linux/drivers/net/gianfar.c
<<
>>
Prefs
   1/*
   2 * drivers/net/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
  16 * This program is free software; you can redistribute  it and/or modify it
  17 * under  the terms of  the GNU General  Public License as published by the
  18 * Free Software Foundation;  either version 2 of the  License, or (at your
  19 * option) any later version.
  20 *
  21 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  22 *  RA 11 31 24.2
  23 *  Dec +69 19 52
  24 *  V 3.84
  25 *  B-V +1.62
  26 *
  27 *  Theory of operation
  28 *
  29 *  The driver is initialized through of_device. Configuration information
  30 *  is therefore conveyed through an OF-style device tree.
  31 *
  32 *  The Gianfar Ethernet Controller uses a ring of buffer
  33 *  descriptors.  The beginning is indicated by a register
  34 *  pointing to the physical address of the start of the ring.
  35 *  The end is determined by a "wrap" bit being set in the
  36 *  last descriptor of the ring.
  37 *
  38 *  When a packet is received, the RXF bit in the
  39 *  IEVENT register is set, triggering an interrupt when the
  40 *  corresponding bit in the IMASK register is also set (if
  41 *  interrupt coalescing is active, then the interrupt may not
  42 *  happen immediately, but will wait until either a set number
  43 *  of frames or amount of time have passed).  In NAPI, the
  44 *  interrupt handler will signal there is work to be done, and
  45 *  exit. This method will start at the last known empty
  46 *  descriptor, and process every subsequent descriptor until there
  47 *  are none left with data (NAPI will stop after a set number of
  48 *  packets to give time to other tasks, but will eventually
  49 *  process all the packets).  The data arrives inside a
  50 *  pre-allocated skb, and so after the skb is passed up to the
  51 *  stack, a new skb must be allocated, and the address field in
  52 *  the buffer descriptor must be updated to indicate this new
  53 *  skb.
  54 *
  55 *  When the kernel requests that a packet be transmitted, the
  56 *  driver starts where it left off last time, and points the
  57 *  descriptor at the buffer which was passed in.  The driver
  58 *  then informs the DMA engine that there are packets ready to
  59 *  be transmitted.  Once the controller is finished transmitting
  60 *  the packet, an interrupt may be triggered (under the same
  61 *  conditions as for reception, but depending on the TXF bit).
  62 *  The driver then cleans up the buffer.
  63 */
  64
  65#include <linux/kernel.h>
  66#include <linux/string.h>
  67#include <linux/errno.h>
  68#include <linux/unistd.h>
  69#include <linux/slab.h>
  70#include <linux/interrupt.h>
  71#include <linux/init.h>
  72#include <linux/delay.h>
  73#include <linux/netdevice.h>
  74#include <linux/etherdevice.h>
  75#include <linux/skbuff.h>
  76#include <linux/if_vlan.h>
  77#include <linux/spinlock.h>
  78#include <linux/mm.h>
  79#include <linux/of_mdio.h>
  80#include <linux/of_platform.h>
  81#include <linux/ip.h>
  82#include <linux/tcp.h>
  83#include <linux/udp.h>
  84#include <linux/in.h>
  85#include <linux/net_tstamp.h>
  86
  87#include <asm/io.h>
  88#include <asm/reg.h>
  89#include <asm/irq.h>
  90#include <asm/uaccess.h>
  91#include <linux/module.h>
  92#include <linux/dma-mapping.h>
  93#include <linux/crc32.h>
  94#include <linux/mii.h>
  95#include <linux/phy.h>
  96#include <linux/phy_fixed.h>
  97#include <linux/of.h>
  98#include <linux/of_net.h>
  99
 100#include "gianfar.h"
 101#include "fsl_pq_mdio.h"
 102
 103#define TX_TIMEOUT      (1*HZ)
 104#undef BRIEF_GFAR_ERRORS
 105#undef VERBOSE_GFAR_ERRORS
 106
 107const char gfar_driver_name[] = "Gianfar Ethernet";
 108const char gfar_driver_version[] = "1.3";
 109
 110static int gfar_enet_open(struct net_device *dev);
 111static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 112static void gfar_reset_task(struct work_struct *work);
 113static void gfar_timeout(struct net_device *dev);
 114static int gfar_close(struct net_device *dev);
 115struct sk_buff *gfar_new_skb(struct net_device *dev);
 116static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 117                struct sk_buff *skb);
 118static int gfar_set_mac_address(struct net_device *dev);
 119static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 120static irqreturn_t gfar_error(int irq, void *dev_id);
 121static irqreturn_t gfar_transmit(int irq, void *dev_id);
 122static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 123static void adjust_link(struct net_device *dev);
 124static void init_registers(struct net_device *dev);
 125static int init_phy(struct net_device *dev);
 126static int gfar_probe(struct platform_device *ofdev,
 127                const struct of_device_id *match);
 128static int gfar_remove(struct platform_device *ofdev);
 129static void free_skb_resources(struct gfar_private *priv);
 130static void gfar_set_multi(struct net_device *dev);
 131static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 132static void gfar_configure_serdes(struct net_device *dev);
 133static int gfar_poll(struct napi_struct *napi, int budget);
 134#ifdef CONFIG_NET_POLL_CONTROLLER
 135static void gfar_netpoll(struct net_device *dev);
 136#endif
 137int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 138static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 139static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
 140                              int amount_pull);
 141static void gfar_vlan_rx_register(struct net_device *netdev,
 142                                struct vlan_group *grp);
 143void gfar_halt(struct net_device *dev);
 144static void gfar_halt_nodisable(struct net_device *dev);
 145void gfar_start(struct net_device *dev);
 146static void gfar_clear_exact_match(struct net_device *dev);
 147static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 148                                  const u8 *addr);
 149static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 150
 151MODULE_AUTHOR("Freescale Semiconductor, Inc");
 152MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 153MODULE_LICENSE("GPL");
 154
 155static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 156                            dma_addr_t buf)
 157{
 158        u32 lstatus;
 159
 160        bdp->bufPtr = buf;
 161
 162        lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 163        if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 164                lstatus |= BD_LFLAG(RXBD_WRAP);
 165
 166        eieio();
 167
 168        bdp->lstatus = lstatus;
 169}
 170
 171static int gfar_init_bds(struct net_device *ndev)
 172{
 173        struct gfar_private *priv = netdev_priv(ndev);
 174        struct gfar_priv_tx_q *tx_queue = NULL;
 175        struct gfar_priv_rx_q *rx_queue = NULL;
 176        struct txbd8 *txbdp;
 177        struct rxbd8 *rxbdp;
 178        int i, j;
 179
 180        for (i = 0; i < priv->num_tx_queues; i++) {
 181                tx_queue = priv->tx_queue[i];
 182                /* Initialize some variables in our dev structure */
 183                tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 184                tx_queue->dirty_tx = tx_queue->tx_bd_base;
 185                tx_queue->cur_tx = tx_queue->tx_bd_base;
 186                tx_queue->skb_curtx = 0;
 187                tx_queue->skb_dirtytx = 0;
 188
 189                /* Initialize Transmit Descriptor Ring */
 190                txbdp = tx_queue->tx_bd_base;
 191                for (j = 0; j < tx_queue->tx_ring_size; j++) {
 192                        txbdp->lstatus = 0;
 193                        txbdp->bufPtr = 0;
 194                        txbdp++;
 195                }
 196
 197                /* Set the last descriptor in the ring to indicate wrap */
 198                txbdp--;
 199                txbdp->status |= TXBD_WRAP;
 200        }
 201
 202        for (i = 0; i < priv->num_rx_queues; i++) {
 203                rx_queue = priv->rx_queue[i];
 204                rx_queue->cur_rx = rx_queue->rx_bd_base;
 205                rx_queue->skb_currx = 0;
 206                rxbdp = rx_queue->rx_bd_base;
 207
 208                for (j = 0; j < rx_queue->rx_ring_size; j++) {
 209                        struct sk_buff *skb = rx_queue->rx_skbuff[j];
 210
 211                        if (skb) {
 212                                gfar_init_rxbdp(rx_queue, rxbdp,
 213                                                rxbdp->bufPtr);
 214                        } else {
 215                                skb = gfar_new_skb(ndev);
 216                                if (!skb) {
 217                                        pr_err("%s: Can't allocate RX buffers\n",
 218                                                        ndev->name);
 219                                        goto err_rxalloc_fail;
 220                                }
 221                                rx_queue->rx_skbuff[j] = skb;
 222
 223                                gfar_new_rxbdp(rx_queue, rxbdp, skb);
 224                        }
 225
 226                        rxbdp++;
 227                }
 228
 229        }
 230
 231        return 0;
 232
 233err_rxalloc_fail:
 234        free_skb_resources(priv);
 235        return -ENOMEM;
 236}
 237
 238static int gfar_alloc_skb_resources(struct net_device *ndev)
 239{
 240        void *vaddr;
 241        dma_addr_t addr;
 242        int i, j, k;
 243        struct gfar_private *priv = netdev_priv(ndev);
 244        struct device *dev = &priv->ofdev->dev;
 245        struct gfar_priv_tx_q *tx_queue = NULL;
 246        struct gfar_priv_rx_q *rx_queue = NULL;
 247
 248        priv->total_tx_ring_size = 0;
 249        for (i = 0; i < priv->num_tx_queues; i++)
 250                priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 251
 252        priv->total_rx_ring_size = 0;
 253        for (i = 0; i < priv->num_rx_queues; i++)
 254                priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 255
 256        /* Allocate memory for the buffer descriptors */
 257        vaddr = dma_alloc_coherent(dev,
 258                        sizeof(struct txbd8) * priv->total_tx_ring_size +
 259                        sizeof(struct rxbd8) * priv->total_rx_ring_size,
 260                        &addr, GFP_KERNEL);
 261        if (!vaddr) {
 262                if (netif_msg_ifup(priv))
 263                        pr_err("%s: Could not allocate buffer descriptors!\n",
 264                               ndev->name);
 265                return -ENOMEM;
 266        }
 267
 268        for (i = 0; i < priv->num_tx_queues; i++) {
 269                tx_queue = priv->tx_queue[i];
 270                tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
 271                tx_queue->tx_bd_dma_base = addr;
 272                tx_queue->dev = ndev;
 273                /* enet DMA only understands physical addresses */
 274                addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
 275                vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
 276        }
 277
 278        /* Start the rx descriptor ring where the tx ring leaves off */
 279        for (i = 0; i < priv->num_rx_queues; i++) {
 280                rx_queue = priv->rx_queue[i];
 281                rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
 282                rx_queue->rx_bd_dma_base = addr;
 283                rx_queue->dev = ndev;
 284                addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
 285                vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
 286        }
 287
 288        /* Setup the skbuff rings */
 289        for (i = 0; i < priv->num_tx_queues; i++) {
 290                tx_queue = priv->tx_queue[i];
 291                tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
 292                                  tx_queue->tx_ring_size, GFP_KERNEL);
 293                if (!tx_queue->tx_skbuff) {
 294                        if (netif_msg_ifup(priv))
 295                                pr_err("%s: Could not allocate tx_skbuff\n",
 296                                                ndev->name);
 297                        goto cleanup;
 298                }
 299
 300                for (k = 0; k < tx_queue->tx_ring_size; k++)
 301                        tx_queue->tx_skbuff[k] = NULL;
 302        }
 303
 304        for (i = 0; i < priv->num_rx_queues; i++) {
 305                rx_queue = priv->rx_queue[i];
 306                rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
 307                                  rx_queue->rx_ring_size, GFP_KERNEL);
 308
 309                if (!rx_queue->rx_skbuff) {
 310                        if (netif_msg_ifup(priv))
 311                                pr_err("%s: Could not allocate rx_skbuff\n",
 312                                       ndev->name);
 313                        goto cleanup;
 314                }
 315
 316                for (j = 0; j < rx_queue->rx_ring_size; j++)
 317                        rx_queue->rx_skbuff[j] = NULL;
 318        }
 319
 320        if (gfar_init_bds(ndev))
 321                goto cleanup;
 322
 323        return 0;
 324
 325cleanup:
 326        free_skb_resources(priv);
 327        return -ENOMEM;
 328}
 329
 330static void gfar_init_tx_rx_base(struct gfar_private *priv)
 331{
 332        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 333        u32 __iomem *baddr;
 334        int i;
 335
 336        baddr = &regs->tbase0;
 337        for(i = 0; i < priv->num_tx_queues; i++) {
 338                gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 339                baddr   += 2;
 340        }
 341
 342        baddr = &regs->rbase0;
 343        for(i = 0; i < priv->num_rx_queues; i++) {
 344                gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 345                baddr   += 2;
 346        }
 347}
 348
 349static void gfar_init_mac(struct net_device *ndev)
 350{
 351        struct gfar_private *priv = netdev_priv(ndev);
 352        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 353        u32 rctrl = 0;
 354        u32 tctrl = 0;
 355        u32 attrs = 0;
 356
 357        /* write the tx/rx base registers */
 358        gfar_init_tx_rx_base(priv);
 359
 360        /* Configure the coalescing support */
 361        gfar_configure_coalescing(priv, 0xFF, 0xFF);
 362
 363        if (priv->rx_filer_enable) {
 364                rctrl |= RCTRL_FILREN;
 365                /* Program the RIR0 reg with the required distribution */
 366                gfar_write(&regs->rir0, DEFAULT_RIR0);
 367        }
 368
 369        if (priv->rx_csum_enable)
 370                rctrl |= RCTRL_CHECKSUMMING;
 371
 372        if (priv->extended_hash) {
 373                rctrl |= RCTRL_EXTHASH;
 374
 375                gfar_clear_exact_match(ndev);
 376                rctrl |= RCTRL_EMEN;
 377        }
 378
 379        if (priv->padding) {
 380                rctrl &= ~RCTRL_PAL_MASK;
 381                rctrl |= RCTRL_PADDING(priv->padding);
 382        }
 383
 384        /* Insert receive time stamps into padding alignment bytes */
 385        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
 386                rctrl &= ~RCTRL_PAL_MASK;
 387                rctrl |= RCTRL_PADDING(8);
 388                priv->padding = 8;
 389        }
 390
 391        /* Enable HW time stamping if requested from user space */
 392        if (priv->hwts_rx_en)
 393                rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 394
 395        /* keep vlan related bits if it's enabled */
 396        if (priv->vlgrp) {
 397                rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 398                tctrl |= TCTRL_VLINS;
 399        }
 400
 401        /* Init rctrl based on our settings */
 402        gfar_write(&regs->rctrl, rctrl);
 403
 404        if (ndev->features & NETIF_F_IP_CSUM)
 405                tctrl |= TCTRL_INIT_CSUM;
 406
 407        tctrl |= TCTRL_TXSCHED_PRIO;
 408
 409        gfar_write(&regs->tctrl, tctrl);
 410
 411        /* Set the extraction length and index */
 412        attrs = ATTRELI_EL(priv->rx_stash_size) |
 413                ATTRELI_EI(priv->rx_stash_index);
 414
 415        gfar_write(&regs->attreli, attrs);
 416
 417        /* Start with defaults, and add stashing or locking
 418         * depending on the approprate variables */
 419        attrs = ATTR_INIT_SETTINGS;
 420
 421        if (priv->bd_stash_en)
 422                attrs |= ATTR_BDSTASH;
 423
 424        if (priv->rx_stash_size != 0)
 425                attrs |= ATTR_BUFSTASH;
 426
 427        gfar_write(&regs->attr, attrs);
 428
 429        gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
 430        gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
 431        gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
 432}
 433
 434static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 435{
 436        struct gfar_private *priv = netdev_priv(dev);
 437        unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 438        unsigned long tx_packets = 0, tx_bytes = 0;
 439        int i = 0;
 440
 441        for (i = 0; i < priv->num_rx_queues; i++) {
 442                rx_packets += priv->rx_queue[i]->stats.rx_packets;
 443                rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
 444                rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 445        }
 446
 447        dev->stats.rx_packets = rx_packets;
 448        dev->stats.rx_bytes = rx_bytes;
 449        dev->stats.rx_dropped = rx_dropped;
 450
 451        for (i = 0; i < priv->num_tx_queues; i++) {
 452                tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 453                tx_packets += priv->tx_queue[i]->stats.tx_packets;
 454        }
 455
 456        dev->stats.tx_bytes = tx_bytes;
 457        dev->stats.tx_packets = tx_packets;
 458
 459        return &dev->stats;
 460}
 461
 462static const struct net_device_ops gfar_netdev_ops = {
 463        .ndo_open = gfar_enet_open,
 464        .ndo_start_xmit = gfar_start_xmit,
 465        .ndo_stop = gfar_close,
 466        .ndo_change_mtu = gfar_change_mtu,
 467        .ndo_set_multicast_list = gfar_set_multi,
 468        .ndo_tx_timeout = gfar_timeout,
 469        .ndo_do_ioctl = gfar_ioctl,
 470        .ndo_get_stats = gfar_get_stats,
 471        .ndo_vlan_rx_register = gfar_vlan_rx_register,
 472        .ndo_set_mac_address = eth_mac_addr,
 473        .ndo_validate_addr = eth_validate_addr,
 474#ifdef CONFIG_NET_POLL_CONTROLLER
 475        .ndo_poll_controller = gfar_netpoll,
 476#endif
 477};
 478
 479unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
 480unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
 481
 482void lock_rx_qs(struct gfar_private *priv)
 483{
 484        int i = 0x0;
 485
 486        for (i = 0; i < priv->num_rx_queues; i++)
 487                spin_lock(&priv->rx_queue[i]->rxlock);
 488}
 489
 490void lock_tx_qs(struct gfar_private *priv)
 491{
 492        int i = 0x0;
 493
 494        for (i = 0; i < priv->num_tx_queues; i++)
 495                spin_lock(&priv->tx_queue[i]->txlock);
 496}
 497
 498void unlock_rx_qs(struct gfar_private *priv)
 499{
 500        int i = 0x0;
 501
 502        for (i = 0; i < priv->num_rx_queues; i++)
 503                spin_unlock(&priv->rx_queue[i]->rxlock);
 504}
 505
 506void unlock_tx_qs(struct gfar_private *priv)
 507{
 508        int i = 0x0;
 509
 510        for (i = 0; i < priv->num_tx_queues; i++)
 511                spin_unlock(&priv->tx_queue[i]->txlock);
 512}
 513
 514/* Returns 1 if incoming frames use an FCB */
 515static inline int gfar_uses_fcb(struct gfar_private *priv)
 516{
 517        return priv->vlgrp || priv->rx_csum_enable ||
 518                (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
 519}
 520
 521static void free_tx_pointers(struct gfar_private *priv)
 522{
 523        int i = 0;
 524
 525        for (i = 0; i < priv->num_tx_queues; i++)
 526                kfree(priv->tx_queue[i]);
 527}
 528
 529static void free_rx_pointers(struct gfar_private *priv)
 530{
 531        int i = 0;
 532
 533        for (i = 0; i < priv->num_rx_queues; i++)
 534                kfree(priv->rx_queue[i]);
 535}
 536
 537static void unmap_group_regs(struct gfar_private *priv)
 538{
 539        int i = 0;
 540
 541        for (i = 0; i < MAXGROUPS; i++)
 542                if (priv->gfargrp[i].regs)
 543                        iounmap(priv->gfargrp[i].regs);
 544}
 545
 546static void disable_napi(struct gfar_private *priv)
 547{
 548        int i = 0;
 549
 550        for (i = 0; i < priv->num_grps; i++)
 551                napi_disable(&priv->gfargrp[i].napi);
 552}
 553
 554static void enable_napi(struct gfar_private *priv)
 555{
 556        int i = 0;
 557
 558        for (i = 0; i < priv->num_grps; i++)
 559                napi_enable(&priv->gfargrp[i].napi);
 560}
 561
 562static int gfar_parse_group(struct device_node *np,
 563                struct gfar_private *priv, const char *model)
 564{
 565        u32 *queue_mask;
 566
 567        priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
 568        if (!priv->gfargrp[priv->num_grps].regs)
 569                return -ENOMEM;
 570
 571        priv->gfargrp[priv->num_grps].interruptTransmit =
 572                        irq_of_parse_and_map(np, 0);
 573
 574        /* If we aren't the FEC we have multiple interrupts */
 575        if (model && strcasecmp(model, "FEC")) {
 576                priv->gfargrp[priv->num_grps].interruptReceive =
 577                        irq_of_parse_and_map(np, 1);
 578                priv->gfargrp[priv->num_grps].interruptError =
 579                        irq_of_parse_and_map(np,2);
 580                if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
 581                    priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
 582                    priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
 583                        return -EINVAL;
 584        }
 585
 586        priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
 587        priv->gfargrp[priv->num_grps].priv = priv;
 588        spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
 589        if(priv->mode == MQ_MG_MODE) {
 590                queue_mask = (u32 *)of_get_property(np,
 591                                        "fsl,rx-bit-map", NULL);
 592                priv->gfargrp[priv->num_grps].rx_bit_map =
 593                        queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
 594                queue_mask = (u32 *)of_get_property(np,
 595                                        "fsl,tx-bit-map", NULL);
 596                priv->gfargrp[priv->num_grps].tx_bit_map =
 597                        queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
 598        } else {
 599                priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
 600                priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
 601        }
 602        priv->num_grps++;
 603
 604        return 0;
 605}
 606
 607static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 608{
 609        const char *model;
 610        const char *ctype;
 611        const void *mac_addr;
 612        int err = 0, i;
 613        struct net_device *dev = NULL;
 614        struct gfar_private *priv = NULL;
 615        struct device_node *np = ofdev->dev.of_node;
 616        struct device_node *child = NULL;
 617        const u32 *stash;
 618        const u32 *stash_len;
 619        const u32 *stash_idx;
 620        unsigned int num_tx_qs, num_rx_qs;
 621        u32 *tx_queues, *rx_queues;
 622
 623        if (!np || !of_device_is_available(np))
 624                return -ENODEV;
 625
 626        /* parse the num of tx and rx queues */
 627        tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
 628        num_tx_qs = tx_queues ? *tx_queues : 1;
 629
 630        if (num_tx_qs > MAX_TX_QS) {
 631                printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 632                                num_tx_qs, MAX_TX_QS);
 633                printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
 634                return -EINVAL;
 635        }
 636
 637        rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
 638        num_rx_qs = rx_queues ? *rx_queues : 1;
 639
 640        if (num_rx_qs > MAX_RX_QS) {
 641                printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 642                                num_tx_qs, MAX_TX_QS);
 643                printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
 644                return -EINVAL;
 645        }
 646
 647        *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 648        dev = *pdev;
 649        if (NULL == dev)
 650                return -ENOMEM;
 651
 652        priv = netdev_priv(dev);
 653        priv->node = ofdev->dev.of_node;
 654        priv->ndev = dev;
 655
 656        priv->num_tx_queues = num_tx_qs;
 657        netif_set_real_num_rx_queues(dev, num_rx_qs);
 658        priv->num_rx_queues = num_rx_qs;
 659        priv->num_grps = 0x0;
 660
 661        model = of_get_property(np, "model", NULL);
 662
 663        for (i = 0; i < MAXGROUPS; i++)
 664                priv->gfargrp[i].regs = NULL;
 665
 666        /* Parse and initialize group specific information */
 667        if (of_device_is_compatible(np, "fsl,etsec2")) {
 668                priv->mode = MQ_MG_MODE;
 669                for_each_child_of_node(np, child) {
 670                        err = gfar_parse_group(child, priv, model);
 671                        if (err)
 672                                goto err_grp_init;
 673                }
 674        } else {
 675                priv->mode = SQ_SG_MODE;
 676                err = gfar_parse_group(np, priv, model);
 677                if(err)
 678                        goto err_grp_init;
 679        }
 680
 681        for (i = 0; i < priv->num_tx_queues; i++)
 682               priv->tx_queue[i] = NULL;
 683        for (i = 0; i < priv->num_rx_queues; i++)
 684                priv->rx_queue[i] = NULL;
 685
 686        for (i = 0; i < priv->num_tx_queues; i++) {
 687                priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 688                                            GFP_KERNEL);
 689                if (!priv->tx_queue[i]) {
 690                        err = -ENOMEM;
 691                        goto tx_alloc_failed;
 692                }
 693                priv->tx_queue[i]->tx_skbuff = NULL;
 694                priv->tx_queue[i]->qindex = i;
 695                priv->tx_queue[i]->dev = dev;
 696                spin_lock_init(&(priv->tx_queue[i]->txlock));
 697        }
 698
 699        for (i = 0; i < priv->num_rx_queues; i++) {
 700                priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 701                                            GFP_KERNEL);
 702                if (!priv->rx_queue[i]) {
 703                        err = -ENOMEM;
 704                        goto rx_alloc_failed;
 705                }
 706                priv->rx_queue[i]->rx_skbuff = NULL;
 707                priv->rx_queue[i]->qindex = i;
 708                priv->rx_queue[i]->dev = dev;
 709                spin_lock_init(&(priv->rx_queue[i]->rxlock));
 710        }
 711
 712
 713        stash = of_get_property(np, "bd-stash", NULL);
 714
 715        if (stash) {
 716                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 717                priv->bd_stash_en = 1;
 718        }
 719
 720        stash_len = of_get_property(np, "rx-stash-len", NULL);
 721
 722        if (stash_len)
 723                priv->rx_stash_size = *stash_len;
 724
 725        stash_idx = of_get_property(np, "rx-stash-idx", NULL);
 726
 727        if (stash_idx)
 728                priv->rx_stash_index = *stash_idx;
 729
 730        if (stash_len || stash_idx)
 731                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 732
 733        mac_addr = of_get_mac_address(np);
 734        if (mac_addr)
 735                memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
 736
 737        if (model && !strcasecmp(model, "TSEC"))
 738                priv->device_flags =
 739                        FSL_GIANFAR_DEV_HAS_GIGABIT |
 740                        FSL_GIANFAR_DEV_HAS_COALESCE |
 741                        FSL_GIANFAR_DEV_HAS_RMON |
 742                        FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 743        if (model && !strcasecmp(model, "eTSEC"))
 744                priv->device_flags =
 745                        FSL_GIANFAR_DEV_HAS_GIGABIT |
 746                        FSL_GIANFAR_DEV_HAS_COALESCE |
 747                        FSL_GIANFAR_DEV_HAS_RMON |
 748                        FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 749                        FSL_GIANFAR_DEV_HAS_PADDING |
 750                        FSL_GIANFAR_DEV_HAS_CSUM |
 751                        FSL_GIANFAR_DEV_HAS_VLAN |
 752                        FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 753                        FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 754                        FSL_GIANFAR_DEV_HAS_TIMER;
 755
 756        ctype = of_get_property(np, "phy-connection-type", NULL);
 757
 758        /* We only care about rgmii-id.  The rest are autodetected */
 759        if (ctype && !strcmp(ctype, "rgmii-id"))
 760                priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 761        else
 762                priv->interface = PHY_INTERFACE_MODE_MII;
 763
 764        if (of_get_property(np, "fsl,magic-packet", NULL))
 765                priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 766
 767        priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 768
 769        /* Find the TBI PHY.  If it's not there, we don't support SGMII */
 770        priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 771
 772        return 0;
 773
 774rx_alloc_failed:
 775        free_rx_pointers(priv);
 776tx_alloc_failed:
 777        free_tx_pointers(priv);
 778err_grp_init:
 779        unmap_group_regs(priv);
 780        free_netdev(dev);
 781        return err;
 782}
 783
 784static int gfar_hwtstamp_ioctl(struct net_device *netdev,
 785                        struct ifreq *ifr, int cmd)
 786{
 787        struct hwtstamp_config config;
 788        struct gfar_private *priv = netdev_priv(netdev);
 789
 790        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 791                return -EFAULT;
 792
 793        /* reserved for future extensions */
 794        if (config.flags)
 795                return -EINVAL;
 796
 797        switch (config.tx_type) {
 798        case HWTSTAMP_TX_OFF:
 799                priv->hwts_tx_en = 0;
 800                break;
 801        case HWTSTAMP_TX_ON:
 802                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 803                        return -ERANGE;
 804                priv->hwts_tx_en = 1;
 805                break;
 806        default:
 807                return -ERANGE;
 808        }
 809
 810        switch (config.rx_filter) {
 811        case HWTSTAMP_FILTER_NONE:
 812                if (priv->hwts_rx_en) {
 813                        stop_gfar(netdev);
 814                        priv->hwts_rx_en = 0;
 815                        startup_gfar(netdev);
 816                }
 817                break;
 818        default:
 819                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 820                        return -ERANGE;
 821                if (!priv->hwts_rx_en) {
 822                        stop_gfar(netdev);
 823                        priv->hwts_rx_en = 1;
 824                        startup_gfar(netdev);
 825                }
 826                config.rx_filter = HWTSTAMP_FILTER_ALL;
 827                break;
 828        }
 829
 830        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 831                -EFAULT : 0;
 832}
 833
 834/* Ioctl MII Interface */
 835static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
 836{
 837        struct gfar_private *priv = netdev_priv(dev);
 838
 839        if (!netif_running(dev))
 840                return -EINVAL;
 841
 842        if (cmd == SIOCSHWTSTAMP)
 843                return gfar_hwtstamp_ioctl(dev, rq, cmd);
 844
 845        if (!priv->phydev)
 846                return -ENODEV;
 847
 848        return phy_mii_ioctl(priv->phydev, rq, cmd);
 849}
 850
 851static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
 852{
 853        unsigned int new_bit_map = 0x0;
 854        int mask = 0x1 << (max_qs - 1), i;
 855        for (i = 0; i < max_qs; i++) {
 856                if (bit_map & mask)
 857                        new_bit_map = new_bit_map + (1 << i);
 858                mask = mask >> 0x1;
 859        }
 860        return new_bit_map;
 861}
 862
 863static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 864                                   u32 class)
 865{
 866        u32 rqfpr = FPR_FILER_MASK;
 867        u32 rqfcr = 0x0;
 868
 869        rqfar--;
 870        rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 871        ftp_rqfpr[rqfar] = rqfpr;
 872        ftp_rqfcr[rqfar] = rqfcr;
 873        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 874
 875        rqfar--;
 876        rqfcr = RQFCR_CMP_NOMATCH;
 877        ftp_rqfpr[rqfar] = rqfpr;
 878        ftp_rqfcr[rqfar] = rqfcr;
 879        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 880
 881        rqfar--;
 882        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 883        rqfpr = class;
 884        ftp_rqfcr[rqfar] = rqfcr;
 885        ftp_rqfpr[rqfar] = rqfpr;
 886        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 887
 888        rqfar--;
 889        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 890        rqfpr = class;
 891        ftp_rqfcr[rqfar] = rqfcr;
 892        ftp_rqfpr[rqfar] = rqfpr;
 893        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 894
 895        return rqfar;
 896}
 897
 898static void gfar_init_filer_table(struct gfar_private *priv)
 899{
 900        int i = 0x0;
 901        u32 rqfar = MAX_FILER_IDX;
 902        u32 rqfcr = 0x0;
 903        u32 rqfpr = FPR_FILER_MASK;
 904
 905        /* Default rule */
 906        rqfcr = RQFCR_CMP_MATCH;
 907        ftp_rqfcr[rqfar] = rqfcr;
 908        ftp_rqfpr[rqfar] = rqfpr;
 909        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 910
 911        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 912        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 913        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 914        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 915        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 916        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 917
 918        /* cur_filer_idx indicated the first non-masked rule */
 919        priv->cur_filer_idx = rqfar;
 920
 921        /* Rest are masked rules */
 922        rqfcr = RQFCR_CMP_NOMATCH;
 923        for (i = 0; i < rqfar; i++) {
 924                ftp_rqfcr[i] = rqfcr;
 925                ftp_rqfpr[i] = rqfpr;
 926                gfar_write_filer(priv, i, rqfcr, rqfpr);
 927        }
 928}
 929
 930static void gfar_detect_errata(struct gfar_private *priv)
 931{
 932        struct device *dev = &priv->ofdev->dev;
 933        unsigned int pvr = mfspr(SPRN_PVR);
 934        unsigned int svr = mfspr(SPRN_SVR);
 935        unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 936        unsigned int rev = svr & 0xffff;
 937
 938        /* MPC8313 Rev 2.0 and higher; All MPC837x */
 939        if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 940                        (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 941                priv->errata |= GFAR_ERRATA_74;
 942
 943        /* MPC8313 and MPC837x all rev */
 944        if ((pvr == 0x80850010 && mod == 0x80b0) ||
 945                        (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 946                priv->errata |= GFAR_ERRATA_76;
 947
 948        /* MPC8313 and MPC837x all rev */
 949        if ((pvr == 0x80850010 && mod == 0x80b0) ||
 950                        (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 951                priv->errata |= GFAR_ERRATA_A002;
 952
 953        if (priv->errata)
 954                dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 955                         priv->errata);
 956}
 957
 958/* Set up the ethernet device structure, private data,
 959 * and anything else we need before we start */
 960static int gfar_probe(struct platform_device *ofdev,
 961                const struct of_device_id *match)
 962{
 963        u32 tempval;
 964        struct net_device *dev = NULL;
 965        struct gfar_private *priv = NULL;
 966        struct gfar __iomem *regs = NULL;
 967        int err = 0, i, grp_idx = 0;
 968        int len_devname;
 969        u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
 970        u32 isrg = 0;
 971        u32 __iomem *baddr;
 972
 973        err = gfar_of_init(ofdev, &dev);
 974
 975        if (err)
 976                return err;
 977
 978        priv = netdev_priv(dev);
 979        priv->ndev = dev;
 980        priv->ofdev = ofdev;
 981        priv->node = ofdev->dev.of_node;
 982        SET_NETDEV_DEV(dev, &ofdev->dev);
 983
 984        spin_lock_init(&priv->bflock);
 985        INIT_WORK(&priv->reset_task, gfar_reset_task);
 986
 987        dev_set_drvdata(&ofdev->dev, priv);
 988        regs = priv->gfargrp[0].regs;
 989
 990        gfar_detect_errata(priv);
 991
 992        /* Stop the DMA engine now, in case it was running before */
 993        /* (The firmware could have used it, and left it running). */
 994        gfar_halt(dev);
 995
 996        /* Reset MAC layer */
 997        gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
 998
 999        /* We need to delay at least 3 TX clocks */
1000        udelay(2);
1001
1002        tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1003        gfar_write(&regs->maccfg1, tempval);
1004
1005        /* Initialize MACCFG2. */
1006        tempval = MACCFG2_INIT_SETTINGS;
1007        if (gfar_has_errata(priv, GFAR_ERRATA_74))
1008                tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1009        gfar_write(&regs->maccfg2, tempval);
1010
1011        /* Initialize ECNTRL */
1012        gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1013
1014        /* Set the dev->base_addr to the gfar reg region */
1015        dev->base_addr = (unsigned long) regs;
1016
1017        SET_NETDEV_DEV(dev, &ofdev->dev);
1018
1019        /* Fill in the dev structure */
1020        dev->watchdog_timeo = TX_TIMEOUT;
1021        dev->mtu = 1500;
1022        dev->netdev_ops = &gfar_netdev_ops;
1023        dev->ethtool_ops = &gfar_ethtool_ops;
1024
1025        /* Register for napi ...We are registering NAPI for each grp */
1026        for (i = 0; i < priv->num_grps; i++)
1027                netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1028
1029        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1030                priv->rx_csum_enable = 1;
1031                dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
1032        } else
1033                priv->rx_csum_enable = 0;
1034
1035        priv->vlgrp = NULL;
1036
1037        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
1038                dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1039
1040        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1041                priv->extended_hash = 1;
1042                priv->hash_width = 9;
1043
1044                priv->hash_regs[0] = &regs->igaddr0;
1045                priv->hash_regs[1] = &regs->igaddr1;
1046                priv->hash_regs[2] = &regs->igaddr2;
1047                priv->hash_regs[3] = &regs->igaddr3;
1048                priv->hash_regs[4] = &regs->igaddr4;
1049                priv->hash_regs[5] = &regs->igaddr5;
1050                priv->hash_regs[6] = &regs->igaddr6;
1051                priv->hash_regs[7] = &regs->igaddr7;
1052                priv->hash_regs[8] = &regs->gaddr0;
1053                priv->hash_regs[9] = &regs->gaddr1;
1054                priv->hash_regs[10] = &regs->gaddr2;
1055                priv->hash_regs[11] = &regs->gaddr3;
1056                priv->hash_regs[12] = &regs->gaddr4;
1057                priv->hash_regs[13] = &regs->gaddr5;
1058                priv->hash_regs[14] = &regs->gaddr6;
1059                priv->hash_regs[15] = &regs->gaddr7;
1060
1061        } else {
1062                priv->extended_hash = 0;
1063                priv->hash_width = 8;
1064
1065                priv->hash_regs[0] = &regs->gaddr0;
1066                priv->hash_regs[1] = &regs->gaddr1;
1067                priv->hash_regs[2] = &regs->gaddr2;
1068                priv->hash_regs[3] = &regs->gaddr3;
1069                priv->hash_regs[4] = &regs->gaddr4;
1070                priv->hash_regs[5] = &regs->gaddr5;
1071                priv->hash_regs[6] = &regs->gaddr6;
1072                priv->hash_regs[7] = &regs->gaddr7;
1073        }
1074
1075        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1076                priv->padding = DEFAULT_PADDING;
1077        else
1078                priv->padding = 0;
1079
1080        if (dev->features & NETIF_F_IP_CSUM ||
1081                        priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1082                dev->hard_header_len += GMAC_FCB_LEN;
1083
1084        /* Program the isrg regs only if number of grps > 1 */
1085        if (priv->num_grps > 1) {
1086                baddr = &regs->isrg0;
1087                for (i = 0; i < priv->num_grps; i++) {
1088                        isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1089                        isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1090                        gfar_write(baddr, isrg);
1091                        baddr++;
1092                        isrg = 0x0;
1093                }
1094        }
1095
1096        /* Need to reverse the bit maps as  bit_map's MSB is q0
1097         * but, for_each_set_bit parses from right to left, which
1098         * basically reverses the queue numbers */
1099        for (i = 0; i< priv->num_grps; i++) {
1100                priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1101                                priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1102                priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1103                                priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1104        }
1105
1106        /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1107         * also assign queues to groups */
1108        for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1109                priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1110                for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1111                                priv->num_rx_queues) {
1112                        priv->gfargrp[grp_idx].num_rx_queues++;
1113                        priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1114                        rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1115                        rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1116                }
1117                priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1118                for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1119                                priv->num_tx_queues) {
1120                        priv->gfargrp[grp_idx].num_tx_queues++;
1121                        priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1122                        tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1123                        tqueue = tqueue | (TQUEUE_EN0 >> i);
1124                }
1125                priv->gfargrp[grp_idx].rstat = rstat;
1126                priv->gfargrp[grp_idx].tstat = tstat;
1127                rstat = tstat =0;
1128        }
1129
1130        gfar_write(&regs->rqueue, rqueue);
1131        gfar_write(&regs->tqueue, tqueue);
1132
1133        priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1134
1135        /* Initializing some of the rx/tx queue level parameters */
1136        for (i = 0; i < priv->num_tx_queues; i++) {
1137                priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1138                priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1139                priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1140                priv->tx_queue[i]->txic = DEFAULT_TXIC;
1141        }
1142
1143        for (i = 0; i < priv->num_rx_queues; i++) {
1144                priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1145                priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1146                priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1147        }
1148
1149        /* enable filer if using multiple RX queues*/
1150        if(priv->num_rx_queues > 1)
1151                priv->rx_filer_enable = 1;
1152        /* Enable most messages by default */
1153        priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1154
1155        /* Carrier starts down, phylib will bring it up */
1156        netif_carrier_off(dev);
1157
1158        err = register_netdev(dev);
1159
1160        if (err) {
1161                printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1162                                dev->name);
1163                goto register_fail;
1164        }
1165
1166        device_init_wakeup(&dev->dev,
1167                priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1168
1169        /* fill out IRQ number and name fields */
1170        len_devname = strlen(dev->name);
1171        for (i = 0; i < priv->num_grps; i++) {
1172                strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1173                                len_devname);
1174                if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1175                        strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1176                                "_g", sizeof("_g"));
1177                        priv->gfargrp[i].int_name_tx[
1178                                strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1179                        strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1180                                priv->gfargrp[i].int_name_tx)],
1181                                "_tx", sizeof("_tx") + 1);
1182
1183                        strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1184                                        len_devname);
1185                        strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1186                                        "_g", sizeof("_g"));
1187                        priv->gfargrp[i].int_name_rx[
1188                                strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1189                        strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1190                                priv->gfargrp[i].int_name_rx)],
1191                                "_rx", sizeof("_rx") + 1);
1192
1193                        strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1194                                        len_devname);
1195                        strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1196                                "_g", sizeof("_g"));
1197                        priv->gfargrp[i].int_name_er[strlen(
1198                                        priv->gfargrp[i].int_name_er)] = i+48;
1199                        strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1200                                priv->gfargrp[i].int_name_er)],
1201                                "_er", sizeof("_er") + 1);
1202                } else
1203                        priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1204        }
1205
1206        /* Initialize the filer table */
1207        gfar_init_filer_table(priv);
1208
1209        /* Create all the sysfs files */
1210        gfar_init_sysfs(dev);
1211
1212        /* Print out the device info */
1213        printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1214
1215        /* Even more device info helps when determining which kernel */
1216        /* provided which set of benchmarks. */
1217        printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1218        for (i = 0; i < priv->num_rx_queues; i++)
1219                printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1220                        dev->name, i, priv->rx_queue[i]->rx_ring_size);
1221        for(i = 0; i < priv->num_tx_queues; i++)
1222                 printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1223                        dev->name, i, priv->tx_queue[i]->tx_ring_size);
1224
1225        return 0;
1226
1227register_fail:
1228        unmap_group_regs(priv);
1229        free_tx_pointers(priv);
1230        free_rx_pointers(priv);
1231        if (priv->phy_node)
1232                of_node_put(priv->phy_node);
1233        if (priv->tbi_node)
1234                of_node_put(priv->tbi_node);
1235        free_netdev(dev);
1236        return err;
1237}
1238
1239static int gfar_remove(struct platform_device *ofdev)
1240{
1241        struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1242
1243        if (priv->phy_node)
1244                of_node_put(priv->phy_node);
1245        if (priv->tbi_node)
1246                of_node_put(priv->tbi_node);
1247
1248        dev_set_drvdata(&ofdev->dev, NULL);
1249
1250        unregister_netdev(priv->ndev);
1251        unmap_group_regs(priv);
1252        free_netdev(priv->ndev);
1253
1254        return 0;
1255}
1256
1257#ifdef CONFIG_PM
1258
1259static int gfar_suspend(struct device *dev)
1260{
1261        struct gfar_private *priv = dev_get_drvdata(dev);
1262        struct net_device *ndev = priv->ndev;
1263        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1264        unsigned long flags;
1265        u32 tempval;
1266
1267        int magic_packet = priv->wol_en &&
1268                (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1269
1270        netif_device_detach(ndev);
1271
1272        if (netif_running(ndev)) {
1273
1274                local_irq_save(flags);
1275                lock_tx_qs(priv);
1276                lock_rx_qs(priv);
1277
1278                gfar_halt_nodisable(ndev);
1279
1280                /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1281                tempval = gfar_read(&regs->maccfg1);
1282
1283                tempval &= ~MACCFG1_TX_EN;
1284
1285                if (!magic_packet)
1286                        tempval &= ~MACCFG1_RX_EN;
1287
1288                gfar_write(&regs->maccfg1, tempval);
1289
1290                unlock_rx_qs(priv);
1291                unlock_tx_qs(priv);
1292                local_irq_restore(flags);
1293
1294                disable_napi(priv);
1295
1296                if (magic_packet) {
1297                        /* Enable interrupt on Magic Packet */
1298                        gfar_write(&regs->imask, IMASK_MAG);
1299
1300                        /* Enable Magic Packet mode */
1301                        tempval = gfar_read(&regs->maccfg2);
1302                        tempval |= MACCFG2_MPEN;
1303                        gfar_write(&regs->maccfg2, tempval);
1304                } else {
1305                        phy_stop(priv->phydev);
1306                }
1307        }
1308
1309        return 0;
1310}
1311
1312static int gfar_resume(struct device *dev)
1313{
1314        struct gfar_private *priv = dev_get_drvdata(dev);
1315        struct net_device *ndev = priv->ndev;
1316        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1317        unsigned long flags;
1318        u32 tempval;
1319        int magic_packet = priv->wol_en &&
1320                (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1321
1322        if (!netif_running(ndev)) {
1323                netif_device_attach(ndev);
1324                return 0;
1325        }
1326
1327        if (!magic_packet && priv->phydev)
1328                phy_start(priv->phydev);
1329
1330        /* Disable Magic Packet mode, in case something
1331         * else woke us up.
1332         */
1333        local_irq_save(flags);
1334        lock_tx_qs(priv);
1335        lock_rx_qs(priv);
1336
1337        tempval = gfar_read(&regs->maccfg2);
1338        tempval &= ~MACCFG2_MPEN;
1339        gfar_write(&regs->maccfg2, tempval);
1340
1341        gfar_start(ndev);
1342
1343        unlock_rx_qs(priv);
1344        unlock_tx_qs(priv);
1345        local_irq_restore(flags);
1346
1347        netif_device_attach(ndev);
1348
1349        enable_napi(priv);
1350
1351        return 0;
1352}
1353
1354static int gfar_restore(struct device *dev)
1355{
1356        struct gfar_private *priv = dev_get_drvdata(dev);
1357        struct net_device *ndev = priv->ndev;
1358
1359        if (!netif_running(ndev))
1360                return 0;
1361
1362        gfar_init_bds(ndev);
1363        init_registers(ndev);
1364        gfar_set_mac_address(ndev);
1365        gfar_init_mac(ndev);
1366        gfar_start(ndev);
1367
1368        priv->oldlink = 0;
1369        priv->oldspeed = 0;
1370        priv->oldduplex = -1;
1371
1372        if (priv->phydev)
1373                phy_start(priv->phydev);
1374
1375        netif_device_attach(ndev);
1376        enable_napi(priv);
1377
1378        return 0;
1379}
1380
1381static struct dev_pm_ops gfar_pm_ops = {
1382        .suspend = gfar_suspend,
1383        .resume = gfar_resume,
1384        .freeze = gfar_suspend,
1385        .thaw = gfar_resume,
1386        .restore = gfar_restore,
1387};
1388
1389#define GFAR_PM_OPS (&gfar_pm_ops)
1390
1391#else
1392
1393#define GFAR_PM_OPS NULL
1394
1395#endif
1396
1397/* Reads the controller's registers to determine what interface
1398 * connects it to the PHY.
1399 */
1400static phy_interface_t gfar_get_interface(struct net_device *dev)
1401{
1402        struct gfar_private *priv = netdev_priv(dev);
1403        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1404        u32 ecntrl;
1405
1406        ecntrl = gfar_read(&regs->ecntrl);
1407
1408        if (ecntrl & ECNTRL_SGMII_MODE)
1409                return PHY_INTERFACE_MODE_SGMII;
1410
1411        if (ecntrl & ECNTRL_TBI_MODE) {
1412                if (ecntrl & ECNTRL_REDUCED_MODE)
1413                        return PHY_INTERFACE_MODE_RTBI;
1414                else
1415                        return PHY_INTERFACE_MODE_TBI;
1416        }
1417
1418        if (ecntrl & ECNTRL_REDUCED_MODE) {
1419                if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1420                        return PHY_INTERFACE_MODE_RMII;
1421                else {
1422                        phy_interface_t interface = priv->interface;
1423
1424                        /*
1425                         * This isn't autodetected right now, so it must
1426                         * be set by the device tree or platform code.
1427                         */
1428                        if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1429                                return PHY_INTERFACE_MODE_RGMII_ID;
1430
1431                        return PHY_INTERFACE_MODE_RGMII;
1432                }
1433        }
1434
1435        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1436                return PHY_INTERFACE_MODE_GMII;
1437
1438        return PHY_INTERFACE_MODE_MII;
1439}
1440
1441
1442/* Initializes driver's PHY state, and attaches to the PHY.
1443 * Returns 0 on success.
1444 */
1445static int init_phy(struct net_device *dev)
1446{
1447        struct gfar_private *priv = netdev_priv(dev);
1448        uint gigabit_support =
1449                priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1450                SUPPORTED_1000baseT_Full : 0;
1451        phy_interface_t interface;
1452
1453        priv->oldlink = 0;
1454        priv->oldspeed = 0;
1455        priv->oldduplex = -1;
1456
1457        interface = gfar_get_interface(dev);
1458
1459        priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1460                                      interface);
1461        if (!priv->phydev)
1462                priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1463                                                         interface);
1464        if (!priv->phydev) {
1465                dev_err(&dev->dev, "could not attach to PHY\n");
1466                return -ENODEV;
1467        }
1468
1469        if (interface == PHY_INTERFACE_MODE_SGMII)
1470                gfar_configure_serdes(dev);
1471
1472        /* Remove any features not supported by the controller */
1473        priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1474        priv->phydev->advertising = priv->phydev->supported;
1475
1476        return 0;
1477}
1478
1479/*
1480 * Initialize TBI PHY interface for communicating with the
1481 * SERDES lynx PHY on the chip.  We communicate with this PHY
1482 * through the MDIO bus on each controller, treating it as a
1483 * "normal" PHY at the address found in the TBIPA register.  We assume
1484 * that the TBIPA register is valid.  Either the MDIO bus code will set
1485 * it to a value that doesn't conflict with other PHYs on the bus, or the
1486 * value doesn't matter, as there are no other PHYs on the bus.
1487 */
1488static void gfar_configure_serdes(struct net_device *dev)
1489{
1490        struct gfar_private *priv = netdev_priv(dev);
1491        struct phy_device *tbiphy;
1492
1493        if (!priv->tbi_node) {
1494                dev_warn(&dev->dev, "error: SGMII mode requires that the "
1495                                    "device tree specify a tbi-handle\n");
1496                return;
1497        }
1498
1499        tbiphy = of_phy_find_device(priv->tbi_node);
1500        if (!tbiphy) {
1501                dev_err(&dev->dev, "error: Could not get TBI device\n");
1502                return;
1503        }
1504
1505        /*
1506         * If the link is already up, we must already be ok, and don't need to
1507         * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1508         * everything for us?  Resetting it takes the link down and requires
1509         * several seconds for it to come back.
1510         */
1511        if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1512                return;
1513
1514        /* Single clk mode, mii mode off(for serdes communication) */
1515        phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1516
1517        phy_write(tbiphy, MII_ADVERTISE,
1518                        ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1519                        ADVERTISE_1000XPSE_ASYM);
1520
1521        phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1522                        BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1523}
1524
1525static void init_registers(struct net_device *dev)
1526{
1527        struct gfar_private *priv = netdev_priv(dev);
1528        struct gfar __iomem *regs = NULL;
1529        int i = 0;
1530
1531        for (i = 0; i < priv->num_grps; i++) {
1532                regs = priv->gfargrp[i].regs;
1533                /* Clear IEVENT */
1534                gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1535
1536                /* Initialize IMASK */
1537                gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1538        }
1539
1540        regs = priv->gfargrp[0].regs;
1541        /* Init hash registers to zero */
1542        gfar_write(&regs->igaddr0, 0);
1543        gfar_write(&regs->igaddr1, 0);
1544        gfar_write(&regs->igaddr2, 0);
1545        gfar_write(&regs->igaddr3, 0);
1546        gfar_write(&regs->igaddr4, 0);
1547        gfar_write(&regs->igaddr5, 0);
1548        gfar_write(&regs->igaddr6, 0);
1549        gfar_write(&regs->igaddr7, 0);
1550
1551        gfar_write(&regs->gaddr0, 0);
1552        gfar_write(&regs->gaddr1, 0);
1553        gfar_write(&regs->gaddr2, 0);
1554        gfar_write(&regs->gaddr3, 0);
1555        gfar_write(&regs->gaddr4, 0);
1556        gfar_write(&regs->gaddr5, 0);
1557        gfar_write(&regs->gaddr6, 0);
1558        gfar_write(&regs->gaddr7, 0);
1559
1560        /* Zero out the rmon mib registers if it has them */
1561        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1562                memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1563
1564                /* Mask off the CAM interrupts */
1565                gfar_write(&regs->rmon.cam1, 0xffffffff);
1566                gfar_write(&regs->rmon.cam2, 0xffffffff);
1567        }
1568
1569        /* Initialize the max receive buffer length */
1570        gfar_write(&regs->mrblr, priv->rx_buffer_size);
1571
1572        /* Initialize the Minimum Frame Length Register */
1573        gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1574}
1575
1576static int __gfar_is_rx_idle(struct gfar_private *priv)
1577{
1578        u32 res;
1579
1580        /*
1581         * Normaly TSEC should not hang on GRS commands, so we should
1582         * actually wait for IEVENT_GRSC flag.
1583         */
1584        if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1585                return 0;
1586
1587        /*
1588         * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1589         * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1590         * and the Rx can be safely reset.
1591         */
1592        res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1593        res &= 0x7f807f80;
1594        if ((res & 0xffff) == (res >> 16))
1595                return 1;
1596
1597        return 0;
1598}
1599
1600/* Halt the receive and transmit queues */
1601static void gfar_halt_nodisable(struct net_device *dev)
1602{
1603        struct gfar_private *priv = netdev_priv(dev);
1604        struct gfar __iomem *regs = NULL;
1605        u32 tempval;
1606        int i = 0;
1607
1608        for (i = 0; i < priv->num_grps; i++) {
1609                regs = priv->gfargrp[i].regs;
1610                /* Mask all interrupts */
1611                gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1612
1613                /* Clear all interrupts */
1614                gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1615        }
1616
1617        regs = priv->gfargrp[0].regs;
1618        /* Stop the DMA, and wait for it to stop */
1619        tempval = gfar_read(&regs->dmactrl);
1620        if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1621            != (DMACTRL_GRS | DMACTRL_GTS)) {
1622                int ret;
1623
1624                tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1625                gfar_write(&regs->dmactrl, tempval);
1626
1627                do {
1628                        ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1629                                 (IEVENT_GRSC | IEVENT_GTSC)) ==
1630                                 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1631                        if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1632                                ret = __gfar_is_rx_idle(priv);
1633                } while (!ret);
1634        }
1635}
1636
1637/* Halt the receive and transmit queues */
1638void gfar_halt(struct net_device *dev)
1639{
1640        struct gfar_private *priv = netdev_priv(dev);
1641        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1642        u32 tempval;
1643
1644        gfar_halt_nodisable(dev);
1645
1646        /* Disable Rx and Tx */
1647        tempval = gfar_read(&regs->maccfg1);
1648        tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1649        gfar_write(&regs->maccfg1, tempval);
1650}
1651
1652static void free_grp_irqs(struct gfar_priv_grp *grp)
1653{
1654        free_irq(grp->interruptError, grp);
1655        free_irq(grp->interruptTransmit, grp);
1656        free_irq(grp->interruptReceive, grp);
1657}
1658
1659void stop_gfar(struct net_device *dev)
1660{
1661        struct gfar_private *priv = netdev_priv(dev);
1662        unsigned long flags;
1663        int i;
1664
1665        phy_stop(priv->phydev);
1666
1667
1668        /* Lock it down */
1669        local_irq_save(flags);
1670        lock_tx_qs(priv);
1671        lock_rx_qs(priv);
1672
1673        gfar_halt(dev);
1674
1675        unlock_rx_qs(priv);
1676        unlock_tx_qs(priv);
1677        local_irq_restore(flags);
1678
1679        /* Free the IRQs */
1680        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1681                for (i = 0; i < priv->num_grps; i++)
1682                        free_grp_irqs(&priv->gfargrp[i]);
1683        } else {
1684                for (i = 0; i < priv->num_grps; i++)
1685                        free_irq(priv->gfargrp[i].interruptTransmit,
1686                                        &priv->gfargrp[i]);
1687        }
1688
1689        free_skb_resources(priv);
1690}
1691
1692static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1693{
1694        struct txbd8 *txbdp;
1695        struct gfar_private *priv = netdev_priv(tx_queue->dev);
1696        int i, j;
1697
1698        txbdp = tx_queue->tx_bd_base;
1699
1700        for (i = 0; i < tx_queue->tx_ring_size; i++) {
1701                if (!tx_queue->tx_skbuff[i])
1702                        continue;
1703
1704                dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1705                                txbdp->length, DMA_TO_DEVICE);
1706                txbdp->lstatus = 0;
1707                for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1708                                j++) {
1709                        txbdp++;
1710                        dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1711                                        txbdp->length, DMA_TO_DEVICE);
1712                }
1713                txbdp++;
1714                dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1715                tx_queue->tx_skbuff[i] = NULL;
1716        }
1717        kfree(tx_queue->tx_skbuff);
1718}
1719
1720static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1721{
1722        struct rxbd8 *rxbdp;
1723        struct gfar_private *priv = netdev_priv(rx_queue->dev);
1724        int i;
1725
1726        rxbdp = rx_queue->rx_bd_base;
1727
1728        for (i = 0; i < rx_queue->rx_ring_size; i++) {
1729                if (rx_queue->rx_skbuff[i]) {
1730                        dma_unmap_single(&priv->ofdev->dev,
1731                                        rxbdp->bufPtr, priv->rx_buffer_size,
1732                                        DMA_FROM_DEVICE);
1733                        dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1734                        rx_queue->rx_skbuff[i] = NULL;
1735                }
1736                rxbdp->lstatus = 0;
1737                rxbdp->bufPtr = 0;
1738                rxbdp++;
1739        }
1740        kfree(rx_queue->rx_skbuff);
1741}
1742
1743/* If there are any tx skbs or rx skbs still around, free them.
1744 * Then free tx_skbuff and rx_skbuff */
1745static void free_skb_resources(struct gfar_private *priv)
1746{
1747        struct gfar_priv_tx_q *tx_queue = NULL;
1748        struct gfar_priv_rx_q *rx_queue = NULL;
1749        int i;
1750
1751        /* Go through all the buffer descriptors and free their data buffers */
1752        for (i = 0; i < priv->num_tx_queues; i++) {
1753                tx_queue = priv->tx_queue[i];
1754                if(tx_queue->tx_skbuff)
1755                        free_skb_tx_queue(tx_queue);
1756        }
1757
1758        for (i = 0; i < priv->num_rx_queues; i++) {
1759                rx_queue = priv->rx_queue[i];
1760                if(rx_queue->rx_skbuff)
1761                        free_skb_rx_queue(rx_queue);
1762        }
1763
1764        dma_free_coherent(&priv->ofdev->dev,
1765                        sizeof(struct txbd8) * priv->total_tx_ring_size +
1766                        sizeof(struct rxbd8) * priv->total_rx_ring_size,
1767                        priv->tx_queue[0]->tx_bd_base,
1768                        priv->tx_queue[0]->tx_bd_dma_base);
1769        skb_queue_purge(&priv->rx_recycle);
1770}
1771
1772void gfar_start(struct net_device *dev)
1773{
1774        struct gfar_private *priv = netdev_priv(dev);
1775        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1776        u32 tempval;
1777        int i = 0;
1778
1779        /* Enable Rx and Tx in MACCFG1 */
1780        tempval = gfar_read(&regs->maccfg1);
1781        tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1782        gfar_write(&regs->maccfg1, tempval);
1783
1784        /* Initialize DMACTRL to have WWR and WOP */
1785        tempval = gfar_read(&regs->dmactrl);
1786        tempval |= DMACTRL_INIT_SETTINGS;
1787        gfar_write(&regs->dmactrl, tempval);
1788
1789        /* Make sure we aren't stopped */
1790        tempval = gfar_read(&regs->dmactrl);
1791        tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1792        gfar_write(&regs->dmactrl, tempval);
1793
1794        for (i = 0; i < priv->num_grps; i++) {
1795                regs = priv->gfargrp[i].regs;
1796                /* Clear THLT/RHLT, so that the DMA starts polling now */
1797                gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1798                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1799                /* Unmask the interrupts we look for */
1800                gfar_write(&regs->imask, IMASK_DEFAULT);
1801        }
1802
1803        dev->trans_start = jiffies; /* prevent tx timeout */
1804}
1805
1806void gfar_configure_coalescing(struct gfar_private *priv,
1807        unsigned long tx_mask, unsigned long rx_mask)
1808{
1809        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1810        u32 __iomem *baddr;
1811        int i = 0;
1812
1813        /* Backward compatible case ---- even if we enable
1814         * multiple queues, there's only single reg to program
1815         */
1816        gfar_write(&regs->txic, 0);
1817        if(likely(priv->tx_queue[0]->txcoalescing))
1818                gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1819
1820        gfar_write(&regs->rxic, 0);
1821        if(unlikely(priv->rx_queue[0]->rxcoalescing))
1822                gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1823
1824        if (priv->mode == MQ_MG_MODE) {
1825                baddr = &regs->txic0;
1826                for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1827                        if (likely(priv->tx_queue[i]->txcoalescing)) {
1828                                gfar_write(baddr + i, 0);
1829                                gfar_write(baddr + i, priv->tx_queue[i]->txic);
1830                        }
1831                }
1832
1833                baddr = &regs->rxic0;
1834                for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1835                        if (likely(priv->rx_queue[i]->rxcoalescing)) {
1836                                gfar_write(baddr + i, 0);
1837                                gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1838                        }
1839                }
1840        }
1841}
1842
1843static int register_grp_irqs(struct gfar_priv_grp *grp)
1844{
1845        struct gfar_private *priv = grp->priv;
1846        struct net_device *dev = priv->ndev;
1847        int err;
1848
1849        /* If the device has multiple interrupts, register for
1850         * them.  Otherwise, only register for the one */
1851        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1852                /* Install our interrupt handlers for Error,
1853                 * Transmit, and Receive */
1854                if ((err = request_irq(grp->interruptError, gfar_error, 0,
1855                                grp->int_name_er,grp)) < 0) {
1856                        if (netif_msg_intr(priv))
1857                                printk(KERN_ERR "%s: Can't get IRQ %d\n",
1858                                        dev->name, grp->interruptError);
1859
1860                        goto err_irq_fail;
1861                }
1862
1863                if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1864                                0, grp->int_name_tx, grp)) < 0) {
1865                        if (netif_msg_intr(priv))
1866                                printk(KERN_ERR "%s: Can't get IRQ %d\n",
1867                                        dev->name, grp->interruptTransmit);
1868                        goto tx_irq_fail;
1869                }
1870
1871                if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1872                                grp->int_name_rx, grp)) < 0) {
1873                        if (netif_msg_intr(priv))
1874                                printk(KERN_ERR "%s: Can't get IRQ %d\n",
1875                                        dev->name, grp->interruptReceive);
1876                        goto rx_irq_fail;
1877                }
1878        } else {
1879                if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1880                                grp->int_name_tx, grp)) < 0) {
1881                        if (netif_msg_intr(priv))
1882                                printk(KERN_ERR "%s: Can't get IRQ %d\n",
1883                                        dev->name, grp->interruptTransmit);
1884                        goto err_irq_fail;
1885                }
1886        }
1887
1888        return 0;
1889
1890rx_irq_fail:
1891        free_irq(grp->interruptTransmit, grp);
1892tx_irq_fail:
1893        free_irq(grp->interruptError, grp);
1894err_irq_fail:
1895        return err;
1896
1897}
1898
1899/* Bring the controller up and running */
1900int startup_gfar(struct net_device *ndev)
1901{
1902        struct gfar_private *priv = netdev_priv(ndev);
1903        struct gfar __iomem *regs = NULL;
1904        int err, i, j;
1905
1906        for (i = 0; i < priv->num_grps; i++) {
1907                regs= priv->gfargrp[i].regs;
1908                gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1909        }
1910
1911        regs= priv->gfargrp[0].regs;
1912        err = gfar_alloc_skb_resources(ndev);
1913        if (err)
1914                return err;
1915
1916        gfar_init_mac(ndev);
1917
1918        for (i = 0; i < priv->num_grps; i++) {
1919                err = register_grp_irqs(&priv->gfargrp[i]);
1920                if (err) {
1921                        for (j = 0; j < i; j++)
1922                                free_grp_irqs(&priv->gfargrp[j]);
1923                        goto irq_fail;
1924                }
1925        }
1926
1927        /* Start the controller */
1928        gfar_start(ndev);
1929
1930        phy_start(priv->phydev);
1931
1932        gfar_configure_coalescing(priv, 0xFF, 0xFF);
1933
1934        return 0;
1935
1936irq_fail:
1937        free_skb_resources(priv);
1938        return err;
1939}
1940
1941/* Called when something needs to use the ethernet device */
1942/* Returns 0 for success. */
1943static int gfar_enet_open(struct net_device *dev)
1944{
1945        struct gfar_private *priv = netdev_priv(dev);
1946        int err;
1947
1948        enable_napi(priv);
1949
1950        skb_queue_head_init(&priv->rx_recycle);
1951
1952        /* Initialize a bunch of registers */
1953        init_registers(dev);
1954
1955        gfar_set_mac_address(dev);
1956
1957        err = init_phy(dev);
1958
1959        if (err) {
1960                disable_napi(priv);
1961                return err;
1962        }
1963
1964        err = startup_gfar(dev);
1965        if (err) {
1966                disable_napi(priv);
1967                return err;
1968        }
1969
1970        netif_tx_start_all_queues(dev);
1971
1972        device_set_wakeup_enable(&dev->dev, priv->wol_en);
1973
1974        return err;
1975}
1976
1977static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1978{
1979        struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1980
1981        memset(fcb, 0, GMAC_FCB_LEN);
1982
1983        return fcb;
1984}
1985
1986static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1987{
1988        u8 flags = 0;
1989
1990        /* If we're here, it's a IP packet with a TCP or UDP
1991         * payload.  We set it to checksum, using a pseudo-header
1992         * we provide
1993         */
1994        flags = TXFCB_DEFAULT;
1995
1996        /* Tell the controller what the protocol is */
1997        /* And provide the already calculated phcs */
1998        if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1999                flags |= TXFCB_UDP;
2000                fcb->phcs = udp_hdr(skb)->check;
2001        } else
2002                fcb->phcs = tcp_hdr(skb)->check;
2003
2004        /* l3os is the distance between the start of the
2005         * frame (skb->data) and the start of the IP hdr.
2006         * l4os is the distance between the start of the
2007         * l3 hdr and the l4 hdr */
2008        fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
2009        fcb->l4os = skb_network_header_len(skb);
2010
2011        fcb->flags = flags;
2012}
2013
2014void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2015{
2016        fcb->flags |= TXFCB_VLN;
2017        fcb->vlctl = vlan_tx_tag_get(skb);
2018}
2019
2020static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2021                               struct txbd8 *base, int ring_size)
2022{
2023        struct txbd8 *new_bd = bdp + stride;
2024
2025        return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2026}
2027
2028static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2029                int ring_size)
2030{
2031        return skip_txbd(bdp, 1, base, ring_size);
2032}
2033
2034/* This is called by the kernel when a frame is ready for transmission. */
2035/* It is pointed to by the dev->hard_start_xmit function pointer */
2036static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2037{
2038        struct gfar_private *priv = netdev_priv(dev);
2039        struct gfar_priv_tx_q *tx_queue = NULL;
2040        struct netdev_queue *txq;
2041        struct gfar __iomem *regs = NULL;
2042        struct txfcb *fcb = NULL;
2043        struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2044        u32 lstatus;
2045        int i, rq = 0, do_tstamp = 0;
2046        u32 bufaddr;
2047        unsigned long flags;
2048        unsigned int nr_frags, nr_txbds, length;
2049
2050        /*
2051         * TOE=1 frames larger than 2500 bytes may see excess delays
2052         * before start of transmission.
2053         */
2054        if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2055                        skb->ip_summed == CHECKSUM_PARTIAL &&
2056                        skb->len > 2500)) {
2057                int ret;
2058
2059                ret = skb_checksum_help(skb);
2060                if (ret)
2061                        return ret;
2062        }
2063
2064        rq = skb->queue_mapping;
2065        tx_queue = priv->tx_queue[rq];
2066        txq = netdev_get_tx_queue(dev, rq);
2067        base = tx_queue->tx_bd_base;
2068        regs = tx_queue->grp->regs;
2069
2070        /* check if time stamp should be generated */
2071        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2072                     priv->hwts_tx_en))
2073                do_tstamp = 1;
2074
2075        /* make space for additional header when fcb is needed */
2076        if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2077                        vlan_tx_tag_present(skb) ||
2078                        unlikely(do_tstamp)) &&
2079                        (skb_headroom(skb) < GMAC_FCB_LEN)) {
2080                struct sk_buff *skb_new;
2081
2082                skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2083                if (!skb_new) {
2084                        dev->stats.tx_errors++;
2085                        kfree_skb(skb);
2086                        return NETDEV_TX_OK;
2087                }
2088                kfree_skb(skb);
2089                skb = skb_new;
2090        }
2091
2092        /* total number of fragments in the SKB */
2093        nr_frags = skb_shinfo(skb)->nr_frags;
2094
2095        /* calculate the required number of TxBDs for this skb */
2096        if (unlikely(do_tstamp))
2097                nr_txbds = nr_frags + 2;
2098        else
2099                nr_txbds = nr_frags + 1;
2100
2101        /* check if there is space to queue this packet */
2102        if (nr_txbds > tx_queue->num_txbdfree) {
2103                /* no space, stop the queue */
2104                netif_tx_stop_queue(txq);
2105                dev->stats.tx_fifo_errors++;
2106                return NETDEV_TX_BUSY;
2107        }
2108
2109        /* Update transmit stats */
2110        tx_queue->stats.tx_bytes += skb->len;
2111        tx_queue->stats.tx_packets++;
2112
2113        txbdp = txbdp_start = tx_queue->cur_tx;
2114        lstatus = txbdp->lstatus;
2115
2116        /* Time stamp insertion requires one additional TxBD */
2117        if (unlikely(do_tstamp))
2118                txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2119                                tx_queue->tx_ring_size);
2120
2121        if (nr_frags == 0) {
2122                if (unlikely(do_tstamp))
2123                        txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2124                                        TXBD_INTERRUPT);
2125                else
2126                        lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2127        } else {
2128                /* Place the fragment addresses and lengths into the TxBDs */
2129                for (i = 0; i < nr_frags; i++) {
2130                        /* Point at the next BD, wrapping as needed */
2131                        txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2132
2133                        length = skb_shinfo(skb)->frags[i].size;
2134
2135                        lstatus = txbdp->lstatus | length |
2136                                BD_LFLAG(TXBD_READY);
2137
2138                        /* Handle the last BD specially */
2139                        if (i == nr_frags - 1)
2140                                lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2141
2142                        bufaddr = dma_map_page(&priv->ofdev->dev,
2143                                        skb_shinfo(skb)->frags[i].page,
2144                                        skb_shinfo(skb)->frags[i].page_offset,
2145                                        length,
2146                                        DMA_TO_DEVICE);
2147
2148                        /* set the TxBD length and buffer pointer */
2149                        txbdp->bufPtr = bufaddr;
2150                        txbdp->lstatus = lstatus;
2151                }
2152
2153                lstatus = txbdp_start->lstatus;
2154        }
2155
2156        /* Set up checksumming */
2157        if (CHECKSUM_PARTIAL == skb->ip_summed) {
2158                fcb = gfar_add_fcb(skb);
2159                lstatus |= BD_LFLAG(TXBD_TOE);
2160                gfar_tx_checksum(skb, fcb);
2161        }
2162
2163        if (vlan_tx_tag_present(skb)) {
2164                if (unlikely(NULL == fcb)) {
2165                        fcb = gfar_add_fcb(skb);
2166                        lstatus |= BD_LFLAG(TXBD_TOE);
2167                }
2168
2169                gfar_tx_vlan(skb, fcb);
2170        }
2171
2172        /* Setup tx hardware time stamping if requested */
2173        if (unlikely(do_tstamp)) {
2174                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2175                if (fcb == NULL)
2176                        fcb = gfar_add_fcb(skb);
2177                fcb->ptp = 1;
2178                lstatus |= BD_LFLAG(TXBD_TOE);
2179        }
2180
2181        txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2182                        skb_headlen(skb), DMA_TO_DEVICE);
2183
2184        /*
2185         * If time stamping is requested one additional TxBD must be set up. The
2186         * first TxBD points to the FCB and must have a data length of
2187         * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2188         * the full frame length.
2189         */
2190        if (unlikely(do_tstamp)) {
2191                txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2192                txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2193                                (skb_headlen(skb) - GMAC_FCB_LEN);
2194                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2195        } else {
2196                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2197        }
2198
2199        /*
2200         * We can work in parallel with gfar_clean_tx_ring(), except
2201         * when modifying num_txbdfree. Note that we didn't grab the lock
2202         * when we were reading the num_txbdfree and checking for available
2203         * space, that's because outside of this function it can only grow,
2204         * and once we've got needed space, it cannot suddenly disappear.
2205         *
2206         * The lock also protects us from gfar_error(), which can modify
2207         * regs->tstat and thus retrigger the transfers, which is why we
2208         * also must grab the lock before setting ready bit for the first
2209         * to be transmitted BD.
2210         */
2211        spin_lock_irqsave(&tx_queue->txlock, flags);
2212
2213        /*
2214         * The powerpc-specific eieio() is used, as wmb() has too strong
2215         * semantics (it requires synchronization between cacheable and
2216         * uncacheable mappings, which eieio doesn't provide and which we
2217         * don't need), thus requiring a more expensive sync instruction.  At
2218         * some point, the set of architecture-independent barrier functions
2219         * should be expanded to include weaker barriers.
2220         */
2221        eieio();
2222
2223        txbdp_start->lstatus = lstatus;
2224
2225        eieio(); /* force lstatus write before tx_skbuff */
2226
2227        tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2228
2229        /* Update the current skb pointer to the next entry we will use
2230         * (wrapping if necessary) */
2231        tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2232                TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2233
2234        tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2235
2236        /* reduce TxBD free count */
2237        tx_queue->num_txbdfree -= (nr_txbds);
2238
2239        /* If the next BD still needs to be cleaned up, then the bds
2240           are full.  We need to tell the kernel to stop sending us stuff. */
2241        if (!tx_queue->num_txbdfree) {
2242                netif_tx_stop_queue(txq);
2243
2244                dev->stats.tx_fifo_errors++;
2245        }
2246
2247        /* Tell the DMA to go go go */
2248        gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2249
2250        /* Unlock priv */
2251        spin_unlock_irqrestore(&tx_queue->txlock, flags);
2252
2253        return NETDEV_TX_OK;
2254}
2255
2256/* Stops the kernel queue, and halts the controller */
2257static int gfar_close(struct net_device *dev)
2258{
2259        struct gfar_private *priv = netdev_priv(dev);
2260
2261        disable_napi(priv);
2262
2263        cancel_work_sync(&priv->reset_task);
2264        stop_gfar(dev);
2265
2266        /* Disconnect from the PHY */
2267        phy_disconnect(priv->phydev);
2268        priv->phydev = NULL;
2269
2270        netif_tx_stop_all_queues(dev);
2271
2272        return 0;
2273}
2274
2275/* Changes the mac address if the controller is not running. */
2276static int gfar_set_mac_address(struct net_device *dev)
2277{
2278        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2279
2280        return 0;
2281}
2282
2283
2284/* Enables and disables VLAN insertion/extraction */
2285static void gfar_vlan_rx_register(struct net_device *dev,
2286                struct vlan_group *grp)
2287{
2288        struct gfar_private *priv = netdev_priv(dev);
2289        struct gfar __iomem *regs = NULL;
2290        unsigned long flags;
2291        u32 tempval;
2292
2293        regs = priv->gfargrp[0].regs;
2294        local_irq_save(flags);
2295        lock_rx_qs(priv);
2296
2297        priv->vlgrp = grp;
2298
2299        if (grp) {
2300                /* Enable VLAN tag insertion */
2301                tempval = gfar_read(&regs->tctrl);
2302                tempval |= TCTRL_VLINS;
2303
2304                gfar_write(&regs->tctrl, tempval);
2305
2306                /* Enable VLAN tag extraction */
2307                tempval = gfar_read(&regs->rctrl);
2308                tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2309                gfar_write(&regs->rctrl, tempval);
2310        } else {
2311                /* Disable VLAN tag insertion */
2312                tempval = gfar_read(&regs->tctrl);
2313                tempval &= ~TCTRL_VLINS;
2314                gfar_write(&regs->tctrl, tempval);
2315
2316                /* Disable VLAN tag extraction */
2317                tempval = gfar_read(&regs->rctrl);
2318                tempval &= ~RCTRL_VLEX;
2319                /* If parse is no longer required, then disable parser */
2320                if (tempval & RCTRL_REQ_PARSER)
2321                        tempval |= RCTRL_PRSDEP_INIT;
2322                else
2323                        tempval &= ~RCTRL_PRSDEP_INIT;
2324                gfar_write(&regs->rctrl, tempval);
2325        }
2326
2327        gfar_change_mtu(dev, dev->mtu);
2328
2329        unlock_rx_qs(priv);
2330        local_irq_restore(flags);
2331}
2332
2333static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2334{
2335        int tempsize, tempval;
2336        struct gfar_private *priv = netdev_priv(dev);
2337        struct gfar __iomem *regs = priv->gfargrp[0].regs;
2338        int oldsize = priv->rx_buffer_size;
2339        int frame_size = new_mtu + ETH_HLEN;
2340
2341        if (priv->vlgrp)
2342                frame_size += VLAN_HLEN;
2343
2344        if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2345                if (netif_msg_drv(priv))
2346                        printk(KERN_ERR "%s: Invalid MTU setting\n",
2347                                        dev->name);
2348                return -EINVAL;
2349        }
2350
2351        if (gfar_uses_fcb(priv))
2352                frame_size += GMAC_FCB_LEN;
2353
2354        frame_size += priv->padding;
2355
2356        tempsize =
2357            (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2358            INCREMENTAL_BUFFER_SIZE;
2359
2360        /* Only stop and start the controller if it isn't already
2361         * stopped, and we changed something */
2362        if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2363                stop_gfar(dev);
2364
2365        priv->rx_buffer_size = tempsize;
2366
2367        dev->mtu = new_mtu;
2368
2369        gfar_write(&regs->mrblr, priv->rx_buffer_size);
2370        gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2371
2372        /* If the mtu is larger than the max size for standard
2373         * ethernet frames (ie, a jumbo frame), then set maccfg2
2374         * to allow huge frames, and to check the length */
2375        tempval = gfar_read(&regs->maccfg2);
2376
2377        if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2378                        gfar_has_errata(priv, GFAR_ERRATA_74))
2379                tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2380        else
2381                tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2382
2383        gfar_write(&regs->maccfg2, tempval);
2384
2385        if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2386                startup_gfar(dev);
2387
2388        return 0;
2389}
2390
2391/* gfar_reset_task gets scheduled when a packet has not been
2392 * transmitted after a set amount of time.
2393 * For now, assume that clearing out all the structures, and
2394 * starting over will fix the problem.
2395 */
2396static void gfar_reset_task(struct work_struct *work)
2397{
2398        struct gfar_private *priv = container_of(work, struct gfar_private,
2399                        reset_task);
2400        struct net_device *dev = priv->ndev;
2401
2402        if (dev->flags & IFF_UP) {
2403                netif_tx_stop_all_queues(dev);
2404                stop_gfar(dev);
2405                startup_gfar(dev);
2406                netif_tx_start_all_queues(dev);
2407        }
2408
2409        netif_tx_schedule_all(dev);
2410}
2411
2412static void gfar_timeout(struct net_device *dev)
2413{
2414        struct gfar_private *priv = netdev_priv(dev);
2415
2416        dev->stats.tx_errors++;
2417        schedule_work(&priv->reset_task);
2418}
2419
2420static void gfar_align_skb(struct sk_buff *skb)
2421{
2422        /* We need the data buffer to be aligned properly.  We will reserve
2423         * as many bytes as needed to align the data properly
2424         */
2425        skb_reserve(skb, RXBUF_ALIGNMENT -
2426                (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2427}
2428
2429/* Interrupt Handler for Transmit complete */
2430static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2431{
2432        struct net_device *dev = tx_queue->dev;
2433        struct gfar_private *priv = netdev_priv(dev);
2434        struct gfar_priv_rx_q *rx_queue = NULL;
2435        struct txbd8 *bdp, *next = NULL;
2436        struct txbd8 *lbdp = NULL;
2437        struct txbd8 *base = tx_queue->tx_bd_base;
2438        struct sk_buff *skb;
2439        int skb_dirtytx;
2440        int tx_ring_size = tx_queue->tx_ring_size;
2441        int frags = 0, nr_txbds = 0;
2442        int i;
2443        int howmany = 0;
2444        u32 lstatus;
2445        size_t buflen;
2446
2447        rx_queue = priv->rx_queue[tx_queue->qindex];
2448        bdp = tx_queue->dirty_tx;
2449        skb_dirtytx = tx_queue->skb_dirtytx;
2450
2451        while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2452                unsigned long flags;
2453
2454                frags = skb_shinfo(skb)->nr_frags;
2455
2456                /*
2457                 * When time stamping, one additional TxBD must be freed.
2458                 * Also, we need to dma_unmap_single() the TxPAL.
2459                 */
2460                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2461                        nr_txbds = frags + 2;
2462                else
2463                        nr_txbds = frags + 1;
2464
2465                lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2466
2467                lstatus = lbdp->lstatus;
2468
2469                /* Only clean completed frames */
2470                if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2471                                (lstatus & BD_LENGTH_MASK))
2472                        break;
2473
2474                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2475                        next = next_txbd(bdp, base, tx_ring_size);
2476                        buflen = next->length + GMAC_FCB_LEN;
2477                } else
2478                        buflen = bdp->length;
2479
2480                dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2481                                buflen, DMA_TO_DEVICE);
2482
2483                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2484                        struct skb_shared_hwtstamps shhwtstamps;
2485                        u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2486                        memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2487                        shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2488                        skb_tstamp_tx(skb, &shhwtstamps);
2489                        bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2490                        bdp = next;
2491                }
2492
2493                bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2494                bdp = next_txbd(bdp, base, tx_ring_size);
2495
2496                for (i = 0; i < frags; i++) {
2497                        dma_unmap_page(&priv->ofdev->dev,
2498                                        bdp->bufPtr,
2499                                        bdp->length,
2500                                        DMA_TO_DEVICE);
2501                        bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2502                        bdp = next_txbd(bdp, base, tx_ring_size);
2503                }
2504
2505                /*
2506                 * If there's room in the queue (limit it to rx_buffer_size)
2507                 * we add this skb back into the pool, if it's the right size
2508                 */
2509                if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2510                                skb_recycle_check(skb, priv->rx_buffer_size +
2511                                        RXBUF_ALIGNMENT)) {
2512                        gfar_align_skb(skb);
2513                        skb_queue_head(&priv->rx_recycle, skb);
2514                } else
2515                        dev_kfree_skb_any(skb);
2516
2517                tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2518
2519                skb_dirtytx = (skb_dirtytx + 1) &
2520                        TX_RING_MOD_MASK(tx_ring_size);
2521
2522                howmany++;
2523                spin_lock_irqsave(&tx_queue->txlock, flags);
2524                tx_queue->num_txbdfree += nr_txbds;
2525                spin_unlock_irqrestore(&tx_queue->txlock, flags);
2526        }
2527
2528        /* If we freed a buffer, we can restart transmission, if necessary */
2529        if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2530                netif_wake_subqueue(dev, tx_queue->qindex);
2531
2532        /* Update dirty indicators */
2533        tx_queue->skb_dirtytx = skb_dirtytx;
2534        tx_queue->dirty_tx = bdp;
2535
2536        return howmany;
2537}
2538
2539static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2540{
2541        unsigned long flags;
2542
2543        spin_lock_irqsave(&gfargrp->grplock, flags);
2544        if (napi_schedule_prep(&gfargrp->napi)) {
2545                gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2546                __napi_schedule(&gfargrp->napi);
2547        } else {
2548                /*
2549                 * Clear IEVENT, so interrupts aren't called again
2550                 * because of the packets that have already arrived.
2551                 */
2552                gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2553        }
2554        spin_unlock_irqrestore(&gfargrp->grplock, flags);
2555
2556}
2557
2558/* Interrupt Handler for Transmit complete */
2559static irqreturn_t gfar_transmit(int irq, void *grp_id)
2560{
2561        gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2562        return IRQ_HANDLED;
2563}
2564
2565static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2566                struct sk_buff *skb)
2567{
2568        struct net_device *dev = rx_queue->dev;
2569        struct gfar_private *priv = netdev_priv(dev);
2570        dma_addr_t buf;
2571
2572        buf = dma_map_single(&priv->ofdev->dev, skb->data,
2573                             priv->rx_buffer_size, DMA_FROM_DEVICE);
2574        gfar_init_rxbdp(rx_queue, bdp, buf);
2575}
2576
2577static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2578{
2579        struct gfar_private *priv = netdev_priv(dev);
2580        struct sk_buff *skb = NULL;
2581
2582        skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2583        if (!skb)
2584                return NULL;
2585
2586        gfar_align_skb(skb);
2587
2588        return skb;
2589}
2590
2591struct sk_buff * gfar_new_skb(struct net_device *dev)
2592{
2593        struct gfar_private *priv = netdev_priv(dev);
2594        struct sk_buff *skb = NULL;
2595
2596        skb = skb_dequeue(&priv->rx_recycle);
2597        if (!skb)
2598                skb = gfar_alloc_skb(dev);
2599
2600        return skb;
2601}
2602
2603static inline void count_errors(unsigned short status, struct net_device *dev)
2604{
2605        struct gfar_private *priv = netdev_priv(dev);
2606        struct net_device_stats *stats = &dev->stats;
2607        struct gfar_extra_stats *estats = &priv->extra_stats;
2608
2609        /* If the packet was truncated, none of the other errors
2610         * matter */
2611        if (status & RXBD_TRUNCATED) {
2612                stats->rx_length_errors++;
2613
2614                estats->rx_trunc++;
2615
2616                return;
2617        }
2618        /* Count the errors, if there were any */
2619        if (status & (RXBD_LARGE | RXBD_SHORT)) {
2620                stats->rx_length_errors++;
2621
2622                if (status & RXBD_LARGE)
2623                        estats->rx_large++;
2624                else
2625                        estats->rx_short++;
2626        }
2627        if (status & RXBD_NONOCTET) {
2628                stats->rx_frame_errors++;
2629                estats->rx_nonoctet++;
2630        }
2631        if (status & RXBD_CRCERR) {
2632                estats->rx_crcerr++;
2633                stats->rx_crc_errors++;
2634        }
2635        if (status & RXBD_OVERRUN) {
2636                estats->rx_overrun++;
2637                stats->rx_crc_errors++;
2638        }
2639}
2640
2641irqreturn_t gfar_receive(int irq, void *grp_id)
2642{
2643        gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2644        return IRQ_HANDLED;
2645}
2646
2647static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2648{
2649        /* If valid headers were found, and valid sums
2650         * were verified, then we tell the kernel that no
2651         * checksumming is necessary.  Otherwise, it is */
2652        if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2653                skb->ip_summed = CHECKSUM_UNNECESSARY;
2654        else
2655                skb_checksum_none_assert(skb);
2656}
2657
2658
2659/* gfar_process_frame() -- handle one incoming packet if skb
2660 * isn't NULL.  */
2661static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2662                              int amount_pull)
2663{
2664        struct gfar_private *priv = netdev_priv(dev);
2665        struct rxfcb *fcb = NULL;
2666
2667        int ret;
2668
2669        /* fcb is at the beginning if exists */
2670        fcb = (struct rxfcb *)skb->data;
2671
2672        /* Remove the FCB from the skb */
2673        /* Remove the padded bytes, if there are any */
2674        if (amount_pull) {
2675                skb_record_rx_queue(skb, fcb->rq);
2676                skb_pull(skb, amount_pull);
2677        }
2678
2679        /* Get receive timestamp from the skb */
2680        if (priv->hwts_rx_en) {
2681                struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2682                u64 *ns = (u64 *) skb->data;
2683                memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2684                shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2685        }
2686
2687        if (priv->padding)
2688                skb_pull(skb, priv->padding);
2689
2690        if (priv->rx_csum_enable)
2691                gfar_rx_checksum(skb, fcb);
2692
2693        /* Tell the skb what kind of packet this is */
2694        skb->protocol = eth_type_trans(skb, dev);
2695
2696        /* Send the packet up the stack */
2697        if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2698                ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2699        else
2700                ret = netif_receive_skb(skb);
2701
2702        if (NET_RX_DROP == ret)
2703                priv->extra_stats.kernel_dropped++;
2704
2705        return 0;
2706}
2707
2708/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2709 *   until the budget/quota has been reached. Returns the number
2710 *   of frames handled
2711 */
2712int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2713{
2714        struct net_device *dev = rx_queue->dev;
2715        struct rxbd8 *bdp, *base;
2716        struct sk_buff *skb;
2717        int pkt_len;
2718        int amount_pull;
2719        int howmany = 0;
2720        struct gfar_private *priv = netdev_priv(dev);
2721
2722        /* Get the first full descriptor */
2723        bdp = rx_queue->cur_rx;
2724        base = rx_queue->rx_bd_base;
2725
2726        amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2727
2728        while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2729                struct sk_buff *newskb;
2730                rmb();
2731
2732                /* Add another skb for the future */
2733                newskb = gfar_new_skb(dev);
2734
2735                skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2736
2737                dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2738                                priv->rx_buffer_size, DMA_FROM_DEVICE);
2739
2740                if (unlikely(!(bdp->status & RXBD_ERR) &&
2741                                bdp->length > priv->rx_buffer_size))
2742                        bdp->status = RXBD_LARGE;
2743
2744                /* We drop the frame if we failed to allocate a new buffer */
2745                if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2746                                 bdp->status & RXBD_ERR)) {
2747                        count_errors(bdp->status, dev);
2748
2749                        if (unlikely(!newskb))
2750                                newskb = skb;
2751                        else if (skb)
2752                                skb_queue_head(&priv->rx_recycle, skb);
2753                } else {
2754                        /* Increment the number of packets */
2755                        rx_queue->stats.rx_packets++;
2756                        howmany++;
2757
2758                        if (likely(skb)) {
2759                                pkt_len = bdp->length - ETH_FCS_LEN;
2760                                /* Remove the FCS from the packet length */
2761                                skb_put(skb, pkt_len);
2762                                rx_queue->stats.rx_bytes += pkt_len;
2763                                skb_record_rx_queue(skb, rx_queue->qindex);
2764                                gfar_process_frame(dev, skb, amount_pull);
2765
2766                        } else {
2767                                if (netif_msg_rx_err(priv))
2768                                        printk(KERN_WARNING
2769                                               "%s: Missing skb!\n", dev->name);
2770                                rx_queue->stats.rx_dropped++;
2771                                priv->extra_stats.rx_skbmissing++;
2772                        }
2773
2774                }
2775
2776                rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2777
2778                /* Setup the new bdp */
2779                gfar_new_rxbdp(rx_queue, bdp, newskb);
2780
2781                /* Update to the next pointer */
2782                bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2783
2784                /* update to point at the next skb */
2785                rx_queue->skb_currx =
2786                    (rx_queue->skb_currx + 1) &
2787                    RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2788        }
2789
2790        /* Update the current rxbd pointer to be the next one */
2791        rx_queue->cur_rx = bdp;
2792
2793        return howmany;
2794}
2795
2796static int gfar_poll(struct napi_struct *napi, int budget)
2797{
2798        struct gfar_priv_grp *gfargrp = container_of(napi,
2799                        struct gfar_priv_grp, napi);
2800        struct gfar_private *priv = gfargrp->priv;
2801        struct gfar __iomem *regs = gfargrp->regs;
2802        struct gfar_priv_tx_q *tx_queue = NULL;
2803        struct gfar_priv_rx_q *rx_queue = NULL;
2804        int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2805        int tx_cleaned = 0, i, left_over_budget = budget;
2806        unsigned long serviced_queues = 0;
2807        int num_queues = 0;
2808
2809        num_queues = gfargrp->num_rx_queues;
2810        budget_per_queue = budget/num_queues;
2811
2812        /* Clear IEVENT, so interrupts aren't called again
2813         * because of the packets that have already arrived */
2814        gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2815
2816        while (num_queues && left_over_budget) {
2817
2818                budget_per_queue = left_over_budget/num_queues;
2819                left_over_budget = 0;
2820
2821                for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2822                        if (test_bit(i, &serviced_queues))
2823                                continue;
2824                        rx_queue = priv->rx_queue[i];
2825                        tx_queue = priv->tx_queue[rx_queue->qindex];
2826
2827                        tx_cleaned += gfar_clean_tx_ring(tx_queue);
2828                        rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2829                                                        budget_per_queue);
2830                        rx_cleaned += rx_cleaned_per_queue;
2831                        if(rx_cleaned_per_queue < budget_per_queue) {
2832                                left_over_budget = left_over_budget +
2833                                        (budget_per_queue - rx_cleaned_per_queue);
2834                                set_bit(i, &serviced_queues);
2835                                num_queues--;
2836                        }
2837                }
2838        }
2839
2840        if (tx_cleaned)
2841                return budget;
2842
2843        if (rx_cleaned < budget) {
2844                napi_complete(napi);
2845
2846                /* Clear the halt bit in RSTAT */
2847                gfar_write(&regs->rstat, gfargrp->rstat);
2848
2849                gfar_write(&regs->imask, IMASK_DEFAULT);
2850
2851                /* If we are coalescing interrupts, update the timer */
2852                /* Otherwise, clear it */
2853                gfar_configure_coalescing(priv,
2854                                gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2855        }
2856
2857        return rx_cleaned;
2858}
2859
2860#ifdef CONFIG_NET_POLL_CONTROLLER
2861/*
2862 * Polling 'interrupt' - used by things like netconsole to send skbs
2863 * without having to re-enable interrupts. It's not called while
2864 * the interrupt routine is executing.
2865 */
2866static void gfar_netpoll(struct net_device *dev)
2867{
2868        struct gfar_private *priv = netdev_priv(dev);
2869        int i = 0;
2870
2871        /* If the device has multiple interrupts, run tx/rx */
2872        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2873                for (i = 0; i < priv->num_grps; i++) {
2874                        disable_irq(priv->gfargrp[i].interruptTransmit);
2875                        disable_irq(priv->gfargrp[i].interruptReceive);
2876                        disable_irq(priv->gfargrp[i].interruptError);
2877                        gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2878                                                &priv->gfargrp[i]);
2879                        enable_irq(priv->gfargrp[i].interruptError);
2880                        enable_irq(priv->gfargrp[i].interruptReceive);
2881                        enable_irq(priv->gfargrp[i].interruptTransmit);
2882                }
2883        } else {
2884                for (i = 0; i < priv->num_grps; i++) {
2885                        disable_irq(priv->gfargrp[i].interruptTransmit);
2886                        gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2887                                                &priv->gfargrp[i]);
2888                        enable_irq(priv->gfargrp[i].interruptTransmit);
2889                }
2890        }
2891}
2892#endif
2893
2894/* The interrupt handler for devices with one interrupt */
2895static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2896{
2897        struct gfar_priv_grp *gfargrp = grp_id;
2898
2899        /* Save ievent for future reference */
2900        u32 events = gfar_read(&gfargrp->regs->ievent);
2901
2902        /* Check for reception */
2903        if (events & IEVENT_RX_MASK)
2904                gfar_receive(irq, grp_id);
2905
2906        /* Check for transmit completion */
2907        if (events & IEVENT_TX_MASK)
2908                gfar_transmit(irq, grp_id);
2909
2910        /* Check for errors */
2911        if (events & IEVENT_ERR_MASK)
2912                gfar_error(irq, grp_id);
2913
2914        return IRQ_HANDLED;
2915}
2916
2917/* Called every time the controller might need to be made
2918 * aware of new link state.  The PHY code conveys this
2919 * information through variables in the phydev structure, and this
2920 * function converts those variables into the appropriate
2921 * register values, and can bring down the device if needed.
2922 */
2923static void adjust_link(struct net_device *dev)
2924{
2925        struct gfar_private *priv = netdev_priv(dev);
2926        struct gfar __iomem *regs = priv->gfargrp[0].regs;
2927        unsigned long flags;
2928        struct phy_device *phydev = priv->phydev;
2929        int new_state = 0;
2930
2931        local_irq_save(flags);
2932        lock_tx_qs(priv);
2933
2934        if (phydev->link) {
2935                u32 tempval = gfar_read(&regs->maccfg2);
2936                u32 ecntrl = gfar_read(&regs->ecntrl);
2937
2938                /* Now we make sure that we can be in full duplex mode.
2939                 * If not, we operate in half-duplex mode. */
2940                if (phydev->duplex != priv->oldduplex) {
2941                        new_state = 1;
2942                        if (!(phydev->duplex))
2943                                tempval &= ~(MACCFG2_FULL_DUPLEX);
2944                        else
2945                                tempval |= MACCFG2_FULL_DUPLEX;
2946
2947                        priv->oldduplex = phydev->duplex;
2948                }
2949
2950                if (phydev->speed != priv->oldspeed) {
2951                        new_state = 1;
2952                        switch (phydev->speed) {
2953                        case 1000:
2954                                tempval =
2955                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2956
2957                                ecntrl &= ~(ECNTRL_R100);
2958                                break;
2959                        case 100:
2960                        case 10:
2961                                tempval =
2962                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2963
2964                                /* Reduced mode distinguishes
2965                                 * between 10 and 100 */
2966                                if (phydev->speed == SPEED_100)
2967                                        ecntrl |= ECNTRL_R100;
2968                                else
2969                                        ecntrl &= ~(ECNTRL_R100);
2970                                break;
2971                        default:
2972                                if (netif_msg_link(priv))
2973                                        printk(KERN_WARNING
2974                                                "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2975                                                dev->name, phydev->speed);
2976                                break;
2977                        }
2978
2979                        priv->oldspeed = phydev->speed;
2980                }
2981
2982                gfar_write(&regs->maccfg2, tempval);
2983                gfar_write(&regs->ecntrl, ecntrl);
2984
2985                if (!priv->oldlink) {
2986                        new_state = 1;
2987                        priv->oldlink = 1;
2988                }
2989        } else if (priv->oldlink) {
2990                new_state = 1;
2991                priv->oldlink = 0;
2992                priv->oldspeed = 0;
2993                priv->oldduplex = -1;
2994        }
2995
2996        if (new_state && netif_msg_link(priv))
2997                phy_print_status(phydev);
2998        unlock_tx_qs(priv);
2999        local_irq_restore(flags);
3000}
3001
3002/* Update the hash table based on the current list of multicast
3003 * addresses we subscribe to.  Also, change the promiscuity of
3004 * the device based on the flags (this function is called
3005 * whenever dev->flags is changed */
3006static void gfar_set_multi(struct net_device *dev)
3007{
3008        struct netdev_hw_addr *ha;
3009        struct gfar_private *priv = netdev_priv(dev);
3010        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3011        u32 tempval;
3012
3013        if (dev->flags & IFF_PROMISC) {
3014                /* Set RCTRL to PROM */
3015                tempval = gfar_read(&regs->rctrl);
3016                tempval |= RCTRL_PROM;
3017                gfar_write(&regs->rctrl, tempval);
3018        } else {
3019                /* Set RCTRL to not PROM */
3020                tempval = gfar_read(&regs->rctrl);
3021                tempval &= ~(RCTRL_PROM);
3022                gfar_write(&regs->rctrl, tempval);
3023        }
3024
3025        if (dev->flags & IFF_ALLMULTI) {
3026                /* Set the hash to rx all multicast frames */
3027                gfar_write(&regs->igaddr0, 0xffffffff);
3028                gfar_write(&regs->igaddr1, 0xffffffff);
3029                gfar_write(&regs->igaddr2, 0xffffffff);
3030                gfar_write(&regs->igaddr3, 0xffffffff);
3031                gfar_write(&regs->igaddr4, 0xffffffff);
3032                gfar_write(&regs->igaddr5, 0xffffffff);
3033                gfar_write(&regs->igaddr6, 0xffffffff);
3034                gfar_write(&regs->igaddr7, 0xffffffff);
3035                gfar_write(&regs->gaddr0, 0xffffffff);
3036                gfar_write(&regs->gaddr1, 0xffffffff);
3037                gfar_write(&regs->gaddr2, 0xffffffff);
3038                gfar_write(&regs->gaddr3, 0xffffffff);
3039                gfar_write(&regs->gaddr4, 0xffffffff);
3040                gfar_write(&regs->gaddr5, 0xffffffff);
3041                gfar_write(&regs->gaddr6, 0xffffffff);
3042                gfar_write(&regs->gaddr7, 0xffffffff);
3043        } else {
3044                int em_num;
3045                int idx;
3046
3047                /* zero out the hash */
3048                gfar_write(&regs->igaddr0, 0x0);
3049                gfar_write(&regs->igaddr1, 0x0);
3050                gfar_write(&regs->igaddr2, 0x0);
3051                gfar_write(&regs->igaddr3, 0x0);
3052                gfar_write(&regs->igaddr4, 0x0);
3053                gfar_write(&regs->igaddr5, 0x0);
3054                gfar_write(&regs->igaddr6, 0x0);
3055                gfar_write(&regs->igaddr7, 0x0);
3056                gfar_write(&regs->gaddr0, 0x0);
3057                gfar_write(&regs->gaddr1, 0x0);
3058                gfar_write(&regs->gaddr2, 0x0);
3059                gfar_write(&regs->gaddr3, 0x0);
3060                gfar_write(&regs->gaddr4, 0x0);
3061                gfar_write(&regs->gaddr5, 0x0);
3062                gfar_write(&regs->gaddr6, 0x0);
3063                gfar_write(&regs->gaddr7, 0x0);
3064
3065                /* If we have extended hash tables, we need to
3066                 * clear the exact match registers to prepare for
3067                 * setting them */
3068                if (priv->extended_hash) {
3069                        em_num = GFAR_EM_NUM + 1;
3070                        gfar_clear_exact_match(dev);
3071                        idx = 1;
3072                } else {
3073                        idx = 0;
3074                        em_num = 0;
3075                }
3076
3077                if (netdev_mc_empty(dev))
3078                        return;
3079
3080                /* Parse the list, and set the appropriate bits */
3081                netdev_for_each_mc_addr(ha, dev) {
3082                        if (idx < em_num) {
3083                                gfar_set_mac_for_addr(dev, idx, ha->addr);
3084                                idx++;
3085                        } else
3086                                gfar_set_hash_for_addr(dev, ha->addr);
3087                }
3088        }
3089}
3090
3091
3092/* Clears each of the exact match registers to zero, so they
3093 * don't interfere with normal reception */
3094static void gfar_clear_exact_match(struct net_device *dev)
3095{
3096        int idx;
3097        static const u8 zero_arr[MAC_ADDR_LEN] = {0, 0, 0, 0, 0, 0};
3098
3099        for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3100                gfar_set_mac_for_addr(dev, idx, zero_arr);
3101}
3102
3103/* Set the appropriate hash bit for the given addr */
3104/* The algorithm works like so:
3105 * 1) Take the Destination Address (ie the multicast address), and
3106 * do a CRC on it (little endian), and reverse the bits of the
3107 * result.
3108 * 2) Use the 8 most significant bits as a hash into a 256-entry
3109 * table.  The table is controlled through 8 32-bit registers:
3110 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3111 * gaddr7.  This means that the 3 most significant bits in the
3112 * hash index which gaddr register to use, and the 5 other bits
3113 * indicate which bit (assuming an IBM numbering scheme, which
3114 * for PowerPC (tm) is usually the case) in the register holds
3115 * the entry. */
3116static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3117{
3118        u32 tempval;
3119        struct gfar_private *priv = netdev_priv(dev);
3120        u32 result = ether_crc(MAC_ADDR_LEN, addr);
3121        int width = priv->hash_width;
3122        u8 whichbit = (result >> (32 - width)) & 0x1f;
3123        u8 whichreg = result >> (32 - width + 5);
3124        u32 value = (1 << (31-whichbit));
3125
3126        tempval = gfar_read(priv->hash_regs[whichreg]);
3127        tempval |= value;
3128        gfar_write(priv->hash_regs[whichreg], tempval);
3129}
3130
3131
3132/* There are multiple MAC Address register pairs on some controllers
3133 * This function sets the numth pair to a given address
3134 */
3135static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3136                                  const u8 *addr)
3137{
3138        struct gfar_private *priv = netdev_priv(dev);
3139        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3140        int idx;
3141        char tmpbuf[MAC_ADDR_LEN];
3142        u32 tempval;
3143        u32 __iomem *macptr = &regs->macstnaddr1;
3144
3145        macptr += num*2;
3146
3147        /* Now copy it into the mac registers backwards, cuz */
3148        /* little endian is silly */
3149        for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3150                tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3151
3152        gfar_write(macptr, *((u32 *) (tmpbuf)));
3153
3154        tempval = *((u32 *) (tmpbuf + 4));
3155
3156        gfar_write(macptr+1, tempval);
3157}
3158
3159/* GFAR error interrupt handler */
3160static irqreturn_t gfar_error(int irq, void *grp_id)
3161{
3162        struct gfar_priv_grp *gfargrp = grp_id;
3163        struct gfar __iomem *regs = gfargrp->regs;
3164        struct gfar_private *priv= gfargrp->priv;
3165        struct net_device *dev = priv->ndev;
3166
3167        /* Save ievent for future reference */
3168        u32 events = gfar_read(&regs->ievent);
3169
3170        /* Clear IEVENT */
3171        gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3172
3173        /* Magic Packet is not an error. */
3174        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3175            (events & IEVENT_MAG))
3176                events &= ~IEVENT_MAG;
3177
3178        /* Hmm... */
3179        if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3180                printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3181                       dev->name, events, gfar_read(&regs->imask));
3182
3183        /* Update the error counters */
3184        if (events & IEVENT_TXE) {
3185                dev->stats.tx_errors++;
3186
3187                if (events & IEVENT_LC)
3188                        dev->stats.tx_window_errors++;
3189                if (events & IEVENT_CRL)
3190                        dev->stats.tx_aborted_errors++;
3191                if (events & IEVENT_XFUN) {
3192                        unsigned long flags;
3193
3194                        if (netif_msg_tx_err(priv))
3195                                printk(KERN_DEBUG "%s: TX FIFO underrun, "
3196                                       "packet dropped.\n", dev->name);
3197                        dev->stats.tx_dropped++;
3198                        priv->extra_stats.tx_underrun++;
3199
3200                        local_irq_save(flags);
3201                        lock_tx_qs(priv);
3202
3203                        /* Reactivate the Tx Queues */
3204                        gfar_write(&regs->tstat, gfargrp->tstat);
3205
3206                        unlock_tx_qs(priv);
3207                        local_irq_restore(flags);
3208                }
3209                if (netif_msg_tx_err(priv))
3210                        printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3211        }
3212        if (events & IEVENT_BSY) {
3213                dev->stats.rx_errors++;
3214                priv->extra_stats.rx_bsy++;
3215
3216                gfar_receive(irq, grp_id);
3217
3218                if (netif_msg_rx_err(priv))
3219                        printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3220                               dev->name, gfar_read(&regs->rstat));
3221        }
3222        if (events & IEVENT_BABR) {
3223                dev->stats.rx_errors++;
3224                priv->extra_stats.rx_babr++;
3225
3226                if (netif_msg_rx_err(priv))
3227                        printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3228        }
3229        if (events & IEVENT_EBERR) {
3230                priv->extra_stats.eberr++;
3231                if (netif_msg_rx_err(priv))
3232                        printk(KERN_DEBUG "%s: bus error\n", dev->name);
3233        }
3234        if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3235                printk(KERN_DEBUG "%s: control frame\n", dev->name);
3236
3237        if (events & IEVENT_BABT) {
3238                priv->extra_stats.tx_babt++;
3239                if (netif_msg_tx_err(priv))
3240                        printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3241        }
3242        return IRQ_HANDLED;
3243}
3244
3245static struct of_device_id gfar_match[] =
3246{
3247        {
3248                .type = "network",
3249                .compatible = "gianfar",
3250        },
3251        {
3252                .compatible = "fsl,etsec2",
3253        },
3254        {},
3255};
3256MODULE_DEVICE_TABLE(of, gfar_match);
3257
3258/* Structure for a device driver */
3259static struct of_platform_driver gfar_driver = {
3260        .driver = {
3261                .name = "fsl-gianfar",
3262                .owner = THIS_MODULE,
3263                .pm = GFAR_PM_OPS,
3264                .of_match_table = gfar_match,
3265        },
3266        .probe = gfar_probe,
3267        .remove = gfar_remove,
3268};
3269
3270static int __init gfar_init(void)
3271{
3272        return of_register_platform_driver(&gfar_driver);
3273}
3274
3275static void __exit gfar_exit(void)
3276{
3277        of_unregister_platform_driver(&gfar_driver);
3278}
3279
3280module_init(gfar_init);
3281module_exit(gfar_exit);
3282
3283