linux/drivers/net/igb/e1000_nvm.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2009 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/if_ether.h>
  29#include <linux/delay.h>
  30
  31#include "e1000_mac.h"
  32#include "e1000_nvm.h"
  33
  34/**
  35 *  igb_raise_eec_clk - Raise EEPROM clock
  36 *  @hw: pointer to the HW structure
  37 *  @eecd: pointer to the EEPROM
  38 *
  39 *  Enable/Raise the EEPROM clock bit.
  40 **/
  41static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
  42{
  43        *eecd = *eecd | E1000_EECD_SK;
  44        wr32(E1000_EECD, *eecd);
  45        wrfl();
  46        udelay(hw->nvm.delay_usec);
  47}
  48
  49/**
  50 *  igb_lower_eec_clk - Lower EEPROM clock
  51 *  @hw: pointer to the HW structure
  52 *  @eecd: pointer to the EEPROM
  53 *
  54 *  Clear/Lower the EEPROM clock bit.
  55 **/
  56static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
  57{
  58        *eecd = *eecd & ~E1000_EECD_SK;
  59        wr32(E1000_EECD, *eecd);
  60        wrfl();
  61        udelay(hw->nvm.delay_usec);
  62}
  63
  64/**
  65 *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
  66 *  @hw: pointer to the HW structure
  67 *  @data: data to send to the EEPROM
  68 *  @count: number of bits to shift out
  69 *
  70 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
  71 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
  72 *  In order to do this, "data" must be broken down into bits.
  73 **/
  74static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
  75{
  76        struct e1000_nvm_info *nvm = &hw->nvm;
  77        u32 eecd = rd32(E1000_EECD);
  78        u32 mask;
  79
  80        mask = 0x01 << (count - 1);
  81        if (nvm->type == e1000_nvm_eeprom_spi)
  82                eecd |= E1000_EECD_DO;
  83
  84        do {
  85                eecd &= ~E1000_EECD_DI;
  86
  87                if (data & mask)
  88                        eecd |= E1000_EECD_DI;
  89
  90                wr32(E1000_EECD, eecd);
  91                wrfl();
  92
  93                udelay(nvm->delay_usec);
  94
  95                igb_raise_eec_clk(hw, &eecd);
  96                igb_lower_eec_clk(hw, &eecd);
  97
  98                mask >>= 1;
  99        } while (mask);
 100
 101        eecd &= ~E1000_EECD_DI;
 102        wr32(E1000_EECD, eecd);
 103}
 104
 105/**
 106 *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
 107 *  @hw: pointer to the HW structure
 108 *  @count: number of bits to shift in
 109 *
 110 *  In order to read a register from the EEPROM, we need to shift 'count' bits
 111 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
 112 *  the EEPROM (setting the SK bit), and then reading the value of the data out
 113 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
 114 *  always be clear.
 115 **/
 116static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
 117{
 118        u32 eecd;
 119        u32 i;
 120        u16 data;
 121
 122        eecd = rd32(E1000_EECD);
 123
 124        eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 125        data = 0;
 126
 127        for (i = 0; i < count; i++) {
 128                data <<= 1;
 129                igb_raise_eec_clk(hw, &eecd);
 130
 131                eecd = rd32(E1000_EECD);
 132
 133                eecd &= ~E1000_EECD_DI;
 134                if (eecd & E1000_EECD_DO)
 135                        data |= 1;
 136
 137                igb_lower_eec_clk(hw, &eecd);
 138        }
 139
 140        return data;
 141}
 142
 143/**
 144 *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
 145 *  @hw: pointer to the HW structure
 146 *  @ee_reg: EEPROM flag for polling
 147 *
 148 *  Polls the EEPROM status bit for either read or write completion based
 149 *  upon the value of 'ee_reg'.
 150 **/
 151static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
 152{
 153        u32 attempts = 100000;
 154        u32 i, reg = 0;
 155        s32 ret_val = -E1000_ERR_NVM;
 156
 157        for (i = 0; i < attempts; i++) {
 158                if (ee_reg == E1000_NVM_POLL_READ)
 159                        reg = rd32(E1000_EERD);
 160                else
 161                        reg = rd32(E1000_EEWR);
 162
 163                if (reg & E1000_NVM_RW_REG_DONE) {
 164                        ret_val = 0;
 165                        break;
 166                }
 167
 168                udelay(5);
 169        }
 170
 171        return ret_val;
 172}
 173
 174/**
 175 *  igb_acquire_nvm - Generic request for access to EEPROM
 176 *  @hw: pointer to the HW structure
 177 *
 178 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 179 *  Return successful if access grant bit set, else clear the request for
 180 *  EEPROM access and return -E1000_ERR_NVM (-1).
 181 **/
 182s32 igb_acquire_nvm(struct e1000_hw *hw)
 183{
 184        u32 eecd = rd32(E1000_EECD);
 185        s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
 186        s32 ret_val = 0;
 187
 188
 189        wr32(E1000_EECD, eecd | E1000_EECD_REQ);
 190        eecd = rd32(E1000_EECD);
 191
 192        while (timeout) {
 193                if (eecd & E1000_EECD_GNT)
 194                        break;
 195                udelay(5);
 196                eecd = rd32(E1000_EECD);
 197                timeout--;
 198        }
 199
 200        if (!timeout) {
 201                eecd &= ~E1000_EECD_REQ;
 202                wr32(E1000_EECD, eecd);
 203                hw_dbg("Could not acquire NVM grant\n");
 204                ret_val = -E1000_ERR_NVM;
 205        }
 206
 207        return ret_val;
 208}
 209
 210/**
 211 *  igb_standby_nvm - Return EEPROM to standby state
 212 *  @hw: pointer to the HW structure
 213 *
 214 *  Return the EEPROM to a standby state.
 215 **/
 216static void igb_standby_nvm(struct e1000_hw *hw)
 217{
 218        struct e1000_nvm_info *nvm = &hw->nvm;
 219        u32 eecd = rd32(E1000_EECD);
 220
 221        if (nvm->type == e1000_nvm_eeprom_spi) {
 222                /* Toggle CS to flush commands */
 223                eecd |= E1000_EECD_CS;
 224                wr32(E1000_EECD, eecd);
 225                wrfl();
 226                udelay(nvm->delay_usec);
 227                eecd &= ~E1000_EECD_CS;
 228                wr32(E1000_EECD, eecd);
 229                wrfl();
 230                udelay(nvm->delay_usec);
 231        }
 232}
 233
 234/**
 235 *  e1000_stop_nvm - Terminate EEPROM command
 236 *  @hw: pointer to the HW structure
 237 *
 238 *  Terminates the current command by inverting the EEPROM's chip select pin.
 239 **/
 240static void e1000_stop_nvm(struct e1000_hw *hw)
 241{
 242        u32 eecd;
 243
 244        eecd = rd32(E1000_EECD);
 245        if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 246                /* Pull CS high */
 247                eecd |= E1000_EECD_CS;
 248                igb_lower_eec_clk(hw, &eecd);
 249        }
 250}
 251
 252/**
 253 *  igb_release_nvm - Release exclusive access to EEPROM
 254 *  @hw: pointer to the HW structure
 255 *
 256 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 257 **/
 258void igb_release_nvm(struct e1000_hw *hw)
 259{
 260        u32 eecd;
 261
 262        e1000_stop_nvm(hw);
 263
 264        eecd = rd32(E1000_EECD);
 265        eecd &= ~E1000_EECD_REQ;
 266        wr32(E1000_EECD, eecd);
 267}
 268
 269/**
 270 *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
 271 *  @hw: pointer to the HW structure
 272 *
 273 *  Setups the EEPROM for reading and writing.
 274 **/
 275static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
 276{
 277        struct e1000_nvm_info *nvm = &hw->nvm;
 278        u32 eecd = rd32(E1000_EECD);
 279        s32 ret_val = 0;
 280        u16 timeout = 0;
 281        u8 spi_stat_reg;
 282
 283
 284        if (nvm->type == e1000_nvm_eeprom_spi) {
 285                /* Clear SK and CS */
 286                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 287                wr32(E1000_EECD, eecd);
 288                udelay(1);
 289                timeout = NVM_MAX_RETRY_SPI;
 290
 291                /*
 292                 * Read "Status Register" repeatedly until the LSB is cleared.
 293                 * The EEPROM will signal that the command has been completed
 294                 * by clearing bit 0 of the internal status register.  If it's
 295                 * not cleared within 'timeout', then error out.
 296                 */
 297                while (timeout) {
 298                        igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
 299                                                 hw->nvm.opcode_bits);
 300                        spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
 301                        if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
 302                                break;
 303
 304                        udelay(5);
 305                        igb_standby_nvm(hw);
 306                        timeout--;
 307                }
 308
 309                if (!timeout) {
 310                        hw_dbg("SPI NVM Status error\n");
 311                        ret_val = -E1000_ERR_NVM;
 312                        goto out;
 313                }
 314        }
 315
 316out:
 317        return ret_val;
 318}
 319
 320/**
 321 *  igb_read_nvm_eerd - Reads EEPROM using EERD register
 322 *  @hw: pointer to the HW structure
 323 *  @offset: offset of word in the EEPROM to read
 324 *  @words: number of words to read
 325 *  @data: word read from the EEPROM
 326 *
 327 *  Reads a 16 bit word from the EEPROM using the EERD register.
 328 **/
 329s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 330{
 331        struct e1000_nvm_info *nvm = &hw->nvm;
 332        u32 i, eerd = 0;
 333        s32 ret_val = 0;
 334
 335        /*
 336         * A check for invalid values:  offset too large, too many words,
 337         * and not enough words.
 338         */
 339        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 340            (words == 0)) {
 341                hw_dbg("nvm parameter(s) out of bounds\n");
 342                ret_val = -E1000_ERR_NVM;
 343                goto out;
 344        }
 345
 346        for (i = 0; i < words; i++) {
 347                eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
 348                       E1000_NVM_RW_REG_START;
 349
 350                wr32(E1000_EERD, eerd);
 351                ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
 352                if (ret_val)
 353                        break;
 354
 355                data[i] = (rd32(E1000_EERD) >>
 356                           E1000_NVM_RW_REG_DATA);
 357        }
 358
 359out:
 360        return ret_val;
 361}
 362
 363/**
 364 *  igb_write_nvm_spi - Write to EEPROM using SPI
 365 *  @hw: pointer to the HW structure
 366 *  @offset: offset within the EEPROM to be written to
 367 *  @words: number of words to write
 368 *  @data: 16 bit word(s) to be written to the EEPROM
 369 *
 370 *  Writes data to EEPROM at offset using SPI interface.
 371 *
 372 *  If e1000_update_nvm_checksum is not called after this function , the
 373 *  EEPROM will most likley contain an invalid checksum.
 374 **/
 375s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 376{
 377        struct e1000_nvm_info *nvm = &hw->nvm;
 378        s32 ret_val;
 379        u16 widx = 0;
 380
 381        /*
 382         * A check for invalid values:  offset too large, too many words,
 383         * and not enough words.
 384         */
 385        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 386            (words == 0)) {
 387                hw_dbg("nvm parameter(s) out of bounds\n");
 388                ret_val = -E1000_ERR_NVM;
 389                goto out;
 390        }
 391
 392        ret_val = hw->nvm.ops.acquire(hw);
 393        if (ret_val)
 394                goto out;
 395
 396        msleep(10);
 397
 398        while (widx < words) {
 399                u8 write_opcode = NVM_WRITE_OPCODE_SPI;
 400
 401                ret_val = igb_ready_nvm_eeprom(hw);
 402                if (ret_val)
 403                        goto release;
 404
 405                igb_standby_nvm(hw);
 406
 407                /* Send the WRITE ENABLE command (8 bit opcode) */
 408                igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
 409                                         nvm->opcode_bits);
 410
 411                igb_standby_nvm(hw);
 412
 413                /*
 414                 * Some SPI eeproms use the 8th address bit embedded in the
 415                 * opcode
 416                 */
 417                if ((nvm->address_bits == 8) && (offset >= 128))
 418                        write_opcode |= NVM_A8_OPCODE_SPI;
 419
 420                /* Send the Write command (8-bit opcode + addr) */
 421                igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
 422                igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
 423                                         nvm->address_bits);
 424
 425                /* Loop to allow for up to whole page write of eeprom */
 426                while (widx < words) {
 427                        u16 word_out = data[widx];
 428                        word_out = (word_out >> 8) | (word_out << 8);
 429                        igb_shift_out_eec_bits(hw, word_out, 16);
 430                        widx++;
 431
 432                        if ((((offset + widx) * 2) % nvm->page_size) == 0) {
 433                                igb_standby_nvm(hw);
 434                                break;
 435                        }
 436                }
 437        }
 438
 439        msleep(10);
 440release:
 441        hw->nvm.ops.release(hw);
 442
 443out:
 444        return ret_val;
 445}
 446
 447/**
 448 *  igb_read_part_string - Read device part number
 449 *  @hw: pointer to the HW structure
 450 *  @part_num: pointer to device part number
 451 *  @part_num_size: size of part number buffer
 452 *
 453 *  Reads the product board assembly (PBA) number from the EEPROM and stores
 454 *  the value in part_num.
 455 **/
 456s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
 457{
 458        s32 ret_val;
 459        u16 nvm_data;
 460        u16 pointer;
 461        u16 offset;
 462        u16 length;
 463
 464        if (part_num == NULL) {
 465                hw_dbg("PBA string buffer was null\n");
 466                ret_val = E1000_ERR_INVALID_ARGUMENT;
 467                goto out;
 468        }
 469
 470        ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
 471        if (ret_val) {
 472                hw_dbg("NVM Read Error\n");
 473                goto out;
 474        }
 475
 476        ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
 477        if (ret_val) {
 478                hw_dbg("NVM Read Error\n");
 479                goto out;
 480        }
 481
 482        /*
 483         * if nvm_data is not ptr guard the PBA must be in legacy format which
 484         * means pointer is actually our second data word for the PBA number
 485         * and we can decode it into an ascii string
 486         */
 487        if (nvm_data != NVM_PBA_PTR_GUARD) {
 488                hw_dbg("NVM PBA number is not stored as string\n");
 489
 490                /* we will need 11 characters to store the PBA */
 491                if (part_num_size < 11) {
 492                        hw_dbg("PBA string buffer too small\n");
 493                        return E1000_ERR_NO_SPACE;
 494                }
 495
 496                /* extract hex string from data and pointer */
 497                part_num[0] = (nvm_data >> 12) & 0xF;
 498                part_num[1] = (nvm_data >> 8) & 0xF;
 499                part_num[2] = (nvm_data >> 4) & 0xF;
 500                part_num[3] = nvm_data & 0xF;
 501                part_num[4] = (pointer >> 12) & 0xF;
 502                part_num[5] = (pointer >> 8) & 0xF;
 503                part_num[6] = '-';
 504                part_num[7] = 0;
 505                part_num[8] = (pointer >> 4) & 0xF;
 506                part_num[9] = pointer & 0xF;
 507
 508                /* put a null character on the end of our string */
 509                part_num[10] = '\0';
 510
 511                /* switch all the data but the '-' to hex char */
 512                for (offset = 0; offset < 10; offset++) {
 513                        if (part_num[offset] < 0xA)
 514                                part_num[offset] += '0';
 515                        else if (part_num[offset] < 0x10)
 516                                part_num[offset] += 'A' - 0xA;
 517                }
 518
 519                goto out;
 520        }
 521
 522        ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
 523        if (ret_val) {
 524                hw_dbg("NVM Read Error\n");
 525                goto out;
 526        }
 527
 528        if (length == 0xFFFF || length == 0) {
 529                hw_dbg("NVM PBA number section invalid length\n");
 530                ret_val = E1000_ERR_NVM_PBA_SECTION;
 531                goto out;
 532        }
 533        /* check if part_num buffer is big enough */
 534        if (part_num_size < (((u32)length * 2) - 1)) {
 535                hw_dbg("PBA string buffer too small\n");
 536                ret_val = E1000_ERR_NO_SPACE;
 537                goto out;
 538        }
 539
 540        /* trim pba length from start of string */
 541        pointer++;
 542        length--;
 543
 544        for (offset = 0; offset < length; offset++) {
 545                ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
 546                if (ret_val) {
 547                        hw_dbg("NVM Read Error\n");
 548                        goto out;
 549                }
 550                part_num[offset * 2] = (u8)(nvm_data >> 8);
 551                part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
 552        }
 553        part_num[offset * 2] = '\0';
 554
 555out:
 556        return ret_val;
 557}
 558
 559/**
 560 *  igb_read_mac_addr - Read device MAC address
 561 *  @hw: pointer to the HW structure
 562 *
 563 *  Reads the device MAC address from the EEPROM and stores the value.
 564 *  Since devices with two ports use the same EEPROM, we increment the
 565 *  last bit in the MAC address for the second port.
 566 **/
 567s32 igb_read_mac_addr(struct e1000_hw *hw)
 568{
 569        u32 rar_high;
 570        u32 rar_low;
 571        u16 i;
 572
 573        rar_high = rd32(E1000_RAH(0));
 574        rar_low = rd32(E1000_RAL(0));
 575
 576        for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
 577                hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
 578
 579        for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
 580                hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
 581
 582        for (i = 0; i < ETH_ALEN; i++)
 583                hw->mac.addr[i] = hw->mac.perm_addr[i];
 584
 585        return 0;
 586}
 587
 588/**
 589 *  igb_validate_nvm_checksum - Validate EEPROM checksum
 590 *  @hw: pointer to the HW structure
 591 *
 592 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 593 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 594 **/
 595s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
 596{
 597        s32 ret_val = 0;
 598        u16 checksum = 0;
 599        u16 i, nvm_data;
 600
 601        for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 602                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
 603                if (ret_val) {
 604                        hw_dbg("NVM Read Error\n");
 605                        goto out;
 606                }
 607                checksum += nvm_data;
 608        }
 609
 610        if (checksum != (u16) NVM_SUM) {
 611                hw_dbg("NVM Checksum Invalid\n");
 612                ret_val = -E1000_ERR_NVM;
 613                goto out;
 614        }
 615
 616out:
 617        return ret_val;
 618}
 619
 620/**
 621 *  igb_update_nvm_checksum - Update EEPROM checksum
 622 *  @hw: pointer to the HW structure
 623 *
 624 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 625 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 626 *  value to the EEPROM.
 627 **/
 628s32 igb_update_nvm_checksum(struct e1000_hw *hw)
 629{
 630        s32  ret_val;
 631        u16 checksum = 0;
 632        u16 i, nvm_data;
 633
 634        for (i = 0; i < NVM_CHECKSUM_REG; i++) {
 635                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
 636                if (ret_val) {
 637                        hw_dbg("NVM Read Error while updating checksum.\n");
 638                        goto out;
 639                }
 640                checksum += nvm_data;
 641        }
 642        checksum = (u16) NVM_SUM - checksum;
 643        ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
 644        if (ret_val)
 645                hw_dbg("NVM Write Error while updating checksum.\n");
 646
 647out:
 648        return ret_val;
 649}
 650
 651