->mta_reg_count = 32;
 542        /* Set rar entry count */
 543        mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 544        if (mac->type == e1000_ich8lan)
 545                mac->rar_entry_count--;
 546        /* FWSM register */
 547        mac->has_fwsm = true;
 548        /* ARC subsystem not supported */
 549        mac->arc_subsystem_valid = false;
 550        /* Adaptive IFS supported */
 551        mac->adaptive_ifs = true;
 552
 553        /* LED operations */
 554        switch (mac->type) {
 555        case e1000_ich8lan:
 556        case e1000_ich9lan:
 557        case e1000_ich10lan:
 558                /* check management mode */
 559                mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 560                /* ID LED init */
 561                mac->ops.id_led_init = e1000e_id_led_init;
 562                /* setup LED */
 563                mac->ops.setup_led = e1000e_setup_led_generic;
 564                /* cleanup LED */
 565                mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 566                /* turn on/off LED */
 567                mac->ops.led_on = e1000_led_on_ich8lan;
 568                mac->ops.led_off = e1000_led_off_ich8lan;
 569                break;
 570        case e1000_pchlan:
 571        case e1000_pch2lan:
 572                /* check management mode */
 573                mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 574                /* ID LED init */
 575                mac->ops.id_led_init = e1000_id_led_init_pchlan;
 576                /* setup LED */
 577                mac->ops.setup_led = e1000_setup_led_pchlan;
 578                /* cleanup LED */
 579                mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 580                /* turn on/off LED */
 581                mac->ops.led_on = e1000_led_on_pchlan;
 582                mac->ops.led_off = e1000_led_off_pchlan;
 583                break;
 584        default:
 585                break;
 586        }
 587
 588        /* Enable PCS Lock-loss workaround for ICH8 */
 589        if (mac->type == e1000_ich8lan)
 590                e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 591
 592        /* Gate automatic PHY configuration by hardware on managed 82579 */
 593        if ((mac->type == e1000_pch2lan) &&
 594            (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
 595                e1000_gate_hw_phy_config_ich8lan(hw, true);
 596
 597        return 0;
 598}
 599
 600/**
 601 *  e1000_set_eee_pchlan - Enable/disable EEE support
 602 *  @hw: pointer to the HW structure
 603 *
 604 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
 605 *  the LPI Control register will remain set only if/when link is up.
 606 **/
 607static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 608{
 609        s32 ret_val = 0;
 610        u16 phy_reg;
 611
 612        if (hw->phy.type != e1000_phy_82579)
 613                goto out;
 614
 615        ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
 616        if (ret_val)
 617                goto out;
 618
 619        if (hw->dev_spec.ich8lan.eee_disable)
 620                phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
 621        else
 622                phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
 623
 624        ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
 625out:
 626        return ret_val;
 627}
 628
 629/**
 630 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 631 *  @hw: pointer to the HW structure
 632 *
 633 *  Checks to see of the link status of the hardware has changed.  If a
 634 *  change in link status has been detected, then we read the PHY registers
 635 *  to get the current speed/duplex if link exists.
 636 **/
 637static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
 638{
 639        struct e1000_mac_info *mac = &hw->mac;
 640        s32 ret_val;
 641        bool link;
 642
 643        /*
 644         * We only want to go out to the PHY registers to see if Auto-Neg
 645         * has completed and/or if our link status has changed.  The
 646         * get_link_status flag is set upon receiving a Link Status
 647         * Change or Rx Sequence Error interrupt.
 648         */
 649        if (!mac->get_link_status) {
 650                ret_val = 0;
 651                goto out;
 652        }
 653
 654        /*
 655         * First we want to see if the MII Status Register reports
 656         * link.  If so, then we want to get the current speed/duplex
 657         * of the PHY.
 658         */
 659        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 660        if (ret_val)
 661                goto out;
 662
 663        if (hw->mac.type == e1000_pchlan) {
 664                ret_val = e1000_k1_gig_workaround_hv(hw, link);
 665                if (ret_val)
 666                        goto out;
 667        }
 668
 669        if (!link)
 670                goto out; /* No link detected */
 671
 672        mac->get_link_status = false;
 673
 674        if (hw->phy.type == e1000_phy_82578) {
 675                ret_val = e1000_link_stall_workaround_hv(hw);
 676                if (ret_val)
 677                        goto out;
 678        }
 679
 680        if (hw->mac.type == e1000_pch2lan) {
 681                ret_val = e1000_k1_workaround_lv(hw);
 682                if (ret_val)
 683                        goto out;
 684        }
 685
 686        /*
 687         * Check if there was DownShift, must be checked
 688         * immediately after link-up
 689         */
 690        e1000e_check_downshift(hw);
 691
 692        /* Enable/Disable EEE after link up */
 693        ret_val = e1000_set_eee_pchlan(hw);
 694        if (ret_val)
 695                goto out;
 696
 697        /*
 698         * If we are forcing speed/duplex, then we simply return since
 699         * we have already determined whether we have link or not.
 700         */
 701        if (!mac->autoneg) {
 702                ret_val = -E1000_ERR_CONFIG;
 703                goto out;
 704        }
 705
 706        /*
 707         * Auto-Neg is enabled.  Auto Speed Detection takes care
 708         * of MAC speed/duplex configuration.  So we only need to
 709         * configure Collision Distance in the MAC.
 710         */
 711        e1000e_config_collision_dist(hw);
 712
 713        /*
 714         * Configure Flow Control now that Auto-Neg has completed.
 715         * First, we need to restore the desired flow control
 716         * settings because we may have had to re-autoneg with a
 717         * different link partner.
 718         */
 719        ret_val = e1000e_config_fc_after_link_up(hw);
 720        if (ret_val)
 721                e_dbg("Error configuring flow control\n");
 722
 723out:
 724        return ret_val;
 725}
 726
 727static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
 728{
 729        struct e1000_hw *hw = &adapter->hw;
 730        s32 rc;
 731
 732        rc = e1000_init_mac_params_ich8lan(adapter);
 733        if (rc)
 734                return rc;
 735
 736        rc = e1000_init_nvm_params_ich8lan(hw);
 737        if (rc)
 738                return rc;
 739
 740        switch (hw->mac.type) {
 741        case e1000_ich8lan:
 742        case e1000_ich9lan:
 743        case e1000_ich10lan:
 744                rc = e1000_init_phy_params_ich8lan(hw);
 745                break;
 746        case e1000_pchlan:
 747        case e1000_pch2lan:
 748                rc = e1000_init_phy_params_pchlan(hw);
 749                break;
 750        default:
 751                break;
 752        }
 753        if (rc)
 754                return rc;
 755
 756        if (adapter->hw.phy.type == e1000_phy_ife) {
 757                adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
 758                adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
 759        }
 760
 761        if ((adapter->hw.mac.type == e1000_ich8lan) &&
 762            (adapter->hw.phy.type == e1000_phy_igp_3))
 763                adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
 764
 765        /* Disable EEE by default until IEEE802.3az spec is finalized */
 766        if (adapter->flags2 & FLAG2_HAS_EEE)
 767                adapter->hw.dev_spec.ich8lan.eee_disable = true;
 768
 769        return 0;
 770}
 771
 772static DEFINE_MUTEX(nvm_mutex);
 773
 774/**
 775 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
 776 *  @hw: pointer to the HW structure
 777 *
 778 *  Acquires the mutex for performing NVM operations.
 779 **/
 780static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
 781{
 782        mutex_lock(&nvm_mutex);
 783
 784        return 0;
 785}
 786
 787/**
 788 *  e1000_release_nvm_ich8lan - Release NVM mutex
 789 *  @hw: pointer to the HW structure
 790 *
 791 *  Releases the mutex used while performing NVM operations.
 792 **/
 793static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
 794{
 795        mutex_unlock(&nvm_mutex);
 796}
 797
 798static DEFINE_MUTEX(swflag_mutex);
 799
 800/**
 801 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
 802 *  @hw: pointer to the HW structure
 803 *
 804 *  Acquires the software control flag for performing PHY and select
 805 *  MAC CSR accesses.
 806 **/
 807static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
 808{
 809        u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
 810        s32 ret_val = 0;
 811
 812        mutex_lock(&swflag_mutex);
 813
 814        while (timeout) {
 815                extcnf_ctrl = er32(EXTCNF_CTRL);
 816                if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
 817                        break;
 818
 819                mdelay(1);
 820                timeout--;
 821        }
 822
 823        if (!timeout) {
 824                e_dbg("SW/FW/HW has locked the resource for too long.\n");
 825                ret_val = -E1000_ERR_CONFIG;
 826                goto out;
 827        }
 828
 829        timeout = SW_FLAG_TIMEOUT;
 830
 831        extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
 832        ew32(EXTCNF_CTRL, extcnf_ctrl);
 833
 834        while (timeout) {
 835                extcnf_ctrl = er32(EXTCNF_CTRL);
 836                if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
 837                        break;
 838
 839                mdelay(1);
 840                timeout--;
 841        }
 842
 843        if (!timeout) {
 844                e_dbg("Failed to acquire the semaphore.\n");
 845                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
 846                ew32(EXTCNF_CTRL, extcnf_ctrl);
 847                ret_val = -E1000_ERR_CONFIG;
 848                goto out;
 849        }
 850
 851out:
 852        if (ret_val)
 853                mutex_unlock(&swflag_mutex);
 854
 855        return ret_val;
 856}
 857
 858/**
 859 *  e1000_release_swflag_ich8lan - Release software control flag
 860 *  @hw: pointer to the HW structure
 861 *
 862 *  Releases the software control flag for performing PHY and select
 863 *  MAC CSR accesses.
 864 **/
 865static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
 866{
 867        u32 extcnf_ctrl;
 868
 869        extcnf_ctrl = er32(EXTCNF_CTRL);
 870        extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
 871        ew32(EXTCNF_CTRL, extcnf_ctrl);
 872
 873        mutex_unlock(&swflag_mutex);
 874}
 875
 876/**
 877 *  e1000_check_mng_mode_ich8lan - Checks management mode
 878 *  @hw: pointer to the HW structure
 879 *
 880 *  This checks if the adapter has any manageability enabled.
 881 *  This is a function pointer entry point only called by read/write
 882 *  routines for the PHY and NVM parts.
 883 **/
 884static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
 885{
 886        u32 fwsm;
 887
 888        fwsm = er32(FWSM);
 889        return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
 890               ((fwsm & E1000_FWSM_MODE_MASK) ==
 891                (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
 892}
 893
 894/**
 895 *  e1000_check_mng_mode_pchlan - Checks management mode
 896 *  @hw: pointer to the HW structure
 897 *
 898 *  This checks if the adapter has iAMT enabled.
 899 *  This is a function pointer entry point only called by read/write
 900 *  routines for the PHY and NVM parts.
 901 **/
 902static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
 903{
 904        u32 fwsm;
 905
 906        fwsm = er32(FWSM);
 907        return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
 908               (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
 909}
 910
 911/**
 912 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
 913 *  @hw: pointer to the HW structure
 914 *
 915 *  Checks if firmware is blocking the reset of the PHY.
 916 *  This is a function pointer entry point only called by
 917 *  reset routines.
 918 **/
 919static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
 920{
 921        u32 fwsm;
 922
 923        fwsm = er32(FWSM);
 924
 925        return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
 926}
 927
 928/**
 929 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
 930 *  @hw: pointer to the HW structure
 931 *
 932 *  Assumes semaphore already acquired.
 933 *
 934 **/
 935static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
 936{
 937        u16 phy_data;
 938        u32 strap = er32(STRAP);
 939        s32 ret_val = 0;
 940
 941        strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
 942
 943        ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
 944        if (ret_val)
 945                goto out;
 946
 947        phy_data &= ~HV_SMB_ADDR_MASK;
 948        phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
 949        phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
 950        ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
 951
 952out:
 953        return ret_val;
 954}
 955
 956/**
 957 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
 958 *  @hw:   pointer to the HW structure
 959 *
 960 *  SW should configure the LCD from the NVM extended configuration region
 961 *  as a workaround for certain parts.
 962 **/
 963static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
 964{
 965        struct e1000_phy_info *phy = &hw->phy;
 966        u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
 967        s32 ret_val = 0;
 968        u16 word_addr, reg_data, reg_addr, phy_page = 0;
 969
 970        /*
 971         * Initialize the PHY from the NVM on ICH platforms.  This
 972         * is needed due to an issue where the NVM configuration is
 973         * not properly autoloaded after power transitions.
 974         * Therefore, after each PHY reset, we will load the
 975         * configuration data out of the NVM manually.
 976         */
 977        switch (hw->mac.type) {
 978        case e1000_ich8lan:
 979                if (phy->type != e1000_phy_igp_3)
 980                        return ret_val;
 981
 982                if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
 983                    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
 984                        sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
 985                        break;
 986                }
 987                /* Fall-thru */
 988        case e1000_pchlan:
 989        case e1000_pch2lan:
 990                sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
 991                break;
 992        default:
 993                return ret_val;
 994        }
 995
 996        ret_val = hw->phy.ops.acquire(hw);
 997        if (ret_val)
 998                return ret_val;
 999
1000        data = er32(FEXTNVM);
1001        if (!(data & sw_cfg_mask))
1002                goto out;
1003
1004        /*
1005         * Make sure HW does not configure LCD from PHY
1006         * extended configuration before SW configuration
1007         */
1008        data = er32(EXTCNF_CTRL);
1009        if (!(hw->mac.type == e1000_pch2lan)) {
1010                if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1011                        goto out;
1012        }
1013
1014        cnf_size = er32(EXTCNF_SIZE);
1015        cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1016        cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1017        if (!cnf_size)
1018                goto out;
1019
1020        cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1021        cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1022
1023        if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1024            (hw->mac.type == e1000_pchlan)) ||
1025             (hw->mac.type == e1000_pch2lan)) {
1026                /*
1027                 * HW configures the SMBus address and LEDs when the
1028                 * OEM and LCD Write Enable bits are set in the NVM.
1029                 * When both NVM bits are cleared, SW will configure
1030                 * them instead.
1031                 */
1032                ret_val = e1000_write_smbus_addr(hw);
1033                if (ret_val)
1034                        goto out;
1035
1036                data = er32(LEDCTL);
1037                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1038                                                        (u16)data);
1039                if (ret_val)
1040                        goto out;
1041        }
1042
1043        /* Configure LCD from extended configuration region. */
1044
1045        /* cnf_base_addr is in DWORD */
1046        word_addr = (u16)(cnf_base_addr << 1);
1047
1048        for (i = 0; i < cnf_size; i++) {
1049                ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1050                                         &reg_data);
1051                if (ret_val)
1052                        goto out;
1053
1054                ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1055                                         1, &reg_addr);
1056                if (ret_val)
1057                        goto out;
1058
1059                /* Save off the PHY page for future writes. */
1060                if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1061                        phy_page = reg_data;
1062                        continue;
1063                }
1064
1065                reg_addr &= PHY_REG_MASK;
1066                reg_addr |= phy_page;
1067
1068                ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1069                                                    reg_data);
1070                if (ret_val)
1071                        goto out;
1072        }
1073
1074out:
1075        hw->phy.ops.release(hw);
1076        return ret_val;
1077}
1078
1079/**
1080 *  e1000_k1_gig_workaround_hv - K1 Si workaround
1081 *  @hw:   pointer to the HW structure
1082 *  @link: link up bool flag
1083 *
1084 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1085 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1086 *  If link is down, the function will restore the default K1 setting located
1087 *  in the NVM.
1088 **/
1089static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1090{
1091        s32 ret_val = 0;
1092        u16 status_reg = 0;
1093        bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1094
1095        if (hw->mac.type != e1000_pchlan)
1096                goto out;
1097
1098        /* Wrap the whole flow with the sw flag */
1099        ret_val = hw->phy.ops.acquire(hw);
1100        if (ret_val)
1101                goto out;
1102
1103        /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1104        if (link) {
1105                if (hw->phy.type == e1000_phy_82578) {
1106                        ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1107                                                                  &status_reg);
1108                        if (ret_val)
1109                                goto release;
1110
1111                        status_reg &= BM_CS_STATUS_LINK_UP |
1112                                      BM_CS_STATUS_RESOLVED |
1113                                      BM_CS_STATUS_SPEED_MASK;
1114
1115                        if (status_reg == (BM_CS_STATUS_LINK_UP |
1116                                           BM_CS_STATUS_RESOLVED |
1117                                           BM_CS_STATUS_SPEED_1000))
1118                                k1_enable = false;
1119                }
1120
1121                if (hw->phy.type == e1000_phy_82577) {
1122                        ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1123                                                                  &status_reg);
1124                        if (ret_val)
1125                                goto release;
1126
1127                        status_reg &= HV_M_STATUS_LINK_UP |
1128                                      HV_M_STATUS_AUTONEG_COMPLETE |
1129                                      HV_M_STATUS_SPEED_MASK;
1130
1131                        if (status_reg == (HV_M_STATUS_LINK_UP |
1132                                           HV_M_STATUS_AUTONEG_COMPLETE |
1133                                           HV_M_STATUS_SPEED_1000))
1134                                k1_enable = false;
1135                }
1136
1137                /* Link stall fix for link up */
1138                ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1139                                                           0x0100);
1140                if (ret_val)
1141                        goto release;
1142
1143        } else {
1144                /* Link stall fix for link down */
1145                ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1146                                                           0x4100);
1147                if (ret_val)
1148                        goto release;
1149        }
1150
1151        ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1152
1153release:
1154        hw->phy.ops.release(hw);
1155out:
1156        return ret_val;
1157}
1158
1159/**
1160 *  e1000_configure_k1_ich8lan - Configure K1 power state
1161 *  @hw: pointer to the HW structure
1162 *  @enable: K1 state to configure
1163 *
1164 *  Configure the K1 power state based on the provided parameter.
1165 *  Assumes semaphore already acquired.
1166 *
1167 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1168 **/
1169s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1170{
1171        s32 ret_val = 0;
1172        u32 ctrl_reg = 0;
1173        u32 ctrl_ext = 0;
1174        u32 reg = 0;
1175        u16 kmrn_reg = 0;
1176
1177        ret_val = e1000e_read_kmrn_reg_locked(hw,
1178                                             E1000_KMRNCTRLSTA_K1_CONFIG,
1179                                             &kmrn_reg);
1180        if (ret_val)
1181                goto out;
1182
1183        if (k1_enable)
1184                kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1185        else
1186                kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1187
1188        ret_val = e1000e_write_kmrn_reg_locked(hw,
1189                                              E1000_KMRNCTRLSTA_K1_CONFIG,
1190                                              kmrn_reg);
1191        if (ret_val)
1192                goto out;
1193
1194        udelay(20);
1195        ctrl_ext = er32(CTRL_EXT);
1196        ctrl_reg = er32(CTRL);
1197
1198        reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1199        reg |= E1000_CTRL_FRCSPD;
1200        ew32(CTRL, reg);
1201
1202        ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1203        udelay(20);
1204        ew32(CTRL, ctrl_reg);
1205        ew32(CTRL_EXT, ctrl_ext);
1206        udelay(20);
1207
1208out:
1209        return ret_val;
1210}
1211
1212/**
1213 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1214 *  @hw:       pointer to the HW structure
1215 *  @d0_state: boolean if entering d0 or d3 device state
1216 *
1217 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1218 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1219 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1220 **/
1221static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1222{
1223        s32 ret_val = 0;
1224        u32 mac_reg;
1225        u16 oem_reg;
1226
1227        if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1228                return ret_val;
1229
1230        ret_val = hw->phy.ops.acquire(hw);
1231        if (ret_val)
1232                return ret_val;
1233
1234        if (!(hw->mac.type == e1000_pch2lan)) {
1235                mac_reg = er32(EXTCNF_CTRL);
1236                if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1237                        goto out;
1238        }
1239
1240        mac_reg = er32(FEXTNVM);
1241        if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1242                goto out;
1243
1244        mac_reg = er32(PHY_CTRL);
1245
1246        ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1247        if (ret_val)
1248                goto out;
1249
1250        oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1251
1252        if (d0_state) {
1253                if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1254                        oem_reg |= HV_OEM_BITS_GBE_DIS;
1255
1256                if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1257                        oem_reg |= HV_OEM_BITS_LPLU;
1258        } else {
1259                if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1260                        oem_reg |= HV_OEM_BITS_GBE_DIS;
1261
1262                if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1263                        oem_reg |= HV_OEM_BITS_LPLU;
1264        }
1265        /* Restart auto-neg to activate the bits */
1266        if (!e1000_check_reset_block(hw))
1267                oem_reg |= HV_OEM_BITS_RESTART_AN;
1268        ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1269
1270out:
1271        hw->phy.ops.release(hw);
1272
1273        return ret_val;
1274}
1275
1276
1277/**
1278 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1279 *  @hw:   pointer to the HW structure
1280 **/
1281static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1282{
1283        s32 ret_val;
1284        u16 data;
1285
1286        ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1287        if (ret_val)
1288                return ret_val;
1289
1290        data |= HV_KMRN_MDIO_SLOW;
1291
1292        ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1293
1294        return ret_val;
1295}
1296
1297/**
1298 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1299 *  done after every PHY reset.
1300 **/
1301static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1302{
1303        s32 ret_val = 0;
1304        u16 phy_data;
1305
1306        if (hw->mac.type != e1000_pchlan)
1307                return ret_val;
1308
1309        /* Set MDIO slow mode before any other MDIO access */
1310        if (hw->phy.type == e1000_phy_82577) {
1311                ret_val = e1000_set_mdio_slow_mode_hv(hw);
1312                if (ret_val)
1313                        goto out;
1314        }
1315
1316        if (((hw->phy.type == e1000_phy_82577) &&
1317             ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1318            ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1319                /* Disable generation of early preamble */
1320                ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1321                if (ret_val)
1322                        return ret_val;
1323
1324                /* Preamble tuning for SSC */
1325                ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1326                if (ret_val)
1327                        return ret_val;
1328        }
1329
1330        if (hw->phy.type == e1000_phy_82578) {
1331                /*
1332                 * Return registers to default by doing a soft reset then
1333                 * writing 0x3140 to the control register.
1334                 */
1335                if (hw->phy.revision < 2) {
1336                        e1000e_phy_sw_reset(hw);
1337                        ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1338                }
1339        }
1340
1341        /* Select page 0 */
1342        ret_val = hw->phy.ops.acquire(hw);
1343        if (ret_val)
1344                return ret_val;
1345
1346        hw->phy.addr = 1;
1347        ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1348        hw->phy.ops.release(hw);
1349        if (ret_val)
1350                goto out;
1351
1352        /*
1353         * Configure the K1 Si workaround during phy reset assuming there is
1354         * link so that it disables K1 if link is in 1Gbps.
1355         */
1356        ret_val = e1000_k1_gig_workaround_hv(hw, true);
1357        if (ret_val)
1358                goto out;
1359
1360        /* Workaround for link disconnects on a busy hub in half duplex */
1361        ret_val = hw->phy.ops.acquire(hw);
1362        if (ret_val)
1363                goto out;
1364        ret_val = hw->phy.ops.read_reg_locked(hw,
1365                                              PHY_REG(BM_PORT_CTRL_PAGE, 17),
1366                                              &phy_data);
1367        if (ret_val)
1368                goto release;
1369        ret_val = hw->phy.ops.write_reg_locked(hw,
1370                                               PHY_REG(BM_PORT_CTRL_PAGE, 17),
1371                                               phy_data & 0x00FF);
1372release:
1373        hw->phy.ops.release(hw);
1374out:
1375        return ret_val;
1376}
1377
1378/**
1379 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1380 *  @hw:   pointer to the HW structure
1381 **/
1382void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1383{
1384        u32 mac_reg;
1385        u16 i;
1386
1387        /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1388        for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1389                mac_reg = er32(RAL(i));
1390                e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
1391                e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
1392                mac_reg = er32(RAH(i));
1393                e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
1394                e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0x8000));
1395        }
1396}
1397
1398/**
1399 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1400 *  with 82579 PHY
1401 *  @hw: pointer to the HW structure
1402 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1403 **/
1404s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1405{
1406        s32 ret_val = 0;
1407        u16 phy_reg, data;
1408        u32 mac_reg;
1409        u16 i;
1410
1411        if (hw->mac.type != e1000_pch2lan)
1412                goto out;
1413
1414        /* disable Rx path while enabling/disabling workaround */
1415        e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1416        ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1417        if (ret_val)
1418                goto out;
1419
1420        if (enable) {
1421                /*
1422                 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1423                 * SHRAL/H) and initial CRC values to the MAC
1424                 */
1425                for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1426                        u8 mac_addr[ETH_ALEN] = {0};
1427                        u32 addr_high, addr_low;
1428
1429                        addr_high = er32(RAH(i));
1430                        if (!(addr_high & E1000_RAH_AV))
1431                                continue;
1432                        addr_low = er32(RAL(i));
1433                        mac_addr[0] = (addr_low & 0xFF);
1434                        mac_addr[1] = ((addr_low >> 8) & 0xFF);
1435                        mac_addr[2] = ((addr_low >> 16) & 0xFF);
1436                        mac_addr[3] = ((addr_low >> 24) & 0xFF);
1437                        mac_addr[4] = (addr_high & 0xFF);
1438                        mac_addr[5] = ((addr_high >> 8) & 0xFF);
1439
1440                        ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1441                }
1442
1443                /* Write Rx addresses to the PHY */
1444                e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1445
1446                /* Enable jumbo frame workaround in the MAC */
1447                mac_reg = er32(FFLT_DBG);
1448                mac_reg &= ~(1 << 14);
1449                mac_reg |= (7 << 15);
1450                ew32(FFLT_DBG, mac_reg);
1451
1452                mac_reg = er32(RCTL);
1453                mac_reg |= E1000_RCTL_SECRC;
1454                ew32(RCTL, mac_reg);
1455
1456                ret_val = e1000e_read_kmrn_reg(hw,
1457                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
1458                                                &data);
1459                if (ret_val)
1460                        goto out;
1461                ret_val = e1000e_write_kmrn_reg(hw,
1462                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
1463                                                data | (1 << 0));
1464                if (ret_val)
1465                        goto out;
1466                ret_val = e1000e_read_kmrn_reg(hw,
1467                                                E1000_KMRNCTRLSTA_HD_CTRL,
1468                                                &data);
1469                if (ret_val)
1470                        goto out;
1471                data &= ~(0xF << 8);
1472                data |= (0xB << 8);
1473                ret_val = e1000e_write_kmrn_reg(hw,
1474                                                E1000_KMRNCTRLSTA_HD_CTRL,
1475                                                data);
1476                if (ret_val)
1477                        goto out;
1478
1479                /* Enable jumbo frame workaround in the PHY */
1480                e1e_rphy(hw, PHY_REG(769, 23), &data);
1481                data &= ~(0x7F << 5);
1482                data |= (0x37 << 5);
1483                ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1484                if (ret_val)
1485                        goto out;
1486                e1e_rphy(hw, PHY_REG(769, 16), &data);
1487                data &= ~(1 << 13);
1488                ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1489                if (ret_val)
1490                        goto out;
1491                e1e_rphy(hw, PHY_REG(776, 20), &data);
1492                data &= ~(0x3FF << 2);
1493                data |= (0x1A << 2);
1494                ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1495                if (ret_val)
1496                        goto out;
1497                ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
1498                if (ret_val)
1499                        goto out;
1500                e1e_rphy(hw, HV_PM_CTRL, &data);
1501                ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1502                if (ret_val)
1503                        goto out;
1504        } else {
1505                /* Write MAC register values back to h/w defaults */
1506                mac_reg = er32(FFLT_DBG);
1507                mac_reg &= ~(0xF << 14);
1508                ew32(FFLT_DBG, mac_reg);
1509
1510                mac_reg = er32(RCTL);
1511                mac_reg &= ~E1000_RCTL_SECRC;
1512                ew32(RCTL, mac_reg);
1513
1514                ret_val = e1000e_read_kmrn_reg(hw,
1515                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
1516                                                &data);
1517                if (ret_val)
1518                        goto out;
1519                ret_val = e1000e_write_kmrn_reg(hw,
1520                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
1521                                                data & ~(1 << 0));
1522                if (ret_val)
1523                        goto out;
1524                ret_val = e1000e_read_kmrn_reg(hw,
1525                                                E1000_KMRNCTRLSTA_HD_CTRL,
1526                                                &data);
1527                if (ret_val)
1528                        goto out;
1529                data &= ~(0xF << 8);
1530                data |= (0xB << 8);
1531                ret_val = e1000e_write_kmrn_reg(hw,
1532                                                E1000_KMRNCTRLSTA_HD_CTRL,
1533                                                data);
1534                if (ret_val)
1535                        goto out;
1536
1537                /* Write PHY register values back to h/w defaults */
1538                e1e_rphy(hw, PHY_REG(769, 23), &data);
1539                data &= ~(0x7F << 5);
1540                ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1541                if (ret_val)
1542                        goto out;
1543                e1e_rphy(hw, PHY_REG(769, 16), &data);
1544                data |= (1 << 13);
1545                ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1546                if (ret_val)
1547                        goto out;
1548                e1e_rphy(hw, PHY_REG(776, 20), &data);
1549                data &= ~(0x3FF << 2);
1550                data |= (0x8 << 2);
1551                ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1552                if (ret_val)
1553                        goto out;
1554                ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1555                if (ret_val)
1556                        goto out;
1557                e1e_rphy(hw, HV_PM_CTRL, &data);
1558                ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1559                if (ret_val)
1560                        goto out;
1561        }
1562
1563        /* re-enable Rx path after enabling/disabling workaround */
1564        ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1565
1566out:
1567        return ret_val;
1568}
1569
1570/**
1571 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1572 *  done after every PHY reset.
1573 **/
1574static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1575{
1576        s32 ret_val = 0;
1577
1578        if (hw->mac.type != e1000_pch2lan)
1579                goto out;
1580
1581        /* Set MDIO slow mode before any other MDIO access */
1582        ret_val = e1000_set_mdio_slow_mode_hv(hw);
1583
1584out:
1585        return ret_val;
1586}
1587
1588/**
1589 *  e1000_k1_gig_workaround_lv - K1 Si workaround
1590 *  @hw:   pointer to the HW structure
1591 *
1592 *  Workaround to set the K1 beacon duration for 82579 parts
1593 **/
1594static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1595{
1596        s32 ret_val = 0;
1597        u16 status_reg = 0;
1598        u32 mac_reg;
1599
1600        if (hw->mac.type != e1000_pch2lan)
1601                goto out;
1602
1603        /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1604        ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1605        if (ret_val)
1606                goto out;
1607
1608        if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1609            == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1610                mac_reg = er32(FEXTNVM4);
1611                mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1612
1613                if (status_reg & HV_M_STATUS_SPEED_1000)
1614                        mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1615                else
1616                        mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1617
1618                ew32(FEXTNVM4, mac_reg);
1619        }
1620
1621out:
1622        return ret_val;
1623}
1624
1625/**
1626 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1627 *  @hw:   pointer to the HW structure
1628 *  @gate: boolean set to true to gate, false to ungate
1629 *
1630 *  Gate/ungate the automatic PHY configuration via hardware; perform
1631 *  the configuration via software instead.
1632 **/
1633static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1634{
1635        u32 extcnf_ctrl;
1636
1637        if (hw->mac.type != e1000_pch2lan)
1638                return;
1639
1640        extcnf_ctrl = er32(EXTCNF_CTRL);
1641
1642        if (gate)
1643                extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1644        else
1645                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1646
1647        ew32(EXTCNF_CTRL, extcnf_ctrl);
1648        return;
1649}
1650
1651/**
1652 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1653 *  @hw: pointer to the HW structure
1654 *
1655 *  Check the appropriate indication the MAC has finished configuring the
1656 *  PHY after a software reset.
1657 **/
1658static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1659{
1660        u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1661
1662        /* Wait for basic configuration completes before proceeding */
1663        do {
1664                data = er32(STATUS);
1665                data &= E1000_STATUS_LAN_INIT_DONE;
1666                udelay(100);
1667        } while ((!data) && --loop);
1668
1669        /*
1670         * If basic configuration is incomplete before the above loop
1671         * count reaches 0, loading the configuration from NVM will
1672         * leave the PHY in a bad state possibly resulting in no link.
1673         */
1674        if (loop == 0)
1675                e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1676
1677        /* Clear the Init Done bit for the next init event */
1678        data = er32(STATUS);
1679        data &= ~E1000_STATUS_LAN_INIT_DONE;
1680        ew32(STATUS, data);
1681}
1682
1683/**
1684 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1685 *  @hw: pointer to the HW structure
1686 **/
1687static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1688{
1689        s32 ret_val = 0;
1690        u16 reg;
1691
1692        if (e1000_check_reset_block(hw))
1693                goto out;
1694
1695        /* Allow time for h/w to get to quiescent state after reset */
1696        msleep(10);
1697
1698        /* Perform any necessary post-reset workarounds */
1699        switch (hw->mac.type) {
1700        case e1000_pchlan:
1701                ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1702                if (ret_val)
1703                        goto out;
1704                break;
1705        case e1000_pch2lan:
1706                ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1707                if (ret_val)
1708                        goto out;
1709                break;
1710        default:
1711                break;
1712        }
1713
1714        /* Dummy read to clear the phy wakeup bit after lcd reset */
1715        if (hw->mac.type >= e1000_pchlan)
1716                e1e_rphy(hw, BM_WUC, &reg);
1717
1718        /* Configure the LCD with the extended configuration region in NVM */
1719        ret_val = e1000_sw_lcd_config_ich8lan(hw);
1720        if (ret_val)
1721                goto out;
1722
1723        /* Configure the LCD with the OEM bits in NVM */
1724        ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1725
1726        /* Ungate automatic PHY configuration on non-managed 82579 */
1727        if ((hw->mac.type == e1000_pch2lan) &&
1728            !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1729                msleep(10);
1730                e1000_gate_hw_phy_config_ich8lan(hw, false);
1731        }
1732
1733out:
1734        return ret_val;
1735}
1736
1737/**
1738 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1739 *  @hw: pointer to the HW structure
1740 *
1741 *  Resets the PHY
1742 *  This is a function pointer entry point called by drivers
1743 *  or other shared routines.
1744 **/
1745static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1746{
1747        s32 ret_val = 0;
1748
1749        /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1750        if ((hw->mac.type == e1000_pch2lan) &&
1751            !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1752                e1000_gate_hw_phy_config_ich8lan(hw, true);
1753
1754        ret_val = e1000e_phy_hw_reset_generic(hw);
1755        if (ret_val)
1756                goto out;
1757
1758        ret_val = e1000_post_phy_reset_ich8lan(hw);
1759
1760out:
1761        return ret_val;
1762}
1763
1764/**
1765 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1766 *  @hw: pointer to the HW structure
1767 *  @active: true to enable LPLU, false to disable
1768 *
1769 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1770 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1771 *  the phy speed. This function will manually set the LPLU bit and restart
1772 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1773 *  since it configures the same bit.
1774 **/
1775static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1776{
1777        s32 ret_val = 0;
1778        u16 oem_reg;
1779
1780        ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1781        if (ret_val)
1782                goto out;
1783
1784        if (active)
1785                oem_reg |= HV_OEM_BITS_LPLU;
1786        else
1787                oem_reg &= ~HV_OEM_BITS_LPLU;
1788
1789        oem_reg |= HV_OEM_BITS_RESTART_AN;
1790        ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1791
1792out:
1793        return ret_val;
1794}
1795
1796/**
1797 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1798 *  @hw: pointer to the HW structure
1799 *  @active: true to enable LPLU, false to disable
1800 *
1801 *  Sets the LPLU D0 state according to the active flag.  When
1802 *  activating LPLU this function also disables smart speed
1803 *  and vice versa.  LPLU will not be activated unless the
1804 *  device autonegotiation advertisement meets standards of
1805 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1806 *  This is a function pointer entry point only called by
1807 *  PHY setup routines.
1808 **/
1809static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1810{
1811        struct e1000_phy_info *phy = &hw->phy;
1812        u32 phy_ctrl;
1813        s32 ret_val = 0;
1814        u16 data;
1815
1816        if (phy->type == e1000_phy_ife)
1817                return ret_val;
1818
1819        phy_ctrl = er32(PHY_CTRL);
1820
1821        if (active) {
1822                phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1823                ew32(PHY_CTRL, phy_ctrl);
1824
1825                if (phy->type != e1000_phy_igp_3)
1826                        return 0;
1827
1828                /*
1829                 * Call gig speed drop workaround on LPLU before accessing
1830                 * any PHY registers
1831                 */
1832                if (hw->mac.type == e1000_ich8lan)
1833                        e1000e_gig_downshift_workaround_ich8lan(hw);
1834
1835                /* When LPLU is enabled, we should disable SmartSpeed */
1836                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1837                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1838                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1839                if (ret_val)
1840                        return ret_val;
1841        } else {
1842                phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1843                ew32(PHY_CTRL, phy_ctrl);
1844
1845                if (phy->type != e1000_phy_igp_3)
1846                        return 0;
1847
1848                /*
1849                 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1850                 * during Dx states where the power conservation is most
1851                 * important.  During driver activity we should enable
1852                 * SmartSpeed, so performance is maintained.
1853                 */
1854                if (phy->smart_speed == e1000_smart_speed_on) {
1855                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1856                                           &data);
1857                        if (ret_val)
1858                                return ret_val;
1859
1860                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1861                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1862                                           data);
1863                        if (ret_val)
1864                                return ret_val;
1865                } else if (phy->smart_speed == e1000_smart_speed_off) {
1866                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1867                                           &data);
1868                        if (ret_val)
1869                                return ret_val;
1870
1871                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1872                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1873                                           data);
1874                        if (ret_val)
1875                                return ret_val;
1876                }
1877        }
1878
1879        return 0;
1880}
1881
1882/**
1883 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1884 *  @hw: pointer to the HW structure
1885 *  @active: true to enable LPLU, false to disable
1886 *
1887 *  Sets the LPLU D3 state according to the active flag.  When
1888 *  activating LPLU this function also disables smart speed
1889 *  and vice versa.  LPLU will not be activated unless the
1890 *  device autonegotiation advertisement meets standards of
1891 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1892 *  This is a function pointer entry point only called by
1893 *  PHY setup routines.
1894 **/
1895static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1896{
1897        struct e1000_phy_info *phy = &hw->phy;
1898        u32 phy_ctrl;
1899        s32 ret_val;
1900        u16 data;
1901
1902        phy_ctrl = er32(PHY_CTRL);
1903
1904        if (!active) {
1905                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1906                ew32(PHY_CTRL, phy_ctrl);
1907
1908                if (phy->type != e1000_phy_igp_3)
1909                        return 0;
1910
1911                /*
1912                 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1913                 * during Dx states where the power conservation is most
1914                 * important.  During driver activity we should enable
1915                 * SmartSpeed, so performance is maintained.
1916                 */
1917                if (phy->smart_speed == e1000_smart_speed_on) {
1918                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1919                                           &data);
1920                        if (ret_val)
1921                                return ret_val;
1922
1923                        data |= IGP01E1000_PSCFR_SMART_SPEED;
1924                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1925                                           data);
1926                        if (ret_val)
1927                                return ret_val;
1928                } else if (phy->smart_speed == e1000_smart_speed_off) {
1929                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1930                                           &data);
1931                        if (ret_val)
1932                                return ret_val;
1933
1934                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1935                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1936                                           data);
1937                        if (ret_val)
1938                                return ret_val;
1939                }
1940        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1941                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1942                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1943                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1944                ew32(PHY_CTRL, phy_ctrl);
1945
1946                if (phy->type != e1000_phy_igp_3)
1947                        return 0;
1948
1949                /*
1950                 * Call gig speed drop workaround on LPLU before accessing
1951                 * any PHY registers
1952                 */
1953                if (hw->mac.type == e1000_ich8lan)
1954                        e1000e_gig_downshift_workaround_ich8lan(hw);
1955
1956                /* When LPLU is enabled, we should disable SmartSpeed */
1957                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1958                if (ret_val)
1959                        return ret_val;
1960
1961                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1962                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1963        }
1964
1965        return 0;
1966}
1967
1968/**
1969 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1970 *  @hw: pointer to the HW structure
1971 *  @bank:  pointer to the variable that returns the active bank
1972 *
1973 *  Reads signature byte from the NVM using the flash access registers.
1974 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1975 **/
1976static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1977{
1978        u32 eecd;
1979        struct e1000_nvm_info *nvm = &hw->nvm;
1980        u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1981        u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1982        u8 sig_byte = 0;
1983        s32 ret_val = 0;
1984
1985        switch (hw->mac.type) {
1986        case e1000_ich8lan:
1987        case e1000_ich9lan:
1988                eecd = er32(EECD);
1989                if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1990                    E1000_EECD_SEC1VAL_VALID_MASK) {
1991                        if (eecd & E1000_EECD_SEC1VAL)
1992                                *bank = 1;
1993                        else
1994                                *bank = 0;
1995
1996                        return 0;
1997                }
1998                e_dbg("Unable to determine valid NVM bank via EEC - "
1999                       "reading flash signature\n");
2000                /* fall-thru */
2001        default:
2002                /* set bank to 0 in case flash read fails */
2003                *bank = 0;
2004
2005                /* Check bank 0 */
2006                ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2007                                                        &sig_byte);
2008                if (ret_val)
2009                        return ret_val;
2010                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2011                    E1000_ICH_NVM_SIG_VALUE) {
2012                        *bank = 0;
2013                        return 0;
2014                }
2015
2016                /* Check bank 1 */
2017                ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2018                                                        bank1_offset,
2019                                                        &sig_byte);
2020                if (ret_val)
2021                        return ret_val;
2022                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2023                    E1000_ICH_NVM_SIG_VALUE) {
2024                        *bank = 1;
2025                        return 0;
2026                }
2027
2028                e_dbg("ERROR: No valid NVM bank present\n");
2029                return -E1000_ERR_NVM;
2030        }
2031
2032        return 0;
2033}
2034
2035/**
2036 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2037 *  @hw: pointer to the HW structure
2038 *  @offset: The offset (in bytes) of the word(s) to read.
2039 *  @words: Size of data to read in words
2040 *  @data: Pointer to the word(s) to read at offset.
2041 *
2042 *  Reads a word(s) from the NVM using the flash access registers.
2043 **/
2044static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2045                                  u16 *data)
2046{
2047        struct e1000_nvm_info *nvm = &hw->nvm;
2048        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2049        u32 act_offset;
2050        s32 ret_val = 0;
2051        u32 bank = 0;
2052        u16 i, word;
2053
2054        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2055            (words == 0)) {
2056                e_dbg("nvm parameter(s) out of bounds\n");
2057                ret_val = -E1000_ERR_NVM;
2058                goto out;
2059        }
2060
2061        nvm->ops.acquire(hw);
2062
2063        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2064        if (ret_val) {
2065                e_dbg("Could not detect valid bank, assuming bank 0\n");
2066                bank = 0;
2067        }
2068
2069        act_offset = (bank) ? nvm->flash_bank_size : 0;
2070        act_offset += offset;
2071
2072        ret_val = 0;
2073        for (i = 0; i < words; i++) {
2074                if ((dev_spec->shadow_ram) &&
2075                    (dev_spec->shadow_ram[offset+i].modified)) {
2076                        data[i] = dev_spec->shadow_ram[offset+i].value;
2077                } else {
2078                        ret_val = e1000_read_flash_word_ich8lan(hw,
2079                                                                act_offset + i,
2080                                                                &word);
2081                        if (ret_val)
2082                                break;
2083                        data[i] = word;
2084                }
2085        }
2086
2087        nvm->ops.release(hw);
2088
2089out:
2090        if (ret_val)
2091                e_dbg("NVM read error: %d\n", ret_val);
2092
2093        return ret_val;
2094}
2095
2096/**
2097 *  e1000_flash_cycle_init_ich8lan - Initialize flash
2098 *  @hw: pointer to the HW structure
2099 *
2100 *  This function does initial flash setup so that a new read/write/erase cycle
2101 *  can be started.
2102 **/
2103static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2104{
2105        union ich8_hws_flash_status hsfsts;
2106        s32 ret_val = -E1000_ERR_NVM;
2107        s32 i = 0;
2108
2109        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2110
2111        /* Check if the flash descriptor is valid */
2112        if (hsfsts.hsf_status.fldesvalid == 0) {
2113                e_dbg("Flash descriptor invalid.  "
2114                         "SW Sequencing must be used.\n");
2115                return -E1000_ERR_NVM;
2116        }
2117
2118        /* Clear FCERR and DAEL in hw status by writing 1 */
2119        hsfsts.hsf_status.flcerr = 1;
2120        hsfsts.hsf_status.dael = 1;
2121
2122        ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2123
2124        /*
2125         * Either we should have a hardware SPI cycle in progress
2126         * bit to check against, in order to start a new cycle or
2127         * FDONE bit should be changed in the hardware so that it
2128         * is 1 after hardware reset, which can then be used as an
2129         * indication whether a cycle is in progress or has been
2130         * completed.
2131         */
2132
2133        if (hsfsts.hsf_status.flcinprog == 0) {
2134                /*
2135                 * There is no cycle running at present,
2136                 * so we can start a cycle.
2137                 * Begin by setting Flash Cycle Done.
2138                 */
2139                hsfsts.hsf_status.flcdone = 1;
2140                ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2141                ret_val = 0;
2142        } else {
2143                /*
2144                 * Otherwise poll for sometime so the current
2145                 * cycle has a chance to end before giving up.
2146                 */
2147                for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2148                        hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2149                        if (hsfsts.hsf_status.flcinprog == 0) {
2150                                ret_val = 0;
2151                                break;
2152                        }
2153                        udelay(1);
2154                }
2155                if (ret_val == 0) {
2156                        /*
2157                         * Successful in waiting for previous cycle to timeout,
2158                         * now set the Flash Cycle Done.
2159                         */
2160                        hsfsts.hsf_status.flcdone = 1;
2161                        ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2162                } else {
2163                        e_dbg("Flash controller busy, cannot get access\n");
2164                }
2165        }
2166
2167        return ret_val;
2168}
2169
2170/**
2171 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2172 *  @hw: pointer to the HW structure
2173 *  @timeout: maximum time to wait for completion
2174 *
2175 *  This function starts a flash cycle and waits for its completion.
2176 **/
2177static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2178{
2179        union ich8_hws_flash_ctrl hsflctl;
2180        union ich8_hws_flash_status hsfsts;
2181        s32 ret_val = -E1000_ERR_NVM;
2182        u32 i = 0;
2183
2184        /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2185        hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2186        hsflctl.hsf_ctrl.flcgo = 1;
2187        ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2188
2189        /* wait till FDONE bit is set to 1 */
2190        do {
2191                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2192                if (hsfsts.hsf_status.flcdone == 1)
2193                        break;
2194                udelay(1);
2195        } while (i++ < timeout);
2196
2197        if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2198                return 0;
2199
2200        return ret_val;
2201}
2202
2203/**
2204 *  e1000_read_flash_word_ich8lan - Read word from flash
2205 *  @hw: pointer to the HW structure
2206 *  @offset: offset to data location
2207 *  @data: pointer to the location for storing the data
2208 *
2209 *  Reads the flash word at offset into data.  Offset is converted
2210 *  to bytes before read.
2211 **/
2212static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2213                                         u16 *data)
2214{
2215        /* Must convert offset into bytes. */
2216        offset <<= 1;
2217
2218        return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2219}
2220
2221/**
2222 *  e1000_read_flash_byte_ich8lan - Read byte from flash
2223 *  @hw: pointer to the HW structure
2224 *  @offset: The offset of the byte to read.
2225 *  @data: Pointer to a byte to store the value read.
2226 *
2227 *  Reads a single byte from the NVM using the flash access registers.
2228 **/
2229static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2230                                         u8 *data)
2231{
2232        s32 ret_val;
2233        u16 word = 0;
2234
2235        ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2236        if (ret_val)
2237                return ret_val;
2238
2239        *data = (u8)word;
2240
2241        return 0;
2242}
2243
2244/**
2245 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2246 *  @hw: pointer to the HW structure
2247 *  @offset: The offset (in bytes) of the byte or word to read.
2248 *  @size: Size of data to read, 1=byte 2=word
2249 *  @data: Pointer to the word to store the value read.
2250 *
2251 *  Reads a byte or word from the NVM using the flash access registers.
2252 **/
2253static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2254                                         u8 size, u16 *data)
2255{
2256        union ich8_hws_flash_status hsfsts;
2257        union ich8_hws_flash_ctrl hsflctl;
2258        u32 flash_linear_addr;
2259        u32 flash_data = 0;
2260        s32 ret_val = -E1000_ERR_NVM;
2261        u8 count = 0;
2262
2263        if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2264                return -E1000_ERR_NVM;
2265
2266        flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2267                            hw->nvm.flash_base_addr;
2268
2269        do {
2270                udelay(1);
2271                /* Steps */
2272                ret_val = e1000_flash_cycle_init_ich8lan(hw);
2273                if (ret_val != 0)
2274                        break;
2275
2276                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2277                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2278                hsflctl.hsf_ctrl.fldbcount = size - 1;
2279                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2280                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2281
2282                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2283
2284                ret_val = e1000_flash_cycle_ich8lan(hw,
2285                                                ICH_FLASH_READ_COMMAND_TIMEOUT);
2286
2287                /*
2288                 * Check if FCERR is set to 1, if set to 1, clear it
2289                 * and try the whole sequence a few more times, else
2290                 * read in (shift in) the Flash Data0, the order is
2291                 * least significant byte first msb to lsb
2292                 */
2293                if (ret_val == 0) {
2294                        flash_data = er32flash(ICH_FLASH_FDATA0);
2295                        if (size == 1)
2296                                *data = (u8)(flash_data & 0x000000FF);
2297                        else if (size == 2)
2298                                *data = (u16)(flash_data & 0x0000FFFF);
2299                        break;
2300                } else {
2301                        /*
2302                         * If we've gotten here, then things are probably
2303                         * completely hosed, but if the error condition is
2304                         * detected, it won't hurt to give it another try...
2305                         * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2306                         */
2307                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2308                        if (hsfsts.hsf_status.flcerr == 1) {
2309                                /* Repeat for some time before giving up. */
2310                                continue;
2311                        } else if (hsfsts.hsf_status.flcdone == 0) {
2312                                e_dbg("Timeout error - flash cycle "
2313                                         "did not complete.\n");
2314                                break;
2315                        }
2316                }
2317        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2318
2319        return ret_val;
2320}
2321
2322/**
2323 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2324 *  @hw: pointer to the HW structure
2325 *  @offset: The offset (in bytes) of the word(s) to write.
2326 *  @words: Size of data to write in words
2327 *  @data: Pointer to the word(s) to write at offset.
2328 *
2329 *  Writes a byte or word to the NVM using the flash access registers.
2330 **/
2331static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2332                                   u16 *data)
2333{
2334        struct e1000_nvm_info *nvm = &hw->nvm;
2335        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2336        u16 i;
2337
2338        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2339            (words == 0)) {
2340                e_dbg("nvm parameter(s) out of bounds\n");
2341                return -E1000_ERR_NVM;
2342        }
2343
2344        nvm->ops.acquire(hw);
2345
2346        for (i = 0; i < words; i++) {
2347                dev_spec->shadow_ram[offset+i].modified = true;
2348                dev_spec->shadow_ram[offset+i].value = data[i];
2349        }
2350
2351        nvm->ops.release(hw);
2352
2353        return 0;
2354}
2355
2356/**
2357 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2358 *  @hw: pointer to the HW structure
2359 *
2360 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2361 *  which writes the checksum to the shadow ram.  The changes in the shadow
2362 *  ram are then committed to the EEPROM by processing each bank at a time
2363 *  checking for the modified bit and writing only the pending changes.
2364 *  After a successful commit, the shadow ram is cleared and is ready for
2365 *  future writes.
2366 **/
2367static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2368{
2369        struct e1000_nvm_info *nvm = &hw->nvm;
2370        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2371        u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2372        s32 ret_val;
2373        u16 data;
2374
2375        ret_val = e1000e_update_nvm_checksum_generic(hw);
2376        if (ret_val)
2377                goto out;
2378
2379        if (nvm->type != e1000_nvm_flash_sw)
2380                goto out;
2381
2382        nvm->ops.acquire(hw);
2383
2384        /*
2385         * We're writing to the opposite bank so if we're on bank 1,
2386         * write to bank 0 etc.  We also need to erase the segment that
2387         * is going to be written
2388         */
2389        ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2390        if (ret_val) {
2391                e_dbg("Could not detect valid bank, assuming bank 0\n");
2392                bank = 0;
2393        }
2394
2395        if (bank == 0) {
2396                new_bank_offset = nvm->flash_bank_size;
2397                old_bank_offset = 0;
2398                ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2399                if (ret_val)
2400                        goto release;
2401        } else {
2402                old_bank_offset = nvm->flash_bank_size;
2403                new_bank_offset = 0;
2404                ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2405                if (ret_val)
2406                        goto release;
2407        }
2408
2409        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2410                /*
2411                 * Determine whether to write the value stored
2412                 * in the other NVM bank or a modified value stored
2413                 * in the shadow RAM
2414                 */
2415                if (dev_spec->shadow_ram[i].modified) {
2416                        data = dev_spec->shadow_ram[i].value;
2417                } else {
2418                        ret_val = e1000_read_flash_word_ich8lan(hw, i +
2419                                                                old_bank_offset,
2420                                                                &data);
2421                        if (ret_val)
2422                                break;
2423                }
2424
2425                /*
2426                 * If the word is 0x13, then make sure the signature bits
2427                 * (15:14) are 11b until the commit has completed.
2428                 * This will allow us to write 10b which indicates the
2429                 * signature is valid.  We want to do this after the write
2430                 * has completed so that we don't mark the segment valid
2431                 * while the write is still in progress
2432                 */
2433                if (i == E1000_ICH_NVM_SIG_WORD)
2434                        data |= E1000_ICH_NVM_SIG_MASK;
2435
2436                /* Convert offset to bytes. */
2437                act_offset = (i + new_bank_offset) << 1;
2438
2439                udelay(100);
2440                /* Write the bytes to the new bank. */
2441                ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2442                                                               act_offset,
2443                                                               (u8)data);
2444                if (ret_val)
2445                        break;
2446
2447                udelay(100);
2448                ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2449                                                          act_offset + 1,
2450                                                          (u8)(data >> 8));
2451                if (ret_val)
2452                        break;
2453        }
2454
2455        /*
2456         * Don't bother writing the segment valid bits if sector
2457         * programming failed.
2458         */
2459        if (ret_val) {
2460                /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2461                e_dbg("Flash commit failed.\n");
2462                goto release;
2463        }
2464
2465        /*
2466         * Finally validate the new segment by setting bit 15:14
2467         * to 10b in word 0x13 , this can be done without an
2468         * erase as well since these bits are 11 to start with
2469         * and we need to change bit 14 to 0b
2470         */
2471        act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2472        ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2473        if (ret_val)
2474                goto release;
2475
2476        data &= 0xBFFF;
2477        ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2478                                                       act_offset * 2 + 1,
2479                                                       (u8)(data >> 8));
2480        if (ret_val)
2481                goto release;
2482
2483        /*
2484         * And invalidate the previously valid segment by setting
2485         * its signature word (0x13) high_byte to 0b. This can be
2486         * done without an erase because flash erase sets all bits
2487         * to 1's. We can write 1's to 0's without an erase
2488         */
2489        act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2490        ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2491        if (ret_val)
2492                goto release;
2493
2494        /* Great!  Everything worked, we can now clear the cached entries. */
2495        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2496                dev_spec->shadow_ram[i].modified = false;
2497                dev_spec->shadow_ram[i].value = 0xFFFF;
2498        }
2499
2500release:
2501        nvm->ops.release(hw);
2502
2503        /*
2504         * Reload the EEPROM, or else modifications will not appear
2505         * until after the next adapter reset.
2506         */
2507        if (!ret_val) {
2508                e1000e_reload_nvm(hw);
2509                msleep(10);
2510        }
2511
2512out:
2513        if (ret_val)
2514                e_dbg("NVM update error: %d\n", ret_val);
2515
2516        return ret_val;
2517}
2518
2519/**
2520 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2521 *  @hw: pointer to the HW structure
2522 *
2523 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2524 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2525 *  calculated, in which case we need to calculate the checksum and set bit 6.
2526 **/
2527static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2528{
2529        s32 ret_val;
2530        u16 data;
2531
2532        /*
2533         * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2534         * needs to be fixed.  This bit is an indication that the NVM
2535         * was prepared by OEM software and did not calculate the
2536         * checksum...a likely scenario.
2537         */
2538        ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2539        if (ret_val)
2540                return ret_val;
2541
2542        if ((data & 0x40) == 0) {
2543                data |= 0x40;
2544                ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2545                if (ret_val)
2546                        return ret_val;
2547                ret_val = e1000e_update_nvm_checksum(hw);
2548                if (ret_val)
2549                        return ret_val;
2550        }
2551
2552        return e1000e_validate_nvm_checksum_generic(hw);
2553}
2554
2555/**
2556 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2557 *  @hw: pointer to the HW structure
2558 *
2559 *  To prevent malicious write/erase of the NVM, set it to be read-only
2560 *  so that the hardware ignores all write/erase cycles of the NVM via
2561 *  the flash control registers.  The shadow-ram copy of the NVM will
2562 *  still be updated, however any updates to this copy will not stick
2563 *  across driver reloads.
2564 **/
2565void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2566{
2567        struct e1000_nvm_info *nvm = &hw->nvm;
2568        union ich8_flash_protected_range pr0;
2569        union ich8_hws_flash_status hsfsts;
2570        u32 gfpreg;
2571
2572        nvm->ops.acquire(hw);
2573
2574        gfpreg = er32flash(ICH_FLASH_GFPREG);
2575
2576        /* Write-protect GbE Sector of NVM */
2577        pr0.regval = er32flash(ICH_FLASH_PR0);
2578        pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2579        pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2580        pr0.range.wpe = true;
2581        ew32flash(ICH_FLASH_PR0, pr0.regval);
2582
2583        /*
2584         * Lock down a subset of GbE Flash Control Registers, e.g.
2585         * PR0 to prevent the write-protection from being lifted.
2586         * Once FLOCKDN is set, the registers protected by it cannot
2587         * be written until FLOCKDN is cleared by a hardware reset.
2588         */
2589        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2590        hsfsts.hsf_status.flockdn = true;
2591        ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2592
2593        nvm->ops.release(hw);
2594}
2595
2596/**
2597 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2598 *  @hw: pointer to the HW structure
2599 *  @offset: The offset (in bytes) of the byte/word to read.
2600 *  @size: Size of data to read, 1=byte 2=word
2601 *  @data: The byte(s) to write to the NVM.
2602 *
2603 *  Writes one/two bytes to the NVM using the flash access registers.
2604 **/
2605static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2606                                          u8 size, u16 data)
2607{
2608        union ich8_hws_flash_status hsfsts;
2609        union ich8_hws_flash_ctrl hsflctl;
2610        u32 flash_linear_addr;
2611        u32 flash_data = 0;
2612        s32 ret_val;
2613        u8 count = 0;
2614
2615        if (size < 1 || size > 2 || data > size * 0xff ||
2616            offset > ICH_FLASH_LINEAR_ADDR_MASK)
2617                return -E1000_ERR_NVM;
2618
2619        flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2620                            hw->nvm.flash_base_addr;
2621
2622        do {
2623                udelay(1);
2624                /* Steps */
2625                ret_val = e1000_flash_cycle_init_ich8lan(hw);
2626                if (ret_val)
2627                        break;
2628
2629                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2630                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2631                hsflctl.hsf_ctrl.fldbcount = size -1;
2632                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2633                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2634
2635                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2636
2637                if (size == 1)
2638                        flash_data = (u32)data & 0x00FF;
2639                else
2640                        flash_data = (u32)data;
2641
2642                ew32flash(ICH_FLASH_FDATA0, flash_data);
2643
2644                /*
2645                 * check if FCERR is set to 1 , if set to 1, clear it
2646                 * and try the whole sequence a few more times else done
2647                 */
2648                ret_val = e1000_flash_cycle_ich8lan(hw,
2649                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2650                if (!ret_val)
2651                        break;
2652
2653                /*
2654                 * If we're here, then things are most likely
2655                 * completely hosed, but if the error condition
2656                 * is detected, it won't hurt to give it another
2657                 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2658                 */
2659                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2660                if (hsfsts.hsf_status.flcerr == 1)
2661                        /* Repeat for some time before giving up. */
2662                        continue;
2663                if (hsfsts.hsf_status.flcdone == 0) {
2664                        e_dbg("Timeout error - flash cycle "
2665                                 "did not complete.");
2666                        break;
2667                }
2668        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2669
2670        return ret_val;
2671}
2672
2673/**
2674 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2675 *  @hw: pointer to the HW structure
2676 *  @offset: The index of the byte to read.
2677 *  @data: The byte to write to the NVM.
2678 *
2679 *  Writes a single byte to the NVM using the flash access registers.
2680 **/
2681static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2682                                          u8 data)
2683{
2684        u16 word = (u16)data;
2685
2686        return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2687}
2688
2689/**
2690 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2691 *  @hw: pointer to the HW structure
2692 *  @offset: The offset of the byte to write.
2693 *  @byte: The byte to write to the NVM.
2694 *
2695 *  Writes a single byte to the NVM using the flash access registers.
2696 *  Goes through a retry algorithm before giving up.
2697 **/
2698static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2699                                                u32 offset, u8 byte)
2700{
2701        s32 ret_val;
2702        u16 program_retries;
2703
2704        ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2705        if (!ret_val)
2706                return ret_val;
2707
2708        for (program_retries = 0; program_retries < 100; program_retries++) {
2709                e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2710                udelay(100);
2711                ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2712                if (!ret_val)
2713                        break;
2714        }
2715        if (program_retries == 100)
2716                return -E1000_ERR_NVM;
2717
2718        return 0;
2719}
2720
2721/**
2722 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2723 *  @hw: pointer to the HW structure
2724 *  @bank: 0 for first bank, 1 for second bank, etc.
2725 *
2726 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2727 *  bank N is 4096 * N + flash_reg_addr.
2728 **/
2729static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2730{
2731        struct e1000_nvm_info *nvm = &hw->nvm;
2732        union ich8_hws_flash_status hsfsts;
2733        union ich8_hws_flash_ctrl hsflctl;
2734        u32 flash_linear_addr;
2735        /* bank size is in 16bit words - adjust to bytes */
2736        u32 flash_bank_size = nvm->flash_bank_size * 2;
2737        s32 ret_val;
2738        s32 count = 0;
2739        s32 j, iteration, sector_size;
2740
2741        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2742
2743        /*
2744         * Determine HW Sector size: Read BERASE bits of hw flash status
2745         * register
2746         * 00: The Hw sector is 256 bytes, hence we need to erase 16
2747         *     consecutive sectors.  The start index for the nth Hw sector
2748         *     can be calculated as = bank * 4096 + n * 256
2749         * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2750         *     The start index for the nth Hw sector can be calculated
2751         *     as = bank * 4096
2752         * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2753         *     (ich9 only, otherwise error condition)
2754         * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2755         */
2756        switch (hsfsts.hsf_status.berasesz) {
2757        case 0:
2758                /* Hw sector size 256 */
2759                sector_size = ICH_FLASH_SEG_SIZE_256;
2760                iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2761                break;
2762        case 1:
2763                sector_size = ICH_FLASH_SEG_SIZE_4K;
2764                iteration = 1;
2765                break;
2766        case 2:
2767                sector_size = ICH_FLASH_SEG_SIZE_8K;
2768                iteration = 1;
2769                break;
2770        case 3:
2771                sector_size = ICH_FLASH_SEG_SIZE_64K;
2772                iteration = 1;
2773                break;
2774        default:
2775                return -E1000_ERR_NVM;
2776        }
2777
2778        /* Start with the base address, then add the sector offset. */
2779        flash_linear_addr = hw->nvm.flash_base_addr;
2780        flash_linear_addr += (bank) ? flash_bank_size : 0;
2781
2782        for (j = 0; j < iteration ; j++) {
2783                do {
2784                        /* Steps */
2785                        ret_val = e1000_flash_cycle_init_ich8lan(hw);
2786                        if (ret_val)
2787                                return ret_val;
2788
2789                        /*
2790                         * Write a value 11 (block Erase) in Flash
2791                         * Cycle field in hw flash control
2792                         */
2793                        hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2794                        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2795                        ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2796
2797                        /*
2798                         * Write the last 24 bits of an index within the
2799                         * block into Flash Linear address field in Flash
2800                         * Address.
2801                         */
2802                        flash_linear_addr += (j * sector_size);
2803                        ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2804
2805                        ret_val = e1000_flash_cycle_ich8lan(hw,
2806                                               ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2807                        if (ret_val == 0)
2808                                break;
2809
2810                        /*
2811                         * Check if FCERR is set to 1.  If 1,
2812                         * clear it and try the whole sequence
2813                         * a few more times else Done
2814                         */
2815                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2816                        if (hsfsts.hsf_status.flcerr == 1)
2817                                /* repeat for some time before giving up */
2818                                continue;
2819                        else if (hsfsts.hsf_status.flcdone == 0)
2820                                return ret_val;
2821                } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2822        }
2823
2824        return 0;
2825}
2826
2827/**
2828 *  e1000_valid_led_default_ich8lan - Set the default LED settings
2829 *  @hw: pointer to the HW structure
2830 *  @data: Pointer to the LED settings
2831 *
2832 *  Reads the LED default settings from the NVM to data.  If the NVM LED
2833 *  settings is all 0's or F's, set the LED default to a valid LED default
2834 *  setting.
2835 **/
2836static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2837{
2838        s32 ret_val;
2839
2840        ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2841        if (ret_val) {
2842                e_dbg("NVM Read Error\n");
2843                return ret_val;
2844        }
2845
2846        if (*data == ID_LED_RESERVED_0000 ||
2847            *data == ID_LED_RESERVED_FFFF)
2848                *data = ID_LED_DEFAULT_ICH8LAN;
2849
2850        return 0;
2851}
2852
2853/**
2854 *  e1000_id_led_init_pchlan - store LED configurations
2855 *  @hw: pointer to the HW structure
2856 *
2857 *  PCH does not control LEDs via the LEDCTL register, rather it uses
2858 *  the PHY LED configuration register.
2859 *
2860 *  PCH also does not have an "always on" or "always off" mode which
2861 *  complicates the ID feature.  Instead of using the "on" mode to indicate
2862 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2863 *  use "link_up" mode.  The LEDs will still ID on request if there is no
2864 *  link based on logic in e1000_led_[on|off]_pchlan().
2865 **/
2866static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2867{
2868        struct e1000_mac_info *mac = &hw->mac;
2869        s32 ret_val;
2870        const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2871        const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2872        u16 data, i, temp, shift;
2873
2874        /* Get default ID LED modes */
2875        ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2876        if (ret_val)
2877                goto out;
2878
2879        mac->ledctl_default = er32(LEDCTL);
2880        mac->ledctl_mode1 = mac->ledctl_default;
2881        mac->ledctl_mode2 = mac->ledctl_default;
2882
2883        for (i = 0; i < 4; i++) {
2884                temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2885                shift = (i * 5);
2886                switch (temp) {
2887                case ID_LED_ON1_DEF2:
2888                case ID_LED_ON1_ON2:
2889                case ID_LED_ON1_OFF2:
2890                        mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2891                        mac->ledctl_mode1 |= (ledctl_on << shift);
2892                        break;
2893                case ID_LED_OFF1_DEF2:
2894                case ID_LED_OFF1_ON2:
2895                case ID_LED_OFF1_OFF2:
2896                        mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2897                        mac->ledctl_mode1 |= (ledctl_off << shift);
2898                        break;
2899                default:
2900                        /* Do nothing */
2901                        break;
2902                }
2903                switch (temp) {
2904                case ID_LED_DEF1_ON2:
2905                case ID_LED_ON1_ON2:
2906                case ID_LED_OFF1_ON2:
2907                        mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2908                        mac->ledctl_mode2 |= (ledctl_on << shift);
2909                        break;
2910                case ID_LED_DEF1_OFF2:
2911                case ID_LED_ON1_OFF2:
2912                case ID_LED_OFF1_OFF2:
2913                        mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2914                        mac->ledctl_mode2 |= (ledctl_off << shift);
2915                        break;
2916                default:
2917                        /* Do nothing */
2918                        break;
2919                }
2920        }
2921
2922out:
2923        return ret_val;
2924}
2925
2926/**
2927 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2928 *  @hw: pointer to the HW structure
2929 *
2930 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2931 *  register, so the the bus width is hard coded.
2932 **/
2933static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2934{
2935        struct e1000_bus_info *bus = &hw->bus;
2936        s32 ret_val;
2937
2938        ret_val = e1000e_get_bus_info_pcie(hw);
2939
2940        /*
2941         * ICH devices are "PCI Express"-ish.  They have
2942         * a configuration space, but do not contain
2943         * PCI Express Capability registers, so bus width
2944         * must be hardcoded.
2945         */
2946        if (bus->width == e1000_bus_width_unknown)
2947                bus->width = e1000_bus_width_pcie_x1;
2948
2949        return ret_val;
2950}
2951
2952/**
2953 *  e1000_reset_hw_ich8lan - Reset the hardware
2954 *  @hw: pointer to the HW structure
2955 *
2956 *  Does a full reset of the hardware which includes a reset of the PHY and
2957 *  MAC.
2958 **/
2959static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2960{
2961        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2962        u16 reg;
2963        u32 ctrl, kab;
2964        s32 ret_val;
2965
2966        /*
2967         * Prevent the PCI-E bus from sticking if there is no TLP connection
2968         * on the last TLP read/write transaction when MAC is reset.
2969         */
2970        ret_val = e1000e_disable_pcie_master(hw);
2971        if (ret_val)
2972                e_dbg("PCI-E Master disable polling has failed.\n");
2973
2974        e_dbg("Masking off all interrupts\n");
2975        ew32(IMC, 0xffffffff);
2976
2977        /*
2978         * Disable the Transmit and Receive units.  Then delay to allow
2979         * any pending transactions to complete before we hit the MAC
2980         * with the global reset.
2981         */
2982        ew32(RCTL, 0);
2983        ew32(TCTL, E1000_TCTL_PSP);
2984        e1e_flush();
2985
2986        msleep(10);
2987
2988        /* Workaround for ICH8 bit corruption issue in FIFO memory */
2989        if (hw->mac.type == e1000_ich8lan) {
2990                /* Set Tx and Rx buffer allocation to 8k apiece. */
2991                ew32(PBA, E1000_PBA_8K);
2992                /* Set Packet Buffer Size to 16k. */
2993                ew32(PBS, E1000_PBS_16K);
2994        }
2995
2996        if (hw->mac.type == e1000_pchlan) {
2997                /* Save the NVM K1 bit setting*/
2998                ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2999                if (ret_val)
3000                        return ret_val;
3001
3002                if (reg & E1000_NVM_K1_ENABLE)
3003                        dev_spec->nvm_k1_enabled = true;
3004                else
3005                        dev_spec->nvm_k1_enabled = false;
3006        }
3007
3008        ctrl = er32(CTRL);
3009
3010        if (!e1000_check_reset_block(hw)) {
3011                /*
3012                 * Full-chip reset requires MAC and PHY reset at the same
3013                 * time to make sure the interface between MAC and the
3014                 * external PHY is reset.
3015                 */
3016                ctrl |= E1000_CTRL_PHY_RST;
3017
3018                /*
3019                 * Gate automatic PHY configuration by hardware on
3020                 * non-managed 82579
3021                 */
3022                if ((hw->mac.type == e1000_pch2lan) &&
3023                    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3024                        e1000_gate_hw_phy_config_ich8lan(hw, true);
3025        }
3026        ret_val = e1000_acquire_swflag_ich8lan(hw);
3027        e_dbg("Issuing a global reset to ich8lan\n");
3028        ew32(CTRL, (ctrl | E1000_CTRL_RST));
3029        msleep(20);
3030
3031        if (!ret_val)
3032                e1000_release_swflag_ich8lan(hw);
3033
3034        if (ctrl & E1000_CTRL_PHY_RST) {
3035                ret_val = hw->phy.ops.get_cfg_done(hw);
3036                if (ret_val)
3037                        goto out;
3038
3039                ret_val = e1000_post_phy_reset_ich8lan(hw);
3040                if (ret_val)
3041                        goto out;
3042        }
3043
3044        /*
3045         * For PCH, this write will make sure that any noise
3046         * will be detected as a CRC error and be dropped rather than show up
3047         * as a bad packet to the DMA engine.
3048         */
3049        if (hw->mac.type == e1000_pchlan)
3050                ew32(CRC_OFFSET, 0x65656565);
3051
3052        ew32(IMC, 0xffffffff);
3053        er32(ICR);
3054
3055        kab = er32(KABGTXD);
3056        kab |= E1000_KABGTXD_BGSQLBIAS;
3057        ew32(KABGTXD, kab);
3058
3059out:
3060        return ret_val;
3061}
3062
3063/**
3064 *  e1000_init_hw_ich8lan - Initialize the hardware
3065 *  @hw: pointer to the HW structure
3066 *
3067 *  Prepares the hardware for transmit and receive by doing the following:
3068 *   - initialize hardware bits
3069 *   - initialize LED identification
3070 *   - setup receive address registers
3071 *   - setup flow control
3072 *   - setup transmit descriptors
3073 *   - clear statistics
3074 **/
3075static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3076{
3077        struct e1000_mac_info *mac = &hw->mac;
3078        u32 ctrl_ext, txdctl, snoop;
3079        s32 ret_val;
3080        u16 i;
3081
3082        e1000_initialize_hw_bits_ich8lan(hw);
3083
3084        /* Initialize identification LED */
3085        ret_val = mac->ops.id_led_init(hw);
3086        if (ret_val)
3087                e_dbg("Error initializing identification LED\n");
3088                /* This is not fatal and we should not stop init due to this */
3089
3090        /* Setup the receive address. */
3091        e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3092
3093        /* Zero out the Multicast HASH table */
3094        e_dbg("Zeroing the MTA\n");
3095        for (i = 0; i < mac->mta_reg_count; i++)
3096                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3097
3098        /*
3099         * The 82578 Rx buffer will stall if wakeup is enabled in host and
3100         * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
3101         * Reset the phy after disabling host wakeup to reset the Rx buffer.
3102         */
3103        if (hw->phy.type == e1000_phy_82578) {
3104                e1e_rphy(hw, BM_WUC, &i);
3105                ret_val = e1000_phy_hw_reset_ich8lan(hw);
3106                if (ret_val)
3107                        return ret_val;
3108        }
3109
3110        /* Setup link and flow control */
3111        ret_val = e1000_setup_link_ich8lan(hw);
3112
3113        /* Set the transmit descriptor write-back policy for both queues */
3114        txdctl = er32(TXDCTL(0));
3115        txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3116                 E1000_TXDCTL_FULL_TX_DESC_WB;
3117        txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3118                 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3119        ew32(TXDCTL(0), txdctl);
3120        txdctl = er32(TXDCTL(1));
3121        txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3122                 E1000_TXDCTL_FULL_TX_DESC_WB;
3123        txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3124                 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3125        ew32(TXDCTL(1), txdctl);
3126
3127        /*
3128         * ICH8 has opposite polarity of no_snoop bits.
3129         * By default, we should use snoop behavior.
3130         */
3131        if (mac->type == e1000_ich8lan)
3132                snoop = PCIE_ICH8_SNOOP_ALL;
3133        else
3134                snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3135        e1000e_set_pcie_no_snoop(hw, snoop);
3136
3137        ctrl_ext = er32(CTRL_EXT);
3138        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3139        ew32(CTRL_EXT, ctrl_ext);
3140
3141        /*
3142         * Clear all of the statistics registers (clear on read).  It is
3143         * important that we do this after we have tried to establish link
3144         * because the symbol error count will increment wildly if there
3145         * is no link.
3146         */
3147        e1000_clear_hw_cntrs_ich8lan(hw);
3148
3149        return 0;
3150}
3151/**
3152 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3153 *  @hw: pointer to the HW structure
3154 *
3155 *  Sets/Clears required hardware bits necessary for correctly setting up the
3156 *  hardware for transmit and receive.
3157 **/
3158static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3159{
3160        u32 reg;
3161
3162        /* Extended Device Control */
3163        reg = er32(CTRL_EXT);
3164        reg |= (1 << 22);
3165        /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3166        if (hw->mac.type >= e1000_pchlan)
3167                reg |= E1000_CTRL_EXT_PHYPDEN;
3168        ew32(CTRL_EXT, reg);
3169
3170        /* Transmit Descriptor Control 0 */
3171        reg = er32(TXDCTL(0));
3172        reg |= (1 << 22);
3173        ew32(TXDCTL(0), reg);
3174
3175        /* Transmit Descriptor Control 1 */
3176        reg = er32(TXDCTL(1));
3177        reg |= (1 << 22);
3178        ew32(TXDCTL(1), reg);
3179
3180        /* Transmit Arbitration Control 0 */
3181        reg = er32(TARC(0));
3182        if (hw->mac.type == e1000_ich8lan)
3183                reg |= (1 << 28) | (1 << 29);
3184        reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3185        ew32(TARC(0), reg);
3186
3187        /* Transmit Arbitration Control 1 */
3188        reg = er32(TARC(1));
3189        if (er32(TCTL) & E1000_TCTL_MULR)
3190                reg &= ~(1 << 28);
3191        else
3192                reg |= (1 << 28);
3193        reg |= (1 << 24) | (1 << 26) | (1 << 30);
3194        ew32(TARC(1), reg);
3195
3196        /* Device Status */
3197        if (hw->mac.type == e1000_ich8lan) {
3198                reg = er32(STATUS);
3199                reg &= ~(1 << 31);
3200                ew32(STATUS, reg);
3201        }
3202
3203        /*
3204         * work-around descriptor data corruption issue during nfs v2 udp
3205         * traffic, just disable the nfs filtering capability
3206         */
3207        reg = er32(RFCTL);
3208        reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3209        ew32(RFCTL, reg);
3210}
3211
3212/**
3213 *  e1000_setup_link_ich8lan - Setup flow control and link settings
3214 *  @hw: pointer to the HW structure
3215 *
3216 *  Determines which flow control settings to use, then configures flow
3217 *  control.  Calls the appropriate media-specific link configuration
3218 *  function.  Assuming the adapter has a valid link partner, a valid link
3219 *  should be established.  Assumes the hardware has previously been reset
3220 *  and the transmitter and receiver are not enabled.
3221 **/
3222static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3223{
3224        s32 ret_val;
3225
3226        if (e1000_check_reset_block(hw))
3227                return 0;
3228
3229        /*
3230         * ICH parts do not have a word in the NVM to determine
3231         * the default flow control setting, so we explicitly
3232         * set it to full.
3233         */
3234        if (hw->fc.requested_mode == e1000_fc_default) {
3235                /* Workaround h/w hang when Tx flow control enabled */
3236                if (hw->mac.type == e1000_pchlan)
3237                        hw->fc.requested_mode = e1000_fc_rx_pause;
3238                else
3239                        hw->fc.requested_mode = e1000_fc_full;
3240        }
3241
3242        /*
3243         * Save off the requested flow control mode for use later.  Depending
3244         * on the link partner's capabilities, we may or may not use this mode.
3245         */
3246        hw->fc.current_mode = hw->fc.requested_mode;
3247
3248        e_dbg("After fix-ups FlowControl is now = %x\n",
3249                hw->fc.current_mode);
3250
3251        /* Continue to configure the copper link. */
3252        ret_val = e1000_setup_copper_link_ich8lan(hw);
3253        if (ret_val)
3254                return ret_val;
3255
3256        ew32(FCTTV, hw->fc.pause_time);
3257        if ((hw->phy.type == e1000_phy_82578) ||
3258            (hw->phy.type == e1000_phy_82579) ||
3259            (hw->phy.type == e1000_phy_82577)) {
3260                ew32(FCRTV_PCH, hw->fc.refresh_time);
3261
3262                ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3263                                   hw->fc.pause_time);
3264                if (ret_val)
3265                        return ret_val;
3266        }
3267
3268        return e1000e_set_fc_watermarks(hw);
3269}
3270
3271/**
3272 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3273 *  @hw: pointer to the HW structure
3274 *
3275 *  Configures the kumeran interface to the PHY to wait the appropriate time
3276 *  when polling the PHY, then call the generic setup_copper_link to finish
3277 *  configuring the copper link.
3278 **/
3279static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3280{
3281        u32 ctrl;
3282        s32 ret_val;
3283        u16 reg_data;
3284
3285        ctrl = er32(CTRL);
3286        ctrl |= E1000_CTRL_SLU;
3287        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3288        ew32(CTRL, ctrl);
3289
3290        /*
3291         * Set the mac to wait the maximum time between each iteration
3292         * and increase the max iterations when polling the phy;
3293         * this fixes erroneous timeouts at 10Mbps.
3294         */
3295        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3296        if (ret_val)
3297                return ret_val;
3298        ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3299                                       &reg_data);
3300        if (ret_val)
3301                return ret_val;
3302        reg_data |= 0x3F;
3303        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3304                                        reg_data);
3305        if (ret_val)
3306                return ret_val;
3307
3308        switch (hw->phy.type) {
3309        case e1000_phy_igp_3:
3310                ret_val = e1000e_copper_link_setup_igp(hw);
3311                if (ret_val)
3312                        return ret_val;
3313                break;
3314        case e1000_phy_bm:
3315        case e1000_phy_82578:
3316                ret_val = e1000e_copper_link_setup_m88(hw);
3317                if (ret_val)
3318                        return ret_val;
3319                break;
3320        case e1000_phy_82577:
3321        case e1000_phy_82579:
3322                ret_val = e1000_copper_link_setup_82577(hw);
3323                if (ret_val)
3324                        return ret_val;
3325                break;
3326        case e1000_phy_ife:
3327                ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3328                if (ret_val)
3329                        return ret_val;
3330
3331                reg_data &= ~IFE_PMC_AUTO_MDIX;
3332
3333                switch (hw->phy.mdix) {
3334                case 1:
3335                        reg_data &= ~IFE_PMC_FORCE_MDIX;
3336                        break;
3337                case 2:
3338                        reg_data |= IFE_PMC_FORCE_MDIX;
3339                        break;
3340                case 0:
3341                default:
3342                        reg_data |= IFE_PMC_AUTO_MDIX;
3343                        break;
3344                }
3345                ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3346                if (ret_val)
3347                        return ret_val;
3348                break;
3349        default:
3350                break;
3351        }
3352        return e1000e_setup_copper_link(hw);
3353}
3354
3355/**
3356 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3357 *  @hw: pointer to the HW structure
3358 *  @speed: pointer to store current link speed
3359 *  @duplex: pointer to store the current link duplex
3360 *
3361 *  Calls the generic get_speed_and_duplex to retrieve the current link
3362 *  information and then calls the Kumeran lock loss workaround for links at
3363 *  gigabit speeds.
3364 **/
3365static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3366                                          u16 *duplex)
3367{
3368        s32 ret_val;
3369
3370        ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3371        if (ret_val)
3372                return ret_val;
3373
3374        if ((hw->mac.type == e1000_ich8lan) &&
3375            (hw->phy.type == e1000_phy_igp_3) &&
3376            (*speed == SPEED_1000)) {
3377                ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3378        }
3379
3380        return ret_val;
3381}
3382
3383/**
3384 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3385 *  @hw: pointer to the HW structure
3386 *
3387 *  Work-around for 82566 Kumeran PCS lock loss:
3388 *  On link status change (i.e. PCI reset, speed change) and link is up and
3389 *  speed is gigabit-
3390 *    0) if workaround is optionally disabled do nothing
3391 *    1) wait 1ms for Kumeran link to come up
3392 *    2) check Kumeran Diagnostic register PCS lock loss bit
3393 *    3) if not set the link is locked (all is good), otherwise...
3394 *    4) reset the PHY
3395 *    5) repeat up to 10 times
3396 *  Note: this is only called for IGP3 copper when speed is 1gb.
3397 **/
3398static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3399{
3400        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3401        u32 phy_ctrl;
3402        s32 ret_val;
3403        u16 i, data;
3404        bool link;
3405
3406        if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3407                return 0;
3408
3409        /*
3410         * Make sure link is up before proceeding.  If not just return.
3411         * Attempting this while link is negotiating fouled up link
3412         * stability
3413         */
3414        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3415        if (!link)
3416                return 0;
3417
3418        for (i = 0; i < 10; i++) {
3419                /* read once to clear */
3420                ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3421                if (ret_val)
3422                        return ret_val;
3423                /* and again to get new status */
3424                ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3425                if (ret_val)
3426                        return ret_val;
3427
3428                /* check for PCS lock */
3429                if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3430                        return 0;
3431
3432                /* Issue PHY reset */
3433                e1000_phy_hw_reset(hw);
3434                mdelay(5);
3435        }
3436        /* Disable GigE link negotiation */
3437        phy_ctrl = er32(PHY_CTRL);
3438        phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3439                     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3440        ew32(PHY_CTRL, phy_ctrl);
3441
3442        /*
3443         * Call gig speed drop workaround on Gig disable before accessing
3444         * any PHY registers
3445         */
3446        e1000e_gig_downshift_workaround_ich8lan(hw);
3447
3448        /* unable to acquire PCS lock */
3449        return -E1000_ERR_PHY;
3450}
3451
3452/**
3453 *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3454 *  @hw: pointer to the HW structure
3455 *  @state: boolean value used to set the current Kumeran workaround state
3456 *
3457 *  If ICH8, set the current Kumeran workaround state (enabled - true
3458 *  /disabled - false).
3459 **/
3460void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3461                                                 bool state)
3462{
3463        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3464
3465        if (hw->mac.type != e1000_ich8lan) {
3466                e_dbg("Workaround applies to ICH8 only.\n");
3467                return;
3468        }
3469
3470        dev_spec->kmrn_lock_loss_workaround_enabled = state;
3471}
3472
3473/**
3474 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3475 *  @hw: pointer to the HW structure
3476 *
3477 *  Workaround for 82566 power-down on D3 entry:
3478 *    1) disable gigabit link
3479 *    2) write VR power-down enable
3480 *    3) read it back
3481 *  Continue if successful, else issue LCD reset and repeat
3482 **/
3483void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3484{
3485        u32 reg;
3486        u16 data;
3487        u8  retry = 0;
3488
3489        if (hw->phy.type != e1000_phy_igp_3)
3490                return;
3491
3492        /* Try the workaround twice (if needed) */
3493        do {
3494                /* Disable link */
3495                reg = er32(PHY_CTRL);
3496                reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3497                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3498                ew32(PHY_CTRL, reg);
3499
3500                /*
3501                 * Call gig speed drop workaround on Gig disable before
3502                 * accessing any PHY registers
3503                 */
3504                if (hw->mac.type == e1000_ich8lan)
3505                        e1000e_gig_downshift_workaround_ich8lan(hw);
3506
3507                /* Write VR power-down enable */
3508                e1e_rphy(hw, IGP3_VR_CTRL, &data);
3509                data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3510                e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3511
3512                /* Read it back and test */
3513                e1e_rphy(hw, IGP3_VR_CTRL, &data);
3514                data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3515                if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3516                        break;
3517
3518                /* Issue PHY reset and repeat at most one more time */
3519                reg = er32(CTRL);
3520                ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3521                retry++;
3522        } while (retry);
3523}
3524
3525/**
3526 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3527 *  @hw: pointer to the HW structure
3528 *
3529 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3530 *  LPLU, Gig disable, MDIC PHY reset):
3531 *    1) Set Kumeran Near-end loopback
3532 *    2) Clear Kumeran Near-end loopback
3533 *  Should only be called for ICH8[m] devices with IGP_3 Phy.
3534 **/
3535void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3536{
3537        s32 ret_val;
3538        u16 reg_data;
3539
3540        if ((hw->mac.type != e1000_ich8lan) ||
3541            (hw->phy.type != e1000_phy_igp_3))
3542                return;
3543
3544        ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3545                                      &reg_data);
3546        if (ret_val)
3547                return;
3548        reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3549        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3550                                       reg_data);
3551        if (ret_val)
3552                return;
3553        reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3554        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3555                                       reg_data);
3556}
3557
3558/**
3559 *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3560 *  @hw: pointer to the HW structure
3561 *
3562 *  During S0 to Sx transition, it is possible the link remains at gig
3563 *  instead of negotiating to a lower speed.  Before going to Sx, set
3564 *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3565 *  to a lower speed.
3566 *
3567 *  Should only be called for applicable parts.
3568 **/
3569void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3570{
3571        u32 phy_ctrl;
3572        s32 ret_val;
3573
3574        phy_ctrl = er32(PHY_CTRL);
3575        phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3576        ew32(PHY_CTRL, phy_ctrl);
3577
3578        if (hw->mac.type >= e1000_pchlan) {
3579                e1000_oem_bits_config_ich8lan(hw, false);
3580                ret_val = hw->phy.ops.acquire(hw);
3581                if (ret_val)
3582                        return;
3583                e1000_write_smbus_addr(hw);
3584                hw->phy.ops.release(hw);
3585        }
3586}
3587
3588/**
3589 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3590 *  @hw: pointer to the HW structure
3591 *
3592 *  Return the LED back to the default configuration.
3593 **/
3594static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3595{
3596        if (hw->phy.type == e1000_phy_ife)
3597                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3598
3599        ew32(LEDCTL, hw->mac.ledctl_default);
3600        return 0;
3601}
3602
3603/**
3604 *  e1000_led_on_ich8lan - Turn LEDs on
3605 *  @hw: pointer to the HW structure
3606 *
3607 *  Turn on the LEDs.
3608 **/
3609static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3610{
3611        if (hw->phy.type == e1000_phy_ife)
3612                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3613                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3614
3615        ew32(LEDCTL, hw->mac.ledctl_mode2);
3616        return 0;
3617}
3618
3619/**
3620 *  e1000_led_off_ich8lan - Turn LEDs off
3621 *  @hw: pointer to the HW structure
3622 *
3623 *  Turn off the LEDs.
3624 **/
3625static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3626{
3627        if (hw->phy.type == e1000_phy_ife)
3628                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3629                                (IFE_PSCL_PROBE_MODE |
3630                                 IFE_PSCL_PROBE_LEDS_OFF));
3631
3632        ew32(LEDCTL, hw->mac.ledctl_mode1);
3633        return 0;
3634}
3635
3636/**
3637 *  e1000_setup_led_pchlan - Configures SW controllable LED
3638 *  @hw: pointer to the HW structure
3639 *
3640 *  This prepares the SW controllable LED for use.
3641 **/
3642static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3643{
3644        return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3645}
3646
3647/**
3648 *  e1000_cleanup_led_pchlan - Restore the default LED operation
3649 *  @hw: pointer to the HW structure
3650 *
3651 *  Return the LED back to the default configuration.
3652 **/
3653static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3654{
3655        return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3656}
3657
3658/**
3659 *  e1000_led_on_pchlan - Turn LEDs on
3660 *  @hw: pointer to the HW structure
3661 *
3662 *  Turn on the LEDs.
3663 **/
3664static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3665{
3666        u16 data = (u16)hw->mac.ledctl_mode2;
3667        u32 i, led;
3668
3669        /*
3670         * If no link, then turn LED on by setting the invert bit
3671         * for each LED that's mode is "link_up" in ledctl_mode2.
3672         */
3673        if (!(er32(STATUS) & E1000_STATUS_LU)) {
3674                for (i = 0; i < 3; i++) {
3675                        led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3676                        if ((led & E1000_PHY_LED0_MODE_MASK) !=
3677                            E1000_LEDCTL_MODE_LINK_UP)
3678                                continue;
3679                        if (led & E1000_PHY_LED0_IVRT)
3680                                data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3681                        else
3682                                data |= (E1000_PHY_LED0_IVRT << (i * 5));
3683                }
3684        }
3685
3686        return e1e_wphy(hw, HV_LED_CONFIG, data);
3687}
3688
3689/**
3690 *  e1000_led_off_pchlan - Turn LEDs off
3691 *  @hw: pointer to the HW structure
3692 *
3693 *  Turn off the LEDs.
3694 **/
3695static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3696{
3697        u16 data = (u16)hw->mac.ledctl_mode1;
3698        u32 i, led;
3699
3700        /*
3701         * If no link, then turn LED off by clearing the invert bit
3702         * for each LED that's mode is "link_up" in ledctl_mode1.
3703         */
3704        if (!(er32(STATUS) & E1000_STATUS_LU)) {
3705                for (i = 0; i < 3; i++) {
3706                        led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3707                        if ((led & E1000_PHY_LED0_MODE_MASK) !=
3708                            E1000_LEDCTL_MODE_LINK_UP)
3709                                continue;
3710                        if (led & E1000_PHY_LED0_IVRT)
3711                                data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3712                        else
3713                                data |= (E1000_PHY_LED0_IVRT << (i * 5));
3714                }
3715        }
3716
3717        return e1e_wphy(hw, HV_LED_CONFIG, data);
3718}
3719
3720/**
3721 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3722 *  @hw: pointer to the HW structure
3723 *
3724 *  Read appropriate register for the config done bit for completion status
3725 *  and configure the PHY through s/w for EEPROM-less parts.
3726 *
3727 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3728 *  config done bit, so only an error is logged and continues.  If we were
3729 *  to return with error, EEPROM-less silicon would not be able to be reset
3730 *  or change link.
3731 **/
3732static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3733{
3734        s32 ret_val = 0;
3735        u32 bank = 0;
3736        u32 status;
3737
3738        e1000e_get_cfg_done(hw);
3739
3740        /* Wait for indication from h/w that it has completed basic config */
3741        if (hw->mac.type >= e1000_ich10lan) {
3742                e1000_lan_init_done_ich8lan(hw);
3743        } else {
3744                ret_val = e1000e_get_auto_rd_done(hw);
3745                if (ret_val) {
3746                        /*
3747                         * When auto config read does not complete, do not
3748                         * return with an error. This can happen in situations
3749                         * where there is no eeprom and prevents getting link.
3750                         */
3751                        e_dbg("Auto Read Done did not complete\n");
3752                        ret_val = 0;
3753                }
3754        }
3755
3756        /* Clear PHY Reset Asserted bit */
3757        status = er32(STATUS);
3758        if (status & E1000_STATUS_PHYRA)
3759                ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3760        else
3761                e_dbg("PHY Reset Asserted not set - needs delay\n");
3762
3763        /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3764        if (hw->mac.type <= e1000_ich9lan) {
3765                if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3766                    (hw->phy.type == e1000_phy_igp_3)) {
3767                        e1000e_phy_init_script_igp3(hw);
3768                }
3769        } else {
3770                if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3771                        /* Maybe we should do a basic PHY config */
3772                        e_dbg("EEPROM not present\n");
3773                        ret_val = -E1000_ERR_CONFIG;
3774                }
3775        }
3776
3777        return ret_val;
3778}
3779
3780/**
3781 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3782 * @hw: pointer to the HW structure
3783 *
3784 * In the case of a PHY power down to save power, or to turn off link during a
3785 * driver unload, or wake on lan is not enabled, remove the link.
3786 **/
3787static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3788{
3789        /* If the management interface is not enabled, then power down */
3790        if (!(hw->mac.ops.check_mng_mode(hw) ||
3791              hw->phy.ops.check_reset_block(hw)))
3792                e1000_power_down_phy_copper(hw);
3793}
3794
3795/**
3796 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3797 *  @hw: pointer to the HW structure
3798 *
3799 *  Clears hardware counters specific to the silicon family and calls
3800 *  clear_hw_cntrs_generic to clear all general purpose counters.
3801 **/
3802static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3803{
3804        u16 phy_data;
3805
3806        e1000e_clear_hw_cntrs_base(hw);
3807
3808        er32(ALGNERRC);
3809        er32(RXERRC);
3810        er32(TNCRS);
3811        er32(CEXTERR);
3812        er32(TSCTC);
3813        er32(TSCTFC);
3814
3815        er32(MGTPRC);
3816        er32(MGTPDC);
3817        er32(MGTPTC);
3818
3819        er32(IAC);
3820        er32(ICRXOC);
3821
3822        /* Clear PHY statistics registers */
3823        if ((hw->phy.type == e1000_phy_82578) ||
3824            (hw->phy.type == e1000_phy_82579) ||
3825            (hw->phy.type == e1000_phy_82577)) {
3826                e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3827                e1e_rphy(hw, HV_SCC_LOWER, &phy_data);
3828                e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3829                e1e_rphy(hw, HV_ECOL_LOWER, &phy_data);
3830                e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3831                e1e_rphy(hw, HV_MCC_LOWER, &phy_data);
3832                e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3833                e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data);
3834                e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3835                e1e_rphy(hw, HV_COLC_LOWER, &phy_data);
3836                e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3837                e1e_rphy(hw, HV_DC_LOWER, &phy_data);
3838                e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3839                e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data);
3840        }
3841}
3842
3843static struct e1000_mac_operations ich8_mac_ops = {
3844        .id_led_init            = e1000e_id_led_init,
3845        /* check_mng_mode dependent on mac type */
3846        .check_for_link         = e1000_check_for_copper_link_ich8lan,
3847        /* cleanup_led dependent on mac type */
3848        .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
3849        .get_bus_info           = e1000_get_bus_info_ich8lan,
3850        .set_lan_id             = e1000_set_lan_id_single_port,
3851        .get_link_up_info       = e1000_get_link_up_info_ich8lan,
3852        /* led_on dependent on mac type */
3853        /* led_off dependent on mac type */
3854        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
3855        .reset_hw               = e1000_reset_hw_ich8lan,
3856        .init_hw                = e1000_init_hw_ich8lan,
3857        .setup_link             = e1000_setup_link_ich8lan,
3858        .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3859        /* id_led_init dependent on mac type */
3860};
3861
3862static struct e1000_phy_operations ich8_phy_ops = {
3863        .acquire                = e1000_acquire_swflag_ich8lan,
3864        .check_reset_block      = e1000_check_reset_block_ich8lan,
3865        .commit                 = NULL,
3866        .get_cfg_done           = e1000_get_cfg_done_ich8lan,
3867        .get_cable_length       = e1000e_get_cable_length_igp_2,
3868        .read_reg               = e1000e_read_phy_reg_igp,
3869        .release                = e1000_release_swflag_ich8lan,
3870        .reset                  = e1000_phy_hw_reset_ich8lan,
3871        .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
3872        .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
3873        .write_reg              = e1000e_write_phy_reg_igp,
3874};
3875
3876static struct e1000_nvm_operations ich8_nvm_ops = {
3877        .acquire                = e1000_acquire_nvm_ich8lan,
3878        .read                   = e1000_read_nvm_ich8lan,
3879        .release                = e1000_release_nvm_ich8lan,
3880        .update                 = e1000_update_nvm_checksum_ich8lan,
3881        .valid_led_default      = e1000_valid_led_default_ich8lan,
3882        .validate               = e1000_validate_nvm_checksum_ich8lan,
3883        .write                  = e1000_write_nvm_ich8lan,
3884};
3885
3886struct e1000_info e1000_ich8_info = {
3887        .mac                    = e1000_ich8lan,
3888        .flags                  = FLAG_HAS_WOL
3889                                  | FLAG_IS_ICH
3890                                  | FLAG_RX_CSUM_ENABLED
3891                                  | FLAG_HAS_CTRLEXT_ON_LOAD
3892                                  | FLAG_HAS_AMT
3893                                  | FLAG_HAS_FLASH
3894                                  | FLAG_APME_IN_WUC,
3895        .pba                    = 8,
3896        .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
3897        .get_variants           = e1000_get_variants_ich8lan,
3898        .mac_ops                = &ich8_mac_ops,
3899        .phy_ops                = &ich8_phy_ops,
3900        .nvm_ops                = &ich8_nvm_ops,
3901};
3902
3903struct e1000_info e1000_ich9_info = {
3904        .mac                    = e1000_ich9lan,
3905        .flags                  = FLAG_HAS_JUMBO_FRAMES
3906                                  | FLAG_IS_ICH
3907                                  | FLAG_HAS_WOL
3908                                  | FLAG_RX_CSUM_ENABLED
3909                                  | FLAG_HAS_CTRLEXT_ON_LOAD
3910                                  | FLAG_HAS_AMT
3911                                  | FLAG_HAS_ERT
3912                                  | FLAG_HAS_FLASH
3913                                  | FLAG_APME_IN_WUC,
3914        .pba                    = 10,
3915        .max_hw_frame_size      = DEFAULT_JUMBO,
3916        .get_variants           = e1000_get_variants_ich8lan,
3917        .mac_ops                = &ich8_mac_ops,
3918        .phy_ops                = &ich8_phy_ops,
3919        .nvm_ops                = &ich8_nvm_ops,
3920};
3921
3922struct e1000_info e1000_ich10_info = {
3923        .mac                    = e1000_ich10lan,
3924        .flags                  = FLAG_HAS_JUMBO_FRAMES
3925                                  | FLAG_IS_ICH
3926                                  | FLAG_HAS_WOL
3927                                  | FLAG_RX_CSUM_ENABLED
3928                                  | FLAG_HAS_CTRLEXT_ON_LOAD
3929                                  | FLAG_HAS_AMT
3930                                  | FLAG_HAS_ERT
3931                                  | FLAG_HAS_FLASH
3932                                  | FLAG_APME_IN_WUC,
3933        .pba                    = 10,
3934        .max_hw_frame_size      = DEFAULT_JUMBO,
3935        .get_variants           = e1000_get_variants_ich8lan,
3936        .mac_ops                = &ich8_mac_ops,
3937        .phy_ops                = &ich8_phy_ops,
3938        .nvm_ops                = &ich8_nvm_ops,
3939};
3940
3941struct e1000_info e1000_pch_info = {
3942        .mac                    = e1000_pchlan,
3943        .flags                  = FLAG_IS_ICH
3944                                  | FLAG_HAS_WOL
3945                                  | FLAG_RX_CSUM_ENABLED
3946                                  | FLAG_HAS_CTRLEXT_ON_LOAD
3947                                  | FLAG_HAS_AMT
3948                                  | FLAG_HAS_FLASH
3949                                  | FLAG_HAS_JUMBO_FRAMES
3950                                  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
3951                                  | FLAG_APME_IN_WUC,
3952        .flags2                 = FLAG2_HAS_PHY_STATS,
3953        .pba                    = 26,
3954        .max_hw_frame_size      = 4096,
3955        .get_variants           = e1000_get_variants_ich8lan,
3956        .mac_ops                = &ich8_mac_ops,
3957        .phy_ops                = &ich8_phy_ops,
3958        .nvm_ops                = &ich8_nvm_ops,
3959};
3960
3961struct e1000_info e1000_pch2_info = {
3962        .mac                    = e1000_pch2lan,
3963        .flags                  = FLAG_IS_ICH
3964                                  | FLAG_HAS_WOL
3965                                  | FLAG_RX_CSUM_ENABLED
3966                                  | FLAG_HAS_CTRLEXT_ON_LOAD
3967                                  | FLAG_HAS_AMT
3968                                  | FLAG_HAS_FLASH
3969                                  | FLAG_HAS_JUMBO_FRAMES
3970                                  | FLAG_APME_IN_WUC,
3971        .flags2                 = FLAG2_HAS_PHY_STATS
3972                                  | FLAG2_HAS_EEE,
3973        .pba                    = 26,
3974        .max_hw_frame_size      = DEFAULT_JUMBO,
3975        .get_variants           = e1000_get_variants_ich8lan,
3976        .mac_ops                = &ich8_mac_ops,
3977        .phy_ops                = &ich8_phy_ops,
3978        .nvm_ops                = &ich8_nvm_ops,
3979};
3980