linux/drivers/net/igbvf/netdev.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel(R) 82576 Virtual Function Linux driver
   4  Copyright(c) 2009 - 2010 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/module.h>
  29#include <linux/types.h>
  30#include <linux/init.h>
  31#include <linux/pci.h>
  32#include <linux/vmalloc.h>
  33#include <linux/pagemap.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/tcp.h>
  37#include <linux/ipv6.h>
  38#include <linux/slab.h>
  39#include <net/checksum.h>
  40#include <net/ip6_checksum.h>
  41#include <linux/mii.h>
  42#include <linux/ethtool.h>
  43#include <linux/if_vlan.h>
  44
  45#include "igbvf.h"
  46
  47#define DRV_VERSION "1.0.8-k0"
  48char igbvf_driver_name[] = "igbvf";
  49const char igbvf_driver_version[] = DRV_VERSION;
  50static const char igbvf_driver_string[] =
  51                                "Intel(R) Virtual Function Network Driver";
  52static const char igbvf_copyright[] =
  53                                "Copyright (c) 2009 - 2010 Intel Corporation.";
  54
  55static int igbvf_poll(struct napi_struct *napi, int budget);
  56static void igbvf_reset(struct igbvf_adapter *);
  57static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
  58static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
  59
  60static struct igbvf_info igbvf_vf_info = {
  61        .mac                    = e1000_vfadapt,
  62        .flags                  = 0,
  63        .pba                    = 10,
  64        .init_ops               = e1000_init_function_pointers_vf,
  65};
  66
  67static struct igbvf_info igbvf_i350_vf_info = {
  68        .mac                    = e1000_vfadapt_i350,
  69        .flags                  = 0,
  70        .pba                    = 10,
  71        .init_ops               = e1000_init_function_pointers_vf,
  72};
  73
  74static const struct igbvf_info *igbvf_info_tbl[] = {
  75        [board_vf]              = &igbvf_vf_info,
  76        [board_i350_vf]         = &igbvf_i350_vf_info,
  77};
  78
  79/**
  80 * igbvf_desc_unused - calculate if we have unused descriptors
  81 **/
  82static int igbvf_desc_unused(struct igbvf_ring *ring)
  83{
  84        if (ring->next_to_clean > ring->next_to_use)
  85                return ring->next_to_clean - ring->next_to_use - 1;
  86
  87        return ring->count + ring->next_to_clean - ring->next_to_use - 1;
  88}
  89
  90/**
  91 * igbvf_receive_skb - helper function to handle Rx indications
  92 * @adapter: board private structure
  93 * @status: descriptor status field as written by hardware
  94 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
  95 * @skb: pointer to sk_buff to be indicated to stack
  96 **/
  97static void igbvf_receive_skb(struct igbvf_adapter *adapter,
  98                              struct net_device *netdev,
  99                              struct sk_buff *skb,
 100                              u32 status, u16 vlan)
 101{
 102        if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
 103                vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
 104                                         le16_to_cpu(vlan) &
 105                                         E1000_RXD_SPC_VLAN_MASK);
 106        else
 107                netif_receive_skb(skb);
 108}
 109
 110static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
 111                                         u32 status_err, struct sk_buff *skb)
 112{
 113        skb_checksum_none_assert(skb);
 114
 115        /* Ignore Checksum bit is set or checksum is disabled through ethtool */
 116        if ((status_err & E1000_RXD_STAT_IXSM) ||
 117            (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
 118                return;
 119
 120        /* TCP/UDP checksum error bit is set */
 121        if (status_err &
 122            (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
 123                /* let the stack verify checksum errors */
 124                adapter->hw_csum_err++;
 125                return;
 126        }
 127
 128        /* It must be a TCP or UDP packet with a valid checksum */
 129        if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
 130                skb->ip_summed = CHECKSUM_UNNECESSARY;
 131
 132        adapter->hw_csum_good++;
 133}
 134
 135/**
 136 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 137 * @rx_ring: address of ring structure to repopulate
 138 * @cleaned_count: number of buffers to repopulate
 139 **/
 140static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
 141                                   int cleaned_count)
 142{
 143        struct igbvf_adapter *adapter = rx_ring->adapter;
 144        struct net_device *netdev = adapter->netdev;
 145        struct pci_dev *pdev = adapter->pdev;
 146        union e1000_adv_rx_desc *rx_desc;
 147        struct igbvf_buffer *buffer_info;
 148        struct sk_buff *skb;
 149        unsigned int i;
 150        int bufsz;
 151
 152        i = rx_ring->next_to_use;
 153        buffer_info = &rx_ring->buffer_info[i];
 154
 155        if (adapter->rx_ps_hdr_size)
 156                bufsz = adapter->rx_ps_hdr_size;
 157        else
 158                bufsz = adapter->rx_buffer_len;
 159
 160        while (cleaned_count--) {
 161                rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 162
 163                if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
 164                        if (!buffer_info->page) {
 165                                buffer_info->page = alloc_page(GFP_ATOMIC);
 166                                if (!buffer_info->page) {
 167                                        adapter->alloc_rx_buff_failed++;
 168                                        goto no_buffers;
 169                                }
 170                                buffer_info->page_offset = 0;
 171                        } else {
 172                                buffer_info->page_offset ^= PAGE_SIZE / 2;
 173                        }
 174                        buffer_info->page_dma =
 175                                dma_map_page(&pdev->dev, buffer_info->page,
 176                                             buffer_info->page_offset,
 177                                             PAGE_SIZE / 2,
 178                                             DMA_FROM_DEVICE);
 179                }
 180
 181                if (!buffer_info->skb) {
 182                        skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 183                        if (!skb) {
 184                                adapter->alloc_rx_buff_failed++;
 185                                goto no_buffers;
 186                        }
 187
 188                        buffer_info->skb = skb;
 189                        buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 190                                                          bufsz,
 191                                                          DMA_FROM_DEVICE);
 192                }
 193                /* Refresh the desc even if buffer_addrs didn't change because
 194                 * each write-back erases this info. */
 195                if (adapter->rx_ps_hdr_size) {
 196                        rx_desc->read.pkt_addr =
 197                             cpu_to_le64(buffer_info->page_dma);
 198                        rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
 199                } else {
 200                        rx_desc->read.pkt_addr =
 201                             cpu_to_le64(buffer_info->dma);
 202                        rx_desc->read.hdr_addr = 0;
 203                }
 204
 205                i++;
 206                if (i == rx_ring->count)
 207                        i = 0;
 208                buffer_info = &rx_ring->buffer_info[i];
 209        }
 210
 211no_buffers:
 212        if (rx_ring->next_to_use != i) {
 213                rx_ring->next_to_use = i;
 214                if (i == 0)
 215                        i = (rx_ring->count - 1);
 216                else
 217                        i--;
 218
 219                /* Force memory writes to complete before letting h/w
 220                 * know there are new descriptors to fetch.  (Only
 221                 * applicable for weak-ordered memory model archs,
 222                 * such as IA-64). */
 223                wmb();
 224                writel(i, adapter->hw.hw_addr + rx_ring->tail);
 225        }
 226}
 227
 228/**
 229 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 230 * @adapter: board private structure
 231 *
 232 * the return value indicates whether actual cleaning was done, there
 233 * is no guarantee that everything was cleaned
 234 **/
 235static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
 236                               int *work_done, int work_to_do)
 237{
 238        struct igbvf_ring *rx_ring = adapter->rx_ring;
 239        struct net_device *netdev = adapter->netdev;
 240        struct pci_dev *pdev = adapter->pdev;
 241        union e1000_adv_rx_desc *rx_desc, *next_rxd;
 242        struct igbvf_buffer *buffer_info, *next_buffer;
 243        struct sk_buff *skb;
 244        bool cleaned = false;
 245        int cleaned_count = 0;
 246        unsigned int total_bytes = 0, total_packets = 0;
 247        unsigned int i;
 248        u32 length, hlen, staterr;
 249
 250        i = rx_ring->next_to_clean;
 251        rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 252        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 253
 254        while (staterr & E1000_RXD_STAT_DD) {
 255                if (*work_done >= work_to_do)
 256                        break;
 257                (*work_done)++;
 258                rmb(); /* read descriptor and rx_buffer_info after status DD */
 259
 260                buffer_info = &rx_ring->buffer_info[i];
 261
 262                /* HW will not DMA in data larger than the given buffer, even
 263                 * if it parses the (NFS, of course) header to be larger.  In
 264                 * that case, it fills the header buffer and spills the rest
 265                 * into the page.
 266                 */
 267                hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
 268                  E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
 269                if (hlen > adapter->rx_ps_hdr_size)
 270                        hlen = adapter->rx_ps_hdr_size;
 271
 272                length = le16_to_cpu(rx_desc->wb.upper.length);
 273                cleaned = true;
 274                cleaned_count++;
 275
 276                skb = buffer_info->skb;
 277                prefetch(skb->data - NET_IP_ALIGN);
 278                buffer_info->skb = NULL;
 279                if (!adapter->rx_ps_hdr_size) {
 280                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 281                                         adapter->rx_buffer_len,
 282                                         DMA_FROM_DEVICE);
 283                        buffer_info->dma = 0;
 284                        skb_put(skb, length);
 285                        goto send_up;
 286                }
 287
 288                if (!skb_shinfo(skb)->nr_frags) {
 289                        dma_unmap_single(&pdev->dev, buffer_info->dma,
 290                                         adapter->rx_ps_hdr_size,
 291                                         DMA_FROM_DEVICE);
 292                        skb_put(skb, hlen);
 293                }
 294
 295                if (length) {
 296                        dma_unmap_page(&pdev->dev, buffer_info->page_dma,
 297                                       PAGE_SIZE / 2,
 298                                       DMA_FROM_DEVICE);
 299                        buffer_info->page_dma = 0;
 300
 301                        skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 302                                           buffer_info->page,
 303                                           buffer_info->page_offset,
 304                                           length);
 305
 306                        if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
 307                            (page_count(buffer_info->page) != 1))
 308                                buffer_info->page = NULL;
 309                        else
 310                                get_page(buffer_info->page);
 311
 312                        skb->len += length;
 313                        skb->data_len += length;
 314                        skb->truesize += length;
 315                }
 316send_up:
 317                i++;
 318                if (i == rx_ring->count)
 319                        i = 0;
 320                next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
 321                prefetch(next_rxd);
 322                next_buffer = &rx_ring->buffer_info[i];
 323
 324                if (!(staterr & E1000_RXD_STAT_EOP)) {
 325                        buffer_info->skb = next_buffer->skb;
 326                        buffer_info->dma = next_buffer->dma;
 327                        next_buffer->skb = skb;
 328                        next_buffer->dma = 0;
 329                        goto next_desc;
 330                }
 331
 332                if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
 333                        dev_kfree_skb_irq(skb);
 334                        goto next_desc;
 335                }
 336
 337                total_bytes += skb->len;
 338                total_packets++;
 339
 340                igbvf_rx_checksum_adv(adapter, staterr, skb);
 341
 342                skb->protocol = eth_type_trans(skb, netdev);
 343
 344                igbvf_receive_skb(adapter, netdev, skb, staterr,
 345                                  rx_desc->wb.upper.vlan);
 346
 347next_desc:
 348                rx_desc->wb.upper.status_error = 0;
 349
 350                /* return some buffers to hardware, one at a time is too slow */
 351                if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
 352                        igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 353                        cleaned_count = 0;
 354                }
 355
 356                /* use prefetched values */
 357                rx_desc = next_rxd;
 358                buffer_info = next_buffer;
 359
 360                staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 361        }
 362
 363        rx_ring->next_to_clean = i;
 364        cleaned_count = igbvf_desc_unused(rx_ring);
 365
 366        if (cleaned_count)
 367                igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 368
 369        adapter->total_rx_packets += total_packets;
 370        adapter->total_rx_bytes += total_bytes;
 371        adapter->net_stats.rx_bytes += total_bytes;
 372        adapter->net_stats.rx_packets += total_packets;
 373        return cleaned;
 374}
 375
 376static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
 377                            struct igbvf_buffer *buffer_info)
 378{
 379        if (buffer_info->dma) {
 380                if (buffer_info->mapped_as_page)
 381                        dma_unmap_page(&adapter->pdev->dev,
 382                                       buffer_info->dma,
 383                                       buffer_info->length,
 384                                       DMA_TO_DEVICE);
 385                else
 386                        dma_unmap_single(&adapter->pdev->dev,
 387                                         buffer_info->dma,
 388                                         buffer_info->length,
 389                                         DMA_TO_DEVICE);
 390                buffer_info->dma = 0;
 391        }
 392        if (buffer_info->skb) {
 393                dev_kfree_skb_any(buffer_info->skb);
 394                buffer_info->skb = NULL;
 395        }
 396        buffer_info->time_stamp = 0;
 397}
 398
 399static void igbvf_print_tx_hang(struct igbvf_adapter *adapter)
 400{
 401        struct igbvf_ring *tx_ring = adapter->tx_ring;
 402        unsigned int i = tx_ring->next_to_clean;
 403        unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
 404        union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
 405
 406        /* detected Tx unit hang */
 407        dev_err(&adapter->pdev->dev,
 408                "Detected Tx Unit Hang:\n"
 409                "  TDH                  <%x>\n"
 410                "  TDT                  <%x>\n"
 411                "  next_to_use          <%x>\n"
 412                "  next_to_clean        <%x>\n"
 413                "buffer_info[next_to_clean]:\n"
 414                "  time_stamp           <%lx>\n"
 415                "  next_to_watch        <%x>\n"
 416                "  jiffies              <%lx>\n"
 417                "  next_to_watch.status <%x>\n",
 418                readl(adapter->hw.hw_addr + tx_ring->head),
 419                readl(adapter->hw.hw_addr + tx_ring->tail),
 420                tx_ring->next_to_use,
 421                tx_ring->next_to_clean,
 422                tx_ring->buffer_info[eop].time_stamp,
 423                eop,
 424                jiffies,
 425                eop_desc->wb.status);
 426}
 427
 428/**
 429 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 430 * @adapter: board private structure
 431 *
 432 * Return 0 on success, negative on failure
 433 **/
 434int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
 435                             struct igbvf_ring *tx_ring)
 436{
 437        struct pci_dev *pdev = adapter->pdev;
 438        int size;
 439
 440        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 441        tx_ring->buffer_info = vzalloc(size);
 442        if (!tx_ring->buffer_info)
 443                goto err;
 444
 445        /* round up to nearest 4K */
 446        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 447        tx_ring->size = ALIGN(tx_ring->size, 4096);
 448
 449        tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
 450                                           &tx_ring->dma, GFP_KERNEL);
 451
 452        if (!tx_ring->desc)
 453                goto err;
 454
 455        tx_ring->adapter = adapter;
 456        tx_ring->next_to_use = 0;
 457        tx_ring->next_to_clean = 0;
 458
 459        return 0;
 460err:
 461        vfree(tx_ring->buffer_info);
 462        dev_err(&adapter->pdev->dev,
 463                "Unable to allocate memory for the transmit descriptor ring\n");
 464        return -ENOMEM;
 465}
 466
 467/**
 468 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 469 * @adapter: board private structure
 470 *
 471 * Returns 0 on success, negative on failure
 472 **/
 473int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
 474                             struct igbvf_ring *rx_ring)
 475{
 476        struct pci_dev *pdev = adapter->pdev;
 477        int size, desc_len;
 478
 479        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 480        rx_ring->buffer_info = vzalloc(size);
 481        if (!rx_ring->buffer_info)
 482                goto err;
 483
 484        desc_len = sizeof(union e1000_adv_rx_desc);
 485
 486        /* Round up to nearest 4K */
 487        rx_ring->size = rx_ring->count * desc_len;
 488        rx_ring->size = ALIGN(rx_ring->size, 4096);
 489
 490        rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
 491                                           &rx_ring->dma, GFP_KERNEL);
 492
 493        if (!rx_ring->desc)
 494                goto err;
 495
 496        rx_ring->next_to_clean = 0;
 497        rx_ring->next_to_use = 0;
 498
 499        rx_ring->adapter = adapter;
 500
 501        return 0;
 502
 503err:
 504        vfree(rx_ring->buffer_info);
 505        rx_ring->buffer_info = NULL;
 506        dev_err(&adapter->pdev->dev,
 507                "Unable to allocate memory for the receive descriptor ring\n");
 508        return -ENOMEM;
 509}
 510
 511/**
 512 * igbvf_clean_tx_ring - Free Tx Buffers
 513 * @tx_ring: ring to be cleaned
 514 **/
 515static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
 516{
 517        struct igbvf_adapter *adapter = tx_ring->adapter;
 518        struct igbvf_buffer *buffer_info;
 519        unsigned long size;
 520        unsigned int i;
 521
 522        if (!tx_ring->buffer_info)
 523                return;
 524
 525        /* Free all the Tx ring sk_buffs */
 526        for (i = 0; i < tx_ring->count; i++) {
 527                buffer_info = &tx_ring->buffer_info[i];
 528                igbvf_put_txbuf(adapter, buffer_info);
 529        }
 530
 531        size = sizeof(struct igbvf_buffer) * tx_ring->count;
 532        memset(tx_ring->buffer_info, 0, size);
 533
 534        /* Zero out the descriptor ring */
 535        memset(tx_ring->desc, 0, tx_ring->size);
 536
 537        tx_ring->next_to_use = 0;
 538        tx_ring->next_to_clean = 0;
 539
 540        writel(0, adapter->hw.hw_addr + tx_ring->head);
 541        writel(0, adapter->hw.hw_addr + tx_ring->tail);
 542}
 543
 544/**
 545 * igbvf_free_tx_resources - Free Tx Resources per Queue
 546 * @tx_ring: ring to free resources from
 547 *
 548 * Free all transmit software resources
 549 **/
 550void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
 551{
 552        struct pci_dev *pdev = tx_ring->adapter->pdev;
 553
 554        igbvf_clean_tx_ring(tx_ring);
 555
 556        vfree(tx_ring->buffer_info);
 557        tx_ring->buffer_info = NULL;
 558
 559        dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 560                          tx_ring->dma);
 561
 562        tx_ring->desc = NULL;
 563}
 564
 565/**
 566 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 567 * @adapter: board private structure
 568 **/
 569static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
 570{
 571        struct igbvf_adapter *adapter = rx_ring->adapter;
 572        struct igbvf_buffer *buffer_info;
 573        struct pci_dev *pdev = adapter->pdev;
 574        unsigned long size;
 575        unsigned int i;
 576
 577        if (!rx_ring->buffer_info)
 578                return;
 579
 580        /* Free all the Rx ring sk_buffs */
 581        for (i = 0; i < rx_ring->count; i++) {
 582                buffer_info = &rx_ring->buffer_info[i];
 583                if (buffer_info->dma) {
 584                        if (adapter->rx_ps_hdr_size){
 585                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 586                                                 adapter->rx_ps_hdr_size,
 587                                                 DMA_FROM_DEVICE);
 588                        } else {
 589                                dma_unmap_single(&pdev->dev, buffer_info->dma,
 590                                                 adapter->rx_buffer_len,
 591                                                 DMA_FROM_DEVICE);
 592                        }
 593                        buffer_info->dma = 0;
 594                }
 595
 596                if (buffer_info->skb) {
 597                        dev_kfree_skb(buffer_info->skb);
 598                        buffer_info->skb = NULL;
 599                }
 600
 601                if (buffer_info->page) {
 602                        if (buffer_info->page_dma)
 603                                dma_unmap_page(&pdev->dev,
 604                                               buffer_info->page_dma,
 605                                               PAGE_SIZE / 2,
 606                                               DMA_FROM_DEVICE);
 607                        put_page(buffer_info->page);
 608                        buffer_info->page = NULL;
 609                        buffer_info->page_dma = 0;
 610                        buffer_info->page_offset = 0;
 611                }
 612        }
 613
 614        size = sizeof(struct igbvf_buffer) * rx_ring->count;
 615        memset(rx_ring->buffer_info, 0, size);
 616
 617        /* Zero out the descriptor ring */
 618        memset(rx_ring->desc, 0, rx_ring->size);
 619
 620        rx_ring->next_to_clean = 0;
 621        rx_ring->next_to_use = 0;
 622
 623        writel(0, adapter->hw.hw_addr + rx_ring->head);
 624        writel(0, adapter->hw.hw_addr + rx_ring->tail);
 625}
 626
 627/**
 628 * igbvf_free_rx_resources - Free Rx Resources
 629 * @rx_ring: ring to clean the resources from
 630 *
 631 * Free all receive software resources
 632 **/
 633
 634void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
 635{
 636        struct pci_dev *pdev = rx_ring->adapter->pdev;
 637
 638        igbvf_clean_rx_ring(rx_ring);
 639
 640        vfree(rx_ring->buffer_info);
 641        rx_ring->buffer_info = NULL;
 642
 643        dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 644                          rx_ring->dma);
 645        rx_ring->desc = NULL;
 646}
 647
 648/**
 649 * igbvf_update_itr - update the dynamic ITR value based on statistics
 650 * @adapter: pointer to adapter
 651 * @itr_setting: current adapter->itr
 652 * @packets: the number of packets during this measurement interval
 653 * @bytes: the number of bytes during this measurement interval
 654 *
 655 *      Stores a new ITR value based on packets and byte
 656 *      counts during the last interrupt.  The advantage of per interrupt
 657 *      computation is faster updates and more accurate ITR for the current
 658 *      traffic pattern.  Constants in this function were computed
 659 *      based on theoretical maximum wire speed and thresholds were set based
 660 *      on testing data as well as attempting to minimize response time
 661 *      while increasing bulk throughput.  This functionality is controlled
 662 *      by the InterruptThrottleRate module parameter.
 663 **/
 664static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
 665                                     u16 itr_setting, int packets,
 666                                     int bytes)
 667{
 668        unsigned int retval = itr_setting;
 669
 670        if (packets == 0)
 671                goto update_itr_done;
 672
 673        switch (itr_setting) {
 674        case lowest_latency:
 675                /* handle TSO and jumbo frames */
 676                if (bytes/packets > 8000)
 677                        retval = bulk_latency;
 678                else if ((packets < 5) && (bytes > 512))
 679                        retval = low_latency;
 680                break;
 681        case low_latency:  /* 50 usec aka 20000 ints/s */
 682                if (bytes > 10000) {
 683                        /* this if handles the TSO accounting */
 684                        if (bytes/packets > 8000)
 685                                retval = bulk_latency;
 686                        else if ((packets < 10) || ((bytes/packets) > 1200))
 687                                retval = bulk_latency;
 688                        else if ((packets > 35))
 689                                retval = lowest_latency;
 690                } else if (bytes/packets > 2000) {
 691                        retval = bulk_latency;
 692                } else if (packets <= 2 && bytes < 512) {
 693                        retval = lowest_latency;
 694                }
 695                break;
 696        case bulk_latency: /* 250 usec aka 4000 ints/s */
 697                if (bytes > 25000) {
 698                        if (packets > 35)
 699                                retval = low_latency;
 700                } else if (bytes < 6000) {
 701                        retval = low_latency;
 702                }
 703                break;
 704        }
 705
 706update_itr_done:
 707        return retval;
 708}
 709
 710static void igbvf_set_itr(struct igbvf_adapter *adapter)
 711{
 712        struct e1000_hw *hw = &adapter->hw;
 713        u16 current_itr;
 714        u32 new_itr = adapter->itr;
 715
 716        adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
 717                                           adapter->total_tx_packets,
 718                                           adapter->total_tx_bytes);
 719        /* conservative mode (itr 3) eliminates the lowest_latency setting */
 720        if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
 721                adapter->tx_itr = low_latency;
 722
 723        adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
 724                                           adapter->total_rx_packets,
 725                                           adapter->total_rx_bytes);
 726        /* conservative mode (itr 3) eliminates the lowest_latency setting */
 727        if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
 728                adapter->rx_itr = low_latency;
 729
 730        current_itr = max(adapter->rx_itr, adapter->tx_itr);
 731
 732        switch (current_itr) {
 733        /* counts and packets in update_itr are dependent on these numbers */
 734        case lowest_latency:
 735                new_itr = 70000;
 736                break;
 737        case low_latency:
 738                new_itr = 20000; /* aka hwitr = ~200 */
 739                break;
 740        case bulk_latency:
 741                new_itr = 4000;
 742                break;
 743        default:
 744                break;
 745        }
 746
 747        if (new_itr != adapter->itr) {
 748                /*
 749                 * this attempts to bias the interrupt rate towards Bulk
 750                 * by adding intermediate steps when interrupt rate is
 751                 * increasing
 752                 */
 753                new_itr = new_itr > adapter->itr ?
 754                             min(adapter->itr + (new_itr >> 2), new_itr) :
 755                             new_itr;
 756                adapter->itr = new_itr;
 757                adapter->rx_ring->itr_val = 1952;
 758
 759                if (adapter->msix_entries)
 760                        adapter->rx_ring->set_itr = 1;
 761                else
 762                        ew32(ITR, 1952);
 763        }
 764}
 765
 766/**
 767 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 768 * @adapter: board private structure
 769 * returns true if ring is completely cleaned
 770 **/
 771static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
 772{
 773        struct igbvf_adapter *adapter = tx_ring->adapter;
 774        struct e1000_hw *hw = &adapter->hw;
 775        struct net_device *netdev = adapter->netdev;
 776        struct igbvf_buffer *buffer_info;
 777        struct sk_buff *skb;
 778        union e1000_adv_tx_desc *tx_desc, *eop_desc;
 779        unsigned int total_bytes = 0, total_packets = 0;
 780        unsigned int i, eop, count = 0;
 781        bool cleaned = false;
 782
 783        i = tx_ring->next_to_clean;
 784        eop = tx_ring->buffer_info[i].next_to_watch;
 785        eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
 786
 787        while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
 788               (count < tx_ring->count)) {
 789                rmb();  /* read buffer_info after eop_desc status */
 790                for (cleaned = false; !cleaned; count++) {
 791                        tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 792                        buffer_info = &tx_ring->buffer_info[i];
 793                        cleaned = (i == eop);
 794                        skb = buffer_info->skb;
 795
 796                        if (skb) {
 797                                unsigned int segs, bytecount;
 798
 799                                /* gso_segs is currently only valid for tcp */
 800                                segs = skb_shinfo(skb)->gso_segs ?: 1;
 801                                /* multiply data chunks by size of headers */
 802                                bytecount = ((segs - 1) * skb_headlen(skb)) +
 803                                            skb->len;
 804                                total_packets += segs;
 805                                total_bytes += bytecount;
 806                        }
 807
 808                        igbvf_put_txbuf(adapter, buffer_info);
 809                        tx_desc->wb.status = 0;
 810
 811                        i++;
 812                        if (i == tx_ring->count)
 813                                i = 0;
 814                }
 815                eop = tx_ring->buffer_info[i].next_to_watch;
 816                eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
 817        }
 818
 819        tx_ring->next_to_clean = i;
 820
 821        if (unlikely(count &&
 822                     netif_carrier_ok(netdev) &&
 823                     igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
 824                /* Make sure that anybody stopping the queue after this
 825                 * sees the new next_to_clean.
 826                 */
 827                smp_mb();
 828                if (netif_queue_stopped(netdev) &&
 829                    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
 830                        netif_wake_queue(netdev);
 831                        ++adapter->restart_queue;
 832                }
 833        }
 834
 835        if (adapter->detect_tx_hung) {
 836                /* Detect a transmit hang in hardware, this serializes the
 837                 * check with the clearing of time_stamp and movement of i */
 838                adapter->detect_tx_hung = false;
 839                if (tx_ring->buffer_info[i].time_stamp &&
 840                    time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
 841                               (adapter->tx_timeout_factor * HZ)) &&
 842                    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
 843
 844                        tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 845                        /* detected Tx unit hang */
 846                        igbvf_print_tx_hang(adapter);
 847
 848                        netif_stop_queue(netdev);
 849                }
 850        }
 851        adapter->net_stats.tx_bytes += total_bytes;
 852        adapter->net_stats.tx_packets += total_packets;
 853        return count < tx_ring->count;
 854}
 855
 856static irqreturn_t igbvf_msix_other(int irq, void *data)
 857{
 858        struct net_device *netdev = data;
 859        struct igbvf_adapter *adapter = netdev_priv(netdev);
 860        struct e1000_hw *hw = &adapter->hw;
 861
 862        adapter->int_counter1++;
 863
 864        netif_carrier_off(netdev);
 865        hw->mac.get_link_status = 1;
 866        if (!test_bit(__IGBVF_DOWN, &adapter->state))
 867                mod_timer(&adapter->watchdog_timer, jiffies + 1);
 868
 869        ew32(EIMS, adapter->eims_other);
 870
 871        return IRQ_HANDLED;
 872}
 873
 874static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
 875{
 876        struct net_device *netdev = data;
 877        struct igbvf_adapter *adapter = netdev_priv(netdev);
 878        struct e1000_hw *hw = &adapter->hw;
 879        struct igbvf_ring *tx_ring = adapter->tx_ring;
 880
 881
 882        adapter->total_tx_bytes = 0;
 883        adapter->total_tx_packets = 0;
 884
 885        /* auto mask will automatically reenable the interrupt when we write
 886         * EICS */
 887        if (!igbvf_clean_tx_irq(tx_ring))
 888                /* Ring was not completely cleaned, so fire another interrupt */
 889                ew32(EICS, tx_ring->eims_value);
 890        else
 891                ew32(EIMS, tx_ring->eims_value);
 892
 893        return IRQ_HANDLED;
 894}
 895
 896static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
 897{
 898        struct net_device *netdev = data;
 899        struct igbvf_adapter *adapter = netdev_priv(netdev);
 900
 901        adapter->int_counter0++;
 902
 903        /* Write the ITR value calculated at the end of the
 904         * previous interrupt.
 905         */
 906        if (adapter->rx_ring->set_itr) {
 907                writel(adapter->rx_ring->itr_val,
 908                       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
 909                adapter->rx_ring->set_itr = 0;
 910        }
 911
 912        if (napi_schedule_prep(&adapter->rx_ring->napi)) {
 913                adapter->total_rx_bytes = 0;
 914                adapter->total_rx_packets = 0;
 915                __napi_schedule(&adapter->rx_ring->napi);
 916        }
 917
 918        return IRQ_HANDLED;
 919}
 920
 921#define IGBVF_NO_QUEUE -1
 922
 923static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
 924                                int tx_queue, int msix_vector)
 925{
 926        struct e1000_hw *hw = &adapter->hw;
 927        u32 ivar, index;
 928
 929        /* 82576 uses a table-based method for assigning vectors.
 930           Each queue has a single entry in the table to which we write
 931           a vector number along with a "valid" bit.  Sadly, the layout
 932           of the table is somewhat counterintuitive. */
 933        if (rx_queue > IGBVF_NO_QUEUE) {
 934                index = (rx_queue >> 1);
 935                ivar = array_er32(IVAR0, index);
 936                if (rx_queue & 0x1) {
 937                        /* vector goes into third byte of register */
 938                        ivar = ivar & 0xFF00FFFF;
 939                        ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 940                } else {
 941                        /* vector goes into low byte of register */
 942                        ivar = ivar & 0xFFFFFF00;
 943                        ivar |= msix_vector | E1000_IVAR_VALID;
 944                }
 945                adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
 946                array_ew32(IVAR0, index, ivar);
 947        }
 948        if (tx_queue > IGBVF_NO_QUEUE) {
 949                index = (tx_queue >> 1);
 950                ivar = array_er32(IVAR0, index);
 951                if (tx_queue & 0x1) {
 952                        /* vector goes into high byte of register */
 953                        ivar = ivar & 0x00FFFFFF;
 954                        ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 955                } else {
 956                        /* vector goes into second byte of register */
 957                        ivar = ivar & 0xFFFF00FF;
 958                        ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 959                }
 960                adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
 961                array_ew32(IVAR0, index, ivar);
 962        }
 963}
 964
 965/**
 966 * igbvf_configure_msix - Configure MSI-X hardware
 967 *
 968 * igbvf_configure_msix sets up the hardware to properly
 969 * generate MSI-X interrupts.
 970 **/
 971static void igbvf_configure_msix(struct igbvf_adapter *adapter)
 972{
 973        u32 tmp;
 974        struct e1000_hw *hw = &adapter->hw;
 975        struct igbvf_ring *tx_ring = adapter->tx_ring;
 976        struct igbvf_ring *rx_ring = adapter->rx_ring;
 977        int vector = 0;
 978
 979        adapter->eims_enable_mask = 0;
 980
 981        igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
 982        adapter->eims_enable_mask |= tx_ring->eims_value;
 983        if (tx_ring->itr_val)
 984                writel(tx_ring->itr_val,
 985                       hw->hw_addr + tx_ring->itr_register);
 986        else
 987                writel(1952, hw->hw_addr + tx_ring->itr_register);
 988
 989        igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
 990        adapter->eims_enable_mask |= rx_ring->eims_value;
 991        if (rx_ring->itr_val)
 992                writel(rx_ring->itr_val,
 993                       hw->hw_addr + rx_ring->itr_register);
 994        else
 995                writel(1952, hw->hw_addr + rx_ring->itr_register);
 996
 997        /* set vector for other causes, i.e. link changes */
 998
 999        tmp = (vector++ | E1000_IVAR_VALID);
1000
1001        ew32(IVAR_MISC, tmp);
1002
1003        adapter->eims_enable_mask = (1 << (vector)) - 1;
1004        adapter->eims_other = 1 << (vector - 1);
1005        e1e_flush();
1006}
1007
1008static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1009{
1010        if (adapter->msix_entries) {
1011                pci_disable_msix(adapter->pdev);
1012                kfree(adapter->msix_entries);
1013                adapter->msix_entries = NULL;
1014        }
1015}
1016
1017/**
1018 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1019 *
1020 * Attempt to configure interrupts using the best available
1021 * capabilities of the hardware and kernel.
1022 **/
1023static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1024{
1025        int err = -ENOMEM;
1026        int i;
1027
1028        /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1029        adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1030                                        GFP_KERNEL);
1031        if (adapter->msix_entries) {
1032                for (i = 0; i < 3; i++)
1033                        adapter->msix_entries[i].entry = i;
1034
1035                err = pci_enable_msix(adapter->pdev,
1036                                      adapter->msix_entries, 3);
1037        }
1038
1039        if (err) {
1040                /* MSI-X failed */
1041                dev_err(&adapter->pdev->dev,
1042                        "Failed to initialize MSI-X interrupts.\n");
1043                igbvf_reset_interrupt_capability(adapter);
1044        }
1045}
1046
1047/**
1048 * igbvf_request_msix - Initialize MSI-X interrupts
1049 *
1050 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1051 * kernel.
1052 **/
1053static int igbvf_request_msix(struct igbvf_adapter *adapter)
1054{
1055        struct net_device *netdev = adapter->netdev;
1056        int err = 0, vector = 0;
1057
1058        if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1059                sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1060                sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1061        } else {
1062                memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1063                memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1064        }
1065
1066        err = request_irq(adapter->msix_entries[vector].vector,
1067                          igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1068                          netdev);
1069        if (err)
1070                goto out;
1071
1072        adapter->tx_ring->itr_register = E1000_EITR(vector);
1073        adapter->tx_ring->itr_val = 1952;
1074        vector++;
1075
1076        err = request_irq(adapter->msix_entries[vector].vector,
1077                          igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1078                          netdev);
1079        if (err)
1080                goto out;
1081
1082        adapter->rx_ring->itr_register = E1000_EITR(vector);
1083        adapter->rx_ring->itr_val = 1952;
1084        vector++;
1085
1086        err = request_irq(adapter->msix_entries[vector].vector,
1087                          igbvf_msix_other, 0, netdev->name, netdev);
1088        if (err)
1089                goto out;
1090
1091        igbvf_configure_msix(adapter);
1092        return 0;
1093out:
1094        return err;
1095}
1096
1097/**
1098 * igbvf_alloc_queues - Allocate memory for all rings
1099 * @adapter: board private structure to initialize
1100 **/
1101static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1102{
1103        struct net_device *netdev = adapter->netdev;
1104
1105        adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1106        if (!adapter->tx_ring)
1107                return -ENOMEM;
1108
1109        adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1110        if (!adapter->rx_ring) {
1111                kfree(adapter->tx_ring);
1112                return -ENOMEM;
1113        }
1114
1115        netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1116
1117        return 0;
1118}
1119
1120/**
1121 * igbvf_request_irq - initialize interrupts
1122 *
1123 * Attempts to configure interrupts using the best available
1124 * capabilities of the hardware and kernel.
1125 **/
1126static int igbvf_request_irq(struct igbvf_adapter *adapter)
1127{
1128        int err = -1;
1129
1130        /* igbvf supports msi-x only */
1131        if (adapter->msix_entries)
1132                err = igbvf_request_msix(adapter);
1133
1134        if (!err)
1135                return err;
1136
1137        dev_err(&adapter->pdev->dev,
1138                "Unable to allocate interrupt, Error: %d\n", err);
1139
1140        return err;
1141}
1142
1143static void igbvf_free_irq(struct igbvf_adapter *adapter)
1144{
1145        struct net_device *netdev = adapter->netdev;
1146        int vector;
1147
1148        if (adapter->msix_entries) {
1149                for (vector = 0; vector < 3; vector++)
1150                        free_irq(adapter->msix_entries[vector].vector, netdev);
1151        }
1152}
1153
1154/**
1155 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1156 **/
1157static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1158{
1159        struct e1000_hw *hw = &adapter->hw;
1160
1161        ew32(EIMC, ~0);
1162
1163        if (adapter->msix_entries)
1164                ew32(EIAC, 0);
1165}
1166
1167/**
1168 * igbvf_irq_enable - Enable default interrupt generation settings
1169 **/
1170static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1171{
1172        struct e1000_hw *hw = &adapter->hw;
1173
1174        ew32(EIAC, adapter->eims_enable_mask);
1175        ew32(EIAM, adapter->eims_enable_mask);
1176        ew32(EIMS, adapter->eims_enable_mask);
1177}
1178
1179/**
1180 * igbvf_poll - NAPI Rx polling callback
1181 * @napi: struct associated with this polling callback
1182 * @budget: amount of packets driver is allowed to process this poll
1183 **/
1184static int igbvf_poll(struct napi_struct *napi, int budget)
1185{
1186        struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1187        struct igbvf_adapter *adapter = rx_ring->adapter;
1188        struct e1000_hw *hw = &adapter->hw;
1189        int work_done = 0;
1190
1191        igbvf_clean_rx_irq(adapter, &work_done, budget);
1192
1193        /* If not enough Rx work done, exit the polling mode */
1194        if (work_done < budget) {
1195                napi_complete(napi);
1196
1197                if (adapter->itr_setting & 3)
1198                        igbvf_set_itr(adapter);
1199
1200                if (!test_bit(__IGBVF_DOWN, &adapter->state))
1201                        ew32(EIMS, adapter->rx_ring->eims_value);
1202        }
1203
1204        return work_done;
1205}
1206
1207/**
1208 * igbvf_set_rlpml - set receive large packet maximum length
1209 * @adapter: board private structure
1210 *
1211 * Configure the maximum size of packets that will be received
1212 */
1213static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1214{
1215        int max_frame_size = adapter->max_frame_size;
1216        struct e1000_hw *hw = &adapter->hw;
1217
1218        if (adapter->vlgrp)
1219                max_frame_size += VLAN_TAG_SIZE;
1220
1221        e1000_rlpml_set_vf(hw, max_frame_size);
1222}
1223
1224static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1225{
1226        struct igbvf_adapter *adapter = netdev_priv(netdev);
1227        struct e1000_hw *hw = &adapter->hw;
1228
1229        if (hw->mac.ops.set_vfta(hw, vid, true))
1230                dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1231}
1232
1233static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1234{
1235        struct igbvf_adapter *adapter = netdev_priv(netdev);
1236        struct e1000_hw *hw = &adapter->hw;
1237
1238        igbvf_irq_disable(adapter);
1239        vlan_group_set_device(adapter->vlgrp, vid, NULL);
1240
1241        if (!test_bit(__IGBVF_DOWN, &adapter->state))
1242                igbvf_irq_enable(adapter);
1243
1244        if (hw->mac.ops.set_vfta(hw, vid, false))
1245                dev_err(&adapter->pdev->dev,
1246                        "Failed to remove vlan id %d\n", vid);
1247}
1248
1249static void igbvf_vlan_rx_register(struct net_device *netdev,
1250                                   struct vlan_group *grp)
1251{
1252        struct igbvf_adapter *adapter = netdev_priv(netdev);
1253
1254        adapter->vlgrp = grp;
1255}
1256
1257static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1258{
1259        u16 vid;
1260
1261        if (!adapter->vlgrp)
1262                return;
1263
1264        for (vid = 0; vid < VLAN_N_VID; vid++) {
1265                if (!vlan_group_get_device(adapter->vlgrp, vid))
1266                        continue;
1267                igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1268        }
1269
1270        igbvf_set_rlpml(adapter);
1271}
1272
1273/**
1274 * igbvf_configure_tx - Configure Transmit Unit after Reset
1275 * @adapter: board private structure
1276 *
1277 * Configure the Tx unit of the MAC after a reset.
1278 **/
1279static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1280{
1281        struct e1000_hw *hw = &adapter->hw;
1282        struct igbvf_ring *tx_ring = adapter->tx_ring;
1283        u64 tdba;
1284        u32 txdctl, dca_txctrl;
1285
1286        /* disable transmits */
1287        txdctl = er32(TXDCTL(0));
1288        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1289        msleep(10);
1290
1291        /* Setup the HW Tx Head and Tail descriptor pointers */
1292        ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1293        tdba = tx_ring->dma;
1294        ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1295        ew32(TDBAH(0), (tdba >> 32));
1296        ew32(TDH(0), 0);
1297        ew32(TDT(0), 0);
1298        tx_ring->head = E1000_TDH(0);
1299        tx_ring->tail = E1000_TDT(0);
1300
1301        /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1302         * MUST be delivered in order or it will completely screw up
1303         * our bookeeping.
1304         */
1305        dca_txctrl = er32(DCA_TXCTRL(0));
1306        dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1307        ew32(DCA_TXCTRL(0), dca_txctrl);
1308
1309        /* enable transmits */
1310        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1311        ew32(TXDCTL(0), txdctl);
1312
1313        /* Setup Transmit Descriptor Settings for eop descriptor */
1314        adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1315
1316        /* enable Report Status bit */
1317        adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1318}
1319
1320/**
1321 * igbvf_setup_srrctl - configure the receive control registers
1322 * @adapter: Board private structure
1323 **/
1324static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1325{
1326        struct e1000_hw *hw = &adapter->hw;
1327        u32 srrctl = 0;
1328
1329        srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1330                    E1000_SRRCTL_BSIZEHDR_MASK |
1331                    E1000_SRRCTL_BSIZEPKT_MASK);
1332
1333        /* Enable queue drop to avoid head of line blocking */
1334        srrctl |= E1000_SRRCTL_DROP_EN;
1335
1336        /* Setup buffer sizes */
1337        srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1338                  E1000_SRRCTL_BSIZEPKT_SHIFT;
1339
1340        if (adapter->rx_buffer_len < 2048) {
1341                adapter->rx_ps_hdr_size = 0;
1342                srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1343        } else {
1344                adapter->rx_ps_hdr_size = 128;
1345                srrctl |= adapter->rx_ps_hdr_size <<
1346                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1347                srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1348        }
1349
1350        ew32(SRRCTL(0), srrctl);
1351}
1352
1353/**
1354 * igbvf_configure_rx - Configure Receive Unit after Reset
1355 * @adapter: board private structure
1356 *
1357 * Configure the Rx unit of the MAC after a reset.
1358 **/
1359static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1360{
1361        struct e1000_hw *hw = &adapter->hw;
1362        struct igbvf_ring *rx_ring = adapter->rx_ring;
1363        u64 rdba;
1364        u32 rdlen, rxdctl;
1365
1366        /* disable receives */
1367        rxdctl = er32(RXDCTL(0));
1368        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1369        msleep(10);
1370
1371        rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1372
1373        /*
1374         * Setup the HW Rx Head and Tail Descriptor Pointers and
1375         * the Base and Length of the Rx Descriptor Ring
1376         */
1377        rdba = rx_ring->dma;
1378        ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1379        ew32(RDBAH(0), (rdba >> 32));
1380        ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1381        rx_ring->head = E1000_RDH(0);
1382        rx_ring->tail = E1000_RDT(0);
1383        ew32(RDH(0), 0);
1384        ew32(RDT(0), 0);
1385
1386        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1387        rxdctl &= 0xFFF00000;
1388        rxdctl |= IGBVF_RX_PTHRESH;
1389        rxdctl |= IGBVF_RX_HTHRESH << 8;
1390        rxdctl |= IGBVF_RX_WTHRESH << 16;
1391
1392        igbvf_set_rlpml(adapter);
1393
1394        /* enable receives */
1395        ew32(RXDCTL(0), rxdctl);
1396}
1397
1398/**
1399 * igbvf_set_multi - Multicast and Promiscuous mode set
1400 * @netdev: network interface device structure
1401 *
1402 * The set_multi entry point is called whenever the multicast address
1403 * list or the network interface flags are updated.  This routine is
1404 * responsible for configuring the hardware for proper multicast,
1405 * promiscuous mode, and all-multi behavior.
1406 **/
1407static void igbvf_set_multi(struct net_device *netdev)
1408{
1409        struct igbvf_adapter *adapter = netdev_priv(netdev);
1410        struct e1000_hw *hw = &adapter->hw;
1411        struct netdev_hw_addr *ha;
1412        u8  *mta_list = NULL;
1413        int i;
1414
1415        if (!netdev_mc_empty(netdev)) {
1416                mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1417                if (!mta_list) {
1418                        dev_err(&adapter->pdev->dev,
1419                                "failed to allocate multicast filter list\n");
1420                        return;
1421                }
1422        }
1423
1424        /* prepare a packed array of only addresses. */
1425        i = 0;
1426        netdev_for_each_mc_addr(ha, netdev)
1427                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1428
1429        hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1430        kfree(mta_list);
1431}
1432
1433/**
1434 * igbvf_configure - configure the hardware for Rx and Tx
1435 * @adapter: private board structure
1436 **/
1437static void igbvf_configure(struct igbvf_adapter *adapter)
1438{
1439        igbvf_set_multi(adapter->netdev);
1440
1441        igbvf_restore_vlan(adapter);
1442
1443        igbvf_configure_tx(adapter);
1444        igbvf_setup_srrctl(adapter);
1445        igbvf_configure_rx(adapter);
1446        igbvf_alloc_rx_buffers(adapter->rx_ring,
1447                               igbvf_desc_unused(adapter->rx_ring));
1448}
1449
1450/* igbvf_reset - bring the hardware into a known good state
1451 *
1452 * This function boots the hardware and enables some settings that
1453 * require a configuration cycle of the hardware - those cannot be
1454 * set/changed during runtime. After reset the device needs to be
1455 * properly configured for Rx, Tx etc.
1456 */
1457static void igbvf_reset(struct igbvf_adapter *adapter)
1458{
1459        struct e1000_mac_info *mac = &adapter->hw.mac;
1460        struct net_device *netdev = adapter->netdev;
1461        struct e1000_hw *hw = &adapter->hw;
1462
1463        /* Allow time for pending master requests to run */
1464        if (mac->ops.reset_hw(hw))
1465                dev_err(&adapter->pdev->dev, "PF still resetting\n");
1466
1467        mac->ops.init_hw(hw);
1468
1469        if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1470                memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1471                       netdev->addr_len);
1472                memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1473                       netdev->addr_len);
1474        }
1475
1476        adapter->last_reset = jiffies;
1477}
1478
1479int igbvf_up(struct igbvf_adapter *adapter)
1480{
1481        struct e1000_hw *hw = &adapter->hw;
1482
1483        /* hardware has been reset, we need to reload some things */
1484        igbvf_configure(adapter);
1485
1486        clear_bit(__IGBVF_DOWN, &adapter->state);
1487
1488        napi_enable(&adapter->rx_ring->napi);
1489        if (adapter->msix_entries)
1490                igbvf_configure_msix(adapter);
1491
1492        /* Clear any pending interrupts. */
1493        er32(EICR);
1494        igbvf_irq_enable(adapter);
1495
1496        /* start the watchdog */
1497        hw->mac.get_link_status = 1;
1498        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1499
1500
1501        return 0;
1502}
1503
1504void igbvf_down(struct igbvf_adapter *adapter)
1505{
1506        struct net_device *netdev = adapter->netdev;
1507        struct e1000_hw *hw = &adapter->hw;
1508        u32 rxdctl, txdctl;
1509
1510        /*
1511         * signal that we're down so the interrupt handler does not
1512         * reschedule our watchdog timer
1513         */
1514        set_bit(__IGBVF_DOWN, &adapter->state);
1515
1516        /* disable receives in the hardware */
1517        rxdctl = er32(RXDCTL(0));
1518        ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1519
1520        netif_stop_queue(netdev);
1521
1522        /* disable transmits in the hardware */
1523        txdctl = er32(TXDCTL(0));
1524        ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1525
1526        /* flush both disables and wait for them to finish */
1527        e1e_flush();
1528        msleep(10);
1529
1530        napi_disable(&adapter->rx_ring->napi);
1531
1532        igbvf_irq_disable(adapter);
1533
1534        del_timer_sync(&adapter->watchdog_timer);
1535
1536        netif_carrier_off(netdev);
1537
1538        /* record the stats before reset*/
1539        igbvf_update_stats(adapter);
1540
1541        adapter->link_speed = 0;
1542        adapter->link_duplex = 0;
1543
1544        igbvf_reset(adapter);
1545        igbvf_clean_tx_ring(adapter->tx_ring);
1546        igbvf_clean_rx_ring(adapter->rx_ring);
1547}
1548
1549void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1550{
1551        might_sleep();
1552        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1553                msleep(1);
1554        igbvf_down(adapter);
1555        igbvf_up(adapter);
1556        clear_bit(__IGBVF_RESETTING, &adapter->state);
1557}
1558
1559/**
1560 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1561 * @adapter: board private structure to initialize
1562 *
1563 * igbvf_sw_init initializes the Adapter private data structure.
1564 * Fields are initialized based on PCI device information and
1565 * OS network device settings (MTU size).
1566 **/
1567static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1568{
1569        struct net_device *netdev = adapter->netdev;
1570        s32 rc;
1571
1572        adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1573        adapter->rx_ps_hdr_size = 0;
1574        adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1575        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1576
1577        adapter->tx_int_delay = 8;
1578        adapter->tx_abs_int_delay = 32;
1579        adapter->rx_int_delay = 0;
1580        adapter->rx_abs_int_delay = 8;
1581        adapter->itr_setting = 3;
1582        adapter->itr = 20000;
1583
1584        /* Set various function pointers */
1585        adapter->ei->init_ops(&adapter->hw);
1586
1587        rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1588        if (rc)
1589                return rc;
1590
1591        rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1592        if (rc)
1593                return rc;
1594
1595        igbvf_set_interrupt_capability(adapter);
1596
1597        if (igbvf_alloc_queues(adapter))
1598                return -ENOMEM;
1599
1600        spin_lock_init(&adapter->tx_queue_lock);
1601
1602        /* Explicitly disable IRQ since the NIC can be in any state. */
1603        igbvf_irq_disable(adapter);
1604
1605        spin_lock_init(&adapter->stats_lock);
1606
1607        set_bit(__IGBVF_DOWN, &adapter->state);
1608        return 0;
1609}
1610
1611static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1612{
1613        struct e1000_hw *hw = &adapter->hw;
1614
1615        adapter->stats.last_gprc = er32(VFGPRC);
1616        adapter->stats.last_gorc = er32(VFGORC);
1617        adapter->stats.last_gptc = er32(VFGPTC);
1618        adapter->stats.last_gotc = er32(VFGOTC);
1619        adapter->stats.last_mprc = er32(VFMPRC);
1620        adapter->stats.last_gotlbc = er32(VFGOTLBC);
1621        adapter->stats.last_gptlbc = er32(VFGPTLBC);
1622        adapter->stats.last_gorlbc = er32(VFGORLBC);
1623        adapter->stats.last_gprlbc = er32(VFGPRLBC);
1624
1625        adapter->stats.base_gprc = er32(VFGPRC);
1626        adapter->stats.base_gorc = er32(VFGORC);
1627        adapter->stats.base_gptc = er32(VFGPTC);
1628        adapter->stats.base_gotc = er32(VFGOTC);
1629        adapter->stats.base_mprc = er32(VFMPRC);
1630        adapter->stats.base_gotlbc = er32(VFGOTLBC);
1631        adapter->stats.base_gptlbc = er32(VFGPTLBC);
1632        adapter->stats.base_gorlbc = er32(VFGORLBC);
1633        adapter->stats.base_gprlbc = er32(VFGPRLBC);
1634}
1635
1636/**
1637 * igbvf_open - Called when a network interface is made active
1638 * @netdev: network interface device structure
1639 *
1640 * Returns 0 on success, negative value on failure
1641 *
1642 * The open entry point is called when a network interface is made
1643 * active by the system (IFF_UP).  At this point all resources needed
1644 * for transmit and receive operations are allocated, the interrupt
1645 * handler is registered with the OS, the watchdog timer is started,
1646 * and the stack is notified that the interface is ready.
1647 **/
1648static int igbvf_open(struct net_device *netdev)
1649{
1650        struct igbvf_adapter *adapter = netdev_priv(netdev);
1651        struct e1000_hw *hw = &adapter->hw;
1652        int err;
1653
1654        /* disallow open during test */
1655        if (test_bit(__IGBVF_TESTING, &adapter->state))
1656                return -EBUSY;
1657
1658        /* allocate transmit descriptors */
1659        err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1660        if (err)
1661                goto err_setup_tx;
1662
1663        /* allocate receive descriptors */
1664        err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1665        if (err)
1666                goto err_setup_rx;
1667
1668        /*
1669         * before we allocate an interrupt, we must be ready to handle it.
1670         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1671         * as soon as we call pci_request_irq, so we have to setup our
1672         * clean_rx handler before we do so.
1673         */
1674        igbvf_configure(adapter);
1675
1676        err = igbvf_request_irq(adapter);
1677        if (err)
1678                goto err_req_irq;
1679
1680        /* From here on the code is the same as igbvf_up() */
1681        clear_bit(__IGBVF_DOWN, &adapter->state);
1682
1683        napi_enable(&adapter->rx_ring->napi);
1684
1685        /* clear any pending interrupts */
1686        er32(EICR);
1687
1688        igbvf_irq_enable(adapter);
1689
1690        /* start the watchdog */
1691        hw->mac.get_link_status = 1;
1692        mod_timer(&adapter->watchdog_timer, jiffies + 1);
1693
1694        return 0;
1695
1696err_req_irq:
1697        igbvf_free_rx_resources(adapter->rx_ring);
1698err_setup_rx:
1699        igbvf_free_tx_resources(adapter->tx_ring);
1700err_setup_tx:
1701        igbvf_reset(adapter);
1702
1703        return err;
1704}
1705
1706/**
1707 * igbvf_close - Disables a network interface
1708 * @netdev: network interface device structure
1709 *
1710 * Returns 0, this is not allowed to fail
1711 *
1712 * The close entry point is called when an interface is de-activated
1713 * by the OS.  The hardware is still under the drivers control, but
1714 * needs to be disabled.  A global MAC reset is issued to stop the
1715 * hardware, and all transmit and receive resources are freed.
1716 **/
1717static int igbvf_close(struct net_device *netdev)
1718{
1719        struct igbvf_adapter *adapter = netdev_priv(netdev);
1720
1721        WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1722        igbvf_down(adapter);
1723
1724        igbvf_free_irq(adapter);
1725
1726        igbvf_free_tx_resources(adapter->tx_ring);
1727        igbvf_free_rx_resources(adapter->rx_ring);
1728
1729        return 0;
1730}
1731/**
1732 * igbvf_set_mac - Change the Ethernet Address of the NIC
1733 * @netdev: network interface device structure
1734 * @p: pointer to an address structure
1735 *
1736 * Returns 0 on success, negative on failure
1737 **/
1738static int igbvf_set_mac(struct net_device *netdev, void *p)
1739{
1740        struct igbvf_adapter *adapter = netdev_priv(netdev);
1741        struct e1000_hw *hw = &adapter->hw;
1742        struct sockaddr *addr = p;
1743
1744        if (!is_valid_ether_addr(addr->sa_data))
1745                return -EADDRNOTAVAIL;
1746
1747        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1748
1749        hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1750
1751        if (memcmp(addr->sa_data, hw->mac.addr, 6))
1752                return -EADDRNOTAVAIL;
1753
1754        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1755
1756        return 0;
1757}
1758
1759#define UPDATE_VF_COUNTER(reg, name)                                    \
1760        {                                                               \
1761                u32 current_counter = er32(reg);                        \
1762                if (current_counter < adapter->stats.last_##name)       \
1763                        adapter->stats.name += 0x100000000LL;           \
1764                adapter->stats.last_##name = current_counter;           \
1765                adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1766                adapter->stats.name |= current_counter;                 \
1767        }
1768
1769/**
1770 * igbvf_update_stats - Update the board statistics counters
1771 * @adapter: board private structure
1772**/
1773void igbvf_update_stats(struct igbvf_adapter *adapter)
1774{
1775        struct e1000_hw *hw = &adapter->hw;
1776        struct pci_dev *pdev = adapter->pdev;
1777
1778        /*
1779         * Prevent stats update while adapter is being reset, link is down
1780         * or if the pci connection is down.
1781         */
1782        if (adapter->link_speed == 0)
1783                return;
1784
1785        if (test_bit(__IGBVF_RESETTING, &adapter->state))
1786                return;
1787
1788        if (pci_channel_offline(pdev))
1789                return;
1790
1791        UPDATE_VF_COUNTER(VFGPRC, gprc);
1792        UPDATE_VF_COUNTER(VFGORC, gorc);
1793        UPDATE_VF_COUNTER(VFGPTC, gptc);
1794        UPDATE_VF_COUNTER(VFGOTC, gotc);
1795        UPDATE_VF_COUNTER(VFMPRC, mprc);
1796        UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1797        UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1798        UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1799        UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1800
1801        /* Fill out the OS statistics structure */
1802        adapter->net_stats.multicast = adapter->stats.mprc;
1803}
1804
1805static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1806{
1807        dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1808                 adapter->link_speed,
1809                 ((adapter->link_duplex == FULL_DUPLEX) ?
1810                  "Full Duplex" : "Half Duplex"));
1811}
1812
1813static bool igbvf_has_link(struct igbvf_adapter *adapter)
1814{
1815        struct e1000_hw *hw = &adapter->hw;
1816        s32 ret_val = E1000_SUCCESS;
1817        bool link_active;
1818
1819        /* If interface is down, stay link down */
1820        if (test_bit(__IGBVF_DOWN, &adapter->state))
1821                return false;
1822
1823        ret_val = hw->mac.ops.check_for_link(hw);
1824        link_active = !hw->mac.get_link_status;
1825
1826        /* if check for link returns error we will need to reset */
1827        if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1828                schedule_work(&adapter->reset_task);
1829
1830        return link_active;
1831}
1832
1833/**
1834 * igbvf_watchdog - Timer Call-back
1835 * @data: pointer to adapter cast into an unsigned long
1836 **/
1837static void igbvf_watchdog(unsigned long data)
1838{
1839        struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1840
1841        /* Do the rest outside of interrupt context */
1842        schedule_work(&adapter->watchdog_task);
1843}
1844
1845static void igbvf_watchdog_task(struct work_struct *work)
1846{
1847        struct igbvf_adapter *adapter = container_of(work,
1848                                                     struct igbvf_adapter,
1849                                                     watchdog_task);
1850        struct net_device *netdev = adapter->netdev;
1851        struct e1000_mac_info *mac = &adapter->hw.mac;
1852        struct igbvf_ring *tx_ring = adapter->tx_ring;
1853        struct e1000_hw *hw = &adapter->hw;
1854        u32 link;
1855        int tx_pending = 0;
1856
1857        link = igbvf_has_link(adapter);
1858
1859        if (link) {
1860                if (!netif_carrier_ok(netdev)) {
1861                        mac->ops.get_link_up_info(&adapter->hw,
1862                                                  &adapter->link_speed,
1863                                                  &adapter->link_duplex);
1864                        igbvf_print_link_info(adapter);
1865
1866                        /* adjust timeout factor according to speed/duplex */
1867                        adapter->tx_timeout_factor = 1;
1868                        switch (adapter->link_speed) {
1869                        case SPEED_10:
1870                                adapter->tx_timeout_factor = 16;
1871                                break;
1872                        case SPEED_100:
1873                                /* maybe add some timeout factor ? */
1874                                break;
1875                        }
1876
1877                        netif_carrier_on(netdev);
1878                        netif_wake_queue(netdev);
1879                }
1880        } else {
1881                if (netif_carrier_ok(netdev)) {
1882                        adapter->link_speed = 0;
1883                        adapter->link_duplex = 0;
1884                        dev_info(&adapter->pdev->dev, "Link is Down\n");
1885                        netif_carrier_off(netdev);
1886                        netif_stop_queue(netdev);
1887                }
1888        }
1889
1890        if (netif_carrier_ok(netdev)) {
1891                igbvf_update_stats(adapter);
1892        } else {
1893                tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1894                              tx_ring->count);
1895                if (tx_pending) {
1896                        /*
1897                         * We've lost link, so the controller stops DMA,
1898                         * but we've got queued Tx work that's never going
1899                         * to get done, so reset controller to flush Tx.
1900                         * (Do the reset outside of interrupt context).
1901                         */
1902                        adapter->tx_timeout_count++;
1903                        schedule_work(&adapter->reset_task);
1904                }
1905        }
1906
1907        /* Cause software interrupt to ensure Rx ring is cleaned */
1908        ew32(EICS, adapter->rx_ring->eims_value);
1909
1910        /* Force detection of hung controller every watchdog period */
1911        adapter->detect_tx_hung = 1;
1912
1913        /* Reset the timer */
1914        if (!test_bit(__IGBVF_DOWN, &adapter->state))
1915                mod_timer(&adapter->watchdog_timer,
1916                          round_jiffies(jiffies + (2 * HZ)));
1917}
1918
1919#define IGBVF_TX_FLAGS_CSUM             0x00000001
1920#define IGBVF_TX_FLAGS_VLAN             0x00000002
1921#define IGBVF_TX_FLAGS_TSO              0x00000004
1922#define IGBVF_TX_FLAGS_IPV4             0x00000008
1923#define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1924#define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1925
1926static int igbvf_tso(struct igbvf_adapter *adapter,
1927                     struct igbvf_ring *tx_ring,
1928                     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1929{
1930        struct e1000_adv_tx_context_desc *context_desc;
1931        unsigned int i;
1932        int err;
1933        struct igbvf_buffer *buffer_info;
1934        u32 info = 0, tu_cmd = 0;
1935        u32 mss_l4len_idx, l4len;
1936        *hdr_len = 0;
1937
1938        if (skb_header_cloned(skb)) {
1939                err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1940                if (err) {
1941                        dev_err(&adapter->pdev->dev,
1942                                "igbvf_tso returning an error\n");
1943                        return err;
1944                }
1945        }
1946
1947        l4len = tcp_hdrlen(skb);
1948        *hdr_len += l4len;
1949
1950        if (skb->protocol == htons(ETH_P_IP)) {
1951                struct iphdr *iph = ip_hdr(skb);
1952                iph->tot_len = 0;
1953                iph->check = 0;
1954                tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1955                                                         iph->daddr, 0,
1956                                                         IPPROTO_TCP,
1957                                                         0);
1958        } else if (skb_is_gso_v6(skb)) {
1959                ipv6_hdr(skb)->payload_len = 0;
1960                tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1961                                                       &ipv6_hdr(skb)->daddr,
1962                                                       0, IPPROTO_TCP, 0);
1963        }
1964
1965        i = tx_ring->next_to_use;
1966
1967        buffer_info = &tx_ring->buffer_info[i];
1968        context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1969        /* VLAN MACLEN IPLEN */
1970        if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1971                info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1972        info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1973        *hdr_len += skb_network_offset(skb);
1974        info |= (skb_transport_header(skb) - skb_network_header(skb));
1975        *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1976        context_desc->vlan_macip_lens = cpu_to_le32(info);
1977
1978        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1979        tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1980
1981        if (skb->protocol == htons(ETH_P_IP))
1982                tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1983        tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1984
1985        context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1986
1987        /* MSS L4LEN IDX */
1988        mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1989        mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1990
1991        context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1992        context_desc->seqnum_seed = 0;
1993
1994        buffer_info->time_stamp = jiffies;
1995        buffer_info->next_to_watch = i;
1996        buffer_info->dma = 0;
1997        i++;
1998        if (i == tx_ring->count)
1999                i = 0;
2000
2001        tx_ring->next_to_use = i;
2002
2003        return true;
2004}
2005
2006static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
2007                                 struct igbvf_ring *tx_ring,
2008                                 struct sk_buff *skb, u32 tx_flags)
2009{
2010        struct e1000_adv_tx_context_desc *context_desc;
2011        unsigned int i;
2012        struct igbvf_buffer *buffer_info;
2013        u32 info = 0, tu_cmd = 0;
2014
2015        if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2016            (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2017                i = tx_ring->next_to_use;
2018                buffer_info = &tx_ring->buffer_info[i];
2019                context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2020
2021                if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2022                        info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2023
2024                info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2025                if (skb->ip_summed == CHECKSUM_PARTIAL)
2026                        info |= (skb_transport_header(skb) -
2027                                 skb_network_header(skb));
2028
2029
2030                context_desc->vlan_macip_lens = cpu_to_le32(info);
2031
2032                tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2033
2034                if (skb->ip_summed == CHECKSUM_PARTIAL) {
2035                        switch (skb->protocol) {
2036                        case __constant_htons(ETH_P_IP):
2037                                tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2038                                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2039                                        tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2040                                break;
2041                        case __constant_htons(ETH_P_IPV6):
2042                                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2043                                        tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2044                                break;
2045                        default:
2046                                break;
2047                        }
2048                }
2049
2050                context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2051                context_desc->seqnum_seed = 0;
2052                context_desc->mss_l4len_idx = 0;
2053
2054                buffer_info->time_stamp = jiffies;
2055                buffer_info->next_to_watch = i;
2056                buffer_info->dma = 0;
2057                i++;
2058                if (i == tx_ring->count)
2059                        i = 0;
2060                tx_ring->next_to_use = i;
2061
2062                return true;
2063        }
2064
2065        return false;
2066}
2067
2068static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2069{
2070        struct igbvf_adapter *adapter = netdev_priv(netdev);
2071
2072        /* there is enough descriptors then we don't need to worry  */
2073        if (igbvf_desc_unused(adapter->tx_ring) >= size)
2074                return 0;
2075
2076        netif_stop_queue(netdev);
2077
2078        smp_mb();
2079
2080        /* We need to check again just in case room has been made available */
2081        if (igbvf_desc_unused(adapter->tx_ring) < size)
2082                return -EBUSY;
2083
2084        netif_wake_queue(netdev);
2085
2086        ++adapter->restart_queue;
2087        return 0;
2088}
2089
2090#define IGBVF_MAX_TXD_PWR       16
2091#define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2092
2093static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2094                                   struct igbvf_ring *tx_ring,
2095                                   struct sk_buff *skb,
2096                                   unsigned int first)
2097{
2098        struct igbvf_buffer *buffer_info;
2099        struct pci_dev *pdev = adapter->pdev;
2100        unsigned int len = skb_headlen(skb);
2101        unsigned int count = 0, i;
2102        unsigned int f;
2103
2104        i = tx_ring->next_to_use;
2105
2106        buffer_info = &tx_ring->buffer_info[i];
2107        BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2108        buffer_info->length = len;
2109        /* set time_stamp *before* dma to help avoid a possible race */
2110        buffer_info->time_stamp = jiffies;
2111        buffer_info->next_to_watch = i;
2112        buffer_info->mapped_as_page = false;
2113        buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2114                                          DMA_TO_DEVICE);
2115        if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2116                goto dma_error;
2117
2118
2119        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2120                struct skb_frag_struct *frag;
2121
2122                count++;
2123                i++;
2124                if (i == tx_ring->count)
2125                        i = 0;
2126
2127                frag = &skb_shinfo(skb)->frags[f];
2128                len = frag->size;
2129
2130                buffer_info = &tx_ring->buffer_info[i];
2131                BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2132                buffer_info->length = len;
2133                buffer_info->time_stamp = jiffies;
2134                buffer_info->next_to_watch = i;
2135                buffer_info->mapped_as_page = true;
2136                buffer_info->dma = dma_map_page(&pdev->dev,
2137                                                frag->page,
2138                                                frag->page_offset,
2139                                                len,
2140                                                DMA_TO_DEVICE);
2141                if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2142                        goto dma_error;
2143        }
2144
2145        tx_ring->buffer_info[i].skb = skb;
2146        tx_ring->buffer_info[first].next_to_watch = i;
2147
2148        return ++count;
2149
2150dma_error:
2151        dev_err(&pdev->dev, "TX DMA map failed\n");
2152
2153        /* clear timestamp and dma mappings for failed buffer_info mapping */
2154        buffer_info->dma = 0;
2155        buffer_info->time_stamp = 0;
2156        buffer_info->length = 0;
2157        buffer_info->next_to_watch = 0;
2158        buffer_info->mapped_as_page = false;
2159        if (count)
2160                count--;
2161
2162        /* clear timestamp and dma mappings for remaining portion of packet */
2163        while (count--) {
2164                if (i==0)
2165                        i += tx_ring->count;
2166                i--;
2167                buffer_info = &tx_ring->buffer_info[i];
2168                igbvf_put_txbuf(adapter, buffer_info);
2169        }
2170
2171        return 0;
2172}
2173
2174static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2175                                      struct igbvf_ring *tx_ring,
2176                                      int tx_flags, int count, u32 paylen,
2177                                      u8 hdr_len)
2178{
2179        union e1000_adv_tx_desc *tx_desc = NULL;
2180        struct igbvf_buffer *buffer_info;
2181        u32 olinfo_status = 0, cmd_type_len;
2182        unsigned int i;
2183
2184        cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2185                        E1000_ADVTXD_DCMD_DEXT);
2186
2187        if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2188                cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2189
2190        if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2191                cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2192
2193                /* insert tcp checksum */
2194                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2195
2196                /* insert ip checksum */
2197                if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2198                        olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2199
2200        } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2201                olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2202        }
2203
2204        olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2205
2206        i = tx_ring->next_to_use;
2207        while (count--) {
2208                buffer_info = &tx_ring->buffer_info[i];
2209                tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2210                tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2211                tx_desc->read.cmd_type_len =
2212                         cpu_to_le32(cmd_type_len | buffer_info->length);
2213                tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2214                i++;
2215                if (i == tx_ring->count)
2216                        i = 0;
2217        }
2218
2219        tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2220        /* Force memory writes to complete before letting h/w
2221         * know there are new descriptors to fetch.  (Only
2222         * applicable for weak-ordered memory model archs,
2223         * such as IA-64). */
2224        wmb();
2225
2226        tx_ring->next_to_use = i;
2227        writel(i, adapter->hw.hw_addr + tx_ring->tail);
2228        /* we need this if more than one processor can write to our tail
2229         * at a time, it syncronizes IO on IA64/Altix systems */
2230        mmiowb();
2231}
2232
2233static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2234                                             struct net_device *netdev,
2235                                             struct igbvf_ring *tx_ring)
2236{
2237        struct igbvf_adapter *adapter = netdev_priv(netdev);
2238        unsigned int first, tx_flags = 0;
2239        u8 hdr_len = 0;
2240        int count = 0;
2241        int tso = 0;
2242
2243        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2244                dev_kfree_skb_any(skb);
2245                return NETDEV_TX_OK;
2246        }
2247
2248        if (skb->len <= 0) {
2249                dev_kfree_skb_any(skb);
2250                return NETDEV_TX_OK;
2251        }
2252
2253        /*
2254         * need: count + 4 desc gap to keep tail from touching
2255         *       + 2 desc gap to keep tail from touching head,
2256         *       + 1 desc for skb->data,
2257         *       + 1 desc for context descriptor,
2258         * head, otherwise try next time
2259         */
2260        if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2261                /* this is a hard error */
2262                return NETDEV_TX_BUSY;
2263        }
2264
2265        if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2266                tx_flags |= IGBVF_TX_FLAGS_VLAN;
2267                tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2268        }
2269
2270        if (skb->protocol == htons(ETH_P_IP))
2271                tx_flags |= IGBVF_TX_FLAGS_IPV4;
2272
2273        first = tx_ring->next_to_use;
2274
2275        tso = skb_is_gso(skb) ?
2276                igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2277        if (unlikely(tso < 0)) {
2278                dev_kfree_skb_any(skb);
2279                return NETDEV_TX_OK;
2280        }
2281
2282        if (tso)
2283                tx_flags |= IGBVF_TX_FLAGS_TSO;
2284        else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2285                 (skb->ip_summed == CHECKSUM_PARTIAL))
2286                tx_flags |= IGBVF_TX_FLAGS_CSUM;
2287
2288        /*
2289         * count reflects descriptors mapped, if 0 then mapping error
2290         * has occured and we need to rewind the descriptor queue
2291         */
2292        count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2293
2294        if (count) {
2295                igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2296                                   skb->len, hdr_len);
2297                /* Make sure there is space in the ring for the next send. */
2298                igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2299        } else {
2300                dev_kfree_skb_any(skb);
2301                tx_ring->buffer_info[first].time_stamp = 0;
2302                tx_ring->next_to_use = first;
2303        }
2304
2305        return NETDEV_TX_OK;
2306}
2307
2308static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2309                                    struct net_device *netdev)
2310{
2311        struct igbvf_adapter *adapter = netdev_priv(netdev);
2312        struct igbvf_ring *tx_ring;
2313
2314        if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2315                dev_kfree_skb_any(skb);
2316                return NETDEV_TX_OK;
2317        }
2318
2319        tx_ring = &adapter->tx_ring[0];
2320
2321        return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2322}
2323
2324/**
2325 * igbvf_tx_timeout - Respond to a Tx Hang
2326 * @netdev: network interface device structure
2327 **/
2328static void igbvf_tx_timeout(struct net_device *netdev)
2329{
2330        struct igbvf_adapter *adapter = netdev_priv(netdev);
2331
2332        /* Do the reset outside of interrupt context */
2333        adapter->tx_timeout_count++;
2334        schedule_work(&adapter->reset_task);
2335}
2336
2337static void igbvf_reset_task(struct work_struct *work)
2338{
2339        struct igbvf_adapter *adapter;
2340        adapter = container_of(work, struct igbvf_adapter, reset_task);
2341
2342        igbvf_reinit_locked(adapter);
2343}
2344
2345/**
2346 * igbvf_get_stats - Get System Network Statistics
2347 * @netdev: network interface device structure
2348 *
2349 * Returns the address of the device statistics structure.
2350 * The statistics are actually updated from the timer callback.
2351 **/
2352static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2353{
2354        struct igbvf_adapter *adapter = netdev_priv(netdev);
2355
2356        /* only return the current stats */
2357        return &adapter->net_stats;
2358}
2359
2360/**
2361 * igbvf_change_mtu - Change the Maximum Transfer Unit
2362 * @netdev: network interface device structure
2363 * @new_mtu: new value for maximum frame size
2364 *
2365 * Returns 0 on success, negative on failure
2366 **/
2367static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2368{
2369        struct igbvf_adapter *adapter = netdev_priv(netdev);
2370        int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2371
2372        if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2373                dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2374                return -EINVAL;
2375        }
2376
2377#define MAX_STD_JUMBO_FRAME_SIZE 9234
2378        if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2379                dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2380                return -EINVAL;
2381        }
2382
2383        while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2384                msleep(1);
2385        /* igbvf_down has a dependency on max_frame_size */
2386        adapter->max_frame_size = max_frame;
2387        if (netif_running(netdev))
2388                igbvf_down(adapter);
2389
2390        /*
2391         * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2392         * means we reserve 2 more, this pushes us to allocate from the next
2393         * larger slab size.
2394         * i.e. RXBUFFER_2048 --> size-4096 slab
2395         * However with the new *_jumbo_rx* routines, jumbo receives will use
2396         * fragmented skbs
2397         */
2398
2399        if (max_frame <= 1024)
2400                adapter->rx_buffer_len = 1024;
2401        else if (max_frame <= 2048)
2402                adapter->rx_buffer_len = 2048;
2403        else
2404#if (PAGE_SIZE / 2) > 16384
2405                adapter->rx_buffer_len = 16384;
2406#else
2407                adapter->rx_buffer_len = PAGE_SIZE / 2;
2408#endif
2409
2410
2411        /* adjust allocation if LPE protects us, and we aren't using SBP */
2412        if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2413             (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2414                adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2415                                         ETH_FCS_LEN;
2416
2417        dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2418                 netdev->mtu, new_mtu);
2419        netdev->mtu = new_mtu;
2420
2421        if (netif_running(netdev))
2422                igbvf_up(adapter);
2423        else
2424                igbvf_reset(adapter);
2425
2426        clear_bit(__IGBVF_RESETTING, &adapter->state);
2427
2428        return 0;
2429}
2430
2431static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2432{
2433        switch (cmd) {
2434        default:
2435                return -EOPNOTSUPP;
2436        }
2437}
2438
2439static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2440{
2441        struct net_device *netdev = pci_get_drvdata(pdev);
2442        struct igbvf_adapter *adapter = netdev_priv(netdev);
2443#ifdef CONFIG_PM
2444        int retval = 0;
2445#endif
2446
2447        netif_device_detach(netdev);
2448
2449        if (netif_running(netdev)) {
2450                WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2451                igbvf_down(adapter);
2452                igbvf_free_irq(adapter);
2453        }
2454
2455#ifdef CONFIG_PM
2456        retval = pci_save_state(pdev);
2457        if (retval)
2458                return retval;
2459#endif
2460
2461        pci_disable_device(pdev);
2462
2463        return 0;
2464}
2465
2466#ifdef CONFIG_PM
2467static int igbvf_resume(struct pci_dev *pdev)
2468{
2469        struct net_device *netdev = pci_get_drvdata(pdev);
2470        struct igbvf_adapter *adapter = netdev_priv(netdev);
2471        u32 err;
2472
2473        pci_restore_state(pdev);
2474        err = pci_enable_device_mem(pdev);
2475        if (err) {
2476                dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2477                return err;
2478        }
2479
2480        pci_set_master(pdev);
2481
2482        if (netif_running(netdev)) {
2483                err = igbvf_request_irq(adapter);
2484                if (err)
2485                        return err;
2486        }
2487
2488        igbvf_reset(adapter);
2489
2490        if (netif_running(netdev))
2491                igbvf_up(adapter);
2492
2493        netif_device_attach(netdev);
2494
2495        return 0;
2496}
2497#endif
2498
2499static void igbvf_shutdown(struct pci_dev *pdev)
2500{
2501        igbvf_suspend(pdev, PMSG_SUSPEND);
2502}
2503
2504#ifdef CONFIG_NET_POLL_CONTROLLER
2505/*
2506 * Polling 'interrupt' - used by things like netconsole to send skbs
2507 * without having to re-enable interrupts. It's not called while
2508 * the interrupt routine is executing.
2509 */
2510static void igbvf_netpoll(struct net_device *netdev)
2511{
2512        struct igbvf_adapter *adapter = netdev_priv(netdev);
2513
2514        disable_irq(adapter->pdev->irq);
2515
2516        igbvf_clean_tx_irq(adapter->tx_ring);
2517
2518        enable_irq(adapter->pdev->irq);
2519}
2520#endif
2521
2522/**
2523 * igbvf_io_error_detected - called when PCI error is detected
2524 * @pdev: Pointer to PCI device
2525 * @state: The current pci connection state
2526 *
2527 * This function is called after a PCI bus error affecting
2528 * this device has been detected.
2529 */
2530static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2531                                                pci_channel_state_t state)
2532{
2533        struct net_device *netdev = pci_get_drvdata(pdev);
2534        struct igbvf_adapter *adapter = netdev_priv(netdev);
2535
2536        netif_device_detach(netdev);
2537
2538        if (state == pci_channel_io_perm_failure)
2539                return PCI_ERS_RESULT_DISCONNECT;
2540
2541        if (netif_running(netdev))
2542                igbvf_down(adapter);
2543        pci_disable_device(pdev);
2544
2545        /* Request a slot slot reset. */
2546        return PCI_ERS_RESULT_NEED_RESET;
2547}
2548
2549/**
2550 * igbvf_io_slot_reset - called after the pci bus has been reset.
2551 * @pdev: Pointer to PCI device
2552 *
2553 * Restart the card from scratch, as if from a cold-boot. Implementation
2554 * resembles the first-half of the igbvf_resume routine.
2555 */
2556static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2557{
2558        struct net_device *netdev = pci_get_drvdata(pdev);
2559        struct igbvf_adapter *adapter = netdev_priv(netdev);
2560
2561        if (pci_enable_device_mem(pdev)) {
2562                dev_err(&pdev->dev,
2563                        "Cannot re-enable PCI device after reset.\n");
2564                return PCI_ERS_RESULT_DISCONNECT;
2565        }
2566        pci_set_master(pdev);
2567
2568        igbvf_reset(adapter);
2569
2570        return PCI_ERS_RESULT_RECOVERED;
2571}
2572
2573/**
2574 * igbvf_io_resume - called when traffic can start flowing again.
2575 * @pdev: Pointer to PCI device
2576 *
2577 * This callback is called when the error recovery driver tells us that
2578 * its OK to resume normal operation. Implementation resembles the
2579 * second-half of the igbvf_resume routine.
2580 */
2581static void igbvf_io_resume(struct pci_dev *pdev)
2582{
2583        struct net_device *netdev = pci_get_drvdata(pdev);
2584        struct igbvf_adapter *adapter = netdev_priv(netdev);
2585
2586        if (netif_running(netdev)) {
2587                if (igbvf_up(adapter)) {
2588                        dev_err(&pdev->dev,
2589                                "can't bring device back up after reset\n");
2590                        return;
2591                }
2592        }
2593
2594        netif_device_attach(netdev);
2595}
2596
2597static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2598{
2599        struct e1000_hw *hw = &adapter->hw;
2600        struct net_device *netdev = adapter->netdev;
2601        struct pci_dev *pdev = adapter->pdev;
2602
2603        dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2604        dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2605        dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2606}
2607
2608static const struct net_device_ops igbvf_netdev_ops = {
2609        .ndo_open                       = igbvf_open,
2610        .ndo_stop                       = igbvf_close,
2611        .ndo_start_xmit                 = igbvf_xmit_frame,
2612        .ndo_get_stats                  = igbvf_get_stats,
2613        .ndo_set_multicast_list         = igbvf_set_multi,
2614        .ndo_set_mac_address            = igbvf_set_mac,
2615        .ndo_change_mtu                 = igbvf_change_mtu,
2616        .ndo_do_ioctl                   = igbvf_ioctl,
2617        .ndo_tx_timeout                 = igbvf_tx_timeout,
2618        .ndo_vlan_rx_register           = igbvf_vlan_rx_register,
2619        .ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2620        .ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2621#ifdef CONFIG_NET_POLL_CONTROLLER
2622        .ndo_poll_controller            = igbvf_netpoll,
2623#endif
2624};
2625
2626/**
2627 * igbvf_probe - Device Initialization Routine
2628 * @pdev: PCI device information struct
2629 * @ent: entry in igbvf_pci_tbl
2630 *
2631 * Returns 0 on success, negative on failure
2632 *
2633 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2634 * The OS initialization, configuring of the adapter private structure,
2635 * and a hardware reset occur.
2636 **/
2637static int __devinit igbvf_probe(struct pci_dev *pdev,
2638                                 const struct pci_device_id *ent)
2639{
2640        struct net_device *netdev;
2641        struct igbvf_adapter *adapter;
2642        struct e1000_hw *hw;
2643        const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2644
2645        static int cards_found;
2646        int err, pci_using_dac;
2647
2648        err = pci_enable_device_mem(pdev);
2649        if (err)
2650                return err;
2651
2652        pci_using_dac = 0;
2653        err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2654        if (!err) {
2655                err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2656                if (!err)
2657                        pci_using_dac = 1;
2658        } else {
2659                err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2660                if (err) {
2661                        err = dma_set_coherent_mask(&pdev->dev,
2662                                                    DMA_BIT_MASK(32));
2663                        if (err) {
2664                                dev_err(&pdev->dev, "No usable DMA "
2665                                        "configuration, aborting\n");
2666                                goto err_dma;
2667                        }
2668                }
2669        }
2670
2671        err = pci_request_regions(pdev, igbvf_driver_name);
2672        if (err)
2673                goto err_pci_reg;
2674
2675        pci_set_master(pdev);
2676
2677        err = -ENOMEM;
2678        netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2679        if (!netdev)
2680                goto err_alloc_etherdev;
2681
2682        SET_NETDEV_DEV(netdev, &pdev->dev);
2683
2684        pci_set_drvdata(pdev, netdev);
2685        adapter = netdev_priv(netdev);
2686        hw = &adapter->hw;
2687        adapter->netdev = netdev;
2688        adapter->pdev = pdev;
2689        adapter->ei = ei;
2690        adapter->pba = ei->pba;
2691        adapter->flags = ei->flags;
2692        adapter->hw.back = adapter;
2693        adapter->hw.mac.type = ei->mac;
2694        adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2695
2696        /* PCI config space info */
2697
2698        hw->vendor_id = pdev->vendor;
2699        hw->device_id = pdev->device;
2700        hw->subsystem_vendor_id = pdev->subsystem_vendor;
2701        hw->subsystem_device_id = pdev->subsystem_device;
2702
2703        pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2704
2705        err = -EIO;
2706        adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2707                                      pci_resource_len(pdev, 0));
2708
2709        if (!adapter->hw.hw_addr)
2710                goto err_ioremap;
2711
2712        if (ei->get_variants) {
2713                err = ei->get_variants(adapter);
2714                if (err)
2715                        goto err_ioremap;
2716        }
2717
2718        /* setup adapter struct */
2719        err = igbvf_sw_init(adapter);
2720        if (err)
2721                goto err_sw_init;
2722
2723        /* construct the net_device struct */
2724        netdev->netdev_ops = &igbvf_netdev_ops;
2725
2726        igbvf_set_ethtool_ops(netdev);
2727        netdev->watchdog_timeo = 5 * HZ;
2728        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2729
2730        adapter->bd_number = cards_found++;
2731
2732        netdev->features = NETIF_F_SG |
2733                           NETIF_F_IP_CSUM |
2734                           NETIF_F_HW_VLAN_TX |
2735                           NETIF_F_HW_VLAN_RX |
2736                           NETIF_F_HW_VLAN_FILTER;
2737
2738        netdev->features |= NETIF_F_IPV6_CSUM;
2739        netdev->features |= NETIF_F_TSO;
2740        netdev->features |= NETIF_F_TSO6;
2741
2742        if (pci_using_dac)
2743                netdev->features |= NETIF_F_HIGHDMA;
2744
2745        netdev->vlan_features |= NETIF_F_TSO;
2746        netdev->vlan_features |= NETIF_F_TSO6;
2747        netdev->vlan_features |= NETIF_F_IP_CSUM;
2748        netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2749        netdev->vlan_features |= NETIF_F_SG;
2750
2751        /*reset the controller to put the device in a known good state */
2752        err = hw->mac.ops.reset_hw(hw);
2753        if (err) {
2754                dev_info(&pdev->dev,
2755                         "PF still in reset state, assigning new address."
2756                         " Is the PF interface up?\n");
2757                dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2758        } else {
2759                err = hw->mac.ops.read_mac_addr(hw);
2760                if (err) {
2761                        dev_err(&pdev->dev, "Error reading MAC address\n");
2762                        goto err_hw_init;
2763                }
2764        }
2765
2766        memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2767        memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2768
2769        if (!is_valid_ether_addr(netdev->perm_addr)) {
2770                dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2771                        netdev->dev_addr);
2772                err = -EIO;
2773                goto err_hw_init;
2774        }
2775
2776        setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2777                    (unsigned long) adapter);
2778
2779        INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2780        INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2781
2782        /* ring size defaults */
2783        adapter->rx_ring->count = 1024;
2784        adapter->tx_ring->count = 1024;
2785
2786        /* reset the hardware with the new settings */
2787        igbvf_reset(adapter);
2788
2789        strcpy(netdev->name, "eth%d");
2790        err = register_netdev(netdev);
2791        if (err)
2792                goto err_hw_init;
2793
2794        /* tell the stack to leave us alone until igbvf_open() is called */
2795        netif_carrier_off(netdev);
2796        netif_stop_queue(netdev);
2797
2798        igbvf_print_device_info(adapter);
2799
2800        igbvf_initialize_last_counter_stats(adapter);
2801
2802        return 0;
2803
2804err_hw_init:
2805        kfree(adapter->tx_ring);
2806        kfree(adapter->rx_ring);
2807err_sw_init:
2808        igbvf_reset_interrupt_capability(adapter);
2809        iounmap(adapter->hw.hw_addr);
2810err_ioremap:
2811        free_netdev(netdev);
2812err_alloc_etherdev:
2813        pci_release_regions(pdev);
2814err_pci_reg:
2815err_dma:
2816        pci_disable_device(pdev);
2817        return err;
2818}
2819
2820/**
2821 * igbvf_remove - Device Removal Routine
2822 * @pdev: PCI device information struct
2823 *
2824 * igbvf_remove is called by the PCI subsystem to alert the driver
2825 * that it should release a PCI device.  The could be caused by a
2826 * Hot-Plug event, or because the driver is going to be removed from
2827 * memory.
2828 **/
2829static void __devexit igbvf_remove(struct pci_dev *pdev)
2830{
2831        struct net_device *netdev = pci_get_drvdata(pdev);
2832        struct igbvf_adapter *adapter = netdev_priv(netdev);
2833        struct e1000_hw *hw = &adapter->hw;
2834
2835        /*
2836         * The watchdog timer may be rescheduled, so explicitly
2837         * disable it from being rescheduled.
2838         */
2839        set_bit(__IGBVF_DOWN, &adapter->state);
2840        del_timer_sync(&adapter->watchdog_timer);
2841
2842        cancel_work_sync(&adapter->reset_task);
2843        cancel_work_sync(&adapter->watchdog_task);
2844
2845        unregister_netdev(netdev);
2846
2847        igbvf_reset_interrupt_capability(adapter);
2848
2849        /*
2850         * it is important to delete the napi struct prior to freeing the
2851         * rx ring so that you do not end up with null pointer refs
2852         */
2853        netif_napi_del(&adapter->rx_ring->napi);
2854        kfree(adapter->tx_ring);
2855        kfree(adapter->rx_ring);
2856
2857        iounmap(hw->hw_addr);
2858        if (hw->flash_address)
2859                iounmap(hw->flash_address);
2860        pci_release_regions(pdev);
2861
2862        free_netdev(netdev);
2863
2864        pci_disable_device(pdev);
2865}
2866
2867/* PCI Error Recovery (ERS) */
2868static struct pci_error_handlers igbvf_err_handler = {
2869        .error_detected = igbvf_io_error_detected,
2870        .slot_reset = igbvf_io_slot_reset,
2871        .resume = igbvf_io_resume,
2872};
2873
2874static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2875        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2876        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2877        { } /* terminate list */
2878};
2879MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2880
2881/* PCI Device API Driver */
2882static struct pci_driver igbvf_driver = {
2883        .name     = igbvf_driver_name,
2884        .id_table = igbvf_pci_tbl,
2885        .probe    = igbvf_probe,
2886        .remove   = __devexit_p(igbvf_remove),
2887#ifdef CONFIG_PM
2888        /* Power Management Hooks */
2889        .suspend  = igbvf_suspend,
2890        .resume   = igbvf_resume,
2891#endif
2892        .shutdown = igbvf_shutdown,
2893        .err_handler = &igbvf_err_handler
2894};
2895
2896/**
2897 * igbvf_init_module - Driver Registration Routine
2898 *
2899 * igbvf_init_module is the first routine called when the driver is
2900 * loaded. All it does is register with the PCI subsystem.
2901 **/
2902static int __init igbvf_init_module(void)
2903{
2904        int ret;
2905        printk(KERN_INFO "%s - version %s\n",
2906               igbvf_driver_string, igbvf_driver_version);
2907        printk(KERN_INFO "%s\n", igbvf_copyright);
2908
2909        ret = pci_register_driver(&igbvf_driver);
2910
2911        return ret;
2912}
2913module_init(igbvf_init_module);
2914
2915/**
2916 * igbvf_exit_module - Driver Exit Cleanup Routine
2917 *
2918 * igbvf_exit_module is called just before the driver is removed
2919 * from memory.
2920 **/
2921static void __exit igbvf_exit_module(void)
2922{
2923        pci_unregister_driver(&igbvf_driver);
2924}
2925module_exit(igbvf_exit_module);
2926
2927
2928MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2929MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2930MODULE_LICENSE("GPL");
2931MODULE_VERSION(DRV_VERSION);
2932
2933/* netdev.c */
2934