linux/drivers/net/ksz884x.c
<<
>>
Prefs
   1/**
   2 * drivers/net/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   3 *
   4 * Copyright (c) 2009-2010 Micrel, Inc.
   5 *      Tristram Ha <Tristram.Ha@micrel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/ioport.h>
  23#include <linux/pci.h>
  24#include <linux/proc_fs.h>
  25#include <linux/mii.h>
  26#include <linux/platform_device.h>
  27#include <linux/ethtool.h>
  28#include <linux/etherdevice.h>
  29#include <linux/in.h>
  30#include <linux/ip.h>
  31#include <linux/if_vlan.h>
  32#include <linux/crc32.h>
  33#include <linux/sched.h>
  34#include <linux/slab.h>
  35
  36
  37/* DMA Registers */
  38
  39#define KS_DMA_TX_CTRL                  0x0000
  40#define DMA_TX_ENABLE                   0x00000001
  41#define DMA_TX_CRC_ENABLE               0x00000002
  42#define DMA_TX_PAD_ENABLE               0x00000004
  43#define DMA_TX_LOOPBACK                 0x00000100
  44#define DMA_TX_FLOW_ENABLE              0x00000200
  45#define DMA_TX_CSUM_IP                  0x00010000
  46#define DMA_TX_CSUM_TCP                 0x00020000
  47#define DMA_TX_CSUM_UDP                 0x00040000
  48#define DMA_TX_BURST_SIZE               0x3F000000
  49
  50#define KS_DMA_RX_CTRL                  0x0004
  51#define DMA_RX_ENABLE                   0x00000001
  52#define KS884X_DMA_RX_MULTICAST         0x00000002
  53#define DMA_RX_PROMISCUOUS              0x00000004
  54#define DMA_RX_ERROR                    0x00000008
  55#define DMA_RX_UNICAST                  0x00000010
  56#define DMA_RX_ALL_MULTICAST            0x00000020
  57#define DMA_RX_BROADCAST                0x00000040
  58#define DMA_RX_FLOW_ENABLE              0x00000200
  59#define DMA_RX_CSUM_IP                  0x00010000
  60#define DMA_RX_CSUM_TCP                 0x00020000
  61#define DMA_RX_CSUM_UDP                 0x00040000
  62#define DMA_RX_BURST_SIZE               0x3F000000
  63
  64#define DMA_BURST_SHIFT                 24
  65#define DMA_BURST_DEFAULT               8
  66
  67#define KS_DMA_TX_START                 0x0008
  68#define KS_DMA_RX_START                 0x000C
  69#define DMA_START                       0x00000001
  70
  71#define KS_DMA_TX_ADDR                  0x0010
  72#define KS_DMA_RX_ADDR                  0x0014
  73
  74#define DMA_ADDR_LIST_MASK              0xFFFFFFFC
  75#define DMA_ADDR_LIST_SHIFT             2
  76
  77/* MTR0 */
  78#define KS884X_MULTICAST_0_OFFSET       0x0020
  79#define KS884X_MULTICAST_1_OFFSET       0x0021
  80#define KS884X_MULTICAST_2_OFFSET       0x0022
  81#define KS884x_MULTICAST_3_OFFSET       0x0023
  82/* MTR1 */
  83#define KS884X_MULTICAST_4_OFFSET       0x0024
  84#define KS884X_MULTICAST_5_OFFSET       0x0025
  85#define KS884X_MULTICAST_6_OFFSET       0x0026
  86#define KS884X_MULTICAST_7_OFFSET       0x0027
  87
  88/* Interrupt Registers */
  89
  90/* INTEN */
  91#define KS884X_INTERRUPTS_ENABLE        0x0028
  92/* INTST */
  93#define KS884X_INTERRUPTS_STATUS        0x002C
  94
  95#define KS884X_INT_RX_STOPPED           0x02000000
  96#define KS884X_INT_TX_STOPPED           0x04000000
  97#define KS884X_INT_RX_OVERRUN           0x08000000
  98#define KS884X_INT_TX_EMPTY             0x10000000
  99#define KS884X_INT_RX                   0x20000000
 100#define KS884X_INT_TX                   0x40000000
 101#define KS884X_INT_PHY                  0x80000000
 102
 103#define KS884X_INT_RX_MASK              \
 104        (KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
 105#define KS884X_INT_TX_MASK              \
 106        (KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 107#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 108
 109/* MAC Additional Station Address */
 110
 111/* MAAL0 */
 112#define KS_ADD_ADDR_0_LO                0x0080
 113/* MAAH0 */
 114#define KS_ADD_ADDR_0_HI                0x0084
 115/* MAAL1 */
 116#define KS_ADD_ADDR_1_LO                0x0088
 117/* MAAH1 */
 118#define KS_ADD_ADDR_1_HI                0x008C
 119/* MAAL2 */
 120#define KS_ADD_ADDR_2_LO                0x0090
 121/* MAAH2 */
 122#define KS_ADD_ADDR_2_HI                0x0094
 123/* MAAL3 */
 124#define KS_ADD_ADDR_3_LO                0x0098
 125/* MAAH3 */
 126#define KS_ADD_ADDR_3_HI                0x009C
 127/* MAAL4 */
 128#define KS_ADD_ADDR_4_LO                0x00A0
 129/* MAAH4 */
 130#define KS_ADD_ADDR_4_HI                0x00A4
 131/* MAAL5 */
 132#define KS_ADD_ADDR_5_LO                0x00A8
 133/* MAAH5 */
 134#define KS_ADD_ADDR_5_HI                0x00AC
 135/* MAAL6 */
 136#define KS_ADD_ADDR_6_LO                0x00B0
 137/* MAAH6 */
 138#define KS_ADD_ADDR_6_HI                0x00B4
 139/* MAAL7 */
 140#define KS_ADD_ADDR_7_LO                0x00B8
 141/* MAAH7 */
 142#define KS_ADD_ADDR_7_HI                0x00BC
 143/* MAAL8 */
 144#define KS_ADD_ADDR_8_LO                0x00C0
 145/* MAAH8 */
 146#define KS_ADD_ADDR_8_HI                0x00C4
 147/* MAAL9 */
 148#define KS_ADD_ADDR_9_LO                0x00C8
 149/* MAAH9 */
 150#define KS_ADD_ADDR_9_HI                0x00CC
 151/* MAAL10 */
 152#define KS_ADD_ADDR_A_LO                0x00D0
 153/* MAAH10 */
 154#define KS_ADD_ADDR_A_HI                0x00D4
 155/* MAAL11 */
 156#define KS_ADD_ADDR_B_LO                0x00D8
 157/* MAAH11 */
 158#define KS_ADD_ADDR_B_HI                0x00DC
 159/* MAAL12 */
 160#define KS_ADD_ADDR_C_LO                0x00E0
 161/* MAAH12 */
 162#define KS_ADD_ADDR_C_HI                0x00E4
 163/* MAAL13 */
 164#define KS_ADD_ADDR_D_LO                0x00E8
 165/* MAAH13 */
 166#define KS_ADD_ADDR_D_HI                0x00EC
 167/* MAAL14 */
 168#define KS_ADD_ADDR_E_LO                0x00F0
 169/* MAAH14 */
 170#define KS_ADD_ADDR_E_HI                0x00F4
 171/* MAAL15 */
 172#define KS_ADD_ADDR_F_LO                0x00F8
 173/* MAAH15 */
 174#define KS_ADD_ADDR_F_HI                0x00FC
 175
 176#define ADD_ADDR_HI_MASK                0x0000FFFF
 177#define ADD_ADDR_ENABLE                 0x80000000
 178#define ADD_ADDR_INCR                   8
 179
 180/* Miscellaneous Registers */
 181
 182/* MARL */
 183#define KS884X_ADDR_0_OFFSET            0x0200
 184#define KS884X_ADDR_1_OFFSET            0x0201
 185/* MARM */
 186#define KS884X_ADDR_2_OFFSET            0x0202
 187#define KS884X_ADDR_3_OFFSET            0x0203
 188/* MARH */
 189#define KS884X_ADDR_4_OFFSET            0x0204
 190#define KS884X_ADDR_5_OFFSET            0x0205
 191
 192/* OBCR */
 193#define KS884X_BUS_CTRL_OFFSET          0x0210
 194
 195#define BUS_SPEED_125_MHZ               0x0000
 196#define BUS_SPEED_62_5_MHZ              0x0001
 197#define BUS_SPEED_41_66_MHZ             0x0002
 198#define BUS_SPEED_25_MHZ                0x0003
 199
 200/* EEPCR */
 201#define KS884X_EEPROM_CTRL_OFFSET       0x0212
 202
 203#define EEPROM_CHIP_SELECT              0x0001
 204#define EEPROM_SERIAL_CLOCK             0x0002
 205#define EEPROM_DATA_OUT                 0x0004
 206#define EEPROM_DATA_IN                  0x0008
 207#define EEPROM_ACCESS_ENABLE            0x0010
 208
 209/* MBIR */
 210#define KS884X_MEM_INFO_OFFSET          0x0214
 211
 212#define RX_MEM_TEST_FAILED              0x0008
 213#define RX_MEM_TEST_FINISHED            0x0010
 214#define TX_MEM_TEST_FAILED              0x0800
 215#define TX_MEM_TEST_FINISHED            0x1000
 216
 217/* GCR */
 218#define KS884X_GLOBAL_CTRL_OFFSET       0x0216
 219#define GLOBAL_SOFTWARE_RESET           0x0001
 220
 221#define KS8841_POWER_MANAGE_OFFSET      0x0218
 222
 223/* WFCR */
 224#define KS8841_WOL_CTRL_OFFSET          0x021A
 225#define KS8841_WOL_MAGIC_ENABLE         0x0080
 226#define KS8841_WOL_FRAME3_ENABLE        0x0008
 227#define KS8841_WOL_FRAME2_ENABLE        0x0004
 228#define KS8841_WOL_FRAME1_ENABLE        0x0002
 229#define KS8841_WOL_FRAME0_ENABLE        0x0001
 230
 231/* WF0 */
 232#define KS8841_WOL_FRAME_CRC_OFFSET     0x0220
 233#define KS8841_WOL_FRAME_BYTE0_OFFSET   0x0224
 234#define KS8841_WOL_FRAME_BYTE2_OFFSET   0x0228
 235
 236/* IACR */
 237#define KS884X_IACR_P                   0x04A0
 238#define KS884X_IACR_OFFSET              KS884X_IACR_P
 239
 240/* IADR1 */
 241#define KS884X_IADR1_P                  0x04A2
 242#define KS884X_IADR2_P                  0x04A4
 243#define KS884X_IADR3_P                  0x04A6
 244#define KS884X_IADR4_P                  0x04A8
 245#define KS884X_IADR5_P                  0x04AA
 246
 247#define KS884X_ACC_CTRL_SEL_OFFSET      KS884X_IACR_P
 248#define KS884X_ACC_CTRL_INDEX_OFFSET    (KS884X_ACC_CTRL_SEL_OFFSET + 1)
 249
 250#define KS884X_ACC_DATA_0_OFFSET        KS884X_IADR4_P
 251#define KS884X_ACC_DATA_1_OFFSET        (KS884X_ACC_DATA_0_OFFSET + 1)
 252#define KS884X_ACC_DATA_2_OFFSET        KS884X_IADR5_P
 253#define KS884X_ACC_DATA_3_OFFSET        (KS884X_ACC_DATA_2_OFFSET + 1)
 254#define KS884X_ACC_DATA_4_OFFSET        KS884X_IADR2_P
 255#define KS884X_ACC_DATA_5_OFFSET        (KS884X_ACC_DATA_4_OFFSET + 1)
 256#define KS884X_ACC_DATA_6_OFFSET        KS884X_IADR3_P
 257#define KS884X_ACC_DATA_7_OFFSET        (KS884X_ACC_DATA_6_OFFSET + 1)
 258#define KS884X_ACC_DATA_8_OFFSET        KS884X_IADR1_P
 259
 260/* P1MBCR */
 261#define KS884X_P1MBCR_P                 0x04D0
 262#define KS884X_P1MBSR_P                 0x04D2
 263#define KS884X_PHY1ILR_P                0x04D4
 264#define KS884X_PHY1IHR_P                0x04D6
 265#define KS884X_P1ANAR_P                 0x04D8
 266#define KS884X_P1ANLPR_P                0x04DA
 267
 268/* P2MBCR */
 269#define KS884X_P2MBCR_P                 0x04E0
 270#define KS884X_P2MBSR_P                 0x04E2
 271#define KS884X_PHY2ILR_P                0x04E4
 272#define KS884X_PHY2IHR_P                0x04E6
 273#define KS884X_P2ANAR_P                 0x04E8
 274#define KS884X_P2ANLPR_P                0x04EA
 275
 276#define KS884X_PHY_1_CTRL_OFFSET        KS884X_P1MBCR_P
 277#define PHY_CTRL_INTERVAL               (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 278
 279#define KS884X_PHY_CTRL_OFFSET          0x00
 280
 281/* Mode Control Register */
 282#define PHY_REG_CTRL                    0
 283
 284#define PHY_RESET                       0x8000
 285#define PHY_LOOPBACK                    0x4000
 286#define PHY_SPEED_100MBIT               0x2000
 287#define PHY_AUTO_NEG_ENABLE             0x1000
 288#define PHY_POWER_DOWN                  0x0800
 289#define PHY_MII_DISABLE                 0x0400
 290#define PHY_AUTO_NEG_RESTART            0x0200
 291#define PHY_FULL_DUPLEX                 0x0100
 292#define PHY_COLLISION_TEST              0x0080
 293#define PHY_HP_MDIX                     0x0020
 294#define PHY_FORCE_MDIX                  0x0010
 295#define PHY_AUTO_MDIX_DISABLE           0x0008
 296#define PHY_REMOTE_FAULT_DISABLE        0x0004
 297#define PHY_TRANSMIT_DISABLE            0x0002
 298#define PHY_LED_DISABLE                 0x0001
 299
 300#define KS884X_PHY_STATUS_OFFSET        0x02
 301
 302/* Mode Status Register */
 303#define PHY_REG_STATUS                  1
 304
 305#define PHY_100BT4_CAPABLE              0x8000
 306#define PHY_100BTX_FD_CAPABLE           0x4000
 307#define PHY_100BTX_CAPABLE              0x2000
 308#define PHY_10BT_FD_CAPABLE             0x1000
 309#define PHY_10BT_CAPABLE                0x0800
 310#define PHY_MII_SUPPRESS_CAPABLE        0x0040
 311#define PHY_AUTO_NEG_ACKNOWLEDGE        0x0020
 312#define PHY_REMOTE_FAULT                0x0010
 313#define PHY_AUTO_NEG_CAPABLE            0x0008
 314#define PHY_LINK_STATUS                 0x0004
 315#define PHY_JABBER_DETECT               0x0002
 316#define PHY_EXTENDED_CAPABILITY         0x0001
 317
 318#define KS884X_PHY_ID_1_OFFSET          0x04
 319#define KS884X_PHY_ID_2_OFFSET          0x06
 320
 321/* PHY Identifier Registers */
 322#define PHY_REG_ID_1                    2
 323#define PHY_REG_ID_2                    3
 324
 325#define KS884X_PHY_AUTO_NEG_OFFSET      0x08
 326
 327/* Auto-Negotiation Advertisement Register */
 328#define PHY_REG_AUTO_NEGOTIATION        4
 329
 330#define PHY_AUTO_NEG_NEXT_PAGE          0x8000
 331#define PHY_AUTO_NEG_REMOTE_FAULT       0x2000
 332/* Not supported. */
 333#define PHY_AUTO_NEG_ASYM_PAUSE         0x0800
 334#define PHY_AUTO_NEG_SYM_PAUSE          0x0400
 335#define PHY_AUTO_NEG_100BT4             0x0200
 336#define PHY_AUTO_NEG_100BTX_FD          0x0100
 337#define PHY_AUTO_NEG_100BTX             0x0080
 338#define PHY_AUTO_NEG_10BT_FD            0x0040
 339#define PHY_AUTO_NEG_10BT               0x0020
 340#define PHY_AUTO_NEG_SELECTOR           0x001F
 341#define PHY_AUTO_NEG_802_3              0x0001
 342
 343#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 344
 345#define KS884X_PHY_REMOTE_CAP_OFFSET    0x0A
 346
 347/* Auto-Negotiation Link Partner Ability Register */
 348#define PHY_REG_REMOTE_CAPABILITY       5
 349
 350#define PHY_REMOTE_NEXT_PAGE            0x8000
 351#define PHY_REMOTE_ACKNOWLEDGE          0x4000
 352#define PHY_REMOTE_REMOTE_FAULT         0x2000
 353#define PHY_REMOTE_SYM_PAUSE            0x0400
 354#define PHY_REMOTE_100BTX_FD            0x0100
 355#define PHY_REMOTE_100BTX               0x0080
 356#define PHY_REMOTE_10BT_FD              0x0040
 357#define PHY_REMOTE_10BT                 0x0020
 358
 359/* P1VCT */
 360#define KS884X_P1VCT_P                  0x04F0
 361#define KS884X_P1PHYCTRL_P              0x04F2
 362
 363/* P2VCT */
 364#define KS884X_P2VCT_P                  0x04F4
 365#define KS884X_P2PHYCTRL_P              0x04F6
 366
 367#define KS884X_PHY_SPECIAL_OFFSET       KS884X_P1VCT_P
 368#define PHY_SPECIAL_INTERVAL            (KS884X_P2VCT_P - KS884X_P1VCT_P)
 369
 370#define KS884X_PHY_LINK_MD_OFFSET       0x00
 371
 372#define PHY_START_CABLE_DIAG            0x8000
 373#define PHY_CABLE_DIAG_RESULT           0x6000
 374#define PHY_CABLE_STAT_NORMAL           0x0000
 375#define PHY_CABLE_STAT_OPEN             0x2000
 376#define PHY_CABLE_STAT_SHORT            0x4000
 377#define PHY_CABLE_STAT_FAILED           0x6000
 378#define PHY_CABLE_10M_SHORT             0x1000
 379#define PHY_CABLE_FAULT_COUNTER         0x01FF
 380
 381#define KS884X_PHY_PHY_CTRL_OFFSET      0x02
 382
 383#define PHY_STAT_REVERSED_POLARITY      0x0020
 384#define PHY_STAT_MDIX                   0x0010
 385#define PHY_FORCE_LINK                  0x0008
 386#define PHY_POWER_SAVING_DISABLE        0x0004
 387#define PHY_REMOTE_LOOPBACK             0x0002
 388
 389/* SIDER */
 390#define KS884X_SIDER_P                  0x0400
 391#define KS884X_CHIP_ID_OFFSET           KS884X_SIDER_P
 392#define KS884X_FAMILY_ID_OFFSET         (KS884X_CHIP_ID_OFFSET + 1)
 393
 394#define REG_FAMILY_ID                   0x88
 395
 396#define REG_CHIP_ID_41                  0x8810
 397#define REG_CHIP_ID_42                  0x8800
 398
 399#define KS884X_CHIP_ID_MASK_41          0xFF10
 400#define KS884X_CHIP_ID_MASK             0xFFF0
 401#define KS884X_CHIP_ID_SHIFT            4
 402#define KS884X_REVISION_MASK            0x000E
 403#define KS884X_REVISION_SHIFT           1
 404#define KS8842_START                    0x0001
 405
 406#define CHIP_IP_41_M                    0x8810
 407#define CHIP_IP_42_M                    0x8800
 408#define CHIP_IP_61_M                    0x8890
 409#define CHIP_IP_62_M                    0x8880
 410
 411#define CHIP_IP_41_P                    0x8850
 412#define CHIP_IP_42_P                    0x8840
 413#define CHIP_IP_61_P                    0x88D0
 414#define CHIP_IP_62_P                    0x88C0
 415
 416/* SGCR1 */
 417#define KS8842_SGCR1_P                  0x0402
 418#define KS8842_SWITCH_CTRL_1_OFFSET     KS8842_SGCR1_P
 419
 420#define SWITCH_PASS_ALL                 0x8000
 421#define SWITCH_TX_FLOW_CTRL             0x2000
 422#define SWITCH_RX_FLOW_CTRL             0x1000
 423#define SWITCH_CHECK_LENGTH             0x0800
 424#define SWITCH_AGING_ENABLE             0x0400
 425#define SWITCH_FAST_AGING               0x0200
 426#define SWITCH_AGGR_BACKOFF             0x0100
 427#define SWITCH_PASS_PAUSE               0x0008
 428#define SWITCH_LINK_AUTO_AGING          0x0001
 429
 430/* SGCR2 */
 431#define KS8842_SGCR2_P                  0x0404
 432#define KS8842_SWITCH_CTRL_2_OFFSET     KS8842_SGCR2_P
 433
 434#define SWITCH_VLAN_ENABLE              0x8000
 435#define SWITCH_IGMP_SNOOP               0x4000
 436#define IPV6_MLD_SNOOP_ENABLE           0x2000
 437#define IPV6_MLD_SNOOP_OPTION           0x1000
 438#define PRIORITY_SCHEME_SELECT          0x0800
 439#define SWITCH_MIRROR_RX_TX             0x0100
 440#define UNICAST_VLAN_BOUNDARY           0x0080
 441#define MULTICAST_STORM_DISABLE         0x0040
 442#define SWITCH_BACK_PRESSURE            0x0020
 443#define FAIR_FLOW_CTRL                  0x0010
 444#define NO_EXC_COLLISION_DROP           0x0008
 445#define SWITCH_HUGE_PACKET              0x0004
 446#define SWITCH_LEGAL_PACKET             0x0002
 447#define SWITCH_BUF_RESERVE              0x0001
 448
 449/* SGCR3 */
 450#define KS8842_SGCR3_P                  0x0406
 451#define KS8842_SWITCH_CTRL_3_OFFSET     KS8842_SGCR3_P
 452
 453#define BROADCAST_STORM_RATE_LO         0xFF00
 454#define SWITCH_REPEATER                 0x0080
 455#define SWITCH_HALF_DUPLEX              0x0040
 456#define SWITCH_FLOW_CTRL                0x0020
 457#define SWITCH_10_MBIT                  0x0010
 458#define SWITCH_REPLACE_NULL_VID         0x0008
 459#define BROADCAST_STORM_RATE_HI         0x0007
 460
 461#define BROADCAST_STORM_RATE            0x07FF
 462
 463/* SGCR4 */
 464#define KS8842_SGCR4_P                  0x0408
 465
 466/* SGCR5 */
 467#define KS8842_SGCR5_P                  0x040A
 468#define KS8842_SWITCH_CTRL_5_OFFSET     KS8842_SGCR5_P
 469
 470#define LED_MODE                        0x8200
 471#define LED_SPEED_DUPLEX_ACT            0x0000
 472#define LED_SPEED_DUPLEX_LINK_ACT       0x8000
 473#define LED_DUPLEX_10_100               0x0200
 474
 475/* SGCR6 */
 476#define KS8842_SGCR6_P                  0x0410
 477#define KS8842_SWITCH_CTRL_6_OFFSET     KS8842_SGCR6_P
 478
 479#define KS8842_PRIORITY_MASK            3
 480#define KS8842_PRIORITY_SHIFT           2
 481
 482/* SGCR7 */
 483#define KS8842_SGCR7_P                  0x0412
 484#define KS8842_SWITCH_CTRL_7_OFFSET     KS8842_SGCR7_P
 485
 486#define SWITCH_UNK_DEF_PORT_ENABLE      0x0008
 487#define SWITCH_UNK_DEF_PORT_3           0x0004
 488#define SWITCH_UNK_DEF_PORT_2           0x0002
 489#define SWITCH_UNK_DEF_PORT_1           0x0001
 490
 491/* MACAR1 */
 492#define KS8842_MACAR1_P                 0x0470
 493#define KS8842_MACAR2_P                 0x0472
 494#define KS8842_MACAR3_P                 0x0474
 495#define KS8842_MAC_ADDR_1_OFFSET        KS8842_MACAR1_P
 496#define KS8842_MAC_ADDR_0_OFFSET        (KS8842_MAC_ADDR_1_OFFSET + 1)
 497#define KS8842_MAC_ADDR_3_OFFSET        KS8842_MACAR2_P
 498#define KS8842_MAC_ADDR_2_OFFSET        (KS8842_MAC_ADDR_3_OFFSET + 1)
 499#define KS8842_MAC_ADDR_5_OFFSET        KS8842_MACAR3_P
 500#define KS8842_MAC_ADDR_4_OFFSET        (KS8842_MAC_ADDR_5_OFFSET + 1)
 501
 502/* TOSR1 */
 503#define KS8842_TOSR1_P                  0x0480
 504#define KS8842_TOSR2_P                  0x0482
 505#define KS8842_TOSR3_P                  0x0484
 506#define KS8842_TOSR4_P                  0x0486
 507#define KS8842_TOSR5_P                  0x0488
 508#define KS8842_TOSR6_P                  0x048A
 509#define KS8842_TOSR7_P                  0x0490
 510#define KS8842_TOSR8_P                  0x0492
 511#define KS8842_TOS_1_OFFSET             KS8842_TOSR1_P
 512#define KS8842_TOS_2_OFFSET             KS8842_TOSR2_P
 513#define KS8842_TOS_3_OFFSET             KS8842_TOSR3_P
 514#define KS8842_TOS_4_OFFSET             KS8842_TOSR4_P
 515#define KS8842_TOS_5_OFFSET             KS8842_TOSR5_P
 516#define KS8842_TOS_6_OFFSET             KS8842_TOSR6_P
 517
 518#define KS8842_TOS_7_OFFSET             KS8842_TOSR7_P
 519#define KS8842_TOS_8_OFFSET             KS8842_TOSR8_P
 520
 521/* P1CR1 */
 522#define KS8842_P1CR1_P                  0x0500
 523#define KS8842_P1CR2_P                  0x0502
 524#define KS8842_P1VIDR_P                 0x0504
 525#define KS8842_P1CR3_P                  0x0506
 526#define KS8842_P1IRCR_P                 0x0508
 527#define KS8842_P1ERCR_P                 0x050A
 528#define KS884X_P1SCSLMD_P               0x0510
 529#define KS884X_P1CR4_P                  0x0512
 530#define KS884X_P1SR_P                   0x0514
 531
 532/* P2CR1 */
 533#define KS8842_P2CR1_P                  0x0520
 534#define KS8842_P2CR2_P                  0x0522
 535#define KS8842_P2VIDR_P                 0x0524
 536#define KS8842_P2CR3_P                  0x0526
 537#define KS8842_P2IRCR_P                 0x0528
 538#define KS8842_P2ERCR_P                 0x052A
 539#define KS884X_P2SCSLMD_P               0x0530
 540#define KS884X_P2CR4_P                  0x0532
 541#define KS884X_P2SR_P                   0x0534
 542
 543/* P3CR1 */
 544#define KS8842_P3CR1_P                  0x0540
 545#define KS8842_P3CR2_P                  0x0542
 546#define KS8842_P3VIDR_P                 0x0544
 547#define KS8842_P3CR3_P                  0x0546
 548#define KS8842_P3IRCR_P                 0x0548
 549#define KS8842_P3ERCR_P                 0x054A
 550
 551#define KS8842_PORT_1_CTRL_1            KS8842_P1CR1_P
 552#define KS8842_PORT_2_CTRL_1            KS8842_P2CR1_P
 553#define KS8842_PORT_3_CTRL_1            KS8842_P3CR1_P
 554
 555#define PORT_CTRL_ADDR(port, addr)              \
 556        (addr = KS8842_PORT_1_CTRL_1 + (port) * \
 557                (KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 558
 559#define KS8842_PORT_CTRL_1_OFFSET       0x00
 560
 561#define PORT_BROADCAST_STORM            0x0080
 562#define PORT_DIFFSERV_ENABLE            0x0040
 563#define PORT_802_1P_ENABLE              0x0020
 564#define PORT_BASED_PRIORITY_MASK        0x0018
 565#define PORT_BASED_PRIORITY_BASE        0x0003
 566#define PORT_BASED_PRIORITY_SHIFT       3
 567#define PORT_BASED_PRIORITY_0           0x0000
 568#define PORT_BASED_PRIORITY_1           0x0008
 569#define PORT_BASED_PRIORITY_2           0x0010
 570#define PORT_BASED_PRIORITY_3           0x0018
 571#define PORT_INSERT_TAG                 0x0004
 572#define PORT_REMOVE_TAG                 0x0002
 573#define PORT_PRIO_QUEUE_ENABLE          0x0001
 574
 575#define KS8842_PORT_CTRL_2_OFFSET       0x02
 576
 577#define PORT_INGRESS_VLAN_FILTER        0x4000
 578#define PORT_DISCARD_NON_VID            0x2000
 579#define PORT_FORCE_FLOW_CTRL            0x1000
 580#define PORT_BACK_PRESSURE              0x0800
 581#define PORT_TX_ENABLE                  0x0400
 582#define PORT_RX_ENABLE                  0x0200
 583#define PORT_LEARN_DISABLE              0x0100
 584#define PORT_MIRROR_SNIFFER             0x0080
 585#define PORT_MIRROR_RX                  0x0040
 586#define PORT_MIRROR_TX                  0x0020
 587#define PORT_USER_PRIORITY_CEILING      0x0008
 588#define PORT_VLAN_MEMBERSHIP            0x0007
 589
 590#define KS8842_PORT_CTRL_VID_OFFSET     0x04
 591
 592#define PORT_DEFAULT_VID                0x0001
 593
 594#define KS8842_PORT_CTRL_3_OFFSET       0x06
 595
 596#define PORT_INGRESS_LIMIT_MODE         0x000C
 597#define PORT_INGRESS_ALL                0x0000
 598#define PORT_INGRESS_UNICAST            0x0004
 599#define PORT_INGRESS_MULTICAST          0x0008
 600#define PORT_INGRESS_BROADCAST          0x000C
 601#define PORT_COUNT_IFG                  0x0002
 602#define PORT_COUNT_PREAMBLE             0x0001
 603
 604#define KS8842_PORT_IN_RATE_OFFSET      0x08
 605#define KS8842_PORT_OUT_RATE_OFFSET     0x0A
 606
 607#define PORT_PRIORITY_RATE              0x0F
 608#define PORT_PRIORITY_RATE_SHIFT        4
 609
 610#define KS884X_PORT_LINK_MD             0x10
 611
 612#define PORT_CABLE_10M_SHORT            0x8000
 613#define PORT_CABLE_DIAG_RESULT          0x6000
 614#define PORT_CABLE_STAT_NORMAL          0x0000
 615#define PORT_CABLE_STAT_OPEN            0x2000
 616#define PORT_CABLE_STAT_SHORT           0x4000
 617#define PORT_CABLE_STAT_FAILED          0x6000
 618#define PORT_START_CABLE_DIAG           0x1000
 619#define PORT_FORCE_LINK                 0x0800
 620#define PORT_POWER_SAVING_DISABLE       0x0400
 621#define PORT_PHY_REMOTE_LOOPBACK        0x0200
 622#define PORT_CABLE_FAULT_COUNTER        0x01FF
 623
 624#define KS884X_PORT_CTRL_4_OFFSET       0x12
 625
 626#define PORT_LED_OFF                    0x8000
 627#define PORT_TX_DISABLE                 0x4000
 628#define PORT_AUTO_NEG_RESTART           0x2000
 629#define PORT_REMOTE_FAULT_DISABLE       0x1000
 630#define PORT_POWER_DOWN                 0x0800
 631#define PORT_AUTO_MDIX_DISABLE          0x0400
 632#define PORT_FORCE_MDIX                 0x0200
 633#define PORT_LOOPBACK                   0x0100
 634#define PORT_AUTO_NEG_ENABLE            0x0080
 635#define PORT_FORCE_100_MBIT             0x0040
 636#define PORT_FORCE_FULL_DUPLEX          0x0020
 637#define PORT_AUTO_NEG_SYM_PAUSE         0x0010
 638#define PORT_AUTO_NEG_100BTX_FD         0x0008
 639#define PORT_AUTO_NEG_100BTX            0x0004
 640#define PORT_AUTO_NEG_10BT_FD           0x0002
 641#define PORT_AUTO_NEG_10BT              0x0001
 642
 643#define KS884X_PORT_STATUS_OFFSET       0x14
 644
 645#define PORT_HP_MDIX                    0x8000
 646#define PORT_REVERSED_POLARITY          0x2000
 647#define PORT_RX_FLOW_CTRL               0x0800
 648#define PORT_TX_FLOW_CTRL               0x1000
 649#define PORT_STATUS_SPEED_100MBIT       0x0400
 650#define PORT_STATUS_FULL_DUPLEX         0x0200
 651#define PORT_REMOTE_FAULT               0x0100
 652#define PORT_MDIX_STATUS                0x0080
 653#define PORT_AUTO_NEG_COMPLETE          0x0040
 654#define PORT_STATUS_LINK_GOOD           0x0020
 655#define PORT_REMOTE_SYM_PAUSE           0x0010
 656#define PORT_REMOTE_100BTX_FD           0x0008
 657#define PORT_REMOTE_100BTX              0x0004
 658#define PORT_REMOTE_10BT_FD             0x0002
 659#define PORT_REMOTE_10BT                0x0001
 660
 661/*
 662#define STATIC_MAC_TABLE_ADDR           00-0000FFFF-FFFFFFFF
 663#define STATIC_MAC_TABLE_FWD_PORTS      00-00070000-00000000
 664#define STATIC_MAC_TABLE_VALID          00-00080000-00000000
 665#define STATIC_MAC_TABLE_OVERRIDE       00-00100000-00000000
 666#define STATIC_MAC_TABLE_USE_FID        00-00200000-00000000
 667#define STATIC_MAC_TABLE_FID            00-03C00000-00000000
 668*/
 669
 670#define STATIC_MAC_TABLE_ADDR           0x0000FFFF
 671#define STATIC_MAC_TABLE_FWD_PORTS      0x00070000
 672#define STATIC_MAC_TABLE_VALID          0x00080000
 673#define STATIC_MAC_TABLE_OVERRIDE       0x00100000
 674#define STATIC_MAC_TABLE_USE_FID        0x00200000
 675#define STATIC_MAC_TABLE_FID            0x03C00000
 676
 677#define STATIC_MAC_FWD_PORTS_SHIFT      16
 678#define STATIC_MAC_FID_SHIFT            22
 679
 680/*
 681#define VLAN_TABLE_VID                  00-00000000-00000FFF
 682#define VLAN_TABLE_FID                  00-00000000-0000F000
 683#define VLAN_TABLE_MEMBERSHIP           00-00000000-00070000
 684#define VLAN_TABLE_VALID                00-00000000-00080000
 685*/
 686
 687#define VLAN_TABLE_VID                  0x00000FFF
 688#define VLAN_TABLE_FID                  0x0000F000
 689#define VLAN_TABLE_MEMBERSHIP           0x00070000
 690#define VLAN_TABLE_VALID                0x00080000
 691
 692#define VLAN_TABLE_FID_SHIFT            12
 693#define VLAN_TABLE_MEMBERSHIP_SHIFT     16
 694
 695/*
 696#define DYNAMIC_MAC_TABLE_ADDR          00-0000FFFF-FFFFFFFF
 697#define DYNAMIC_MAC_TABLE_FID           00-000F0000-00000000
 698#define DYNAMIC_MAC_TABLE_SRC_PORT      00-00300000-00000000
 699#define DYNAMIC_MAC_TABLE_TIMESTAMP     00-00C00000-00000000
 700#define DYNAMIC_MAC_TABLE_ENTRIES       03-FF000000-00000000
 701#define DYNAMIC_MAC_TABLE_MAC_EMPTY     04-00000000-00000000
 702#define DYNAMIC_MAC_TABLE_RESERVED      78-00000000-00000000
 703#define DYNAMIC_MAC_TABLE_NOT_READY     80-00000000-00000000
 704*/
 705
 706#define DYNAMIC_MAC_TABLE_ADDR          0x0000FFFF
 707#define DYNAMIC_MAC_TABLE_FID           0x000F0000
 708#define DYNAMIC_MAC_TABLE_SRC_PORT      0x00300000
 709#define DYNAMIC_MAC_TABLE_TIMESTAMP     0x00C00000
 710#define DYNAMIC_MAC_TABLE_ENTRIES       0xFF000000
 711
 712#define DYNAMIC_MAC_TABLE_ENTRIES_H     0x03
 713#define DYNAMIC_MAC_TABLE_MAC_EMPTY     0x04
 714#define DYNAMIC_MAC_TABLE_RESERVED      0x78
 715#define DYNAMIC_MAC_TABLE_NOT_READY     0x80
 716
 717#define DYNAMIC_MAC_FID_SHIFT           16
 718#define DYNAMIC_MAC_SRC_PORT_SHIFT      20
 719#define DYNAMIC_MAC_TIMESTAMP_SHIFT     22
 720#define DYNAMIC_MAC_ENTRIES_SHIFT       24
 721#define DYNAMIC_MAC_ENTRIES_H_SHIFT     8
 722
 723/*
 724#define MIB_COUNTER_VALUE               00-00000000-3FFFFFFF
 725#define MIB_COUNTER_VALID               00-00000000-40000000
 726#define MIB_COUNTER_OVERFLOW            00-00000000-80000000
 727*/
 728
 729#define MIB_COUNTER_VALUE               0x3FFFFFFF
 730#define MIB_COUNTER_VALID               0x40000000
 731#define MIB_COUNTER_OVERFLOW            0x80000000
 732
 733#define MIB_PACKET_DROPPED              0x0000FFFF
 734
 735#define KS_MIB_PACKET_DROPPED_TX_0      0x100
 736#define KS_MIB_PACKET_DROPPED_TX_1      0x101
 737#define KS_MIB_PACKET_DROPPED_TX        0x102
 738#define KS_MIB_PACKET_DROPPED_RX_0      0x103
 739#define KS_MIB_PACKET_DROPPED_RX_1      0x104
 740#define KS_MIB_PACKET_DROPPED_RX        0x105
 741
 742/* Change default LED mode. */
 743#define SET_DEFAULT_LED                 LED_SPEED_DUPLEX_ACT
 744
 745#define MAC_ADDR_LEN                    6
 746#define MAC_ADDR_ORDER(i)               (MAC_ADDR_LEN - 1 - (i))
 747
 748#define MAX_ETHERNET_BODY_SIZE          1500
 749#define ETHERNET_HEADER_SIZE            14
 750
 751#define MAX_ETHERNET_PACKET_SIZE        \
 752        (MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 753
 754#define REGULAR_RX_BUF_SIZE             (MAX_ETHERNET_PACKET_SIZE + 4)
 755#define MAX_RX_BUF_SIZE                 (1912 + 4)
 756
 757#define ADDITIONAL_ENTRIES              16
 758#define MAX_MULTICAST_LIST              32
 759
 760#define HW_MULTICAST_SIZE               8
 761
 762#define HW_TO_DEV_PORT(port)            (port - 1)
 763
 764enum {
 765        media_connected,
 766        media_disconnected
 767};
 768
 769enum {
 770        OID_COUNTER_UNKOWN,
 771
 772        OID_COUNTER_FIRST,
 773
 774        /* total transmit errors */
 775        OID_COUNTER_XMIT_ERROR,
 776
 777        /* total receive errors */
 778        OID_COUNTER_RCV_ERROR,
 779
 780        OID_COUNTER_LAST
 781};
 782
 783/*
 784 * Hardware descriptor definitions
 785 */
 786
 787#define DESC_ALIGNMENT                  16
 788#define BUFFER_ALIGNMENT                8
 789
 790#define NUM_OF_RX_DESC                  64
 791#define NUM_OF_TX_DESC                  64
 792
 793#define KS_DESC_RX_FRAME_LEN            0x000007FF
 794#define KS_DESC_RX_FRAME_TYPE           0x00008000
 795#define KS_DESC_RX_ERROR_CRC            0x00010000
 796#define KS_DESC_RX_ERROR_RUNT           0x00020000
 797#define KS_DESC_RX_ERROR_TOO_LONG       0x00040000
 798#define KS_DESC_RX_ERROR_PHY            0x00080000
 799#define KS884X_DESC_RX_PORT_MASK        0x00300000
 800#define KS_DESC_RX_MULTICAST            0x01000000
 801#define KS_DESC_RX_ERROR                0x02000000
 802#define KS_DESC_RX_ERROR_CSUM_UDP       0x04000000
 803#define KS_DESC_RX_ERROR_CSUM_TCP       0x08000000
 804#define KS_DESC_RX_ERROR_CSUM_IP        0x10000000
 805#define KS_DESC_RX_LAST                 0x20000000
 806#define KS_DESC_RX_FIRST                0x40000000
 807#define KS_DESC_RX_ERROR_COND           \
 808        (KS_DESC_RX_ERROR_CRC |         \
 809        KS_DESC_RX_ERROR_RUNT |         \
 810        KS_DESC_RX_ERROR_PHY |          \
 811        KS_DESC_RX_ERROR_TOO_LONG)
 812
 813#define KS_DESC_HW_OWNED                0x80000000
 814
 815#define KS_DESC_BUF_SIZE                0x000007FF
 816#define KS884X_DESC_TX_PORT_MASK        0x00300000
 817#define KS_DESC_END_OF_RING             0x02000000
 818#define KS_DESC_TX_CSUM_GEN_UDP         0x04000000
 819#define KS_DESC_TX_CSUM_GEN_TCP         0x08000000
 820#define KS_DESC_TX_CSUM_GEN_IP          0x10000000
 821#define KS_DESC_TX_LAST                 0x20000000
 822#define KS_DESC_TX_FIRST                0x40000000
 823#define KS_DESC_TX_INTERRUPT            0x80000000
 824
 825#define KS_DESC_PORT_SHIFT              20
 826
 827#define KS_DESC_RX_MASK                 (KS_DESC_BUF_SIZE)
 828
 829#define KS_DESC_TX_MASK                 \
 830        (KS_DESC_TX_INTERRUPT |         \
 831        KS_DESC_TX_FIRST |              \
 832        KS_DESC_TX_LAST |               \
 833        KS_DESC_TX_CSUM_GEN_IP |        \
 834        KS_DESC_TX_CSUM_GEN_TCP |       \
 835        KS_DESC_TX_CSUM_GEN_UDP |       \
 836        KS_DESC_BUF_SIZE)
 837
 838struct ksz_desc_rx_stat {
 839#ifdef __BIG_ENDIAN_BITFIELD
 840        u32 hw_owned:1;
 841        u32 first_desc:1;
 842        u32 last_desc:1;
 843        u32 csum_err_ip:1;
 844        u32 csum_err_tcp:1;
 845        u32 csum_err_udp:1;
 846        u32 error:1;
 847        u32 multicast:1;
 848        u32 src_port:4;
 849        u32 err_phy:1;
 850        u32 err_too_long:1;
 851        u32 err_runt:1;
 852        u32 err_crc:1;
 853        u32 frame_type:1;
 854        u32 reserved1:4;
 855        u32 frame_len:11;
 856#else
 857        u32 frame_len:11;
 858        u32 reserved1:4;
 859        u32 frame_type:1;
 860        u32 err_crc:1;
 861        u32 err_runt:1;
 862        u32 err_too_long:1;
 863        u32 err_phy:1;
 864        u32 src_port:4;
 865        u32 multicast:1;
 866        u32 error:1;
 867        u32 csum_err_udp:1;
 868        u32 csum_err_tcp:1;
 869        u32 csum_err_ip:1;
 870        u32 last_desc:1;
 871        u32 first_desc:1;
 872        u32 hw_owned:1;
 873#endif
 874};
 875
 876struct ksz_desc_tx_stat {
 877#ifdef __BIG_ENDIAN_BITFIELD
 878        u32 hw_owned:1;
 879        u32 reserved1:31;
 880#else
 881        u32 reserved1:31;
 882        u32 hw_owned:1;
 883#endif
 884};
 885
 886struct ksz_desc_rx_buf {
 887#ifdef __BIG_ENDIAN_BITFIELD
 888        u32 reserved4:6;
 889        u32 end_of_ring:1;
 890        u32 reserved3:14;
 891        u32 buf_size:11;
 892#else
 893        u32 buf_size:11;
 894        u32 reserved3:14;
 895        u32 end_of_ring:1;
 896        u32 reserved4:6;
 897#endif
 898};
 899
 900struct ksz_desc_tx_buf {
 901#ifdef __BIG_ENDIAN_BITFIELD
 902        u32 intr:1;
 903        u32 first_seg:1;
 904        u32 last_seg:1;
 905        u32 csum_gen_ip:1;
 906        u32 csum_gen_tcp:1;
 907        u32 csum_gen_udp:1;
 908        u32 end_of_ring:1;
 909        u32 reserved4:1;
 910        u32 dest_port:4;
 911        u32 reserved3:9;
 912        u32 buf_size:11;
 913#else
 914        u32 buf_size:11;
 915        u32 reserved3:9;
 916        u32 dest_port:4;
 917        u32 reserved4:1;
 918        u32 end_of_ring:1;
 919        u32 csum_gen_udp:1;
 920        u32 csum_gen_tcp:1;
 921        u32 csum_gen_ip:1;
 922        u32 last_seg:1;
 923        u32 first_seg:1;
 924        u32 intr:1;
 925#endif
 926};
 927
 928union desc_stat {
 929        struct ksz_desc_rx_stat rx;
 930        struct ksz_desc_tx_stat tx;
 931        u32 data;
 932};
 933
 934union desc_buf {
 935        struct ksz_desc_rx_buf rx;
 936        struct ksz_desc_tx_buf tx;
 937        u32 data;
 938};
 939
 940/**
 941 * struct ksz_hw_desc - Hardware descriptor data structure
 942 * @ctrl:       Descriptor control value.
 943 * @buf:        Descriptor buffer value.
 944 * @addr:       Physical address of memory buffer.
 945 * @next:       Pointer to next hardware descriptor.
 946 */
 947struct ksz_hw_desc {
 948        union desc_stat ctrl;
 949        union desc_buf buf;
 950        u32 addr;
 951        u32 next;
 952};
 953
 954/**
 955 * struct ksz_sw_desc - Software descriptor data structure
 956 * @ctrl:       Descriptor control value.
 957 * @buf:        Descriptor buffer value.
 958 * @buf_size:   Current buffers size value in hardware descriptor.
 959 */
 960struct ksz_sw_desc {
 961        union desc_stat ctrl;
 962        union desc_buf buf;
 963        u32 buf_size;
 964};
 965
 966/**
 967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 968 * @skb:        Associated socket buffer.
 969 * @dma:        Associated physical DMA address.
 970 * len:         Actual len used.
 971 */
 972struct ksz_dma_buf {
 973        struct sk_buff *skb;
 974        dma_addr_t dma;
 975        int len;
 976};
 977
 978/**
 979 * struct ksz_desc - Descriptor structure
 980 * @phw:        Hardware descriptor pointer to uncached physical memory.
 981 * @sw:         Cached memory to hold hardware descriptor values for
 982 *              manipulation.
 983 * @dma_buf:    Operating system dependent data structure to hold physical
 984 *              memory buffer allocation information.
 985 */
 986struct ksz_desc {
 987        struct ksz_hw_desc *phw;
 988        struct ksz_sw_desc sw;
 989        struct ksz_dma_buf dma_buf;
 990};
 991
 992#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 993
 994/**
 995 * struct ksz_desc_info - Descriptor information data structure
 996 * @ring:       First descriptor in the ring.
 997 * @cur:        Current descriptor being manipulated.
 998 * @ring_virt:  First hardware descriptor in the ring.
 999 * @ring_phys:  The physical address of the first descriptor of the ring.
1000 * @size:       Size of hardware descriptor.
1001 * @alloc:      Number of descriptors allocated.
1002 * @avail:      Number of descriptors available for use.
1003 * @last:       Index for last descriptor released to hardware.
1004 * @next:       Index for next descriptor available for use.
1005 * @mask:       Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008        struct ksz_desc *ring;
1009        struct ksz_desc *cur;
1010        struct ksz_hw_desc *ring_virt;
1011        u32 ring_phys;
1012        int size;
1013        int alloc;
1014        int avail;
1015        int last;
1016        int next;
1017        int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025        TABLE_STATIC_MAC = 0,
1026        TABLE_VLAN,
1027        TABLE_DYNAMIC_MAC,
1028        TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES       1024
1032#define STATIC_MAC_TABLE_ENTRIES        8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr:   MAC address to filter.
1037 * @vid:        VID value.
1038 * @fid:        FID value.
1039 * @ports:      Port membership.
1040 * @override:   Override setting.
1041 * @use_fid:    FID use setting.
1042 * @valid:      Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
1045        u8 mac_addr[MAC_ADDR_LEN];
1046        u16 vid;
1047        u8 fid;
1048        u8 ports;
1049        u8 override:1;
1050        u8 use_fid:1;
1051        u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES              16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid:        VID value.
1059 * @fid:        FID value.
1060 * @member:     Port membership.
1061 */
1062struct ksz_vlan_table {
1063        u16 vid;
1064        u8 fid;
1065        u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES                64
1069#define PRIO_802_1P_ENTRIES             8
1070#define PRIO_QUEUES                     4
1071
1072#define SWITCH_PORT_NUM                 2
1073#define TOTAL_PORT_NUM                  (SWITCH_PORT_NUM + 1)
1074#define HOST_MASK                       (1 << SWITCH_PORT_NUM)
1075#define PORT_MASK                       7
1076
1077#define MAIN_PORT                       0
1078#define OTHER_PORT                      1
1079#define HOST_PORT                       SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM                0x20
1082#define TOTAL_PORT_COUNTER_NUM          (PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY      0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY      0x01
1086#define MIB_COUNTER_RX_UNDERSIZE        0x02
1087#define MIB_COUNTER_RX_FRAGMENT         0x03
1088#define MIB_COUNTER_RX_OVERSIZE         0x04
1089#define MIB_COUNTER_RX_JABBER           0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR       0x06
1091#define MIB_COUNTER_RX_CRC_ERR          0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR    0x08
1093#define MIB_COUNTER_RX_CTRL_8808        0x09
1094#define MIB_COUNTER_RX_PAUSE            0x0A
1095#define MIB_COUNTER_RX_BROADCAST        0x0B
1096#define MIB_COUNTER_RX_MULTICAST        0x0C
1097#define MIB_COUNTER_RX_UNICAST          0x0D
1098#define MIB_COUNTER_RX_OCTET_64         0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127     0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255    0x10
1101#define MIB_COUNTER_RX_OCTET_256_511    0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023   0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522  0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY      0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY      0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION   0x16
1107#define MIB_COUNTER_TX_PAUSE            0x17
1108#define MIB_COUNTER_TX_BROADCAST        0x18
1109#define MIB_COUNTER_TX_MULTICAST        0x19
1110#define MIB_COUNTER_TX_UNICAST          0x1A
1111#define MIB_COUNTER_TX_DEFERRED         0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION  0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION  0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET   0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET   0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr:    Current pointer to MIB counter index.
1123 * @link_down:  Indication the link has just gone down.
1124 * @state:      Connection status of the port.
1125 * @mib_start:  The starting counter index.  Some ports do not start at 0.
1126 * @counter:    64-bit MIB counter value.
1127 * @dropped:    Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values.  A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected.  The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected.  The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140        u8 cnt_ptr;
1141        u8 link_down;
1142        u8 state;
1143        u8 mib_start;
1144
1145        u64 counter[TOTAL_PORT_COUNTER_NUM];
1146        u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid:        VID value.
1152 * @member:     Port membership.
1153 * @port_prio:  Port priority.
1154 * @rx_rate:    Receive priority rate.
1155 * @tx_rate:    Transmit priority rate.
1156 * @stp_state:  Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159        u16 vid;
1160        u8 member;
1161        u8 port_prio;
1162        u32 rx_rate[PRIO_QUEUES];
1163        u32 tx_rate[PRIO_QUEUES];
1164        int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table:  MAC table entries information.
1170 * @vlan_table: VLAN table entries information.
1171 * @port_cfg:   Port configuration information.
1172 * @diffserv:   DiffServ priority settings.  Possible values from 6-bit of ToS
1173 *              (bit7 ~ bit2) field.
1174 * @p_802_1p:   802.1P priority settings.  Possible values from 3-bit of 802.1p
1175 *              Tag priority field.
1176 * @br_addr:    Bridge address.  Used for STP.
1177 * @other_addr: Other MAC address.  Used for multiple network device mode.
1178 * @broad_per:  Broadcast storm percentage.
1179 * @member:     Current port membership.  Used for STP.
1180 */
1181struct ksz_switch {
1182        struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183        struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184        struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186        u8 diffserv[DIFFSERV_ENTRIES];
1187        u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189        u8 br_addr[MAC_ADDR_LEN];
1190        u8 other_addr[MAC_ADDR_LEN];
1191
1192        u8 broad_per;
1193        u8 member;
1194};
1195
1196#define TX_RATE_UNIT                    10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state:      Connection status of the port.
1201 * @tx_rate:    Transmit rate divided by 10000 to get Mbit.
1202 * @duplex:     Duplex mode.
1203 * @advertised: Advertised auto-negotiation setting.  Used to determine link.
1204 * @partner:    Auto-negotiation partner setting.  Used to determine link.
1205 * @port_id:    Port index to access actual hardware register.
1206 * @pdev:       Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209        uint state;
1210        uint tx_rate;
1211        u8 duplex;
1212        u8 advertised;
1213        u8 partner;
1214        u8 port_id;
1215        void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE                52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING                (1 << 0)
1222#define SMALL_PACKET_TX_BUG             (1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG          (1 << 2)
1224#define IPV6_CSUM_GEN_HACK              (1 << 3)
1225#define RX_HUGE_FRAME                   (1 << 4)
1226#define STP_SUPPORT                     (1 << 8)
1227
1228/* Software overrides. */
1229#define PAUSE_FLOW_CTRL                 (1 << 0)
1230#define FAST_AGING                      (1 << 1)
1231
1232/**
1233 * struct ksz_hw - KSZ884X hardware data structure
1234 * @io:                 Virtual address assigned.
1235 * @ksz_switch:         Pointer to KSZ8842 switch.
1236 * @port_info:          Port information.
1237 * @port_mib:           Port MIB information.
1238 * @dev_count:          Number of network devices this hardware supports.
1239 * @dst_ports:          Destination ports in switch for transmission.
1240 * @id:                 Hardware ID.  Used for display only.
1241 * @mib_cnt:            Number of MIB counters this hardware has.
1242 * @mib_port_cnt:       Number of ports with MIB counters.
1243 * @tx_cfg:             Cached transmit control settings.
1244 * @rx_cfg:             Cached receive control settings.
1245 * @intr_mask:          Current interrupt mask.
1246 * @intr_set:           Current interrup set.
1247 * @intr_blocked:       Interrupt blocked.
1248 * @rx_desc_info:       Receive descriptor information.
1249 * @tx_desc_info:       Transmit descriptor information.
1250 * @tx_int_cnt:         Transmit interrupt count.  Used for TX optimization.
1251 * @tx_int_mask:        Transmit interrupt mask.  Used for TX optimization.
1252 * @tx_size:            Transmit data size.  Used for TX optimization.
1253 *                      The maximum is defined by MAX_TX_HELD_SIZE.
1254 * @perm_addr:          Permanent MAC address.
1255 * @override_addr:      Overrided MAC address.
1256 * @address:            Additional MAC address entries.
1257 * @addr_list_size:     Additional MAC address list size.
1258 * @mac_override:       Indication of MAC address overrided.
1259 * @promiscuous:        Counter to keep track of promiscuous mode set.
1260 * @all_multi:          Counter to keep track of all multicast mode set.
1261 * @multi_list:         Multicast address entries.
1262 * @multi_bits:         Cached multicast hash table settings.
1263 * @multi_list_size:    Multicast address list size.
1264 * @enabled:            Indication of hardware enabled.
1265 * @rx_stop:            Indication of receive process stop.
1266 * @features:           Hardware features to enable.
1267 * @overrides:          Hardware features to override.
1268 * @parent:             Pointer to parent, network device private structure.
1269 */
1270struct ksz_hw {
1271        void __iomem *io;
1272
1273        struct ksz_switch *ksz_switch;
1274        struct ksz_port_info port_info[SWITCH_PORT_NUM];
1275        struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1276        int dev_count;
1277        int dst_ports;
1278        int id;
1279        int mib_cnt;
1280        int mib_port_cnt;
1281
1282        u32 tx_cfg;
1283        u32 rx_cfg;
1284        u32 intr_mask;
1285        u32 intr_set;
1286        uint intr_blocked;
1287
1288        struct ksz_desc_info rx_desc_info;
1289        struct ksz_desc_info tx_desc_info;
1290
1291        int tx_int_cnt;
1292        int tx_int_mask;
1293        int tx_size;
1294
1295        u8 perm_addr[MAC_ADDR_LEN];
1296        u8 override_addr[MAC_ADDR_LEN];
1297        u8 address[ADDITIONAL_ENTRIES][MAC_ADDR_LEN];
1298        u8 addr_list_size;
1299        u8 mac_override;
1300        u8 promiscuous;
1301        u8 all_multi;
1302        u8 multi_list[MAX_MULTICAST_LIST][MAC_ADDR_LEN];
1303        u8 multi_bits[HW_MULTICAST_SIZE];
1304        u8 multi_list_size;
1305
1306        u8 enabled;
1307        u8 rx_stop;
1308        u8 reserved2[1];
1309
1310        uint features;
1311        uint overrides;
1312
1313        void *parent;
1314};
1315
1316enum {
1317        PHY_NO_FLOW_CTRL,
1318        PHY_FLOW_CTRL,
1319        PHY_TX_ONLY,
1320        PHY_RX_ONLY
1321};
1322
1323/**
1324 * struct ksz_port - Virtual port data structure
1325 * @duplex:             Duplex mode setting.  1 for half duplex, 2 for full
1326 *                      duplex, and 0 for auto, which normally results in full
1327 *                      duplex.
1328 * @speed:              Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1329 *                      0 for auto, which normally results in 100 Mbit.
1330 * @force_link:         Force link setting.  0 for auto-negotiation, and 1 for
1331 *                      force.
1332 * @flow_ctrl:          Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1333 *                      control, and PHY_FLOW_CTRL for flow control.
1334 *                      PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1335 *                      Mbit PHY.
1336 * @first_port:         Index of first port this port supports.
1337 * @mib_port_cnt:       Number of ports with MIB counters.
1338 * @port_cnt:           Number of ports this port supports.
1339 * @counter:            Port statistics counter.
1340 * @hw:                 Pointer to hardware structure.
1341 * @linked:             Pointer to port information linked to this port.
1342 */
1343struct ksz_port {
1344        u8 duplex;
1345        u8 speed;
1346        u8 force_link;
1347        u8 flow_ctrl;
1348
1349        int first_port;
1350        int mib_port_cnt;
1351        int port_cnt;
1352        u64 counter[OID_COUNTER_LAST];
1353
1354        struct ksz_hw *hw;
1355        struct ksz_port_info *linked;
1356};
1357
1358/**
1359 * struct ksz_timer_info - Timer information data structure
1360 * @timer:      Kernel timer.
1361 * @cnt:        Running timer counter.
1362 * @max:        Number of times to run timer; -1 for infinity.
1363 * @period:     Timer period in jiffies.
1364 */
1365struct ksz_timer_info {
1366        struct timer_list timer;
1367        int cnt;
1368        int max;
1369        int period;
1370};
1371
1372/**
1373 * struct ksz_shared_mem - OS dependent shared memory data structure
1374 * @dma_addr:   Physical DMA address allocated.
1375 * @alloc_size: Allocation size.
1376 * @phys:       Actual physical address used.
1377 * @alloc_virt: Virtual address allocated.
1378 * @virt:       Actual virtual address used.
1379 */
1380struct ksz_shared_mem {
1381        dma_addr_t dma_addr;
1382        uint alloc_size;
1383        uint phys;
1384        u8 *alloc_virt;
1385        u8 *virt;
1386};
1387
1388/**
1389 * struct ksz_counter_info - OS dependent counter information data structure
1390 * @counter:    Wait queue to wakeup after counters are read.
1391 * @time:       Next time in jiffies to read counter.
1392 * @read:       Indication of counters read in full or not.
1393 */
1394struct ksz_counter_info {
1395        wait_queue_head_t counter;
1396        unsigned long time;
1397        int read;
1398};
1399
1400/**
1401 * struct dev_info - Network device information data structure
1402 * @dev:                Pointer to network device.
1403 * @pdev:               Pointer to PCI device.
1404 * @hw:                 Hardware structure.
1405 * @desc_pool:          Physical memory used for descriptor pool.
1406 * @hwlock:             Spinlock to prevent hardware from accessing.
1407 * @lock:               Mutex lock to prevent device from accessing.
1408 * @dev_rcv:            Receive process function used.
1409 * @last_skb:           Socket buffer allocated for descriptor rx fragments.
1410 * @skb_index:          Buffer index for receiving fragments.
1411 * @skb_len:            Buffer length for receiving fragments.
1412 * @mib_read:           Workqueue to read MIB counters.
1413 * @mib_timer_info:     Timer to read MIB counters.
1414 * @counter:            Used for MIB reading.
1415 * @mtu:                Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1416 *                      the maximum is MAX_RX_BUF_SIZE.
1417 * @opened:             Counter to keep track of device open.
1418 * @rx_tasklet:         Receive processing tasklet.
1419 * @tx_tasklet:         Transmit processing tasklet.
1420 * @wol_enable:         Wake-on-LAN enable set by ethtool.
1421 * @wol_support:        Wake-on-LAN support used by ethtool.
1422 * @pme_wait:           Used for KSZ8841 power management.
1423 */
1424struct dev_info {
1425        struct net_device *dev;
1426        struct pci_dev *pdev;
1427
1428        struct ksz_hw hw;
1429        struct ksz_shared_mem desc_pool;
1430
1431        spinlock_t hwlock;
1432        struct mutex lock;
1433
1434        int (*dev_rcv)(struct dev_info *);
1435
1436        struct sk_buff *last_skb;
1437        int skb_index;
1438        int skb_len;
1439
1440        struct work_struct mib_read;
1441        struct ksz_timer_info mib_timer_info;
1442        struct ksz_counter_info counter[TOTAL_PORT_NUM];
1443
1444        int mtu;
1445        int opened;
1446
1447        struct tasklet_struct rx_tasklet;
1448        struct tasklet_struct tx_tasklet;
1449
1450        int wol_enable;
1451        int wol_support;
1452        unsigned long pme_wait;
1453};
1454
1455/**
1456 * struct dev_priv - Network device private data structure
1457 * @adapter:            Adapter device information.
1458 * @port:               Port information.
1459 * @monitor_time_info:  Timer to monitor ports.
1460 * @proc_sem:           Semaphore for proc accessing.
1461 * @id:                 Device ID.
1462 * @mii_if:             MII interface information.
1463 * @advertising:        Temporary variable to store advertised settings.
1464 * @msg_enable:         The message flags controlling driver output.
1465 * @media_state:        The connection status of the device.
1466 * @multicast:          The all multicast state of the device.
1467 * @promiscuous:        The promiscuous state of the device.
1468 */
1469struct dev_priv {
1470        struct dev_info *adapter;
1471        struct ksz_port port;
1472        struct ksz_timer_info monitor_timer_info;
1473
1474        struct semaphore proc_sem;
1475        int id;
1476
1477        struct mii_if_info mii_if;
1478        u32 advertising;
1479
1480        u32 msg_enable;
1481        int media_state;
1482        int multicast;
1483        int promiscuous;
1484};
1485
1486#define DRV_NAME                "KSZ884X PCI"
1487#define DEVICE_NAME             "KSZ884x PCI"
1488#define DRV_VERSION             "1.0.0"
1489#define DRV_RELDATE             "Feb 8, 2010"
1490
1491static char version[] __devinitdata =
1492        "Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1493
1494static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1495
1496/*
1497 * Interrupt processing primary routines
1498 */
1499
1500static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1501{
1502        writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1503}
1504
1505static inline void hw_dis_intr(struct ksz_hw *hw)
1506{
1507        hw->intr_blocked = hw->intr_mask;
1508        writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1509        hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1510}
1511
1512static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1513{
1514        hw->intr_set = interrupt;
1515        writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1516}
1517
1518static inline void hw_ena_intr(struct ksz_hw *hw)
1519{
1520        hw->intr_blocked = 0;
1521        hw_set_intr(hw, hw->intr_mask);
1522}
1523
1524static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1525{
1526        hw->intr_mask &= ~(bit);
1527}
1528
1529static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1530{
1531        u32 read_intr;
1532
1533        read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1534        hw->intr_set = read_intr & ~interrupt;
1535        writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1536        hw_dis_intr_bit(hw, interrupt);
1537}
1538
1539/**
1540 * hw_turn_on_intr - turn on specified interrupts
1541 * @hw:         The hardware instance.
1542 * @bit:        The interrupt bits to be on.
1543 *
1544 * This routine turns on the specified interrupts in the interrupt mask so that
1545 * those interrupts will be enabled.
1546 */
1547static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1548{
1549        hw->intr_mask |= bit;
1550
1551        if (!hw->intr_blocked)
1552                hw_set_intr(hw, hw->intr_mask);
1553}
1554
1555static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1556{
1557        u32 read_intr;
1558
1559        read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1560        hw->intr_set = read_intr | interrupt;
1561        writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1562}
1563
1564static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1565{
1566        *status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1567        *status = *status & hw->intr_set;
1568}
1569
1570static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1571{
1572        if (interrupt)
1573                hw_ena_intr(hw);
1574}
1575
1576/**
1577 * hw_block_intr - block hardware interrupts
1578 *
1579 * This function blocks all interrupts of the hardware and returns the current
1580 * interrupt enable mask so that interrupts can be restored later.
1581 *
1582 * Return the current interrupt enable mask.
1583 */
1584static uint hw_block_intr(struct ksz_hw *hw)
1585{
1586        uint interrupt = 0;
1587
1588        if (!hw->intr_blocked) {
1589                hw_dis_intr(hw);
1590                interrupt = hw->intr_blocked;
1591        }
1592        return interrupt;
1593}
1594
1595/*
1596 * Hardware descriptor routines
1597 */
1598
1599static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1600{
1601        status.rx.hw_owned = 0;
1602        desc->phw->ctrl.data = cpu_to_le32(status.data);
1603}
1604
1605static inline void release_desc(struct ksz_desc *desc)
1606{
1607        desc->sw.ctrl.tx.hw_owned = 1;
1608        if (desc->sw.buf_size != desc->sw.buf.data) {
1609                desc->sw.buf_size = desc->sw.buf.data;
1610                desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1611        }
1612        desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1613}
1614
1615static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1616{
1617        *desc = &info->ring[info->last];
1618        info->last++;
1619        info->last &= info->mask;
1620        info->avail--;
1621        (*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1622}
1623
1624static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1625{
1626        desc->phw->addr = cpu_to_le32(addr);
1627}
1628
1629static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1630{
1631        desc->sw.buf.rx.buf_size = len;
1632}
1633
1634static inline void get_tx_pkt(struct ksz_desc_info *info,
1635        struct ksz_desc **desc)
1636{
1637        *desc = &info->ring[info->next];
1638        info->next++;
1639        info->next &= info->mask;
1640        info->avail--;
1641        (*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1642}
1643
1644static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1645{
1646        desc->phw->addr = cpu_to_le32(addr);
1647}
1648
1649static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1650{
1651        desc->sw.buf.tx.buf_size = len;
1652}
1653
1654/* Switch functions */
1655
1656#define TABLE_READ                      0x10
1657#define TABLE_SEL_SHIFT                 2
1658
1659#define HW_DELAY(hw, reg)                       \
1660        do {                                    \
1661                u16 dummy;                      \
1662                dummy = readw(hw->io + reg);    \
1663        } while (0)
1664
1665/**
1666 * sw_r_table - read 4 bytes of data from switch table
1667 * @hw:         The hardware instance.
1668 * @table:      The table selector.
1669 * @addr:       The address of the table entry.
1670 * @data:       Buffer to store the read data.
1671 *
1672 * This routine reads 4 bytes of data from the table of the switch.
1673 * Hardware interrupts are disabled to minimize corruption of read data.
1674 */
1675static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1676{
1677        u16 ctrl_addr;
1678        uint interrupt;
1679
1680        ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1681
1682        interrupt = hw_block_intr(hw);
1683
1684        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1685        HW_DELAY(hw, KS884X_IACR_OFFSET);
1686        *data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1687
1688        hw_restore_intr(hw, interrupt);
1689}
1690
1691/**
1692 * sw_w_table_64 - write 8 bytes of data to the switch table
1693 * @hw:         The hardware instance.
1694 * @table:      The table selector.
1695 * @addr:       The address of the table entry.
1696 * @data_hi:    The high part of data to be written (bit63 ~ bit32).
1697 * @data_lo:    The low part of data to be written (bit31 ~ bit0).
1698 *
1699 * This routine writes 8 bytes of data to the table of the switch.
1700 * Hardware interrupts are disabled to minimize corruption of written data.
1701 */
1702static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1703        u32 data_lo)
1704{
1705        u16 ctrl_addr;
1706        uint interrupt;
1707
1708        ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1709
1710        interrupt = hw_block_intr(hw);
1711
1712        writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1713        writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1714
1715        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1716        HW_DELAY(hw, KS884X_IACR_OFFSET);
1717
1718        hw_restore_intr(hw, interrupt);
1719}
1720
1721/**
1722 * sw_w_sta_mac_table - write to the static MAC table
1723 * @hw:         The hardware instance.
1724 * @addr:       The address of the table entry.
1725 * @mac_addr:   The MAC address.
1726 * @ports:      The port members.
1727 * @override:   The flag to override the port receive/transmit settings.
1728 * @valid:      The flag to indicate entry is valid.
1729 * @use_fid:    The flag to indicate the FID is valid.
1730 * @fid:        The FID value.
1731 *
1732 * This routine writes an entry of the static MAC table of the switch.  It
1733 * calls sw_w_table_64() to write the data.
1734 */
1735static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1736        u8 ports, int override, int valid, int use_fid, u8 fid)
1737{
1738        u32 data_hi;
1739        u32 data_lo;
1740
1741        data_lo = ((u32) mac_addr[2] << 24) |
1742                ((u32) mac_addr[3] << 16) |
1743                ((u32) mac_addr[4] << 8) | mac_addr[5];
1744        data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1745        data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1746
1747        if (override)
1748                data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1749        if (use_fid) {
1750                data_hi |= STATIC_MAC_TABLE_USE_FID;
1751                data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1752        }
1753        if (valid)
1754                data_hi |= STATIC_MAC_TABLE_VALID;
1755
1756        sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1757}
1758
1759/**
1760 * sw_r_vlan_table - read from the VLAN table
1761 * @hw:         The hardware instance.
1762 * @addr:       The address of the table entry.
1763 * @vid:        Buffer to store the VID.
1764 * @fid:        Buffer to store the VID.
1765 * @member:     Buffer to store the port membership.
1766 *
1767 * This function reads an entry of the VLAN table of the switch.  It calls
1768 * sw_r_table() to get the data.
1769 *
1770 * Return 0 if the entry is valid; otherwise -1.
1771 */
1772static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1773        u8 *member)
1774{
1775        u32 data;
1776
1777        sw_r_table(hw, TABLE_VLAN, addr, &data);
1778        if (data & VLAN_TABLE_VALID) {
1779                *vid = (u16)(data & VLAN_TABLE_VID);
1780                *fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1781                *member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1782                        VLAN_TABLE_MEMBERSHIP_SHIFT);
1783                return 0;
1784        }
1785        return -1;
1786}
1787
1788/**
1789 * port_r_mib_cnt - read MIB counter
1790 * @hw:         The hardware instance.
1791 * @port:       The port index.
1792 * @addr:       The address of the counter.
1793 * @cnt:        Buffer to store the counter.
1794 *
1795 * This routine reads a MIB counter of the port.
1796 * Hardware interrupts are disabled to minimize corruption of read data.
1797 */
1798static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1799{
1800        u32 data;
1801        u16 ctrl_addr;
1802        uint interrupt;
1803        int timeout;
1804
1805        ctrl_addr = addr + PORT_COUNTER_NUM * port;
1806
1807        interrupt = hw_block_intr(hw);
1808
1809        ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1810        writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1811        HW_DELAY(hw, KS884X_IACR_OFFSET);
1812
1813        for (timeout = 100; timeout > 0; timeout--) {
1814                data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1815
1816                if (data & MIB_COUNTER_VALID) {
1817                        if (data & MIB_COUNTER_OVERFLOW)
1818                                *cnt += MIB_COUNTER_VALUE + 1;
1819                        *cnt += data & MIB_COUNTER_VALUE;
1820                        break;
1821                }
1822        }
1823
1824        hw_restore_intr(hw, interrupt);
1825}
1826
1827/**
1828 * port_r_mib_pkt - read dropped packet counts
1829 * @hw:         The hardware instance.
1830 * @port:       The port index.
1831 * @cnt:        Buffer to store the receive and transmit dropped packet counts.
1832 *
1833 * This routine reads the dropped packet counts of the port.
1834 * Hardware interrupts are disabled to minimize corruption of read data.
1835 */
1836static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1837{
1838        u32 cur;
1839        u32 data;
1840        u16 ctrl_addr;
1841        uint interrupt;
1842        int index;
1843
1844        index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1845        do {
1846                interrupt = hw_block_intr(hw);
1847
1848                ctrl_addr = (u16) index;
1849                ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1850                        << 8);
1851                writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1852                HW_DELAY(hw, KS884X_IACR_OFFSET);
1853                data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1854
1855                hw_restore_intr(hw, interrupt);
1856
1857                data &= MIB_PACKET_DROPPED;
1858                cur = *last;
1859                if (data != cur) {
1860                        *last = data;
1861                        if (data < cur)
1862                                data += MIB_PACKET_DROPPED + 1;
1863                        data -= cur;
1864                        *cnt += data;
1865                }
1866                ++last;
1867                ++cnt;
1868                index -= KS_MIB_PACKET_DROPPED_TX -
1869                        KS_MIB_PACKET_DROPPED_TX_0 + 1;
1870        } while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1871}
1872
1873/**
1874 * port_r_cnt - read MIB counters periodically
1875 * @hw:         The hardware instance.
1876 * @port:       The port index.
1877 *
1878 * This routine is used to read the counters of the port periodically to avoid
1879 * counter overflow.  The hardware should be acquired first before calling this
1880 * routine.
1881 *
1882 * Return non-zero when not all counters not read.
1883 */
1884static int port_r_cnt(struct ksz_hw *hw, int port)
1885{
1886        struct ksz_port_mib *mib = &hw->port_mib[port];
1887
1888        if (mib->mib_start < PORT_COUNTER_NUM)
1889                while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1890                        port_r_mib_cnt(hw, port, mib->cnt_ptr,
1891                                &mib->counter[mib->cnt_ptr]);
1892                        ++mib->cnt_ptr;
1893                }
1894        if (hw->mib_cnt > PORT_COUNTER_NUM)
1895                port_r_mib_pkt(hw, port, mib->dropped,
1896                        &mib->counter[PORT_COUNTER_NUM]);
1897        mib->cnt_ptr = 0;
1898        return 0;
1899}
1900
1901/**
1902 * port_init_cnt - initialize MIB counter values
1903 * @hw:         The hardware instance.
1904 * @port:       The port index.
1905 *
1906 * This routine is used to initialize all counters to zero if the hardware
1907 * cannot do it after reset.
1908 */
1909static void port_init_cnt(struct ksz_hw *hw, int port)
1910{
1911        struct ksz_port_mib *mib = &hw->port_mib[port];
1912
1913        mib->cnt_ptr = 0;
1914        if (mib->mib_start < PORT_COUNTER_NUM)
1915                do {
1916                        port_r_mib_cnt(hw, port, mib->cnt_ptr,
1917                                &mib->counter[mib->cnt_ptr]);
1918                        ++mib->cnt_ptr;
1919                } while (mib->cnt_ptr < PORT_COUNTER_NUM);
1920        if (hw->mib_cnt > PORT_COUNTER_NUM)
1921                port_r_mib_pkt(hw, port, mib->dropped,
1922                        &mib->counter[PORT_COUNTER_NUM]);
1923        memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1924        mib->cnt_ptr = 0;
1925}
1926
1927/*
1928 * Port functions
1929 */
1930
1931/**
1932 * port_chk - check port register bits
1933 * @hw:         The hardware instance.
1934 * @port:       The port index.
1935 * @offset:     The offset of the port register.
1936 * @bits:       The data bits to check.
1937 *
1938 * This function checks whether the specified bits of the port register are set
1939 * or not.
1940 *
1941 * Return 0 if the bits are not set.
1942 */
1943static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1944{
1945        u32 addr;
1946        u16 data;
1947
1948        PORT_CTRL_ADDR(port, addr);
1949        addr += offset;
1950        data = readw(hw->io + addr);
1951        return (data & bits) == bits;
1952}
1953
1954/**
1955 * port_cfg - set port register bits
1956 * @hw:         The hardware instance.
1957 * @port:       The port index.
1958 * @offset:     The offset of the port register.
1959 * @bits:       The data bits to set.
1960 * @set:        The flag indicating whether the bits are to be set or not.
1961 *
1962 * This routine sets or resets the specified bits of the port register.
1963 */
1964static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1965        int set)
1966{
1967        u32 addr;
1968        u16 data;
1969
1970        PORT_CTRL_ADDR(port, addr);
1971        addr += offset;
1972        data = readw(hw->io + addr);
1973        if (set)
1974                data |= bits;
1975        else
1976                data &= ~bits;
1977        writew(data, hw->io + addr);
1978}
1979
1980/**
1981 * port_chk_shift - check port bit
1982 * @hw:         The hardware instance.
1983 * @port:       The port index.
1984 * @offset:     The offset of the register.
1985 * @shift:      Number of bits to shift.
1986 *
1987 * This function checks whether the specified port is set in the register or
1988 * not.
1989 *
1990 * Return 0 if the port is not set.
1991 */
1992static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1993{
1994        u16 data;
1995        u16 bit = 1 << port;
1996
1997        data = readw(hw->io + addr);
1998        data >>= shift;
1999        return (data & bit) == bit;
2000}
2001
2002/**
2003 * port_cfg_shift - set port bit
2004 * @hw:         The hardware instance.
2005 * @port:       The port index.
2006 * @offset:     The offset of the register.
2007 * @shift:      Number of bits to shift.
2008 * @set:        The flag indicating whether the port is to be set or not.
2009 *
2010 * This routine sets or resets the specified port in the register.
2011 */
2012static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2013        int set)
2014{
2015        u16 data;
2016        u16 bits = 1 << port;
2017
2018        data = readw(hw->io + addr);
2019        bits <<= shift;
2020        if (set)
2021                data |= bits;
2022        else
2023                data &= ~bits;
2024        writew(data, hw->io + addr);
2025}
2026
2027/**
2028 * port_r8 - read byte from port register
2029 * @hw:         The hardware instance.
2030 * @port:       The port index.
2031 * @offset:     The offset of the port register.
2032 * @data:       Buffer to store the data.
2033 *
2034 * This routine reads a byte from the port register.
2035 */
2036static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2037{
2038        u32 addr;
2039
2040        PORT_CTRL_ADDR(port, addr);
2041        addr += offset;
2042        *data = readb(hw->io + addr);
2043}
2044
2045/**
2046 * port_r16 - read word from port register.
2047 * @hw:         The hardware instance.
2048 * @port:       The port index.
2049 * @offset:     The offset of the port register.
2050 * @data:       Buffer to store the data.
2051 *
2052 * This routine reads a word from the port register.
2053 */
2054static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2055{
2056        u32 addr;
2057
2058        PORT_CTRL_ADDR(port, addr);
2059        addr += offset;
2060        *data = readw(hw->io + addr);
2061}
2062
2063/**
2064 * port_w16 - write word to port register.
2065 * @hw:         The hardware instance.
2066 * @port:       The port index.
2067 * @offset:     The offset of the port register.
2068 * @data:       Data to write.
2069 *
2070 * This routine writes a word to the port register.
2071 */
2072static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2073{
2074        u32 addr;
2075
2076        PORT_CTRL_ADDR(port, addr);
2077        addr += offset;
2078        writew(data, hw->io + addr);
2079}
2080
2081/**
2082 * sw_chk - check switch register bits
2083 * @hw:         The hardware instance.
2084 * @addr:       The address of the switch register.
2085 * @bits:       The data bits to check.
2086 *
2087 * This function checks whether the specified bits of the switch register are
2088 * set or not.
2089 *
2090 * Return 0 if the bits are not set.
2091 */
2092static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2093{
2094        u16 data;
2095
2096        data = readw(hw->io + addr);
2097        return (data & bits) == bits;
2098}
2099
2100/**
2101 * sw_cfg - set switch register bits
2102 * @hw:         The hardware instance.
2103 * @addr:       The address of the switch register.
2104 * @bits:       The data bits to set.
2105 * @set:        The flag indicating whether the bits are to be set or not.
2106 *
2107 * This function sets or resets the specified bits of the switch register.
2108 */
2109static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2110{
2111        u16 data;
2112
2113        data = readw(hw->io + addr);
2114        if (set)
2115                data |= bits;
2116        else
2117                data &= ~bits;
2118        writew(data, hw->io + addr);
2119}
2120
2121/* Bandwidth */
2122
2123static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2124{
2125        port_cfg(hw, p,
2126                KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2127}
2128
2129static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2130{
2131        return port_chk(hw, p,
2132                KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2133}
2134
2135/* Driver set switch broadcast storm protection at 10% rate. */
2136#define BROADCAST_STORM_PROTECTION_RATE 10
2137
2138/* 148,800 frames * 67 ms / 100 */
2139#define BROADCAST_STORM_VALUE           9969
2140
2141/**
2142 * sw_cfg_broad_storm - configure broadcast storm threshold
2143 * @hw:         The hardware instance.
2144 * @percent:    Broadcast storm threshold in percent of transmit rate.
2145 *
2146 * This routine configures the broadcast storm threshold of the switch.
2147 */
2148static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2149{
2150        u16 data;
2151        u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2152
2153        if (value > BROADCAST_STORM_RATE)
2154                value = BROADCAST_STORM_RATE;
2155
2156        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2157        data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2158        data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2159        writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2160}
2161
2162/**
2163 * sw_get_board_storm - get broadcast storm threshold
2164 * @hw:         The hardware instance.
2165 * @percent:    Buffer to store the broadcast storm threshold percentage.
2166 *
2167 * This routine retrieves the broadcast storm threshold of the switch.
2168 */
2169static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2170{
2171        int num;
2172        u16 data;
2173
2174        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2175        num = (data & BROADCAST_STORM_RATE_HI);
2176        num <<= 8;
2177        num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2178        num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2179        *percent = (u8) num;
2180}
2181
2182/**
2183 * sw_dis_broad_storm - disable broadstorm
2184 * @hw:         The hardware instance.
2185 * @port:       The port index.
2186 *
2187 * This routine disables the broadcast storm limit function of the switch.
2188 */
2189static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2190{
2191        port_cfg_broad_storm(hw, port, 0);
2192}
2193
2194/**
2195 * sw_ena_broad_storm - enable broadcast storm
2196 * @hw:         The hardware instance.
2197 * @port:       The port index.
2198 *
2199 * This routine enables the broadcast storm limit function of the switch.
2200 */
2201static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2202{
2203        sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2204        port_cfg_broad_storm(hw, port, 1);
2205}
2206
2207/**
2208 * sw_init_broad_storm - initialize broadcast storm
2209 * @hw:         The hardware instance.
2210 *
2211 * This routine initializes the broadcast storm limit function of the switch.
2212 */
2213static void sw_init_broad_storm(struct ksz_hw *hw)
2214{
2215        int port;
2216
2217        hw->ksz_switch->broad_per = 1;
2218        sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2219        for (port = 0; port < TOTAL_PORT_NUM; port++)
2220                sw_dis_broad_storm(hw, port);
2221        sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2222}
2223
2224/**
2225 * hw_cfg_broad_storm - configure broadcast storm
2226 * @hw:         The hardware instance.
2227 * @percent:    Broadcast storm threshold in percent of transmit rate.
2228 *
2229 * This routine configures the broadcast storm threshold of the switch.
2230 * It is called by user functions.  The hardware should be acquired first.
2231 */
2232static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2233{
2234        if (percent > 100)
2235                percent = 100;
2236
2237        sw_cfg_broad_storm(hw, percent);
2238        sw_get_broad_storm(hw, &percent);
2239        hw->ksz_switch->broad_per = percent;
2240}
2241
2242/**
2243 * sw_dis_prio_rate - disable switch priority rate
2244 * @hw:         The hardware instance.
2245 * @port:       The port index.
2246 *
2247 * This routine disables the priority rate function of the switch.
2248 */
2249static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2250{
2251        u32 addr;
2252
2253        PORT_CTRL_ADDR(port, addr);
2254        addr += KS8842_PORT_IN_RATE_OFFSET;
2255        writel(0, hw->io + addr);
2256}
2257
2258/**
2259 * sw_init_prio_rate - initialize switch prioirty rate
2260 * @hw:         The hardware instance.
2261 *
2262 * This routine initializes the priority rate function of the switch.
2263 */
2264static void sw_init_prio_rate(struct ksz_hw *hw)
2265{
2266        int port;
2267        int prio;
2268        struct ksz_switch *sw = hw->ksz_switch;
2269
2270        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2271                for (prio = 0; prio < PRIO_QUEUES; prio++) {
2272                        sw->port_cfg[port].rx_rate[prio] =
2273                        sw->port_cfg[port].tx_rate[prio] = 0;
2274                }
2275                sw_dis_prio_rate(hw, port);
2276        }
2277}
2278
2279/* Communication */
2280
2281static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2282{
2283        port_cfg(hw, p,
2284                KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2285}
2286
2287static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2288{
2289        port_cfg(hw, p,
2290                KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2291}
2292
2293static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2294{
2295        return port_chk(hw, p,
2296                KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2297}
2298
2299static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2300{
2301        return port_chk(hw, p,
2302                KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2303}
2304
2305/* Spanning Tree */
2306
2307static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2308{
2309        port_cfg(hw, p,
2310                KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2311}
2312
2313static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2314{
2315        port_cfg(hw, p,
2316                KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2317}
2318
2319static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2320{
2321        port_cfg(hw, p,
2322                KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2323}
2324
2325static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2326{
2327        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2328}
2329
2330static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2331{
2332        if (!(hw->overrides & FAST_AGING)) {
2333                sw_cfg_fast_aging(hw, 1);
2334                mdelay(1);
2335                sw_cfg_fast_aging(hw, 0);
2336        }
2337}
2338
2339/* VLAN */
2340
2341static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2342{
2343        port_cfg(hw, p,
2344                KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2345}
2346
2347static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2348{
2349        port_cfg(hw, p,
2350                KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2351}
2352
2353static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2354{
2355        return port_chk(hw, p,
2356                KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2357}
2358
2359static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2360{
2361        return port_chk(hw, p,
2362                KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2363}
2364
2365static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2366{
2367        port_cfg(hw, p,
2368                KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2369}
2370
2371static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2372{
2373        port_cfg(hw, p,
2374                KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2375}
2376
2377static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2378{
2379        return port_chk(hw, p,
2380                KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2381}
2382
2383static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2384{
2385        return port_chk(hw, p,
2386                KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2387}
2388
2389/* Mirroring */
2390
2391static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2392{
2393        port_cfg(hw, p,
2394                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2395}
2396
2397static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2398{
2399        port_cfg(hw, p,
2400                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2401}
2402
2403static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2404{
2405        port_cfg(hw, p,
2406                KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2407}
2408
2409static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2410{
2411        sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2412}
2413
2414static void sw_init_mirror(struct ksz_hw *hw)
2415{
2416        int port;
2417
2418        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2419                port_cfg_mirror_sniffer(hw, port, 0);
2420                port_cfg_mirror_rx(hw, port, 0);
2421                port_cfg_mirror_tx(hw, port, 0);
2422        }
2423        sw_cfg_mirror_rx_tx(hw, 0);
2424}
2425
2426static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2427{
2428        sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2429                SWITCH_UNK_DEF_PORT_ENABLE, set);
2430}
2431
2432static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2433{
2434        return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2435                SWITCH_UNK_DEF_PORT_ENABLE);
2436}
2437
2438static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2439{
2440        port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2441}
2442
2443static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2444{
2445        return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2446}
2447
2448/* Priority */
2449
2450static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2451{
2452        port_cfg(hw, p,
2453                KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2454}
2455
2456static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2457{
2458        port_cfg(hw, p,
2459                KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2460}
2461
2462static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2463{
2464        port_cfg(hw, p,
2465                KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2466}
2467
2468static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2469{
2470        port_cfg(hw, p,
2471                KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2472}
2473
2474static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2475{
2476        return port_chk(hw, p,
2477                KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2478}
2479
2480static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2481{
2482        return port_chk(hw, p,
2483                KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2484}
2485
2486static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2487{
2488        return port_chk(hw, p,
2489                KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2490}
2491
2492static inline int port_chk_prio(struct ksz_hw *hw, int p)
2493{
2494        return port_chk(hw, p,
2495                KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2496}
2497
2498/**
2499 * sw_dis_diffserv - disable switch DiffServ priority
2500 * @hw:         The hardware instance.
2501 * @port:       The port index.
2502 *
2503 * This routine disables the DiffServ priority function of the switch.
2504 */
2505static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2506{
2507        port_cfg_diffserv(hw, port, 0);
2508}
2509
2510/**
2511 * sw_dis_802_1p - disable switch 802.1p priority
2512 * @hw:         The hardware instance.
2513 * @port:       The port index.
2514 *
2515 * This routine disables the 802.1p priority function of the switch.
2516 */
2517static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2518{
2519        port_cfg_802_1p(hw, port, 0);
2520}
2521
2522/**
2523 * sw_cfg_replace_null_vid -
2524 * @hw:         The hardware instance.
2525 * @set:        The flag to disable or enable.
2526 *
2527 */
2528static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2529{
2530        sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2531}
2532
2533/**
2534 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2535 * @hw:         The hardware instance.
2536 * @port:       The port index.
2537 * @set:        The flag to disable or enable.
2538 *
2539 * This routine enables the 802.1p priority re-mapping function of the switch.
2540 * That allows 802.1p priority field to be replaced with the port's default
2541 * tag's priority value if the ingress packet's 802.1p priority has a higher
2542 * priority than port's default tag's priority.
2543 */
2544static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2545{
2546        port_cfg_replace_vid(hw, port, set);
2547}
2548
2549/**
2550 * sw_cfg_port_based - configure switch port based priority
2551 * @hw:         The hardware instance.
2552 * @port:       The port index.
2553 * @prio:       The priority to set.
2554 *
2555 * This routine configures the port based priority of the switch.
2556 */
2557static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2558{
2559        u16 data;
2560
2561        if (prio > PORT_BASED_PRIORITY_BASE)
2562                prio = PORT_BASED_PRIORITY_BASE;
2563
2564        hw->ksz_switch->port_cfg[port].port_prio = prio;
2565
2566        port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2567        data &= ~PORT_BASED_PRIORITY_MASK;
2568        data |= prio << PORT_BASED_PRIORITY_SHIFT;
2569        port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2570}
2571
2572/**
2573 * sw_dis_multi_queue - disable transmit multiple queues
2574 * @hw:         The hardware instance.
2575 * @port:       The port index.
2576 *
2577 * This routine disables the transmit multiple queues selection of the switch
2578 * port.  Only single transmit queue on the port.
2579 */
2580static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2581{
2582        port_cfg_prio(hw, port, 0);
2583}
2584
2585/**
2586 * sw_init_prio - initialize switch priority
2587 * @hw:         The hardware instance.
2588 *
2589 * This routine initializes the switch QoS priority functions.
2590 */
2591static void sw_init_prio(struct ksz_hw *hw)
2592{
2593        int port;
2594        int tos;
2595        struct ksz_switch *sw = hw->ksz_switch;
2596
2597        /*
2598         * Init all the 802.1p tag priority value to be assigned to different
2599         * priority queue.
2600         */
2601        sw->p_802_1p[0] = 0;
2602        sw->p_802_1p[1] = 0;
2603        sw->p_802_1p[2] = 1;
2604        sw->p_802_1p[3] = 1;
2605        sw->p_802_1p[4] = 2;
2606        sw->p_802_1p[5] = 2;
2607        sw->p_802_1p[6] = 3;
2608        sw->p_802_1p[7] = 3;
2609
2610        /*
2611         * Init all the DiffServ priority value to be assigned to priority
2612         * queue 0.
2613         */
2614        for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2615                sw->diffserv[tos] = 0;
2616
2617        /* All QoS functions disabled. */
2618        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2619                sw_dis_multi_queue(hw, port);
2620                sw_dis_diffserv(hw, port);
2621                sw_dis_802_1p(hw, port);
2622                sw_cfg_replace_vid(hw, port, 0);
2623
2624                sw->port_cfg[port].port_prio = 0;
2625                sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2626        }
2627        sw_cfg_replace_null_vid(hw, 0);
2628}
2629
2630/**
2631 * port_get_def_vid - get port default VID.
2632 * @hw:         The hardware instance.
2633 * @port:       The port index.
2634 * @vid:        Buffer to store the VID.
2635 *
2636 * This routine retrieves the default VID of the port.
2637 */
2638static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2639{
2640        u32 addr;
2641
2642        PORT_CTRL_ADDR(port, addr);
2643        addr += KS8842_PORT_CTRL_VID_OFFSET;
2644        *vid = readw(hw->io + addr);
2645}
2646
2647/**
2648 * sw_init_vlan - initialize switch VLAN
2649 * @hw:         The hardware instance.
2650 *
2651 * This routine initializes the VLAN function of the switch.
2652 */
2653static void sw_init_vlan(struct ksz_hw *hw)
2654{
2655        int port;
2656        int entry;
2657        struct ksz_switch *sw = hw->ksz_switch;
2658
2659        /* Read 16 VLAN entries from device's VLAN table. */
2660        for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2661                sw_r_vlan_table(hw, entry,
2662                        &sw->vlan_table[entry].vid,
2663                        &sw->vlan_table[entry].fid,
2664                        &sw->vlan_table[entry].member);
2665        }
2666
2667        for (port = 0; port < TOTAL_PORT_NUM; port++) {
2668                port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2669                sw->port_cfg[port].member = PORT_MASK;
2670        }
2671}
2672
2673/**
2674 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2675 * @hw:         The hardware instance.
2676 * @port:       The port index.
2677 * @member:     The port-based VLAN membership.
2678 *
2679 * This routine configures the port-based VLAN membership of the port.
2680 */
2681static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2682{
2683        u32 addr;
2684        u8 data;
2685
2686        PORT_CTRL_ADDR(port, addr);
2687        addr += KS8842_PORT_CTRL_2_OFFSET;
2688
2689        data = readb(hw->io + addr);
2690        data &= ~PORT_VLAN_MEMBERSHIP;
2691        data |= (member & PORT_MASK);
2692        writeb(data, hw->io + addr);
2693
2694        hw->ksz_switch->port_cfg[port].member = member;
2695}
2696
2697/**
2698 * sw_get_addr - get the switch MAC address.
2699 * @hw:         The hardware instance.
2700 * @mac_addr:   Buffer to store the MAC address.
2701 *
2702 * This function retrieves the MAC address of the switch.
2703 */
2704static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2705{
2706        int i;
2707
2708        for (i = 0; i < 6; i += 2) {
2709                mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2710                mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2711        }
2712}
2713
2714/**
2715 * sw_set_addr - configure switch MAC address
2716 * @hw:         The hardware instance.
2717 * @mac_addr:   The MAC address.
2718 *
2719 * This function configures the MAC address of the switch.
2720 */
2721static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2722{
2723        int i;
2724
2725        for (i = 0; i < 6; i += 2) {
2726                writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2727                writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2728        }
2729}
2730
2731/**
2732 * sw_set_global_ctrl - set switch global control
2733 * @hw:         The hardware instance.
2734 *
2735 * This routine sets the global control of the switch function.
2736 */
2737static void sw_set_global_ctrl(struct ksz_hw *hw)
2738{
2739        u16 data;
2740
2741        /* Enable switch MII flow control. */
2742        data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2743        data |= SWITCH_FLOW_CTRL;
2744        writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2745
2746        data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2747
2748        /* Enable aggressive back off algorithm in half duplex mode. */
2749        data |= SWITCH_AGGR_BACKOFF;
2750
2751        /* Enable automatic fast aging when link changed detected. */
2752        data |= SWITCH_AGING_ENABLE;
2753        data |= SWITCH_LINK_AUTO_AGING;
2754
2755        if (hw->overrides & FAST_AGING)
2756                data |= SWITCH_FAST_AGING;
2757        else
2758                data &= ~SWITCH_FAST_AGING;
2759        writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2760
2761        data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2762
2763        /* Enable no excessive collision drop. */
2764        data |= NO_EXC_COLLISION_DROP;
2765        writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2766}
2767
2768enum {
2769        STP_STATE_DISABLED = 0,
2770        STP_STATE_LISTENING,
2771        STP_STATE_LEARNING,
2772        STP_STATE_FORWARDING,
2773        STP_STATE_BLOCKED,
2774        STP_STATE_SIMPLE
2775};
2776
2777/**
2778 * port_set_stp_state - configure port spanning tree state
2779 * @hw:         The hardware instance.
2780 * @port:       The port index.
2781 * @state:      The spanning tree state.
2782 *
2783 * This routine configures the spanning tree state of the port.
2784 */
2785static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2786{
2787        u16 data;
2788
2789        port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2790        switch (state) {
2791        case STP_STATE_DISABLED:
2792                data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2793                data |= PORT_LEARN_DISABLE;
2794                break;
2795        case STP_STATE_LISTENING:
2796/*
2797 * No need to turn on transmit because of port direct mode.
2798 * Turning on receive is required if static MAC table is not setup.
2799 */
2800                data &= ~PORT_TX_ENABLE;
2801                data |= PORT_RX_ENABLE;
2802                data |= PORT_LEARN_DISABLE;
2803                break;
2804        case STP_STATE_LEARNING:
2805                data &= ~PORT_TX_ENABLE;
2806                data |= PORT_RX_ENABLE;
2807                data &= ~PORT_LEARN_DISABLE;
2808                break;
2809        case STP_STATE_FORWARDING:
2810                data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2811                data &= ~PORT_LEARN_DISABLE;
2812                break;
2813        case STP_STATE_BLOCKED:
2814/*
2815 * Need to setup static MAC table with override to keep receiving BPDU
2816 * messages.  See sw_init_stp routine.
2817 */
2818                data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2819                data |= PORT_LEARN_DISABLE;
2820                break;
2821        case STP_STATE_SIMPLE:
2822                data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2823                data |= PORT_LEARN_DISABLE;
2824                break;
2825        }
2826        port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2827        hw->ksz_switch->port_cfg[port].stp_state = state;
2828}
2829
2830#define STP_ENTRY                       0
2831#define BROADCAST_ENTRY                 1
2832#define BRIDGE_ADDR_ENTRY               2
2833#define IPV6_ADDR_ENTRY                 3
2834
2835/**
2836 * sw_clr_sta_mac_table - clear static MAC table
2837 * @hw:         The hardware instance.
2838 *
2839 * This routine clears the static MAC table.
2840 */
2841static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2842{
2843        struct ksz_mac_table *entry;
2844        int i;
2845
2846        for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2847                entry = &hw->ksz_switch->mac_table[i];
2848                sw_w_sta_mac_table(hw, i,
2849                        entry->mac_addr, entry->ports,
2850                        entry->override, 0,
2851                        entry->use_fid, entry->fid);
2852        }
2853}
2854
2855/**
2856 * sw_init_stp - initialize switch spanning tree support
2857 * @hw:         The hardware instance.
2858 *
2859 * This routine initializes the spanning tree support of the switch.
2860 */
2861static void sw_init_stp(struct ksz_hw *hw)
2862{
2863        struct ksz_mac_table *entry;
2864
2865        entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2866        entry->mac_addr[0] = 0x01;
2867        entry->mac_addr[1] = 0x80;
2868        entry->mac_addr[2] = 0xC2;
2869        entry->mac_addr[3] = 0x00;
2870        entry->mac_addr[4] = 0x00;
2871        entry->mac_addr[5] = 0x00;
2872        entry->ports = HOST_MASK;
2873        entry->override = 1;
2874        entry->valid = 1;
2875        sw_w_sta_mac_table(hw, STP_ENTRY,
2876                entry->mac_addr, entry->ports,
2877                entry->override, entry->valid,
2878                entry->use_fid, entry->fid);
2879}
2880
2881/**
2882 * sw_block_addr - block certain packets from the host port
2883 * @hw:         The hardware instance.
2884 *
2885 * This routine blocks certain packets from reaching to the host port.
2886 */
2887static void sw_block_addr(struct ksz_hw *hw)
2888{
2889        struct ksz_mac_table *entry;
2890        int i;
2891
2892        for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2893                entry = &hw->ksz_switch->mac_table[i];
2894                entry->valid = 0;
2895                sw_w_sta_mac_table(hw, i,
2896                        entry->mac_addr, entry->ports,
2897                        entry->override, entry->valid,
2898                        entry->use_fid, entry->fid);
2899        }
2900}
2901
2902#define PHY_LINK_SUPPORT                \
2903        (PHY_AUTO_NEG_ASYM_PAUSE |      \
2904        PHY_AUTO_NEG_SYM_PAUSE |        \
2905        PHY_AUTO_NEG_100BT4 |           \
2906        PHY_AUTO_NEG_100BTX_FD |        \
2907        PHY_AUTO_NEG_100BTX |           \
2908        PHY_AUTO_NEG_10BT_FD |          \
2909        PHY_AUTO_NEG_10BT)
2910
2911static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2912{
2913        *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2914}
2915
2916static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2917{
2918        writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2919}
2920
2921static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2922{
2923        *data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2924}
2925
2926static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2927{
2928        *data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2929}
2930
2931static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2932{
2933        writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2934}
2935
2936static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2937{
2938        *data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2939}
2940
2941static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2942{
2943        *data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2944}
2945
2946static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2947{
2948        writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2949}
2950
2951static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2952{
2953        *data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2954}
2955
2956static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2957{
2958        writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2959}
2960
2961static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2962{
2963        *data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2964}
2965
2966static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2967{
2968        writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2969}
2970
2971/**
2972 * hw_r_phy - read data from PHY register
2973 * @hw:         The hardware instance.
2974 * @port:       Port to read.
2975 * @reg:        PHY register to read.
2976 * @val:        Buffer to store the read data.
2977 *
2978 * This routine reads data from the PHY register.
2979 */
2980static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2981{
2982        int phy;
2983
2984        phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2985        *val = readw(hw->io + phy);
2986}
2987
2988/**
2989 * port_w_phy - write data to PHY register
2990 * @hw:         The hardware instance.
2991 * @port:       Port to write.
2992 * @reg:        PHY register to write.
2993 * @val:        Word data to write.
2994 *
2995 * This routine writes data to the PHY register.
2996 */
2997static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2998{
2999        int phy;
3000
3001        phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3002        writew(val, hw->io + phy);
3003}
3004
3005/*
3006 * EEPROM access functions
3007 */
3008
3009#define AT93C_CODE                      0
3010#define AT93C_WR_OFF                    0x00
3011#define AT93C_WR_ALL                    0x10
3012#define AT93C_ER_ALL                    0x20
3013#define AT93C_WR_ON                     0x30
3014
3015#define AT93C_WRITE                     1
3016#define AT93C_READ                      2
3017#define AT93C_ERASE                     3
3018
3019#define EEPROM_DELAY                    4
3020
3021static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3022{
3023        u16 data;
3024
3025        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3026        data &= ~gpio;
3027        writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028}
3029
3030static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3031{
3032        u16 data;
3033
3034        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3035        data |= gpio;
3036        writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037}
3038
3039static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3040{
3041        u16 data;
3042
3043        data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3044        return (u8)(data & gpio);
3045}
3046
3047static void eeprom_clk(struct ksz_hw *hw)
3048{
3049        raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3050        udelay(EEPROM_DELAY);
3051        drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3052        udelay(EEPROM_DELAY);
3053}
3054
3055static u16 spi_r(struct ksz_hw *hw)
3056{
3057        int i;
3058        u16 temp = 0;
3059
3060        for (i = 15; i >= 0; i--) {
3061                raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3062                udelay(EEPROM_DELAY);
3063
3064                temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3065
3066                drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3067                udelay(EEPROM_DELAY);
3068        }
3069        return temp;
3070}
3071
3072static void spi_w(struct ksz_hw *hw, u16 data)
3073{
3074        int i;
3075
3076        for (i = 15; i >= 0; i--) {
3077                (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3078                        drop_gpio(hw, EEPROM_DATA_OUT);
3079                eeprom_clk(hw);
3080        }
3081}
3082
3083static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3084{
3085        int i;
3086
3087        /* Initial start bit */
3088        raise_gpio(hw, EEPROM_DATA_OUT);
3089        eeprom_clk(hw);
3090
3091        /* AT93C operation */
3092        for (i = 1; i >= 0; i--) {
3093                (data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094                        drop_gpio(hw, EEPROM_DATA_OUT);
3095                eeprom_clk(hw);
3096        }
3097
3098        /* Address location */
3099        for (i = 5; i >= 0; i--) {
3100                (reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3101                        drop_gpio(hw, EEPROM_DATA_OUT);
3102                eeprom_clk(hw);
3103        }
3104}
3105
3106#define EEPROM_DATA_RESERVED            0
3107#define EEPROM_DATA_MAC_ADDR_0          1
3108#define EEPROM_DATA_MAC_ADDR_1          2
3109#define EEPROM_DATA_MAC_ADDR_2          3
3110#define EEPROM_DATA_SUBSYS_ID           4
3111#define EEPROM_DATA_SUBSYS_VEN_ID       5
3112#define EEPROM_DATA_PM_CAP              6
3113
3114/* User defined EEPROM data */
3115#define EEPROM_DATA_OTHER_MAC_ADDR      9
3116
3117/**
3118 * eeprom_read - read from AT93C46 EEPROM
3119 * @hw:         The hardware instance.
3120 * @reg:        The register offset.
3121 *
3122 * This function reads a word from the AT93C46 EEPROM.
3123 *
3124 * Return the data value.
3125 */
3126static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3127{
3128        u16 data;
3129
3130        raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3131
3132        spi_reg(hw, AT93C_READ, reg);
3133        data = spi_r(hw);
3134
3135        drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3136
3137        return data;
3138}
3139
3140/**
3141 * eeprom_write - write to AT93C46 EEPROM
3142 * @hw:         The hardware instance.
3143 * @reg:        The register offset.
3144 * @data:       The data value.
3145 *
3146 * This procedure writes a word to the AT93C46 EEPROM.
3147 */
3148static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3149{
3150        int timeout;
3151
3152        raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3153
3154        /* Enable write. */
3155        spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3156        drop_gpio(hw, EEPROM_CHIP_SELECT);
3157        udelay(1);
3158
3159        /* Erase the register. */
3160        raise_gpio(hw, EEPROM_CHIP_SELECT);
3161        spi_reg(hw, AT93C_ERASE, reg);
3162        drop_gpio(hw, EEPROM_CHIP_SELECT);
3163        udelay(1);
3164
3165        /* Check operation complete. */
3166        raise_gpio(hw, EEPROM_CHIP_SELECT);
3167        timeout = 8;
3168        mdelay(2);
3169        do {
3170                mdelay(1);
3171        } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3172        drop_gpio(hw, EEPROM_CHIP_SELECT);
3173        udelay(1);
3174
3175        /* Write the register. */
3176        raise_gpio(hw, EEPROM_CHIP_SELECT);
3177        spi_reg(hw, AT93C_WRITE, reg);
3178        spi_w(hw, data);
3179        drop_gpio(hw, EEPROM_CHIP_SELECT);
3180        udelay(1);
3181
3182        /* Check operation complete. */
3183        raise_gpio(hw, EEPROM_CHIP_SELECT);
3184        timeout = 8;
3185        mdelay(2);
3186        do {
3187                mdelay(1);
3188        } while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3189        drop_gpio(hw, EEPROM_CHIP_SELECT);
3190        udelay(1);
3191
3192        /* Disable write. */
3193        raise_gpio(hw, EEPROM_CHIP_SELECT);
3194        spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3195
3196        drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3197}
3198
3199/*
3200 * Link detection routines
3201 */
3202
3203static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3204{
3205        ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3206        switch (port->flow_ctrl) {
3207        case PHY_FLOW_CTRL:
3208                ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3209                break;
3210        /* Not supported. */
3211        case PHY_TX_ONLY:
3212        case PHY_RX_ONLY:
3213        default:
3214                break;
3215        }
3216        return ctrl;
3217}
3218
3219static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3220{
3221        u32 rx_cfg;
3222        u32 tx_cfg;
3223
3224        rx_cfg = hw->rx_cfg;
3225        tx_cfg = hw->tx_cfg;
3226        if (rx)
3227                hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3228        else
3229                hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3230        if (tx)
3231                hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3232        else
3233                hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3234        if (hw->enabled) {
3235                if (rx_cfg != hw->rx_cfg)
3236                        writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3237                if (tx_cfg != hw->tx_cfg)
3238                        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3239        }
3240}
3241
3242static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3243        u16 local, u16 remote)
3244{
3245        int rx;
3246        int tx;
3247
3248        if (hw->overrides & PAUSE_FLOW_CTRL)
3249                return;
3250
3251        rx = tx = 0;
3252        if (port->force_link)
3253                rx = tx = 1;
3254        if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3255                if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3256                        rx = tx = 1;
3257                } else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3258                                (local & PHY_AUTO_NEG_PAUSE) ==
3259                                PHY_AUTO_NEG_ASYM_PAUSE) {
3260                        tx = 1;
3261                }
3262        } else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3263                if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3264                        rx = 1;
3265        }
3266        if (!hw->ksz_switch)
3267                set_flow_ctrl(hw, rx, tx);
3268}
3269
3270static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3271        struct ksz_port_info *info, u16 link_status)
3272{
3273        if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3274                        !(hw->overrides & PAUSE_FLOW_CTRL)) {
3275                u32 cfg = hw->tx_cfg;
3276
3277                /* Disable flow control in the half duplex mode. */
3278                if (1 == info->duplex)
3279                        hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3280                if (hw->enabled && cfg != hw->tx_cfg)
3281                        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3282        }
3283}
3284
3285/**
3286 * port_get_link_speed - get current link status
3287 * @port:       The port instance.
3288 *
3289 * This routine reads PHY registers to determine the current link status of the
3290 * switch ports.
3291 */
3292static void port_get_link_speed(struct ksz_port *port)
3293{
3294        uint interrupt;
3295        struct ksz_port_info *info;
3296        struct ksz_port_info *linked = NULL;
3297        struct ksz_hw *hw = port->hw;
3298        u16 data;
3299        u16 status;
3300        u8 local;
3301        u8 remote;
3302        int i;
3303        int p;
3304        int change = 0;
3305
3306        interrupt = hw_block_intr(hw);
3307
3308        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3309                info = &hw->port_info[p];
3310                port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3311                port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3312
3313                /*
3314                 * Link status is changing all the time even when there is no
3315                 * cable connection!
3316                 */
3317                remote = status & (PORT_AUTO_NEG_COMPLETE |
3318                        PORT_STATUS_LINK_GOOD);
3319                local = (u8) data;
3320
3321                /* No change to status. */
3322                if (local == info->advertised && remote == info->partner)
3323                        continue;
3324
3325                info->advertised = local;
3326                info->partner = remote;
3327                if (status & PORT_STATUS_LINK_GOOD) {
3328
3329                        /* Remember the first linked port. */
3330                        if (!linked)
3331                                linked = info;
3332
3333                        info->tx_rate = 10 * TX_RATE_UNIT;
3334                        if (status & PORT_STATUS_SPEED_100MBIT)
3335                                info->tx_rate = 100 * TX_RATE_UNIT;
3336
3337                        info->duplex = 1;
3338                        if (status & PORT_STATUS_FULL_DUPLEX)
3339                                info->duplex = 2;
3340
3341                        if (media_connected != info->state) {
3342                                hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3343                                        &data);
3344                                hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3345                                        &status);
3346                                determine_flow_ctrl(hw, port, data, status);
3347                                if (hw->ksz_switch) {
3348                                        port_cfg_back_pressure(hw, p,
3349                                                (1 == info->duplex));
3350                                }
3351                                change |= 1 << i;
3352                                port_cfg_change(hw, port, info, status);
3353                        }
3354                        info->state = media_connected;
3355                } else {
3356                        if (media_disconnected != info->state) {
3357                                change |= 1 << i;
3358
3359                                /* Indicate the link just goes down. */
3360                                hw->port_mib[p].link_down = 1;
3361                        }
3362                        info->state = media_disconnected;
3363                }
3364                hw->port_mib[p].state = (u8) info->state;
3365        }
3366
3367        if (linked && media_disconnected == port->linked->state)
3368                port->linked = linked;
3369
3370        hw_restore_intr(hw, interrupt);
3371}
3372
3373#define PHY_RESET_TIMEOUT               10
3374
3375/**
3376 * port_set_link_speed - set port speed
3377 * @port:       The port instance.
3378 *
3379 * This routine sets the link speed of the switch ports.
3380 */
3381static void port_set_link_speed(struct ksz_port *port)
3382{
3383        struct ksz_port_info *info;
3384        struct ksz_hw *hw = port->hw;
3385        u16 data;
3386        u16 cfg;
3387        u8 status;
3388        int i;
3389        int p;
3390
3391        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3392                info = &hw->port_info[p];
3393
3394                port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3395                port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3396
3397                cfg = 0;
3398                if (status & PORT_STATUS_LINK_GOOD)
3399                        cfg = data;
3400
3401                data |= PORT_AUTO_NEG_ENABLE;
3402                data = advertised_flow_ctrl(port, data);
3403
3404                data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3405                        PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3406
3407                /* Check if manual configuration is specified by the user. */
3408                if (port->speed || port->duplex) {
3409                        if (10 == port->speed)
3410                                data &= ~(PORT_AUTO_NEG_100BTX_FD |
3411                                        PORT_AUTO_NEG_100BTX);
3412                        else if (100 == port->speed)
3413                                data &= ~(PORT_AUTO_NEG_10BT_FD |
3414                                        PORT_AUTO_NEG_10BT);
3415                        if (1 == port->duplex)
3416                                data &= ~(PORT_AUTO_NEG_100BTX_FD |
3417                                        PORT_AUTO_NEG_10BT_FD);
3418                        else if (2 == port->duplex)
3419                                data &= ~(PORT_AUTO_NEG_100BTX |
3420                                        PORT_AUTO_NEG_10BT);
3421                }
3422                if (data != cfg) {
3423                        data |= PORT_AUTO_NEG_RESTART;
3424                        port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3425                }
3426        }
3427}
3428
3429/**
3430 * port_force_link_speed - force port speed
3431 * @port:       The port instance.
3432 *
3433 * This routine forces the link speed of the switch ports.
3434 */
3435static void port_force_link_speed(struct ksz_port *port)
3436{
3437        struct ksz_hw *hw = port->hw;
3438        u16 data;
3439        int i;
3440        int phy;
3441        int p;
3442
3443        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3444                phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3445                hw_r_phy_ctrl(hw, phy, &data);
3446
3447                data &= ~PHY_AUTO_NEG_ENABLE;
3448
3449                if (10 == port->speed)
3450                        data &= ~PHY_SPEED_100MBIT;
3451                else if (100 == port->speed)
3452                        data |= PHY_SPEED_100MBIT;
3453                if (1 == port->duplex)
3454                        data &= ~PHY_FULL_DUPLEX;
3455                else if (2 == port->duplex)
3456                        data |= PHY_FULL_DUPLEX;
3457                hw_w_phy_ctrl(hw, phy, data);
3458        }
3459}
3460
3461static void port_set_power_saving(struct ksz_port *port, int enable)
3462{
3463        struct ksz_hw *hw = port->hw;
3464        int i;
3465        int p;
3466
3467        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3468                port_cfg(hw, p,
3469                        KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3470}
3471
3472/*
3473 * KSZ8841 power management functions
3474 */
3475
3476/**
3477 * hw_chk_wol_pme_status - check PMEN pin
3478 * @hw:         The hardware instance.
3479 *
3480 * This function is used to check PMEN pin is asserted.
3481 *
3482 * Return 1 if PMEN pin is asserted; otherwise, 0.
3483 */
3484static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3485{
3486        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3487        struct pci_dev *pdev = hw_priv->pdev;
3488        u16 data;
3489
3490        if (!pdev->pm_cap)
3491                return 0;
3492        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3493        return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3494}
3495
3496/**
3497 * hw_clr_wol_pme_status - clear PMEN pin
3498 * @hw:         The hardware instance.
3499 *
3500 * This routine is used to clear PME_Status to deassert PMEN pin.
3501 */
3502static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3503{
3504        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3505        struct pci_dev *pdev = hw_priv->pdev;
3506        u16 data;
3507
3508        if (!pdev->pm_cap)
3509                return;
3510
3511        /* Clear PME_Status to deassert PMEN pin. */
3512        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3513        data |= PCI_PM_CTRL_PME_STATUS;
3514        pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3515}
3516
3517/**
3518 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3519 * @hw:         The hardware instance.
3520 * @set:        The flag indicating whether to enable or disable.
3521 *
3522 * This routine is used to enable or disable Wake-on-LAN.
3523 */
3524static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3525{
3526        struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3527        struct pci_dev *pdev = hw_priv->pdev;
3528        u16 data;
3529
3530        if (!pdev->pm_cap)
3531                return;
3532        pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3533        data &= ~PCI_PM_CTRL_STATE_MASK;
3534        if (set)
3535                data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3536        else
3537                data &= ~PCI_PM_CTRL_PME_ENABLE;
3538        pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3539}
3540
3541/**
3542 * hw_cfg_wol - configure Wake-on-LAN features
3543 * @hw:         The hardware instance.
3544 * @frame:      The pattern frame bit.
3545 * @set:        The flag indicating whether to enable or disable.
3546 *
3547 * This routine is used to enable or disable certain Wake-on-LAN features.
3548 */
3549static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3550{
3551        u16 data;
3552
3553        data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3554        if (set)
3555                data |= frame;
3556        else
3557                data &= ~frame;
3558        writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3559}
3560
3561/**
3562 * hw_set_wol_frame - program Wake-on-LAN pattern
3563 * @hw:         The hardware instance.
3564 * @i:          The frame index.
3565 * @mask_size:  The size of the mask.
3566 * @mask:       Mask to ignore certain bytes in the pattern.
3567 * @frame_size: The size of the frame.
3568 * @pattern:    The frame data.
3569 *
3570 * This routine is used to program Wake-on-LAN pattern.
3571 */
3572static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3573        const u8 *mask, uint frame_size, const u8 *pattern)
3574{
3575        int bits;
3576        int from;
3577        int len;
3578        int to;
3579        u32 crc;
3580        u8 data[64];
3581        u8 val = 0;
3582
3583        if (frame_size > mask_size * 8)
3584                frame_size = mask_size * 8;
3585        if (frame_size > 64)
3586                frame_size = 64;
3587
3588        i *= 0x10;
3589        writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3590        writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3591
3592        bits = len = from = to = 0;
3593        do {
3594                if (bits) {
3595                        if ((val & 1))
3596                                data[to++] = pattern[from];
3597                        val >>= 1;
3598                        ++from;
3599                        --bits;
3600                } else {
3601                        val = mask[len];
3602                        writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3603                                + len);
3604                        ++len;
3605                        if (val)
3606                                bits = 8;
3607                        else
3608                                from += 8;
3609                }
3610        } while (from < (int) frame_size);
3611        if (val) {
3612                bits = mask[len - 1];
3613                val <<= (from % 8);
3614                bits &= ~val;
3615                writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3616                        1);
3617        }
3618        crc = ether_crc(to, data);
3619        writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3620}
3621
3622/**
3623 * hw_add_wol_arp - add ARP pattern
3624 * @hw:         The hardware instance.
3625 * @ip_addr:    The IPv4 address assigned to the device.
3626 *
3627 * This routine is used to add ARP pattern for waking up the host.
3628 */
3629static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3630{
3631        static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3632        u8 pattern[42] = {
3633                0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3634                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3635                0x08, 0x06,
3636                0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3637                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3638                0x00, 0x00, 0x00, 0x00,
3639                0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3640                0x00, 0x00, 0x00, 0x00 };
3641
3642        memcpy(&pattern[38], ip_addr, 4);
3643        hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3644}
3645
3646/**
3647 * hw_add_wol_bcast - add broadcast pattern
3648 * @hw:         The hardware instance.
3649 *
3650 * This routine is used to add broadcast pattern for waking up the host.
3651 */
3652static void hw_add_wol_bcast(struct ksz_hw *hw)
3653{
3654        static const u8 mask[] = { 0x3F };
3655        static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3656
3657        hw_set_wol_frame(hw, 2, 1, mask, MAC_ADDR_LEN, pattern);
3658}
3659
3660/**
3661 * hw_add_wol_mcast - add multicast pattern
3662 * @hw:         The hardware instance.
3663 *
3664 * This routine is used to add multicast pattern for waking up the host.
3665 *
3666 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3667 * by IPv6 ping command.  Note that multicast packets are filtred through the
3668 * multicast hash table, so not all multicast packets can wake up the host.
3669 */
3670static void hw_add_wol_mcast(struct ksz_hw *hw)
3671{
3672        static const u8 mask[] = { 0x3F };
3673        u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3674
3675        memcpy(&pattern[3], &hw->override_addr[3], 3);
3676        hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3677}
3678
3679/**
3680 * hw_add_wol_ucast - add unicast pattern
3681 * @hw:         The hardware instance.
3682 *
3683 * This routine is used to add unicast pattern to wakeup the host.
3684 *
3685 * It is assumed the unicast packet is directed to the device, as the hardware
3686 * can only receive them in normal case.
3687 */
3688static void hw_add_wol_ucast(struct ksz_hw *hw)
3689{
3690        static const u8 mask[] = { 0x3F };
3691
3692        hw_set_wol_frame(hw, 0, 1, mask, MAC_ADDR_LEN, hw->override_addr);
3693}
3694
3695/**
3696 * hw_enable_wol - enable Wake-on-LAN
3697 * @hw:         The hardware instance.
3698 * @wol_enable: The Wake-on-LAN settings.
3699 * @net_addr:   The IPv4 address assigned to the device.
3700 *
3701 * This routine is used to enable Wake-on-LAN depending on driver settings.
3702 */
3703static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3704{
3705        hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3706        hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3707        hw_add_wol_ucast(hw);
3708        hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3709        hw_add_wol_mcast(hw);
3710        hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3711        hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3712        hw_add_wol_arp(hw, net_addr);
3713}
3714
3715/**
3716 * hw_init - check driver is correct for the hardware
3717 * @hw:         The hardware instance.
3718 *
3719 * This function checks the hardware is correct for this driver and sets the
3720 * hardware up for proper initialization.
3721 *
3722 * Return number of ports or 0 if not right.
3723 */
3724static int hw_init(struct ksz_hw *hw)
3725{
3726        int rc = 0;
3727        u16 data;
3728        u16 revision;
3729
3730        /* Set bus speed to 125MHz. */
3731        writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3732
3733        /* Check KSZ884x chip ID. */
3734        data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3735
3736        revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3737        data &= KS884X_CHIP_ID_MASK_41;
3738        if (REG_CHIP_ID_41 == data)
3739                rc = 1;
3740        else if (REG_CHIP_ID_42 == data)
3741                rc = 2;
3742        else
3743                return 0;
3744
3745        /* Setup hardware features or bug workarounds. */
3746        if (revision <= 1) {
3747                hw->features |= SMALL_PACKET_TX_BUG;
3748                if (1 == rc)
3749                        hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3750        }
3751        hw->features |= IPV6_CSUM_GEN_HACK;
3752        return rc;
3753}
3754
3755/**
3756 * hw_reset - reset the hardware
3757 * @hw:         The hardware instance.
3758 *
3759 * This routine resets the hardware.
3760 */
3761static void hw_reset(struct ksz_hw *hw)
3762{
3763        writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3764
3765        /* Wait for device to reset. */
3766        mdelay(10);
3767
3768        /* Write 0 to clear device reset. */
3769        writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3770}
3771
3772/**
3773 * hw_setup - setup the hardware
3774 * @hw:         The hardware instance.
3775 *
3776 * This routine setup the hardware for proper operation.
3777 */
3778static void hw_setup(struct ksz_hw *hw)
3779{
3780#if SET_DEFAULT_LED
3781        u16 data;
3782
3783        /* Change default LED mode. */
3784        data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3785        data &= ~LED_MODE;
3786        data |= SET_DEFAULT_LED;
3787        writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3788#endif
3789
3790        /* Setup transmit control. */
3791        hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3792                (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3793
3794        /* Setup receive control. */
3795        hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3796                (DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3797        hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3798
3799        /* Hardware cannot handle UDP packet in IP fragments. */
3800        hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3801
3802        if (hw->all_multi)
3803                hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3804        if (hw->promiscuous)
3805                hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3806}
3807
3808/**
3809 * hw_setup_intr - setup interrupt mask
3810 * @hw:         The hardware instance.
3811 *
3812 * This routine setup the interrupt mask for proper operation.
3813 */
3814static void hw_setup_intr(struct ksz_hw *hw)
3815{
3816        hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3817}
3818
3819static void ksz_check_desc_num(struct ksz_desc_info *info)
3820{
3821#define MIN_DESC_SHIFT  2
3822
3823        int alloc = info->alloc;
3824        int shift;
3825
3826        shift = 0;
3827        while (!(alloc & 1)) {
3828                shift++;
3829                alloc >>= 1;
3830        }
3831        if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3832                pr_alert("Hardware descriptor numbers not right!\n");
3833                while (alloc) {
3834                        shift++;
3835                        alloc >>= 1;
3836                }
3837                if (shift < MIN_DESC_SHIFT)
3838                        shift = MIN_DESC_SHIFT;
3839                alloc = 1 << shift;
3840                info->alloc = alloc;
3841        }
3842        info->mask = info->alloc - 1;
3843}
3844
3845static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3846{
3847        int i;
3848        u32 phys = desc_info->ring_phys;
3849        struct ksz_hw_desc *desc = desc_info->ring_virt;
3850        struct ksz_desc *cur = desc_info->ring;
3851        struct ksz_desc *previous = NULL;
3852
3853        for (i = 0; i < desc_info->alloc; i++) {
3854                cur->phw = desc++;
3855                phys += desc_info->size;
3856                previous = cur++;
3857                previous->phw->next = cpu_to_le32(phys);
3858        }
3859        previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3860        previous->sw.buf.rx.end_of_ring = 1;
3861        previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3862
3863        desc_info->avail = desc_info->alloc;
3864        desc_info->last = desc_info->next = 0;
3865
3866        desc_info->cur = desc_info->ring;
3867}
3868
3869/**
3870 * hw_set_desc_base - set descriptor base addresses
3871 * @hw:         The hardware instance.
3872 * @tx_addr:    The transmit descriptor base.
3873 * @rx_addr:    The receive descriptor base.
3874 *
3875 * This routine programs the descriptor base addresses after reset.
3876 */
3877static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3878{
3879        /* Set base address of Tx/Rx descriptors. */
3880        writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3881        writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3882}
3883
3884static void hw_reset_pkts(struct ksz_desc_info *info)
3885{
3886        info->cur = info->ring;
3887        info->avail = info->alloc;
3888        info->last = info->next = 0;
3889}
3890
3891static inline void hw_resume_rx(struct ksz_hw *hw)
3892{
3893        writel(DMA_START, hw->io + KS_DMA_RX_START);
3894}
3895
3896/**
3897 * hw_start_rx - start receiving
3898 * @hw:         The hardware instance.
3899 *
3900 * This routine starts the receive function of the hardware.
3901 */
3902static void hw_start_rx(struct ksz_hw *hw)
3903{
3904        writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3905
3906        /* Notify when the receive stops. */
3907        hw->intr_mask |= KS884X_INT_RX_STOPPED;
3908
3909        writel(DMA_START, hw->io + KS_DMA_RX_START);
3910        hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3911        hw->rx_stop++;
3912
3913        /* Variable overflows. */
3914        if (0 == hw->rx_stop)
3915                hw->rx_stop = 2;
3916}
3917
3918/*
3919 * hw_stop_rx - stop receiving
3920 * @hw:         The hardware instance.
3921 *
3922 * This routine stops the receive function of the hardware.
3923 */
3924static void hw_stop_rx(struct ksz_hw *hw)
3925{
3926        hw->rx_stop = 0;
3927        hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3928        writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3929}
3930
3931/**
3932 * hw_start_tx - start transmitting
3933 * @hw:         The hardware instance.
3934 *
3935 * This routine starts the transmit function of the hardware.
3936 */
3937static void hw_start_tx(struct ksz_hw *hw)
3938{
3939        writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3940}
3941
3942/**
3943 * hw_stop_tx - stop transmitting
3944 * @hw:         The hardware instance.
3945 *
3946 * This routine stops the transmit function of the hardware.
3947 */
3948static void hw_stop_tx(struct ksz_hw *hw)
3949{
3950        writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3951}
3952
3953/**
3954 * hw_disable - disable hardware
3955 * @hw:         The hardware instance.
3956 *
3957 * This routine disables the hardware.
3958 */
3959static void hw_disable(struct ksz_hw *hw)
3960{
3961        hw_stop_rx(hw);
3962        hw_stop_tx(hw);
3963        hw->enabled = 0;
3964}
3965
3966/**
3967 * hw_enable - enable hardware
3968 * @hw:         The hardware instance.
3969 *
3970 * This routine enables the hardware.
3971 */
3972static void hw_enable(struct ksz_hw *hw)
3973{
3974        hw_start_tx(hw);
3975        hw_start_rx(hw);
3976        hw->enabled = 1;
3977}
3978
3979/**
3980 * hw_alloc_pkt - allocate enough descriptors for transmission
3981 * @hw:         The hardware instance.
3982 * @length:     The length of the packet.
3983 * @physical:   Number of descriptors required.
3984 *
3985 * This function allocates descriptors for transmission.
3986 *
3987 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3988 */
3989static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3990{
3991        /* Always leave one descriptor free. */
3992        if (hw->tx_desc_info.avail <= 1)
3993                return 0;
3994
3995        /* Allocate a descriptor for transmission and mark it current. */
3996        get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3997        hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3998
3999        /* Keep track of number of transmit descriptors used so far. */
4000        ++hw->tx_int_cnt;
4001        hw->tx_size += length;
4002
4003        /* Cannot hold on too much data. */
4004        if (hw->tx_size >= MAX_TX_HELD_SIZE)
4005                hw->tx_int_cnt = hw->tx_int_mask + 1;
4006
4007        if (physical > hw->tx_desc_info.avail)
4008                return 1;
4009
4010        return hw->tx_desc_info.avail;
4011}
4012
4013/**
4014 * hw_send_pkt - mark packet for transmission
4015 * @hw:         The hardware instance.
4016 *
4017 * This routine marks the packet for transmission in PCI version.
4018 */
4019static void hw_send_pkt(struct ksz_hw *hw)
4020{
4021        struct ksz_desc *cur = hw->tx_desc_info.cur;
4022
4023        cur->sw.buf.tx.last_seg = 1;
4024
4025        /* Interrupt only after specified number of descriptors used. */
4026        if (hw->tx_int_cnt > hw->tx_int_mask) {
4027                cur->sw.buf.tx.intr = 1;
4028                hw->tx_int_cnt = 0;
4029                hw->tx_size = 0;
4030        }
4031
4032        /* KSZ8842 supports port directed transmission. */
4033        cur->sw.buf.tx.dest_port = hw->dst_ports;
4034
4035        release_desc(cur);
4036
4037        writel(0, hw->io + KS_DMA_TX_START);
4038}
4039
4040static int empty_addr(u8 *addr)
4041{
4042        u32 *addr1 = (u32 *) addr;
4043        u16 *addr2 = (u16 *) &addr[4];
4044
4045        return 0 == *addr1 && 0 == *addr2;
4046}
4047
4048/**
4049 * hw_set_addr - set MAC address
4050 * @hw:         The hardware instance.
4051 *
4052 * This routine programs the MAC address of the hardware when the address is
4053 * overrided.
4054 */
4055static void hw_set_addr(struct ksz_hw *hw)
4056{
4057        int i;
4058
4059        for (i = 0; i < MAC_ADDR_LEN; i++)
4060                writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4061                        hw->io + KS884X_ADDR_0_OFFSET + i);
4062
4063        sw_set_addr(hw, hw->override_addr);
4064}
4065
4066/**
4067 * hw_read_addr - read MAC address
4068 * @hw:         The hardware instance.
4069 *
4070 * This routine retrieves the MAC address of the hardware.
4071 */
4072static void hw_read_addr(struct ksz_hw *hw)
4073{
4074        int i;
4075
4076        for (i = 0; i < MAC_ADDR_LEN; i++)
4077                hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4078                        KS884X_ADDR_0_OFFSET + i);
4079
4080        if (!hw->mac_override) {
4081                memcpy(hw->override_addr, hw->perm_addr, MAC_ADDR_LEN);
4082                if (empty_addr(hw->override_addr)) {
4083                        memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS,
4084                                MAC_ADDR_LEN);
4085                        memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4086                                MAC_ADDR_LEN);
4087                        hw->override_addr[5] += hw->id;
4088                        hw_set_addr(hw);
4089                }
4090        }
4091}
4092
4093static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4094{
4095        int i;
4096        u32 mac_addr_lo;
4097        u32 mac_addr_hi;
4098
4099        mac_addr_hi = 0;
4100        for (i = 0; i < 2; i++) {
4101                mac_addr_hi <<= 8;
4102                mac_addr_hi |= mac_addr[i];
4103        }
4104        mac_addr_hi |= ADD_ADDR_ENABLE;
4105        mac_addr_lo = 0;
4106        for (i = 2; i < 6; i++) {
4107                mac_addr_lo <<= 8;
4108                mac_addr_lo |= mac_addr[i];
4109        }
4110        index *= ADD_ADDR_INCR;
4111
4112        writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4113        writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4114}
4115
4116static void hw_set_add_addr(struct ksz_hw *hw)
4117{
4118        int i;
4119
4120        for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4121                if (empty_addr(hw->address[i]))
4122                        writel(0, hw->io + ADD_ADDR_INCR * i +
4123                                KS_ADD_ADDR_0_HI);
4124                else
4125                        hw_ena_add_addr(hw, i, hw->address[i]);
4126        }
4127}
4128
4129static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4130{
4131        int i;
4132        int j = ADDITIONAL_ENTRIES;
4133
4134        if (!memcmp(hw->override_addr, mac_addr, MAC_ADDR_LEN))
4135                return 0;
4136        for (i = 0; i < hw->addr_list_size; i++) {
4137                if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN))
4138                        return 0;
4139                if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4140                        j = i;
4141        }
4142        if (j < ADDITIONAL_ENTRIES) {
4143                memcpy(hw->address[j], mac_addr, MAC_ADDR_LEN);
4144                hw_ena_add_addr(hw, j, hw->address[j]);
4145                return 0;
4146        }
4147        return -1;
4148}
4149
4150static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4151{
4152        int i;
4153
4154        for (i = 0; i < hw->addr_list_size; i++) {
4155                if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN)) {
4156                        memset(hw->address[i], 0, MAC_ADDR_LEN);
4157                        writel(0, hw->io + ADD_ADDR_INCR * i +
4158                                KS_ADD_ADDR_0_HI);
4159                        return 0;
4160                }
4161        }
4162        return -1;
4163}
4164
4165/**
4166 * hw_clr_multicast - clear multicast addresses
4167 * @hw:         The hardware instance.
4168 *
4169 * This routine removes all multicast addresses set in the hardware.
4170 */
4171static void hw_clr_multicast(struct ksz_hw *hw)
4172{
4173        int i;
4174
4175        for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4176                hw->multi_bits[i] = 0;
4177
4178                writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4179        }
4180}
4181
4182/**
4183 * hw_set_grp_addr - set multicast addresses
4184 * @hw:         The hardware instance.
4185 *
4186 * This routine programs multicast addresses for the hardware to accept those
4187 * addresses.
4188 */
4189static void hw_set_grp_addr(struct ksz_hw *hw)
4190{
4191        int i;
4192        int index;
4193        int position;
4194        int value;
4195
4196        memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4197
4198        for (i = 0; i < hw->multi_list_size; i++) {
4199                position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4200                index = position >> 3;
4201                value = 1 << (position & 7);
4202                hw->multi_bits[index] |= (u8) value;
4203        }
4204
4205        for (i = 0; i < HW_MULTICAST_SIZE; i++)
4206                writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4207                        i);
4208}
4209
4210/**
4211 * hw_set_multicast - enable or disable all multicast receiving
4212 * @hw:         The hardware instance.
4213 * @multicast:  To turn on or off the all multicast feature.
4214 *
4215 * This routine enables/disables the hardware to accept all multicast packets.
4216 */
4217static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4218{
4219        /* Stop receiving for reconfiguration. */
4220        hw_stop_rx(hw);
4221
4222        if (multicast)
4223                hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4224        else
4225                hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4226
4227        if (hw->enabled)
4228                hw_start_rx(hw);
4229}
4230
4231/**
4232 * hw_set_promiscuous - enable or disable promiscuous receiving
4233 * @hw:         The hardware instance.
4234 * @prom:       To turn on or off the promiscuous feature.
4235 *
4236 * This routine enables/disables the hardware to accept all packets.
4237 */
4238static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4239{
4240        /* Stop receiving for reconfiguration. */
4241        hw_stop_rx(hw);
4242
4243        if (prom)
4244                hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4245        else
4246                hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4247
4248        if (hw->enabled)
4249                hw_start_rx(hw);
4250}
4251
4252/**
4253 * sw_enable - enable the switch
4254 * @hw:         The hardware instance.
4255 * @enable:     The flag to enable or disable the switch
4256 *
4257 * This routine is used to enable/disable the switch in KSZ8842.
4258 */
4259static void sw_enable(struct ksz_hw *hw, int enable)
4260{
4261        int port;
4262
4263        for (port = 0; port < SWITCH_PORT_NUM; port++) {
4264                if (hw->dev_count > 1) {
4265                        /* Set port-base vlan membership with host port. */
4266                        sw_cfg_port_base_vlan(hw, port,
4267                                HOST_MASK | (1 << port));
4268                        port_set_stp_state(hw, port, STP_STATE_DISABLED);
4269                } else {
4270                        sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4271                        port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4272                }
4273        }
4274        if (hw->dev_count > 1)
4275                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4276        else
4277                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4278
4279        if (enable)
4280                enable = KS8842_START;
4281        writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4282}
4283
4284/**
4285 * sw_setup - setup the switch
4286 * @hw:         The hardware instance.
4287 *
4288 * This routine setup the hardware switch engine for default operation.
4289 */
4290static void sw_setup(struct ksz_hw *hw)
4291{
4292        int port;
4293
4294        sw_set_global_ctrl(hw);
4295
4296        /* Enable switch broadcast storm protection at 10% percent rate. */
4297        sw_init_broad_storm(hw);
4298        hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4299        for (port = 0; port < SWITCH_PORT_NUM; port++)
4300                sw_ena_broad_storm(hw, port);
4301
4302        sw_init_prio(hw);
4303
4304        sw_init_mirror(hw);
4305
4306        sw_init_prio_rate(hw);
4307
4308        sw_init_vlan(hw);
4309
4310        if (hw->features & STP_SUPPORT)
4311                sw_init_stp(hw);
4312        if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4313                        SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4314                hw->overrides |= PAUSE_FLOW_CTRL;
4315        sw_enable(hw, 1);
4316}
4317
4318/**
4319 * ksz_start_timer - start kernel timer
4320 * @info:       Kernel timer information.
4321 * @time:       The time tick.
4322 *
4323 * This routine starts the kernel timer after the specified time tick.
4324 */
4325static void ksz_start_timer(struct ksz_timer_info *info, int time)
4326{
4327        info->cnt = 0;
4328        info->timer.expires = jiffies + time;
4329        add_timer(&info->timer);
4330
4331        /* infinity */
4332        info->max = -1;
4333}
4334
4335/**
4336 * ksz_stop_timer - stop kernel timer
4337 * @info:       Kernel timer information.
4338 *
4339 * This routine stops the kernel timer.
4340 */
4341static void ksz_stop_timer(struct ksz_timer_info *info)
4342{
4343        if (info->max) {
4344                info->max = 0;
4345                del_timer_sync(&info->timer);
4346        }
4347}
4348
4349static void ksz_init_timer(struct ksz_timer_info *info, int period,
4350        void (*function)(unsigned long), void *data)
4351{
4352        info->max = 0;
4353        info->period = period;
4354        init_timer(&info->timer);
4355        info->timer.function = function;
4356        info->timer.data = (unsigned long) data;
4357}
4358
4359static void ksz_update_timer(struct ksz_timer_info *info)
4360{
4361        ++info->cnt;
4362        if (info->max > 0) {
4363                if (info->cnt < info->max) {
4364                        info->timer.expires = jiffies + info->period;
4365                        add_timer(&info->timer);
4366                } else
4367                        info->max = 0;
4368        } else if (info->max < 0) {
4369                info->timer.expires = jiffies + info->period;
4370                add_timer(&info->timer);
4371        }
4372}
4373
4374/**
4375 * ksz_alloc_soft_desc - allocate software descriptors
4376 * @desc_info:  Descriptor information structure.
4377 * @transmit:   Indication that descriptors are for transmit.
4378 *
4379 * This local function allocates software descriptors for manipulation in
4380 * memory.
4381 *
4382 * Return 0 if successful.
4383 */
4384static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4385{
4386        desc_info->ring = kmalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4387                GFP_KERNEL);
4388        if (!desc_info->ring)
4389                return 1;
4390        memset((void *) desc_info->ring, 0,
4391                sizeof(struct ksz_desc) * desc_info->alloc);
4392        hw_init_desc(desc_info, transmit);
4393        return 0;
4394}
4395
4396/**
4397 * ksz_alloc_desc - allocate hardware descriptors
4398 * @adapter:    Adapter information structure.
4399 *
4400 * This local function allocates hardware descriptors for receiving and
4401 * transmitting.
4402 *
4403 * Return 0 if successful.
4404 */
4405static int ksz_alloc_desc(struct dev_info *adapter)
4406{
4407        struct ksz_hw *hw = &adapter->hw;
4408        int offset;
4409
4410        /* Allocate memory for RX & TX descriptors. */
4411        adapter->desc_pool.alloc_size =
4412                hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4413                hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4414                DESC_ALIGNMENT;
4415
4416        adapter->desc_pool.alloc_virt =
4417                pci_alloc_consistent(
4418                        adapter->pdev, adapter->desc_pool.alloc_size,
4419                        &adapter->desc_pool.dma_addr);
4420        if (adapter->desc_pool.alloc_virt == NULL) {
4421                adapter->desc_pool.alloc_size = 0;
4422                return 1;
4423        }
4424        memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4425
4426        /* Align to the next cache line boundary. */
4427        offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4428                (DESC_ALIGNMENT -
4429                ((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4430        adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4431        adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4432
4433        /* Allocate receive/transmit descriptors. */
4434        hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4435                adapter->desc_pool.virt;
4436        hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4437        offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4438        hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4439                (adapter->desc_pool.virt + offset);
4440        hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4441
4442        if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4443                return 1;
4444        if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4445                return 1;
4446
4447        return 0;
4448}
4449
4450/**
4451 * free_dma_buf - release DMA buffer resources
4452 * @adapter:    Adapter information structure.
4453 *
4454 * This routine is just a helper function to release the DMA buffer resources.
4455 */
4456static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4457        int direction)
4458{
4459        pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4460        dev_kfree_skb(dma_buf->skb);
4461        dma_buf->skb = NULL;
4462        dma_buf->dma = 0;
4463}
4464
4465/**
4466 * ksz_init_rx_buffers - initialize receive descriptors
4467 * @adapter:    Adapter information structure.
4468 *
4469 * This routine initializes DMA buffers for receiving.
4470 */
4471static void ksz_init_rx_buffers(struct dev_info *adapter)
4472{
4473        int i;
4474        struct ksz_desc *desc;
4475        struct ksz_dma_buf *dma_buf;
4476        struct ksz_hw *hw = &adapter->hw;
4477        struct ksz_desc_info *info = &hw->rx_desc_info;
4478
4479        for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4480                get_rx_pkt(info, &desc);
4481
4482                dma_buf = DMA_BUFFER(desc);
4483                if (dma_buf->skb && dma_buf->len != adapter->mtu)
4484                        free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4485                dma_buf->len = adapter->mtu;
4486                if (!dma_buf->skb)
4487                        dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4488                if (dma_buf->skb && !dma_buf->dma) {
4489                        dma_buf->skb->dev = adapter->dev;
4490                        dma_buf->dma = pci_map_single(
4491                                adapter->pdev,
4492                                skb_tail_pointer(dma_buf->skb),
4493                                dma_buf->len,
4494                                PCI_DMA_FROMDEVICE);
4495                }
4496
4497                /* Set descriptor. */
4498                set_rx_buf(desc, dma_buf->dma);
4499                set_rx_len(desc, dma_buf->len);
4500                release_desc(desc);
4501        }
4502}
4503
4504/**
4505 * ksz_alloc_mem - allocate memory for hardware descriptors
4506 * @adapter:    Adapter information structure.
4507 *
4508 * This function allocates memory for use by hardware descriptors for receiving
4509 * and transmitting.
4510 *
4511 * Return 0 if successful.
4512 */
4513static int ksz_alloc_mem(struct dev_info *adapter)
4514{
4515        struct ksz_hw *hw = &adapter->hw;
4516
4517        /* Determine the number of receive and transmit descriptors. */
4518        hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4519        hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4520
4521        /* Determine how many descriptors to skip transmit interrupt. */
4522        hw->tx_int_cnt = 0;
4523        hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4524        if (hw->tx_int_mask > 8)
4525                hw->tx_int_mask = 8;
4526        while (hw->tx_int_mask) {
4527                hw->tx_int_cnt++;
4528                hw->tx_int_mask >>= 1;
4529        }
4530        if (hw->tx_int_cnt) {
4531                hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4532                hw->tx_int_cnt = 0;
4533        }
4534
4535        /* Determine the descriptor size. */
4536        hw->rx_desc_info.size =
4537                (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4538                DESC_ALIGNMENT) * DESC_ALIGNMENT);
4539        hw->tx_desc_info.size =
4540                (((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4541                DESC_ALIGNMENT) * DESC_ALIGNMENT);
4542        if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4543                pr_alert("Hardware descriptor size not right!\n");
4544        ksz_check_desc_num(&hw->rx_desc_info);
4545        ksz_check_desc_num(&hw->tx_desc_info);
4546
4547        /* Allocate descriptors. */
4548        if (ksz_alloc_desc(adapter))
4549                return 1;
4550
4551        return 0;
4552}
4553
4554/**
4555 * ksz_free_desc - free software and hardware descriptors
4556 * @adapter:    Adapter information structure.
4557 *
4558 * This local routine frees the software and hardware descriptors allocated by
4559 * ksz_alloc_desc().
4560 */
4561static void ksz_free_desc(struct dev_info *adapter)
4562{
4563        struct ksz_hw *hw = &adapter->hw;
4564
4565        /* Reset descriptor. */
4566        hw->rx_desc_info.ring_virt = NULL;
4567        hw->tx_desc_info.ring_virt = NULL;
4568        hw->rx_desc_info.ring_phys = 0;
4569        hw->tx_desc_info.ring_phys = 0;
4570
4571        /* Free memory. */
4572        if (adapter->desc_pool.alloc_virt)
4573                pci_free_consistent(
4574                        adapter->pdev,
4575                        adapter->desc_pool.alloc_size,
4576                        adapter->desc_pool.alloc_virt,
4577                        adapter->desc_pool.dma_addr);
4578
4579        /* Reset resource pool. */
4580        adapter->desc_pool.alloc_size = 0;
4581        adapter->desc_pool.alloc_virt = NULL;
4582
4583        kfree(hw->rx_desc_info.ring);
4584        hw->rx_desc_info.ring = NULL;
4585        kfree(hw->tx_desc_info.ring);
4586        hw->tx_desc_info.ring = NULL;
4587}
4588
4589/**
4590 * ksz_free_buffers - free buffers used in the descriptors
4591 * @adapter:    Adapter information structure.
4592 * @desc_info:  Descriptor information structure.
4593 *
4594 * This local routine frees buffers used in the DMA buffers.
4595 */
4596static void ksz_free_buffers(struct dev_info *adapter,
4597        struct ksz_desc_info *desc_info, int direction)
4598{
4599        int i;
4600        struct ksz_dma_buf *dma_buf;
4601        struct ksz_desc *desc = desc_info->ring;
4602
4603        for (i = 0; i < desc_info->alloc; i++) {
4604                dma_buf = DMA_BUFFER(desc);
4605                if (dma_buf->skb)
4606                        free_dma_buf(adapter, dma_buf, direction);
4607                desc++;
4608        }
4609}
4610
4611/**
4612 * ksz_free_mem - free all resources used by descriptors
4613 * @adapter:    Adapter information structure.
4614 *
4615 * This local routine frees all the resources allocated by ksz_alloc_mem().
4616 */
4617static void ksz_free_mem(struct dev_info *adapter)
4618{
4619        /* Free transmit buffers. */
4620        ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4621                PCI_DMA_TODEVICE);
4622
4623        /* Free receive buffers. */
4624        ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4625                PCI_DMA_FROMDEVICE);
4626
4627        /* Free descriptors. */
4628        ksz_free_desc(adapter);
4629}
4630
4631static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4632        u64 *counter)
4633{
4634        int i;
4635        int mib;
4636        int port;
4637        struct ksz_port_mib *port_mib;
4638
4639        memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4640        for (i = 0, port = first; i < cnt; i++, port++) {
4641                port_mib = &hw->port_mib[port];
4642                for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4643                        counter[mib] += port_mib->counter[mib];
4644        }
4645}
4646
4647/**
4648 * send_packet - send packet
4649 * @skb:        Socket buffer.
4650 * @dev:        Network device.
4651 *
4652 * This routine is used to send a packet out to the network.
4653 */
4654static void send_packet(struct sk_buff *skb, struct net_device *dev)
4655{
4656        struct ksz_desc *desc;
4657        struct ksz_desc *first;
4658        struct dev_priv *priv = netdev_priv(dev);
4659        struct dev_info *hw_priv = priv->adapter;
4660        struct ksz_hw *hw = &hw_priv->hw;
4661        struct ksz_desc_info *info = &hw->tx_desc_info;
4662        struct ksz_dma_buf *dma_buf;
4663        int len;
4664        int last_frag = skb_shinfo(skb)->nr_frags;
4665
4666        /*
4667         * KSZ8842 with multiple device interfaces needs to be told which port
4668         * to send.
4669         */
4670        if (hw->dev_count > 1)
4671                hw->dst_ports = 1 << priv->port.first_port;
4672
4673        /* Hardware will pad the length to 60. */
4674        len = skb->len;
4675
4676        /* Remember the very first descriptor. */
4677        first = info->cur;
4678        desc = first;
4679
4680        dma_buf = DMA_BUFFER(desc);
4681        if (last_frag) {
4682                int frag;
4683                skb_frag_t *this_frag;
4684
4685                dma_buf->len = skb_headlen(skb);
4686
4687                dma_buf->dma = pci_map_single(
4688                        hw_priv->pdev, skb->data, dma_buf->len,
4689                        PCI_DMA_TODEVICE);
4690                set_tx_buf(desc, dma_buf->dma);
4691                set_tx_len(desc, dma_buf->len);
4692
4693                frag = 0;
4694                do {
4695                        this_frag = &skb_shinfo(skb)->frags[frag];
4696
4697                        /* Get a new descriptor. */
4698                        get_tx_pkt(info, &desc);
4699
4700                        /* Keep track of descriptors used so far. */
4701                        ++hw->tx_int_cnt;
4702
4703                        dma_buf = DMA_BUFFER(desc);
4704                        dma_buf->len = this_frag->size;
4705
4706                        dma_buf->dma = pci_map_single(
4707                                hw_priv->pdev,
4708                                page_address(this_frag->page) +
4709                                this_frag->page_offset,
4710                                dma_buf->len,
4711                                PCI_DMA_TODEVICE);
4712                        set_tx_buf(desc, dma_buf->dma);
4713                        set_tx_len(desc, dma_buf->len);
4714
4715                        frag++;
4716                        if (frag == last_frag)
4717                                break;
4718
4719                        /* Do not release the last descriptor here. */
4720                        release_desc(desc);
4721                } while (1);
4722
4723                /* current points to the last descriptor. */
4724                info->cur = desc;
4725
4726                /* Release the first descriptor. */
4727                release_desc(first);
4728        } else {
4729                dma_buf->len = len;
4730
4731                dma_buf->dma = pci_map_single(
4732                        hw_priv->pdev, skb->data, dma_buf->len,
4733                        PCI_DMA_TODEVICE);
4734                set_tx_buf(desc, dma_buf->dma);
4735                set_tx_len(desc, dma_buf->len);
4736        }
4737
4738        if (skb->ip_summed == CHECKSUM_PARTIAL) {
4739                (desc)->sw.buf.tx.csum_gen_tcp = 1;
4740                (desc)->sw.buf.tx.csum_gen_udp = 1;
4741        }
4742
4743        /*
4744         * The last descriptor holds the packet so that it can be returned to
4745         * network subsystem after all descriptors are transmitted.
4746         */
4747        dma_buf->skb = skb;
4748
4749        hw_send_pkt(hw);
4750
4751        /* Update transmit statistics. */
4752        dev->stats.tx_packets++;
4753        dev->stats.tx_bytes += len;
4754}
4755
4756/**
4757 * transmit_cleanup - clean up transmit descriptors
4758 * @dev:        Network device.
4759 *
4760 * This routine is called to clean up the transmitted buffers.
4761 */
4762static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4763{
4764        int last;
4765        union desc_stat status;
4766        struct ksz_hw *hw = &hw_priv->hw;
4767        struct ksz_desc_info *info = &hw->tx_desc_info;
4768        struct ksz_desc *desc;
4769        struct ksz_dma_buf *dma_buf;
4770        struct net_device *dev = NULL;
4771
4772        spin_lock(&hw_priv->hwlock);
4773        last = info->last;
4774
4775        while (info->avail < info->alloc) {
4776                /* Get next descriptor which is not hardware owned. */
4777                desc = &info->ring[last];
4778                status.data = le32_to_cpu(desc->phw->ctrl.data);
4779                if (status.tx.hw_owned) {
4780                        if (normal)
4781                                break;
4782                        else
4783                                reset_desc(desc, status);
4784                }
4785
4786                dma_buf = DMA_BUFFER(desc);
4787                pci_unmap_single(
4788                        hw_priv->pdev, dma_buf->dma, dma_buf->len,
4789                        PCI_DMA_TODEVICE);
4790
4791                /* This descriptor contains the last buffer in the packet. */
4792                if (dma_buf->skb) {
4793                        dev = dma_buf->skb->dev;
4794
4795                        /* Release the packet back to network subsystem. */
4796                        dev_kfree_skb_irq(dma_buf->skb);
4797                        dma_buf->skb = NULL;
4798                }
4799
4800                /* Free the transmitted descriptor. */
4801                last++;
4802                last &= info->mask;
4803                info->avail++;
4804        }
4805        info->last = last;
4806        spin_unlock(&hw_priv->hwlock);
4807
4808        /* Notify the network subsystem that the packet has been sent. */
4809        if (dev)
4810                dev->trans_start = jiffies;
4811}
4812
4813/**
4814 * transmit_done - transmit done processing
4815 * @dev:        Network device.
4816 *
4817 * This routine is called when the transmit interrupt is triggered, indicating
4818 * either a packet is sent successfully or there are transmit errors.
4819 */
4820static void tx_done(struct dev_info *hw_priv)
4821{
4822        struct ksz_hw *hw = &hw_priv->hw;
4823        int port;
4824
4825        transmit_cleanup(hw_priv, 1);
4826
4827        for (port = 0; port < hw->dev_count; port++) {
4828                struct net_device *dev = hw->port_info[port].pdev;
4829
4830                if (netif_running(dev) && netif_queue_stopped(dev))
4831                        netif_wake_queue(dev);
4832        }
4833}
4834
4835static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4836{
4837        skb->dev = old->dev;
4838        skb->protocol = old->protocol;
4839        skb->ip_summed = old->ip_summed;
4840        skb->csum = old->csum;
4841        skb_set_network_header(skb, ETH_HLEN);
4842
4843        dev_kfree_skb(old);
4844}
4845
4846/**
4847 * netdev_tx - send out packet
4848 * @skb:        Socket buffer.
4849 * @dev:        Network device.
4850 *
4851 * This function is used by the upper network layer to send out a packet.
4852 *
4853 * Return 0 if successful; otherwise an error code indicating failure.
4854 */
4855static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4856{
4857        struct dev_priv *priv = netdev_priv(dev);
4858        struct dev_info *hw_priv = priv->adapter;
4859        struct ksz_hw *hw = &hw_priv->hw;
4860        int left;
4861        int num = 1;
4862        int rc = 0;
4863
4864        if (hw->features & SMALL_PACKET_TX_BUG) {
4865                struct sk_buff *org_skb = skb;
4866
4867                if (skb->len <= 48) {
4868                        if (skb_end_pointer(skb) - skb->data >= 50) {
4869                                memset(&skb->data[skb->len], 0, 50 - skb->len);
4870                                skb->len = 50;
4871                        } else {
4872                                skb = dev_alloc_skb(50);
4873                                if (!skb)
4874                                        return NETDEV_TX_BUSY;
4875                                memcpy(skb->data, org_skb->data, org_skb->len);
4876                                memset(&skb->data[org_skb->len], 0,
4877                                        50 - org_skb->len);
4878                                skb->len = 50;
4879                                copy_old_skb(org_skb, skb);
4880                        }
4881                }
4882        }
4883
4884        spin_lock_irq(&hw_priv->hwlock);
4885
4886        num = skb_shinfo(skb)->nr_frags + 1;
4887        left = hw_alloc_pkt(hw, skb->len, num);
4888        if (left) {
4889                if (left < num ||
4890                                ((hw->features & IPV6_CSUM_GEN_HACK) &&
4891                                (CHECKSUM_PARTIAL == skb->ip_summed) &&
4892                                (ETH_P_IPV6 == htons(skb->protocol)))) {
4893                        struct sk_buff *org_skb = skb;
4894
4895                        skb = dev_alloc_skb(org_skb->len);
4896                        if (!skb) {
4897                                rc = NETDEV_TX_BUSY;
4898                                goto unlock;
4899                        }
4900                        skb_copy_and_csum_dev(org_skb, skb->data);
4901                        org_skb->ip_summed = 0;
4902                        skb->len = org_skb->len;
4903                        copy_old_skb(org_skb, skb);
4904                }
4905                send_packet(skb, dev);
4906                if (left <= num)
4907                        netif_stop_queue(dev);
4908        } else {
4909                /* Stop the transmit queue until packet is allocated. */
4910                netif_stop_queue(dev);
4911                rc = NETDEV_TX_BUSY;
4912        }
4913unlock:
4914        spin_unlock_irq(&hw_priv->hwlock);
4915
4916        return rc;
4917}
4918
4919/**
4920 * netdev_tx_timeout - transmit timeout processing
4921 * @dev:        Network device.
4922 *
4923 * This routine is called when the transmit timer expires.  That indicates the
4924 * hardware is not running correctly because transmit interrupts are not
4925 * triggered to free up resources so that the transmit routine can continue
4926 * sending out packets.  The hardware is reset to correct the problem.
4927 */
4928static void netdev_tx_timeout(struct net_device *dev)
4929{
4930        static unsigned long last_reset;
4931
4932        struct dev_priv *priv = netdev_priv(dev);
4933        struct dev_info *hw_priv = priv->adapter;
4934        struct ksz_hw *hw = &hw_priv->hw;
4935        int port;
4936
4937        if (hw->dev_count > 1) {
4938                /*
4939                 * Only reset the hardware if time between calls is long
4940                 * enough.
4941                 */
4942                if (jiffies - last_reset <= dev->watchdog_timeo)
4943                        hw_priv = NULL;
4944        }
4945
4946        last_reset = jiffies;
4947        if (hw_priv) {
4948                hw_dis_intr(hw);
4949                hw_disable(hw);
4950
4951                transmit_cleanup(hw_priv, 0);
4952                hw_reset_pkts(&hw->rx_desc_info);
4953                hw_reset_pkts(&hw->tx_desc_info);
4954                ksz_init_rx_buffers(hw_priv);
4955
4956                hw_reset(hw);
4957
4958                hw_set_desc_base(hw,
4959                        hw->tx_desc_info.ring_phys,
4960                        hw->rx_desc_info.ring_phys);
4961                hw_set_addr(hw);
4962                if (hw->all_multi)
4963                        hw_set_multicast(hw, hw->all_multi);
4964                else if (hw->multi_list_size)
4965                        hw_set_grp_addr(hw);
4966
4967                if (hw->dev_count > 1) {
4968                        hw_set_add_addr(hw);
4969                        for (port = 0; port < SWITCH_PORT_NUM; port++) {
4970                                struct net_device *port_dev;
4971
4972                                port_set_stp_state(hw, port,
4973                                        STP_STATE_DISABLED);
4974
4975                                port_dev = hw->port_info[port].pdev;
4976                                if (netif_running(port_dev))
4977                                        port_set_stp_state(hw, port,
4978                                                STP_STATE_SIMPLE);
4979                        }
4980                }
4981
4982                hw_enable(hw);
4983                hw_ena_intr(hw);
4984        }
4985
4986        dev->trans_start = jiffies;
4987        netif_wake_queue(dev);
4988}
4989
4990static inline void csum_verified(struct sk_buff *skb)
4991{
4992        unsigned short protocol;
4993        struct iphdr *iph;
4994
4995        protocol = skb->protocol;
4996        skb_reset_network_header(skb);
4997        iph = (struct iphdr *) skb_network_header(skb);
4998        if (protocol == htons(ETH_P_8021Q)) {
4999                protocol = iph->tot_len;
5000                skb_set_network_header(skb, VLAN_HLEN);
5001                iph = (struct iphdr *) skb_network_header(skb);
5002        }
5003        if (protocol == htons(ETH_P_IP)) {
5004                if (iph->protocol == IPPROTO_TCP)
5005                        skb->ip_summed = CHECKSUM_UNNECESSARY;
5006        }
5007}
5008
5009static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5010        struct ksz_desc *desc, union desc_stat status)
5011{
5012        int packet_len;
5013        struct dev_priv *priv = netdev_priv(dev);
5014        struct dev_info *hw_priv = priv->adapter;
5015        struct ksz_dma_buf *dma_buf;
5016        struct sk_buff *skb;
5017        int rx_status;
5018
5019        /* Received length includes 4-byte CRC. */
5020        packet_len = status.rx.frame_len - 4;
5021
5022        dma_buf = DMA_BUFFER(desc);
5023        pci_dma_sync_single_for_cpu(
5024                hw_priv->pdev, dma_buf->dma, packet_len + 4,
5025                PCI_DMA_FROMDEVICE);
5026
5027        do {
5028                /* skb->data != skb->head */
5029                skb = dev_alloc_skb(packet_len + 2);
5030                if (!skb) {
5031                        dev->stats.rx_dropped++;
5032                        return -ENOMEM;
5033                }
5034
5035                /*
5036                 * Align socket buffer in 4-byte boundary for better
5037                 * performance.
5038                 */
5039                skb_reserve(skb, 2);
5040
5041                memcpy(skb_put(skb, packet_len),
5042                        dma_buf->skb->data, packet_len);
5043        } while (0);
5044
5045        skb->protocol = eth_type_trans(skb, dev);
5046
5047        if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5048                csum_verified(skb);
5049
5050        /* Update receive statistics. */
5051        dev->stats.rx_packets++;
5052        dev->stats.rx_bytes += packet_len;
5053
5054        /* Notify upper layer for received packet. */
5055        rx_status = netif_rx(skb);
5056
5057        return 0;
5058}
5059
5060static int dev_rcv_packets(struct dev_info *hw_priv)
5061{
5062        int next;
5063        union desc_stat status;
5064        struct ksz_hw *hw = &hw_priv->hw;
5065        struct net_device *dev = hw->port_info[0].pdev;
5066        struct ksz_desc_info *info = &hw->rx_desc_info;
5067        int left = info->alloc;
5068        struct ksz_desc *desc;
5069        int received = 0;
5070
5071        next = info->next;
5072        while (left--) {
5073                /* Get next descriptor which is not hardware owned. */
5074                desc = &info->ring[next];
5075                status.data = le32_to_cpu(desc->phw->ctrl.data);
5076                if (status.rx.hw_owned)
5077                        break;
5078
5079                /* Status valid only when last descriptor bit is set. */
5080                if (status.rx.last_desc && status.rx.first_desc) {
5081                        if (rx_proc(dev, hw, desc, status))
5082                                goto release_packet;
5083                        received++;
5084                }
5085
5086release_packet:
5087                release_desc(desc);
5088                next++;
5089                next &= info->mask;
5090        }
5091        info->next = next;
5092
5093        return received;
5094}
5095
5096static int port_rcv_packets(struct dev_info *hw_priv)
5097{
5098        int next;
5099        union desc_stat status;
5100        struct ksz_hw *hw = &hw_priv->hw;
5101        struct net_device *dev = hw->port_info[0].pdev;
5102        struct ksz_desc_info *info = &hw->rx_desc_info;
5103        int left = info->alloc;
5104        struct ksz_desc *desc;
5105        int received = 0;
5106
5107        next = info->next;
5108        while (left--) {
5109                /* Get next descriptor which is not hardware owned. */
5110                desc = &info->ring[next];
5111                status.data = le32_to_cpu(desc->phw->ctrl.data);
5112                if (status.rx.hw_owned)
5113                        break;
5114
5115                if (hw->dev_count > 1) {
5116                        /* Get received port number. */
5117                        int p = HW_TO_DEV_PORT(status.rx.src_port);
5118
5119                        dev = hw->port_info[p].pdev;
5120                        if (!netif_running(dev))
5121                                goto release_packet;
5122                }
5123
5124                /* Status valid only when last descriptor bit is set. */
5125                if (status.rx.last_desc && status.rx.first_desc) {
5126                        if (rx_proc(dev, hw, desc, status))
5127                                goto release_packet;
5128                        received++;
5129                }
5130
5131release_packet:
5132                release_desc(desc);
5133                next++;
5134                next &= info->mask;
5135        }
5136        info->next = next;
5137
5138        return received;
5139}
5140
5141static int dev_rcv_special(struct dev_info *hw_priv)
5142{
5143        int next;
5144        union desc_stat status;
5145        struct ksz_hw *hw = &hw_priv->hw;
5146        struct net_device *dev = hw->port_info[0].pdev;
5147        struct ksz_desc_info *info = &hw->rx_desc_info;
5148        int left = info->alloc;
5149        struct ksz_desc *desc;
5150        int received = 0;
5151
5152        next = info->next;
5153        while (left--) {
5154                /* Get next descriptor which is not hardware owned. */
5155                desc = &info->ring[next];
5156                status.data = le32_to_cpu(desc->phw->ctrl.data);
5157                if (status.rx.hw_owned)
5158                        break;
5159
5160                if (hw->dev_count > 1) {
5161                        /* Get received port number. */
5162                        int p = HW_TO_DEV_PORT(status.rx.src_port);
5163
5164                        dev = hw->port_info[p].pdev;
5165                        if (!netif_running(dev))
5166                                goto release_packet;
5167                }
5168
5169                /* Status valid only when last descriptor bit is set. */
5170                if (status.rx.last_desc && status.rx.first_desc) {
5171                        /*
5172                         * Receive without error.  With receive errors
5173                         * disabled, packets with receive errors will be
5174                         * dropped, so no need to check the error bit.
5175                         */
5176                        if (!status.rx.error || (status.data &
5177                                        KS_DESC_RX_ERROR_COND) ==
5178                                        KS_DESC_RX_ERROR_TOO_LONG) {
5179                                if (rx_proc(dev, hw, desc, status))
5180                                        goto release_packet;
5181                                received++;
5182                        } else {
5183                                struct dev_priv *priv = netdev_priv(dev);
5184
5185                                /* Update receive error statistics. */
5186                                priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5187                        }
5188                }
5189
5190release_packet:
5191                release_desc(desc);
5192                next++;
5193                next &= info->mask;
5194        }
5195        info->next = next;
5196
5197        return received;
5198}
5199
5200static void rx_proc_task(unsigned long data)
5201{
5202        struct dev_info *hw_priv = (struct dev_info *) data;
5203        struct ksz_hw *hw = &hw_priv->hw;
5204
5205        if (!hw->enabled)
5206                return;
5207        if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5208
5209                /* In case receive process is suspended because of overrun. */
5210                hw_resume_rx(hw);
5211
5212                /* tasklets are interruptible. */
5213                spin_lock_irq(&hw_priv->hwlock);
5214                hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5215                spin_unlock_irq(&hw_priv->hwlock);
5216        } else {
5217                hw_ack_intr(hw, KS884X_INT_RX);
5218                tasklet_schedule(&hw_priv->rx_tasklet);
5219        }
5220}
5221
5222static void tx_proc_task(unsigned long data)
5223{
5224        struct dev_info *hw_priv = (struct dev_info *) data;
5225        struct ksz_hw *hw = &hw_priv->hw;
5226
5227        hw_ack_intr(hw, KS884X_INT_TX_MASK);
5228
5229        tx_done(hw_priv);
5230
5231        /* tasklets are interruptible. */
5232        spin_lock_irq(&hw_priv->hwlock);
5233        hw_turn_on_intr(hw, KS884X_INT_TX);
5234        spin_unlock_irq(&hw_priv->hwlock);
5235}
5236
5237static inline void handle_rx_stop(struct ksz_hw *hw)
5238{
5239        /* Receive just has been stopped. */
5240        if (0 == hw->rx_stop)
5241                hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5242        else if (hw->rx_stop > 1) {
5243                if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5244                        hw_start_rx(hw);
5245                } else {
5246                        hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5247                        hw->rx_stop = 0;
5248                }
5249        } else
5250                /* Receive just has been started. */
5251                hw->rx_stop++;
5252}
5253
5254/**
5255 * netdev_intr - interrupt handling
5256 * @irq:        Interrupt number.
5257 * @dev_id:     Network device.
5258 *
5259 * This function is called by upper network layer to signal interrupt.
5260 *
5261 * Return IRQ_HANDLED if interrupt is handled.
5262 */
5263static irqreturn_t netdev_intr(int irq, void *dev_id)
5264{
5265        uint int_enable = 0;
5266        struct net_device *dev = (struct net_device *) dev_id;
5267        struct dev_priv *priv = netdev_priv(dev);
5268        struct dev_info *hw_priv = priv->adapter;
5269        struct ksz_hw *hw = &hw_priv->hw;
5270
5271        hw_read_intr(hw, &int_enable);
5272
5273        /* Not our interrupt! */
5274        if (!int_enable)
5275                return IRQ_NONE;
5276
5277        do {
5278                hw_ack_intr(hw, int_enable);
5279                int_enable &= hw->intr_mask;
5280
5281                if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5282                        hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5283                        tasklet_schedule(&hw_priv->tx_tasklet);
5284                }
5285
5286                if (likely(int_enable & KS884X_INT_RX)) {
5287                        hw_dis_intr_bit(hw, KS884X_INT_RX);
5288                        tasklet_schedule(&hw_priv->rx_tasklet);
5289                }
5290
5291                if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5292                        dev->stats.rx_fifo_errors++;
5293                        hw_resume_rx(hw);
5294                }
5295
5296                if (unlikely(int_enable & KS884X_INT_PHY)) {
5297                        struct ksz_port *port = &priv->port;
5298
5299                        hw->features |= LINK_INT_WORKING;
5300                        port_get_link_speed(port);
5301                }
5302
5303                if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5304                        handle_rx_stop(hw);
5305                        break;
5306                }
5307
5308                if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5309                        u32 data;
5310
5311                        hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5312                        pr_info("Tx stopped\n");
5313                        data = readl(hw->io + KS_DMA_TX_CTRL);
5314                        if (!(data & DMA_TX_ENABLE))
5315                                pr_info("Tx disabled\n");
5316                        break;
5317                }
5318        } while (0);
5319
5320        hw_ena_intr(hw);
5321
5322        return IRQ_HANDLED;
5323}
5324
5325/*
5326 * Linux network device functions
5327 */
5328
5329static unsigned long next_jiffies;
5330
5331#ifdef CONFIG_NET_POLL_CONTROLLER
5332static void netdev_netpoll(struct net_device *dev)
5333{
5334        struct dev_priv *priv = netdev_priv(dev);
5335        struct dev_info *hw_priv = priv->adapter;
5336
5337        hw_dis_intr(&hw_priv->hw);
5338        netdev_intr(dev->irq, dev);
5339}
5340#endif
5341
5342static void bridge_change(struct ksz_hw *hw)
5343{
5344        int port;
5345        u8  member;
5346        struct ksz_switch *sw = hw->ksz_switch;
5347
5348        /* No ports in forwarding state. */
5349        if (!sw->member) {
5350                port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5351                sw_block_addr(hw);
5352        }
5353        for (port = 0; port < SWITCH_PORT_NUM; port++) {
5354                if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5355                        member = HOST_MASK | sw->member;
5356                else
5357                        member = HOST_MASK | (1 << port);
5358                if (member != sw->port_cfg[port].member)
5359                        sw_cfg_port_base_vlan(hw, port, member);
5360        }
5361}
5362
5363/**
5364 * netdev_close - close network device
5365 * @dev:        Network device.
5366 *
5367 * This function process the close operation of network device.  This is caused
5368 * by the user command "ifconfig ethX down."
5369 *
5370 * Return 0 if successful; otherwise an error code indicating failure.
5371 */
5372static int netdev_close(struct net_device *dev)
5373{
5374        struct dev_priv *priv = netdev_priv(dev);
5375        struct dev_info *hw_priv = priv->adapter;
5376        struct ksz_port *port = &priv->port;
5377        struct ksz_hw *hw = &hw_priv->hw;
5378        int pi;
5379
5380        netif_stop_queue(dev);
5381
5382        ksz_stop_timer(&priv->monitor_timer_info);
5383
5384        /* Need to shut the port manually in multiple device interfaces mode. */
5385        if (hw->dev_count > 1) {
5386                port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5387
5388                /* Port is closed.  Need to change bridge setting. */
5389                if (hw->features & STP_SUPPORT) {
5390                        pi = 1 << port->first_port;
5391                        if (hw->ksz_switch->member & pi) {
5392                                hw->ksz_switch->member &= ~pi;
5393                                bridge_change(hw);
5394                        }
5395                }
5396        }
5397        if (port->first_port > 0)
5398                hw_del_addr(hw, dev->dev_addr);
5399        if (!hw_priv->wol_enable)
5400                port_set_power_saving(port, true);
5401
5402        if (priv->multicast)
5403                --hw->all_multi;
5404        if (priv->promiscuous)
5405                --hw->promiscuous;
5406
5407        hw_priv->opened--;
5408        if (!(hw_priv->opened)) {
5409                ksz_stop_timer(&hw_priv->mib_timer_info);
5410                flush_work(&hw_priv->mib_read);
5411
5412                hw_dis_intr(hw);
5413                hw_disable(hw);
5414                hw_clr_multicast(hw);
5415
5416                /* Delay for receive task to stop scheduling itself. */
5417                msleep(2000 / HZ);
5418
5419                tasklet_disable(&hw_priv->rx_tasklet);
5420                tasklet_disable(&hw_priv->tx_tasklet);
5421                free_irq(dev->irq, hw_priv->dev);
5422
5423                transmit_cleanup(hw_priv, 0);
5424                hw_reset_pkts(&hw->rx_desc_info);
5425                hw_reset_pkts(&hw->tx_desc_info);
5426
5427                /* Clean out static MAC table when the switch is shutdown. */
5428                if (hw->features & STP_SUPPORT)
5429                        sw_clr_sta_mac_table(hw);
5430        }
5431
5432        return 0;
5433}
5434
5435static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5436{
5437        if (hw->ksz_switch) {
5438                u32 data;
5439
5440                data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5441                if (hw->features & RX_HUGE_FRAME)
5442                        data |= SWITCH_HUGE_PACKET;
5443                else
5444                        data &= ~SWITCH_HUGE_PACKET;
5445                writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5446        }
5447        if (hw->features & RX_HUGE_FRAME) {
5448                hw->rx_cfg |= DMA_RX_ERROR;
5449                hw_priv->dev_rcv = dev_rcv_special;
5450        } else {
5451                hw->rx_cfg &= ~DMA_RX_ERROR;
5452                if (hw->dev_count > 1)
5453                        hw_priv->dev_rcv = port_rcv_packets;
5454                else
5455                        hw_priv->dev_rcv = dev_rcv_packets;
5456        }
5457}
5458
5459static int prepare_hardware(struct net_device *dev)
5460{
5461        struct dev_priv *priv = netdev_priv(dev);
5462        struct dev_info *hw_priv = priv->adapter;
5463        struct ksz_hw *hw = &hw_priv->hw;
5464        int rc = 0;
5465
5466        /* Remember the network device that requests interrupts. */
5467        hw_priv->dev = dev;
5468        rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5469        if (rc)
5470                return rc;
5471        tasklet_enable(&hw_priv->rx_tasklet);
5472        tasklet_enable(&hw_priv->tx_tasklet);
5473
5474        hw->promiscuous = 0;
5475        hw->all_multi = 0;
5476        hw->multi_list_size = 0;
5477
5478        hw_reset(hw);
5479
5480        hw_set_desc_base(hw,
5481                hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5482        hw_set_addr(hw);
5483        hw_cfg_huge_frame(hw_priv, hw);
5484        ksz_init_rx_buffers(hw_priv);
5485        return 0;
5486}
5487
5488static void set_media_state(struct net_device *dev, int media_state)
5489{
5490        struct dev_priv *priv = netdev_priv(dev);
5491
5492        if (media_state == priv->media_state)
5493                netif_carrier_on(dev);
5494        else
5495                netif_carrier_off(dev);
5496        netif_info(priv, link, dev, "link %s\n",
5497                   media_state == priv->media_state ? "on" : "off");
5498}
5499
5500/**
5501 * netdev_open - open network device
5502 * @dev:        Network device.
5503 *
5504 * This function process the open operation of network device.  This is caused
5505 * by the user command "ifconfig ethX up."
5506 *
5507 * Return 0 if successful; otherwise an error code indicating failure.
5508 */
5509static int netdev_open(struct net_device *dev)
5510{
5511        struct dev_priv *priv = netdev_priv(dev);
5512        struct dev_info *hw_priv = priv->adapter;
5513        struct ksz_hw *hw = &hw_priv->hw;
5514        struct ksz_port *port = &priv->port;
5515        int i;
5516        int p;
5517        int rc = 0;
5518
5519        priv->multicast = 0;
5520        priv->promiscuous = 0;
5521
5522        /* Reset device statistics. */
5523        memset(&dev->stats, 0, sizeof(struct net_device_stats));
5524        memset((void *) port->counter, 0,
5525                (sizeof(u64) * OID_COUNTER_LAST));
5526
5527        if (!(hw_priv->opened)) {
5528                rc = prepare_hardware(dev);
5529                if (rc)
5530                        return rc;
5531                for (i = 0; i < hw->mib_port_cnt; i++) {
5532                        if (next_jiffies < jiffies)
5533                                next_jiffies = jiffies + HZ * 2;
5534                        else
5535                                next_jiffies += HZ * 1;
5536                        hw_priv->counter[i].time = next_jiffies;
5537                        hw->port_mib[i].state = media_disconnected;
5538                        port_init_cnt(hw, i);
5539                }
5540                if (hw->ksz_switch)
5541                        hw->port_mib[HOST_PORT].state = media_connected;
5542                else {
5543                        hw_add_wol_bcast(hw);
5544                        hw_cfg_wol_pme(hw, 0);
5545                        hw_clr_wol_pme_status(&hw_priv->hw);
5546                }
5547        }
5548        port_set_power_saving(port, false);
5549
5550        for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5551                /*
5552                 * Initialize to invalid value so that link detection
5553                 * is done.
5554                 */
5555                hw->port_info[p].partner = 0xFF;
5556                hw->port_info[p].state = media_disconnected;
5557        }
5558
5559        /* Need to open the port in multiple device interfaces mode. */
5560        if (hw->dev_count > 1) {
5561                port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5562                if (port->first_port > 0)
5563                        hw_add_addr(hw, dev->dev_addr);
5564        }
5565
5566        port_get_link_speed(port);
5567        if (port->force_link)
5568                port_force_link_speed(port);
5569        else
5570                port_set_link_speed(port);
5571
5572        if (!(hw_priv->opened)) {
5573                hw_setup_intr(hw);
5574                hw_enable(hw);
5575                hw_ena_intr(hw);
5576
5577                if (hw->mib_port_cnt)
5578                        ksz_start_timer(&hw_priv->mib_timer_info,
5579                                hw_priv->mib_timer_info.period);
5580        }
5581
5582        hw_priv->opened++;
5583
5584        ksz_start_timer(&priv->monitor_timer_info,
5585                priv->monitor_timer_info.period);
5586
5587        priv->media_state = port->linked->state;
5588
5589        set_media_state(dev, media_connected);
5590        netif_start_queue(dev);
5591
5592        return 0;
5593}
5594
5595/* RX errors = rx_errors */
5596/* RX dropped = rx_dropped */
5597/* RX overruns = rx_fifo_errors */
5598/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5599/* TX errors = tx_errors */
5600/* TX dropped = tx_dropped */
5601/* TX overruns = tx_fifo_errors */
5602/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5603/* collisions = collisions */
5604
5605/**
5606 * netdev_query_statistics - query network device statistics
5607 * @dev:        Network device.
5608 *
5609 * This function returns the statistics of the network device.  The device
5610 * needs not be opened.
5611 *
5612 * Return network device statistics.
5613 */
5614static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5615{
5616        struct dev_priv *priv = netdev_priv(dev);
5617        struct ksz_port *port = &priv->port;
5618        struct ksz_hw *hw = &priv->adapter->hw;
5619        struct ksz_port_mib *mib;
5620        int i;
5621        int p;
5622
5623        dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5624        dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5625
5626        /* Reset to zero to add count later. */
5627        dev->stats.multicast = 0;
5628        dev->stats.collisions = 0;
5629        dev->stats.rx_length_errors = 0;
5630        dev->stats.rx_crc_errors = 0;
5631        dev->stats.rx_frame_errors = 0;
5632        dev->stats.tx_window_errors = 0;
5633
5634        for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5635                mib = &hw->port_mib[p];
5636
5637                dev->stats.multicast += (unsigned long)
5638                        mib->counter[MIB_COUNTER_RX_MULTICAST];
5639
5640                dev->stats.collisions += (unsigned long)
5641                        mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5642
5643                dev->stats.rx_length_errors += (unsigned long)(
5644                        mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5645                        mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5646                        mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5647                        mib->counter[MIB_COUNTER_RX_JABBER]);
5648                dev->stats.rx_crc_errors += (unsigned long)
5649                        mib->counter[MIB_COUNTER_RX_CRC_ERR];
5650                dev->stats.rx_frame_errors += (unsigned long)(
5651                        mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5652                        mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5653
5654                dev->stats.tx_window_errors += (unsigned long)
5655                        mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5656        }
5657
5658        return &dev->stats;
5659}
5660
5661/**
5662 * netdev_set_mac_address - set network device MAC address
5663 * @dev:        Network device.
5664 * @addr:       Buffer of MAC address.
5665 *
5666 * This function is used to set the MAC address of the network device.
5667 *
5668 * Return 0 to indicate success.
5669 */
5670static int netdev_set_mac_address(struct net_device *dev, void *addr)
5671{
5672        struct dev_priv *priv = netdev_priv(dev);
5673        struct dev_info *hw_priv = priv->adapter;
5674        struct ksz_hw *hw = &hw_priv->hw;
5675        struct sockaddr *mac = addr;
5676        uint interrupt;
5677
5678        if (priv->port.first_port > 0)
5679                hw_del_addr(hw, dev->dev_addr);
5680        else {
5681                hw->mac_override = 1;
5682                memcpy(hw->override_addr, mac->sa_data, MAC_ADDR_LEN);
5683        }
5684
5685        memcpy(dev->dev_addr, mac->sa_data, MAX_ADDR_LEN);
5686
5687        interrupt = hw_block_intr(hw);
5688
5689        if (priv->port.first_port > 0)
5690                hw_add_addr(hw, dev->dev_addr);
5691        else
5692                hw_set_addr(hw);
5693        hw_restore_intr(hw, interrupt);
5694
5695        return 0;
5696}
5697
5698static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5699        struct ksz_hw *hw, int promiscuous)
5700{
5701        if (promiscuous != priv->promiscuous) {
5702                u8 prev_state = hw->promiscuous;
5703
5704                if (promiscuous)
5705                        ++hw->promiscuous;
5706                else
5707                        --hw->promiscuous;
5708                priv->promiscuous = promiscuous;
5709
5710                /* Turn on/off promiscuous mode. */
5711                if (hw->promiscuous <= 1 && prev_state <= 1)
5712                        hw_set_promiscuous(hw, hw->promiscuous);
5713
5714                /*
5715                 * Port is not in promiscuous mode, meaning it is released
5716                 * from the bridge.
5717                 */
5718                if ((hw->features & STP_SUPPORT) && !promiscuous &&
5719                    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5720                        struct ksz_switch *sw = hw->ksz_switch;
5721                        int port = priv->port.first_port;
5722
5723                        port_set_stp_state(hw, port, STP_STATE_DISABLED);
5724                        port = 1 << port;
5725                        if (sw->member & port) {
5726                                sw->member &= ~port;
5727                                bridge_change(hw);
5728                        }
5729                }
5730        }
5731}
5732
5733static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5734        int multicast)
5735{
5736        if (multicast != priv->multicast) {
5737                u8 all_multi = hw->all_multi;
5738
5739                if (multicast)
5740                        ++hw->all_multi;
5741                else
5742                        --hw->all_multi;
5743                priv->multicast = multicast;
5744
5745                /* Turn on/off all multicast mode. */
5746                if (hw->all_multi <= 1 && all_multi <= 1)
5747                        hw_set_multicast(hw, hw->all_multi);
5748        }
5749}
5750
5751/**
5752 * netdev_set_rx_mode
5753 * @dev:        Network device.
5754 *
5755 * This routine is used to set multicast addresses or put the network device
5756 * into promiscuous mode.
5757 */
5758static void netdev_set_rx_mode(struct net_device *dev)
5759{
5760        struct dev_priv *priv = netdev_priv(dev);
5761        struct dev_info *hw_priv = priv->adapter;
5762        struct ksz_hw *hw = &hw_priv->hw;
5763        struct netdev_hw_addr *ha;
5764        int multicast = (dev->flags & IFF_ALLMULTI);
5765
5766        dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5767
5768        if (hw_priv->hw.dev_count > 1)
5769                multicast |= (dev->flags & IFF_MULTICAST);
5770        dev_set_multicast(priv, hw, multicast);
5771
5772        /* Cannot use different hashes in multiple device interfaces mode. */
5773        if (hw_priv->hw.dev_count > 1)
5774                return;
5775
5776        if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5777                int i = 0;
5778
5779                /* List too big to support so turn on all multicast mode. */
5780                if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5781                        if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5782                                hw->multi_list_size = MAX_MULTICAST_LIST;
5783                                ++hw->all_multi;
5784                                hw_set_multicast(hw, hw->all_multi);
5785                        }
5786                        return;
5787                }
5788
5789                netdev_for_each_mc_addr(ha, dev) {
5790                        if (!(*ha->addr & 1))
5791                                continue;
5792                        if (i >= MAX_MULTICAST_LIST)
5793                                break;
5794                        memcpy(hw->multi_list[i++], ha->addr, MAC_ADDR_LEN);
5795                }
5796                hw->multi_list_size = (u8) i;
5797                hw_set_grp_addr(hw);
5798        } else {
5799                if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5800                        --hw->all_multi;
5801                        hw_set_multicast(hw, hw->all_multi);
5802                }
5803                hw->multi_list_size = 0;
5804                hw_clr_multicast(hw);
5805        }
5806}
5807
5808static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5809{
5810        struct dev_priv *priv = netdev_priv(dev);
5811        struct dev_info *hw_priv = priv->adapter;
5812        struct ksz_hw *hw = &hw_priv->hw;
5813        int hw_mtu;
5814
5815        if (netif_running(dev))
5816                return -EBUSY;
5817
5818        /* Cannot use different MTU in multiple device interfaces mode. */
5819        if (hw->dev_count > 1)
5820                if (dev != hw_priv->dev)
5821                        return 0;
5822        if (new_mtu < 60)
5823                return -EINVAL;
5824
5825        if (dev->mtu != new_mtu) {
5826                hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5827                if (hw_mtu > MAX_RX_BUF_SIZE)
5828                        return -EINVAL;
5829                if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5830                        hw->features |= RX_HUGE_FRAME;
5831                        hw_mtu = MAX_RX_BUF_SIZE;
5832                } else {
5833                        hw->features &= ~RX_HUGE_FRAME;
5834                        hw_mtu = REGULAR_RX_BUF_SIZE;
5835                }
5836                hw_mtu = (hw_mtu + 3) & ~3;
5837                hw_priv->mtu = hw_mtu;
5838                dev->mtu = new_mtu;
5839        }
5840        return 0;
5841}
5842
5843/**
5844 * netdev_ioctl - I/O control processing
5845 * @dev:        Network device.
5846 * @ifr:        Interface request structure.
5847 * @cmd:        I/O control code.
5848 *
5849 * This function is used to process I/O control calls.
5850 *
5851 * Return 0 to indicate success.
5852 */
5853static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5854{
5855        struct dev_priv *priv = netdev_priv(dev);
5856        struct dev_info *hw_priv = priv->adapter;
5857        struct ksz_hw *hw = &hw_priv->hw;
5858        struct ksz_port *port = &priv->port;
5859        int rc;
5860        int result = 0;
5861        struct mii_ioctl_data *data = if_mii(ifr);
5862
5863        if (down_interruptible(&priv->proc_sem))
5864                return -ERESTARTSYS;
5865
5866        /* assume success */
5867        rc = 0;
5868        switch (cmd) {
5869        /* Get address of MII PHY in use. */
5870        case SIOCGMIIPHY:
5871                data->phy_id = priv->id;
5872
5873                /* Fallthrough... */
5874
5875        /* Read MII PHY register. */
5876        case SIOCGMIIREG:
5877                if (data->phy_id != priv->id || data->reg_num >= 6)
5878                        result = -EIO;
5879                else
5880                        hw_r_phy(hw, port->linked->port_id, data->reg_num,
5881                                &data->val_out);
5882                break;
5883
5884        /* Write MII PHY register. */
5885        case SIOCSMIIREG:
5886                if (!capable(CAP_NET_ADMIN))
5887                        result = -EPERM;
5888                else if (data->phy_id != priv->id || data->reg_num >= 6)
5889                        result = -EIO;
5890                else
5891                        hw_w_phy(hw, port->linked->port_id, data->reg_num,
5892                                data->val_in);
5893                break;
5894
5895        default:
5896                result = -EOPNOTSUPP;
5897        }
5898
5899        up(&priv->proc_sem);
5900
5901        return result;
5902}
5903
5904/*
5905 * MII support
5906 */
5907
5908/**
5909 * mdio_read - read PHY register
5910 * @dev:        Network device.
5911 * @phy_id:     The PHY id.
5912 * @reg_num:    The register number.
5913 *
5914 * This function returns the PHY register value.
5915 *
5916 * Return the register value.
5917 */
5918static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5919{
5920        struct dev_priv *priv = netdev_priv(dev);
5921        struct ksz_port *port = &priv->port;
5922        struct ksz_hw *hw = port->hw;
5923        u16 val_out;
5924
5925        hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5926        return val_out;
5927}
5928
5929/**
5930 * mdio_write - set PHY register
5931 * @dev:        Network device.
5932 * @phy_id:     The PHY id.
5933 * @reg_num:    The register number.
5934 * @val:        The register value.
5935 *
5936 * This procedure sets the PHY register value.
5937 */
5938static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5939{
5940        struct dev_priv *priv = netdev_priv(dev);
5941        struct ksz_port *port = &priv->port;
5942        struct ksz_hw *hw = port->hw;
5943        int i;
5944        int pi;
5945
5946        for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5947                hw_w_phy(hw, pi, reg_num << 1, val);
5948}
5949
5950/*
5951 * ethtool support
5952 */
5953
5954#define EEPROM_SIZE                     0x40
5955
5956static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5957
5958#define ADVERTISED_ALL                  \
5959        (ADVERTISED_10baseT_Half |      \
5960        ADVERTISED_10baseT_Full |       \
5961        ADVERTISED_100baseT_Half |      \
5962        ADVERTISED_100baseT_Full)
5963
5964/* These functions use the MII functions in mii.c. */
5965
5966/**
5967 * netdev_get_settings - get network device settings
5968 * @dev:        Network device.
5969 * @cmd:        Ethtool command.
5970 *
5971 * This function queries the PHY and returns its state in the ethtool command.
5972 *
5973 * Return 0 if successful; otherwise an error code.
5974 */
5975static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5976{
5977        struct dev_priv *priv = netdev_priv(dev);
5978        struct dev_info *hw_priv = priv->adapter;
5979
5980        mutex_lock(&hw_priv->lock);
5981        mii_ethtool_gset(&priv->mii_if, cmd);
5982        cmd->advertising |= SUPPORTED_TP;
5983        mutex_unlock(&hw_priv->lock);
5984
5985        /* Save advertised settings for workaround in next function. */
5986        priv->advertising = cmd->advertising;
5987        return 0;
5988}
5989
5990/**
5991 * netdev_set_settings - set network device settings
5992 * @dev:        Network device.
5993 * @cmd:        Ethtool command.
5994 *
5995 * This function sets the PHY according to the ethtool command.
5996 *
5997 * Return 0 if successful; otherwise an error code.
5998 */
5999static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
6000{
6001        struct dev_priv *priv = netdev_priv(dev);
6002        struct dev_info *hw_priv = priv->adapter;
6003        struct ksz_port *port = &priv->port;
6004        int rc;
6005
6006        /*
6007         * ethtool utility does not change advertised setting if auto
6008         * negotiation is not specified explicitly.
6009         */
6010        if (cmd->autoneg && priv->advertising == cmd->advertising) {
6011                cmd->advertising |= ADVERTISED_ALL;
6012                if (10 == cmd->speed)
6013                        cmd->advertising &=
6014                                ~(ADVERTISED_100baseT_Full |
6015                                ADVERTISED_100baseT_Half);
6016                else if (100 == cmd->speed)
6017                        cmd->advertising &=
6018                                ~(ADVERTISED_10baseT_Full |
6019                                ADVERTISED_10baseT_Half);
6020                if (0 == cmd->duplex)
6021                        cmd->advertising &=
6022                                ~(ADVERTISED_100baseT_Full |
6023                                ADVERTISED_10baseT_Full);
6024                else if (1 == cmd->duplex)
6025                        cmd->advertising &=
6026                                ~(ADVERTISED_100baseT_Half |
6027                                ADVERTISED_10baseT_Half);
6028        }
6029        mutex_lock(&hw_priv->lock);
6030        if (cmd->autoneg &&
6031                        (cmd->advertising & ADVERTISED_ALL) ==
6032                        ADVERTISED_ALL) {
6033                port->duplex = 0;
6034                port->speed = 0;
6035                port->force_link = 0;
6036        } else {
6037                port->duplex = cmd->duplex + 1;
6038                if (cmd->speed != 1000)
6039                        port->speed = cmd->speed;
6040                if (cmd->autoneg)
6041                        port->force_link = 0;
6042                else
6043                        port->force_link = 1;
6044        }
6045        rc = mii_ethtool_sset(&priv->mii_if, cmd);
6046        mutex_unlock(&hw_priv->lock);
6047        return rc;
6048}
6049
6050/**
6051 * netdev_nway_reset - restart auto-negotiation
6052 * @dev:        Network device.
6053 *
6054 * This function restarts the PHY for auto-negotiation.
6055 *
6056 * Return 0 if successful; otherwise an error code.
6057 */
6058static int netdev_nway_reset(struct net_device *dev)
6059{
6060        struct dev_priv *priv = netdev_priv(dev);
6061        struct dev_info *hw_priv = priv->adapter;
6062        int rc;
6063
6064        mutex_lock(&hw_priv->lock);
6065        rc = mii_nway_restart(&priv->mii_if);
6066        mutex_unlock(&hw_priv->lock);
6067        return rc;
6068}
6069
6070/**
6071 * netdev_get_link - get network device link status
6072 * @dev:        Network device.
6073 *
6074 * This function gets the link status from the PHY.
6075 *
6076 * Return true if PHY is linked and false otherwise.
6077 */
6078static u32 netdev_get_link(struct net_device *dev)
6079{
6080        struct dev_priv *priv = netdev_priv(dev);
6081        int rc;
6082
6083        rc = mii_link_ok(&priv->mii_if);
6084        return rc;
6085}
6086
6087/**
6088 * netdev_get_drvinfo - get network driver information
6089 * @dev:        Network device.
6090 * @info:       Ethtool driver info data structure.
6091 *
6092 * This procedure returns the driver information.
6093 */
6094static void netdev_get_drvinfo(struct net_device *dev,
6095        struct ethtool_drvinfo *info)
6096{
6097        struct dev_priv *priv = netdev_priv(dev);
6098        struct dev_info *hw_priv = priv->adapter;
6099
6100        strcpy(info->driver, DRV_NAME);
6101        strcpy(info->version, DRV_VERSION);
6102        strcpy(info->bus_info, pci_name(hw_priv->pdev));
6103}
6104
6105/**
6106 * netdev_get_regs_len - get length of register dump
6107 * @dev:        Network device.
6108 *
6109 * This function returns the length of the register dump.
6110 *
6111 * Return length of the register dump.
6112 */
6113static struct hw_regs {
6114        int start;
6115        int end;
6116} hw_regs_range[] = {
6117        { KS_DMA_TX_CTRL,       KS884X_INTERRUPTS_STATUS },
6118        { KS_ADD_ADDR_0_LO,     KS_ADD_ADDR_F_HI },
6119        { KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
6120        { KS884X_SIDER_P,       KS8842_SGCR7_P },
6121        { KS8842_MACAR1_P,      KS8842_TOSR8_P },
6122        { KS884X_P1MBCR_P,      KS8842_P3ERCR_P },
6123        { 0, 0 }
6124};
6125
6126static int netdev_get_regs_len(struct net_device *dev)
6127{
6128        struct hw_regs *range = hw_regs_range;
6129        int regs_len = 0x10 * sizeof(u32);
6130
6131        while (range->end > range->start) {
6132                regs_len += (range->end - range->start + 3) / 4 * 4;
6133                range++;
6134        }
6135        return regs_len;
6136}
6137
6138/**
6139 * netdev_get_regs - get register dump
6140 * @dev:        Network device.
6141 * @regs:       Ethtool registers data structure.
6142 * @ptr:        Buffer to store the register values.
6143 *
6144 * This procedure dumps the register values in the provided buffer.
6145 */
6146static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6147        void *ptr)
6148{
6149        struct dev_priv *priv = netdev_priv(dev);
6150        struct dev_info *hw_priv = priv->adapter;
6151        struct ksz_hw *hw = &hw_priv->hw;
6152        int *buf = (int *) ptr;
6153        struct hw_regs *range = hw_regs_range;
6154        int len;
6155
6156        mutex_lock(&hw_priv->lock);
6157        regs->version = 0;
6158        for (len = 0; len < 0x40; len += 4) {
6159                pci_read_config_dword(hw_priv->pdev, len, buf);
6160                buf++;
6161        }
6162        while (range->end > range->start) {
6163                for (len = range->start; len < range->end; len += 4) {
6164                        *buf = readl(hw->io + len);
6165                        buf++;
6166                }
6167                range++;
6168        }
6169        mutex_unlock(&hw_priv->lock);
6170}
6171
6172#define WOL_SUPPORT                     \
6173        (WAKE_PHY | WAKE_MAGIC |        \
6174        WAKE_UCAST | WAKE_MCAST |       \
6175        WAKE_BCAST | WAKE_ARP)
6176
6177/**
6178 * netdev_get_wol - get Wake-on-LAN support
6179 * @dev:        Network device.
6180 * @wol:        Ethtool Wake-on-LAN data structure.
6181 *
6182 * This procedure returns Wake-on-LAN support.
6183 */
6184static void netdev_get_wol(struct net_device *dev,
6185        struct ethtool_wolinfo *wol)
6186{
6187        struct dev_priv *priv = netdev_priv(dev);
6188        struct dev_info *hw_priv = priv->adapter;
6189
6190        wol->supported = hw_priv->wol_support;
6191        wol->wolopts = hw_priv->wol_enable;
6192        memset(&wol->sopass, 0, sizeof(wol->sopass));
6193}
6194
6195/**
6196 * netdev_set_wol - set Wake-on-LAN support
6197 * @dev:        Network device.
6198 * @wol:        Ethtool Wake-on-LAN data structure.
6199 *
6200 * This function sets Wake-on-LAN support.
6201 *
6202 * Return 0 if successful; otherwise an error code.
6203 */
6204static int netdev_set_wol(struct net_device *dev,
6205        struct ethtool_wolinfo *wol)
6206{
6207        struct dev_priv *priv = netdev_priv(dev);
6208        struct dev_info *hw_priv = priv->adapter;
6209
6210        /* Need to find a way to retrieve the device IP address. */
6211        static const u8 net_addr[] = { 192, 168, 1, 1 };
6212
6213        if (wol->wolopts & ~hw_priv->wol_support)
6214                return -EINVAL;
6215
6216        hw_priv->wol_enable = wol->wolopts;
6217
6218        /* Link wakeup cannot really be disabled. */
6219        if (wol->wolopts)
6220                hw_priv->wol_enable |= WAKE_PHY;
6221        hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6222        return 0;
6223}
6224
6225/**
6226 * netdev_get_msglevel - get debug message level
6227 * @dev:        Network device.
6228 *
6229 * This function returns current debug message level.
6230 *
6231 * Return current debug message flags.
6232 */
6233static u32 netdev_get_msglevel(struct net_device *dev)
6234{
6235        struct dev_priv *priv = netdev_priv(dev);
6236
6237        return priv->msg_enable;
6238}
6239
6240/**
6241 * netdev_set_msglevel - set debug message level
6242 * @dev:        Network device.
6243 * @value:      Debug message flags.
6244 *
6245 * This procedure sets debug message level.
6246 */
6247static void netdev_set_msglevel(struct net_device *dev, u32 value)
6248{
6249        struct dev_priv *priv = netdev_priv(dev);
6250
6251        priv->msg_enable = value;
6252}
6253
6254/**
6255 * netdev_get_eeprom_len - get EEPROM length
6256 * @dev:        Network device.
6257 *
6258 * This function returns the length of the EEPROM.
6259 *
6260 * Return length of the EEPROM.
6261 */
6262static int netdev_get_eeprom_len(struct net_device *dev)
6263{
6264        return EEPROM_SIZE * 2;
6265}
6266
6267/**
6268 * netdev_get_eeprom - get EEPROM data
6269 * @dev:        Network device.
6270 * @eeprom:     Ethtool EEPROM data structure.
6271 * @data:       Buffer to store the EEPROM data.
6272 *
6273 * This function dumps the EEPROM data in the provided buffer.
6274 *
6275 * Return 0 if successful; otherwise an error code.
6276 */
6277#define EEPROM_MAGIC                    0x10A18842
6278
6279static int netdev_get_eeprom(struct net_device *dev,
6280        struct ethtool_eeprom *eeprom, u8 *data)
6281{
6282        struct dev_priv *priv = netdev_priv(dev);
6283        struct dev_info *hw_priv = priv->adapter;
6284        u8 *eeprom_byte = (u8 *) eeprom_data;
6285        int i;
6286        int len;
6287
6288        len = (eeprom->offset + eeprom->len + 1) / 2;
6289        for (i = eeprom->offset / 2; i < len; i++)
6290                eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6291        eeprom->magic = EEPROM_MAGIC;
6292        memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6293
6294        return 0;
6295}
6296
6297/**
6298 * netdev_set_eeprom - write EEPROM data
6299 * @dev:        Network device.
6300 * @eeprom:     Ethtool EEPROM data structure.
6301 * @data:       Data buffer.
6302 *
6303 * This function modifies the EEPROM data one byte at a time.
6304 *
6305 * Return 0 if successful; otherwise an error code.
6306 */
6307static int netdev_set_eeprom(struct net_device *dev,
6308        struct ethtool_eeprom *eeprom, u8 *data)
6309{
6310        struct dev_priv *priv = netdev_priv(dev);
6311        struct dev_info *hw_priv = priv->adapter;
6312        u16 eeprom_word[EEPROM_SIZE];
6313        u8 *eeprom_byte = (u8 *) eeprom_word;
6314        int i;
6315        int len;
6316
6317        if (eeprom->magic != EEPROM_MAGIC)
6318                return -EINVAL;
6319
6320        len = (eeprom->offset + eeprom->len + 1) / 2;
6321        for (i = eeprom->offset / 2; i < len; i++)
6322                eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6323        memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6324        memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6325        for (i = 0; i < EEPROM_SIZE; i++)
6326                if (eeprom_word[i] != eeprom_data[i]) {
6327                        eeprom_data[i] = eeprom_word[i];
6328                        eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6329        }
6330
6331        return 0;
6332}
6333
6334/**
6335 * netdev_get_pauseparam - get flow control parameters
6336 * @dev:        Network device.
6337 * @pause:      Ethtool PAUSE settings data structure.
6338 *
6339 * This procedure returns the PAUSE control flow settings.
6340 */
6341static void netdev_get_pauseparam(struct net_device *dev,
6342        struct ethtool_pauseparam *pause)
6343{
6344        struct dev_priv *priv = netdev_priv(dev);
6345        struct dev_info *hw_priv = priv->adapter;
6346        struct ksz_hw *hw = &hw_priv->hw;
6347
6348        pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6349        if (!hw->ksz_switch) {
6350                pause->rx_pause =
6351                        (hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6352                pause->tx_pause =
6353                        (hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6354        } else {
6355                pause->rx_pause =
6356                        (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6357                                SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6358                pause->tx_pause =
6359                        (sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6360                                SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6361        }
6362}
6363
6364/**
6365 * netdev_set_pauseparam - set flow control parameters
6366 * @dev:        Network device.
6367 * @pause:      Ethtool PAUSE settings data structure.
6368 *
6369 * This function sets the PAUSE control flow settings.
6370 * Not implemented yet.
6371 *
6372 * Return 0 if successful; otherwise an error code.
6373 */
6374static int netdev_set_pauseparam(struct net_device *dev,
6375        struct ethtool_pauseparam *pause)
6376{
6377        struct dev_priv *priv = netdev_priv(dev);
6378        struct dev_info *hw_priv = priv->adapter;
6379        struct ksz_hw *hw = &hw_priv->hw;
6380        struct ksz_port *port = &priv->port;
6381
6382        mutex_lock(&hw_priv->lock);
6383        if (pause->autoneg) {
6384                if (!pause->rx_pause && !pause->tx_pause)
6385                        port->flow_ctrl = PHY_NO_FLOW_CTRL;
6386                else
6387                        port->flow_ctrl = PHY_FLOW_CTRL;
6388                hw->overrides &= ~PAUSE_FLOW_CTRL;
6389                port->force_link = 0;
6390                if (hw->ksz_switch) {
6391                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6392                                SWITCH_RX_FLOW_CTRL, 1);
6393                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6394                                SWITCH_TX_FLOW_CTRL, 1);
6395                }
6396                port_set_link_speed(port);
6397        } else {
6398                hw->overrides |= PAUSE_FLOW_CTRL;
6399                if (hw->ksz_switch) {
6400                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6401                                SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6402                        sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6403                                SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6404                } else
6405                        set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6406        }
6407        mutex_unlock(&hw_priv->lock);
6408
6409        return 0;
6410}
6411
6412/**
6413 * netdev_get_ringparam - get tx/rx ring parameters
6414 * @dev:        Network device.
6415 * @pause:      Ethtool RING settings data structure.
6416 *
6417 * This procedure returns the TX/RX ring settings.
6418 */
6419static void netdev_get_ringparam(struct net_device *dev,
6420        struct ethtool_ringparam *ring)
6421{
6422        struct dev_priv *priv = netdev_priv(dev);
6423        struct dev_info *hw_priv = priv->adapter;
6424        struct ksz_hw *hw = &hw_priv->hw;
6425
6426        ring->tx_max_pending = (1 << 9);
6427        ring->tx_pending = hw->tx_desc_info.alloc;
6428        ring->rx_max_pending = (1 << 9);
6429        ring->rx_pending = hw->rx_desc_info.alloc;
6430}
6431
6432#define STATS_LEN                       (TOTAL_PORT_COUNTER_NUM)
6433
6434static struct {
6435        char string[ETH_GSTRING_LEN];
6436} ethtool_stats_keys[STATS_LEN] = {
6437        { "rx_lo_priority_octets" },
6438        { "rx_hi_priority_octets" },
6439        { "rx_undersize_packets" },
6440        { "rx_fragments" },
6441        { "rx_oversize_packets" },
6442        { "rx_jabbers" },
6443        { "rx_symbol_errors" },
6444        { "rx_crc_errors" },
6445        { "rx_align_errors" },
6446        { "rx_mac_ctrl_packets" },
6447        { "rx_pause_packets" },
6448        { "rx_bcast_packets" },
6449        { "rx_mcast_packets" },
6450        { "rx_ucast_packets" },
6451        { "rx_64_or_less_octet_packets" },
6452        { "rx_65_to_127_octet_packets" },
6453        { "rx_128_to_255_octet_packets" },
6454        { "rx_256_to_511_octet_packets" },
6455        { "rx_512_to_1023_octet_packets" },
6456        { "rx_1024_to_1522_octet_packets" },
6457
6458        { "tx_lo_priority_octets" },
6459        { "tx_hi_priority_octets" },
6460        { "tx_late_collisions" },
6461        { "tx_pause_packets" },
6462        { "tx_bcast_packets" },
6463        { "tx_mcast_packets" },
6464        { "tx_ucast_packets" },
6465        { "tx_deferred" },
6466        { "tx_total_collisions" },
6467        { "tx_excessive_collisions" },
6468        { "tx_single_collisions" },
6469        { "tx_mult_collisions" },
6470
6471        { "rx_discards" },
6472        { "tx_discards" },
6473};
6474
6475/**
6476 * netdev_get_strings - get statistics identity strings
6477 * @dev:        Network device.
6478 * @stringset:  String set identifier.
6479 * @buf:        Buffer to store the strings.
6480 *
6481 * This procedure returns the strings used to identify the statistics.
6482 */
6483static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6484{
6485        struct dev_priv *priv = netdev_priv(dev);
6486        struct dev_info *hw_priv = priv->adapter;
6487        struct ksz_hw *hw = &hw_priv->hw;
6488
6489        if (ETH_SS_STATS == stringset)
6490                memcpy(buf, &ethtool_stats_keys,
6491                        ETH_GSTRING_LEN * hw->mib_cnt);
6492}
6493
6494/**
6495 * netdev_get_sset_count - get statistics size
6496 * @dev:        Network device.
6497 * @sset:       The statistics set number.
6498 *
6499 * This function returns the size of the statistics to be reported.
6500 *
6501 * Return size of the statistics to be reported.
6502 */
6503static int netdev_get_sset_count(struct net_device *dev, int sset)
6504{
6505        struct dev_priv *priv = netdev_priv(dev);
6506        struct dev_info *hw_priv = priv->adapter;
6507        struct ksz_hw *hw = &hw_priv->hw;
6508
6509        switch (sset) {
6510        case ETH_SS_STATS:
6511                return hw->mib_cnt;
6512        default:
6513                return -EOPNOTSUPP;
6514        }
6515}
6516
6517/**
6518 * netdev_get_ethtool_stats - get network device statistics
6519 * @dev:        Network device.
6520 * @stats:      Ethtool statistics data structure.
6521 * @data:       Buffer to store the statistics.
6522 *
6523 * This procedure returns the statistics.
6524 */
6525static void netdev_get_ethtool_stats(struct net_device *dev,
6526        struct ethtool_stats *stats, u64 *data)
6527{
6528        struct dev_priv *priv = netdev_priv(dev);
6529        struct dev_info *hw_priv = priv->adapter;
6530        struct ksz_hw *hw = &hw_priv->hw;
6531        struct ksz_port *port = &priv->port;
6532        int n_stats = stats->n_stats;
6533        int i;
6534        int n;
6535        int p;
6536        int rc;
6537        u64 counter[TOTAL_PORT_COUNTER_NUM];
6538
6539        mutex_lock(&hw_priv->lock);
6540        n = SWITCH_PORT_NUM;
6541        for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6542                if (media_connected == hw->port_mib[p].state) {
6543                        hw_priv->counter[p].read = 1;
6544
6545                        /* Remember first port that requests read. */
6546                        if (n == SWITCH_PORT_NUM)
6547                                n = p;
6548                }
6549        }
6550        mutex_unlock(&hw_priv->lock);
6551
6552        if (n < SWITCH_PORT_NUM)
6553                schedule_work(&hw_priv->mib_read);
6554
6555        if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6556                p = n;
6557                rc = wait_event_interruptible_timeout(
6558                        hw_priv->counter[p].counter,
6559                        2 == hw_priv->counter[p].read,
6560                        HZ * 1);
6561        } else
6562                for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6563                        if (0 == i) {
6564                                rc = wait_event_interruptible_timeout(
6565                                        hw_priv->counter[p].counter,
6566                                        2 == hw_priv->counter[p].read,
6567                                        HZ * 2);
6568                        } else if (hw->port_mib[p].cnt_ptr) {
6569                                rc = wait_event_interruptible_timeout(
6570                                        hw_priv->counter[p].counter,
6571                                        2 == hw_priv->counter[p].read,
6572                                        HZ * 1);
6573                        }
6574                }
6575
6576        get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6577        n = hw->mib_cnt;
6578        if (n > n_stats)
6579                n = n_stats;
6580        n_stats -= n;
6581        for (i = 0; i < n; i++)
6582                *data++ = counter[i];
6583}
6584
6585/**
6586 * netdev_get_rx_csum - get receive checksum support
6587 * @dev:        Network device.
6588 *
6589 * This function gets receive checksum support setting.
6590 *
6591 * Return true if receive checksum is enabled; false otherwise.
6592 */
6593static u32 netdev_get_rx_csum(struct net_device *dev)
6594{
6595        struct dev_priv *priv = netdev_priv(dev);
6596        struct dev_info *hw_priv = priv->adapter;
6597        struct ksz_hw *hw = &hw_priv->hw;
6598
6599        return hw->rx_cfg &
6600                (DMA_RX_CSUM_UDP |
6601                DMA_RX_CSUM_TCP |
6602                DMA_RX_CSUM_IP);
6603}
6604
6605/**
6606 * netdev_set_rx_csum - set receive checksum support
6607 * @dev:        Network device.
6608 * @data:       Zero to disable receive checksum support.
6609 *
6610 * This function sets receive checksum support setting.
6611 *
6612 * Return 0 if successful; otherwise an error code.
6613 */
6614static int netdev_set_rx_csum(struct net_device *dev, u32 data)
6615{
6616        struct dev_priv *priv = netdev_priv(dev);
6617        struct dev_info *hw_priv = priv->adapter;
6618        struct ksz_hw *hw = &hw_priv->hw;
6619        u32 new_setting = hw->rx_cfg;
6620
6621        if (data)
6622                new_setting |=
6623                        (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP |
6624                        DMA_RX_CSUM_IP);
6625        else
6626                new_setting &=
6627                        ~(DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP |
6628                        DMA_RX_CSUM_IP);
6629        new_setting &= ~DMA_RX_CSUM_UDP;
6630        mutex_lock(&hw_priv->lock);
6631        if (new_setting != hw->rx_cfg) {
6632                hw->rx_cfg = new_setting;
6633                if (hw->enabled)
6634                        writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6635        }
6636        mutex_unlock(&hw_priv->lock);
6637        return 0;
6638}
6639
6640static struct ethtool_ops netdev_ethtool_ops = {
6641        .get_settings           = netdev_get_settings,
6642        .set_settings           = netdev_set_settings,
6643        .nway_reset             = netdev_nway_reset,
6644        .get_link               = netdev_get_link,
6645        .get_drvinfo            = netdev_get_drvinfo,
6646        .get_regs_len           = netdev_get_regs_len,
6647        .get_regs               = netdev_get_regs,
6648        .get_wol                = netdev_get_wol,
6649        .set_wol                = netdev_set_wol,
6650        .get_msglevel           = netdev_get_msglevel,
6651        .set_msglevel           = netdev_set_msglevel,
6652        .get_eeprom_len         = netdev_get_eeprom_len,
6653        .get_eeprom             = netdev_get_eeprom,
6654        .set_eeprom             = netdev_set_eeprom,
6655        .get_pauseparam         = netdev_get_pauseparam,
6656        .set_pauseparam         = netdev_set_pauseparam,
6657        .get_ringparam          = netdev_get_ringparam,
6658        .get_strings            = netdev_get_strings,
6659        .get_sset_count         = netdev_get_sset_count,
6660        .get_ethtool_stats      = netdev_get_ethtool_stats,
6661        .get_rx_csum            = netdev_get_rx_csum,
6662        .set_rx_csum            = netdev_set_rx_csum,
6663        .get_tx_csum            = ethtool_op_get_tx_csum,
6664        .set_tx_csum            = ethtool_op_set_tx_csum,
6665        .get_sg                 = ethtool_op_get_sg,
6666        .set_sg                 = ethtool_op_set_sg,
6667};
6668
6669/*
6670 * Hardware monitoring
6671 */
6672
6673static void update_link(struct net_device *dev, struct dev_priv *priv,
6674        struct ksz_port *port)
6675{
6676        if (priv->media_state != port->linked->state) {
6677                priv->media_state = port->linked->state;
6678                if (netif_running(dev))
6679                        set_media_state(dev, media_connected);
6680        }
6681}
6682
6683static void mib_read_work(struct work_struct *work)
6684{
6685        struct dev_info *hw_priv =
6686                container_of(work, struct dev_info, mib_read);
6687        struct ksz_hw *hw = &hw_priv->hw;
6688        struct ksz_port_mib *mib;
6689        int i;
6690
6691        next_jiffies = jiffies;
6692        for (i = 0; i < hw->mib_port_cnt; i++) {
6693                mib = &hw->port_mib[i];
6694
6695                /* Reading MIB counters or requested to read. */
6696                if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6697
6698                        /* Need to process receive interrupt. */
6699                        if (port_r_cnt(hw, i))
6700                                break;
6701                        hw_priv->counter[i].read = 0;
6702
6703                        /* Finish reading counters. */
6704                        if (0 == mib->cnt_ptr) {
6705                                hw_priv->counter[i].read = 2;
6706                                wake_up_interruptible(
6707                                        &hw_priv->counter[i].counter);
6708                        }
6709                } else if (jiffies >= hw_priv->counter[i].time) {
6710                        /* Only read MIB counters when the port is connected. */
6711                        if (media_connected == mib->state)
6712                                hw_priv->counter[i].read = 1;
6713                        next_jiffies += HZ * 1 * hw->mib_port_cnt;
6714                        hw_priv->counter[i].time = next_jiffies;
6715
6716                /* Port is just disconnected. */
6717                } else if (mib->link_down) {
6718                        mib->link_down = 0;
6719
6720                        /* Read counters one last time after link is lost. */
6721                        hw_priv->counter[i].read = 1;
6722                }
6723        }
6724}
6725
6726static void mib_monitor(unsigned long ptr)
6727{
6728        struct dev_info *hw_priv = (struct dev_info *) ptr;
6729
6730        mib_read_work(&hw_priv->mib_read);
6731
6732        /* This is used to verify Wake-on-LAN is working. */
6733        if (hw_priv->pme_wait) {
6734                if (hw_priv->pme_wait <= jiffies) {
6735                        hw_clr_wol_pme_status(&hw_priv->hw);
6736                        hw_priv->pme_wait = 0;
6737                }
6738        } else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6739
6740                /* PME is asserted.  Wait 2 seconds to clear it. */
6741                hw_priv->pme_wait = jiffies + HZ * 2;
6742        }
6743
6744        ksz_update_timer(&hw_priv->mib_timer_info);
6745}
6746
6747/**
6748 * dev_monitor - periodic monitoring
6749 * @ptr:        Network device pointer.
6750 *
6751 * This routine is run in a kernel timer to monitor the network device.
6752 */
6753static void dev_monitor(unsigned long ptr)
6754{
6755        struct net_device *dev = (struct net_device *) ptr;
6756        struct dev_priv *priv = netdev_priv(dev);
6757        struct dev_info *hw_priv = priv->adapter;
6758        struct ksz_hw *hw = &hw_priv->hw;
6759        struct ksz_port *port = &priv->port;
6760
6761        if (!(hw->features & LINK_INT_WORKING))
6762                port_get_link_speed(port);
6763        update_link(dev, priv, port);
6764
6765        ksz_update_timer(&priv->monitor_timer_info);
6766}
6767
6768/*
6769 * Linux network device interface functions
6770 */
6771
6772/* Driver exported variables */
6773
6774static int msg_enable;
6775
6776static char *macaddr = ":";
6777static char *mac1addr = ":";
6778
6779/*
6780 * This enables multiple network device mode for KSZ8842, which contains a
6781 * switch with two physical ports.  Some users like to take control of the
6782 * ports for running Spanning Tree Protocol.  The driver will create an
6783 * additional eth? device for the other port.
6784 *
6785 * Some limitations are the network devices cannot have different MTU and
6786 * multicast hash tables.
6787 */
6788static int multi_dev;
6789
6790/*
6791 * As most users select multiple network device mode to use Spanning Tree
6792 * Protocol, this enables a feature in which most unicast and multicast packets
6793 * are forwarded inside the switch and not passed to the host.  Only packets
6794 * that need the host's attention are passed to it.  This prevents the host
6795 * wasting CPU time to examine each and every incoming packets and do the
6796 * forwarding itself.
6797 *
6798 * As the hack requires the private bridge header, the driver cannot compile
6799 * with just the kernel headers.
6800 *
6801 * Enabling STP support also turns on multiple network device mode.
6802 */
6803static int stp;
6804
6805/*
6806 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6807 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6808 * STP suport is enabled.
6809 */
6810static int fast_aging;
6811
6812/**
6813 * netdev_init - initialize network device.
6814 * @dev:        Network device.
6815 *
6816 * This function initializes the network device.
6817 *
6818 * Return 0 if successful; otherwise an error code indicating failure.
6819 */
6820static int __init netdev_init(struct net_device *dev)
6821{
6822        struct dev_priv *priv = netdev_priv(dev);
6823
6824        /* 500 ms timeout */
6825        ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6826                dev_monitor, dev);
6827
6828        /* 500 ms timeout */
6829        dev->watchdog_timeo = HZ / 2;
6830
6831        dev->features |= NETIF_F_IP_CSUM;
6832
6833        /*
6834         * Hardware does not really support IPv6 checksum generation, but
6835         * driver actually runs faster with this on.  Refer IPV6_CSUM_GEN_HACK.
6836         */
6837        dev->features |= NETIF_F_IPV6_CSUM;
6838        dev->features |= NETIF_F_SG;
6839
6840        sema_init(&priv->proc_sem, 1);
6841
6842        priv->mii_if.phy_id_mask = 0x1;
6843        priv->mii_if.reg_num_mask = 0x7;
6844        priv->mii_if.dev = dev;
6845        priv->mii_if.mdio_read = mdio_read;
6846        priv->mii_if.mdio_write = mdio_write;
6847        priv->mii_if.phy_id = priv->port.first_port + 1;
6848
6849        priv->msg_enable = netif_msg_init(msg_enable,
6850                (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6851
6852        return 0;
6853}
6854
6855static const struct net_device_ops netdev_ops = {
6856        .ndo_init               = netdev_init,
6857        .ndo_open               = netdev_open,
6858        .ndo_stop               = netdev_close,
6859        .ndo_get_stats          = netdev_query_statistics,
6860        .ndo_start_xmit         = netdev_tx,
6861        .ndo_tx_timeout         = netdev_tx_timeout,
6862        .ndo_change_mtu         = netdev_change_mtu,
6863        .ndo_set_mac_address    = netdev_set_mac_address,
6864        .ndo_validate_addr      = eth_validate_addr,
6865        .ndo_do_ioctl           = netdev_ioctl,
6866        .ndo_set_rx_mode        = netdev_set_rx_mode,
6867#ifdef CONFIG_NET_POLL_CONTROLLER
6868        .ndo_poll_controller    = netdev_netpoll,
6869#endif
6870};
6871
6872static void netdev_free(struct net_device *dev)
6873{
6874        if (dev->watchdog_timeo)
6875                unregister_netdev(dev);
6876
6877        free_netdev(dev);
6878}
6879
6880struct platform_info {
6881        struct dev_info dev_info;
6882        struct net_device *netdev[SWITCH_PORT_NUM];
6883};
6884
6885static int net_device_present;
6886
6887static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6888{
6889        int i;
6890        int j;
6891        int got_num;
6892        int num;
6893
6894        i = j = num = got_num = 0;
6895        while (j < MAC_ADDR_LEN) {
6896                if (macaddr[i]) {
6897                        int digit;
6898
6899                        got_num = 1;
6900                        digit = hex_to_bin(macaddr[i]);
6901                        if (digit >= 0)
6902                                num = num * 16 + digit;
6903                        else if (':' == macaddr[i])
6904                                got_num = 2;
6905                        else
6906                                break;
6907                } else if (got_num)
6908                        got_num = 2;
6909                else
6910                        break;
6911                if (2 == got_num) {
6912                        if (MAIN_PORT == port) {
6913                                hw_priv->hw.override_addr[j++] = (u8) num;
6914                                hw_priv->hw.override_addr[5] +=
6915                                        hw_priv->hw.id;
6916                        } else {
6917                                hw_priv->hw.ksz_switch->other_addr[j++] =
6918                                        (u8) num;
6919                                hw_priv->hw.ksz_switch->other_addr[5] +=
6920                                        hw_priv->hw.id;
6921                        }
6922                        num = got_num = 0;
6923                }
6924                i++;
6925        }
6926        if (MAC_ADDR_LEN == j) {
6927                if (MAIN_PORT == port)
6928                        hw_priv->hw.mac_override = 1;
6929        }
6930}
6931
6932#define KS884X_DMA_MASK                 (~0x0UL)
6933
6934static void read_other_addr(struct ksz_hw *hw)
6935{
6936        int i;
6937        u16 data[3];
6938        struct ksz_switch *sw = hw->ksz_switch;
6939
6940        for (i = 0; i < 3; i++)
6941                data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6942        if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6943                sw->other_addr[5] = (u8) data[0];
6944                sw->other_addr[4] = (u8)(data[0] >> 8);
6945                sw->other_addr[3] = (u8) data[1];
6946                sw->other_addr[2] = (u8)(data[1] >> 8);
6947                sw->other_addr[1] = (u8) data[2];
6948                sw->other_addr[0] = (u8)(data[2] >> 8);
6949        }
6950}
6951
6952#ifndef PCI_VENDOR_ID_MICREL_KS
6953#define PCI_VENDOR_ID_MICREL_KS         0x16c6
6954#endif
6955
6956static int __devinit pcidev_init(struct pci_dev *pdev,
6957        const struct pci_device_id *id)
6958{
6959        struct net_device *dev;
6960        struct dev_priv *priv;
6961        struct dev_info *hw_priv;
6962        struct ksz_hw *hw;
6963        struct platform_info *info;
6964        struct ksz_port *port;
6965        unsigned long reg_base;
6966        unsigned long reg_len;
6967        int cnt;
6968        int i;
6969        int mib_port_count;
6970        int pi;
6971        int port_count;
6972        int result;
6973        char banner[sizeof(version)];
6974        struct ksz_switch *sw = NULL;
6975
6976        result = pci_enable_device(pdev);
6977        if (result)
6978                return result;
6979
6980        result = -ENODEV;
6981
6982        if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6983                        pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6984                return result;
6985
6986        reg_base = pci_resource_start(pdev, 0);
6987        reg_len = pci_resource_len(pdev, 0);
6988        if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6989                return result;
6990
6991        if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6992                return result;
6993        pci_set_master(pdev);
6994
6995        result = -ENOMEM;
6996
6997        info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6998        if (!info)
6999                goto pcidev_init_dev_err;
7000
7001        hw_priv = &info->dev_info;
7002        hw_priv->pdev = pdev;
7003
7004        hw = &hw_priv->hw;
7005
7006        hw->io = ioremap(reg_base, reg_len);
7007        if (!hw->io)
7008                goto pcidev_init_io_err;
7009
7010        cnt = hw_init(hw);
7011        if (!cnt) {
7012                if (msg_enable & NETIF_MSG_PROBE)
7013                        pr_alert("chip not detected\n");
7014                result = -ENODEV;
7015                goto pcidev_init_alloc_err;
7016        }
7017
7018        snprintf(banner, sizeof(banner), "%s", version);
7019        banner[13] = cnt + '0';         /* Replace x in "Micrel KSZ884x" */
7020        dev_info(&hw_priv->pdev->dev, "%s\n", banner);
7021        dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
7022
7023        /* Assume device is KSZ8841. */
7024        hw->dev_count = 1;
7025        port_count = 1;
7026        mib_port_count = 1;
7027        hw->addr_list_size = 0;
7028        hw->mib_cnt = PORT_COUNTER_NUM;
7029        hw->mib_port_cnt = 1;
7030
7031        /* KSZ8842 has a switch with multiple ports. */
7032        if (2 == cnt) {
7033                if (fast_aging)
7034                        hw->overrides |= FAST_AGING;
7035
7036                hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7037
7038                /* Multiple network device interfaces are required. */
7039                if (multi_dev) {
7040                        hw->dev_count = SWITCH_PORT_NUM;
7041                        hw->addr_list_size = SWITCH_PORT_NUM - 1;
7042                }
7043
7044                /* Single network device has multiple ports. */
7045                if (1 == hw->dev_count) {
7046                        port_count = SWITCH_PORT_NUM;
7047                        mib_port_count = SWITCH_PORT_NUM;
7048                }
7049                hw->mib_port_cnt = TOTAL_PORT_NUM;
7050                hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7051                if (!hw->ksz_switch)
7052                        goto pcidev_init_alloc_err;
7053
7054                sw = hw->ksz_switch;
7055        }
7056        for (i = 0; i < hw->mib_port_cnt; i++)
7057                hw->port_mib[i].mib_start = 0;
7058
7059        hw->parent = hw_priv;
7060
7061        /* Default MTU is 1500. */
7062        hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7063
7064        if (ksz_alloc_mem(hw_priv))
7065                goto pcidev_init_mem_err;
7066
7067        hw_priv->hw.id = net_device_present;
7068
7069        spin_lock_init(&hw_priv->hwlock);
7070        mutex_init(&hw_priv->lock);
7071
7072        /* tasklet is enabled. */
7073        tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
7074                (unsigned long) hw_priv);
7075        tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
7076                (unsigned long) hw_priv);
7077
7078        /* tasklet_enable will decrement the atomic counter. */
7079        tasklet_disable(&hw_priv->rx_tasklet);
7080        tasklet_disable(&hw_priv->tx_tasklet);
7081
7082        for (i = 0; i < TOTAL_PORT_NUM; i++)
7083                init_waitqueue_head(&hw_priv->counter[i].counter);
7084
7085        if (macaddr[0] != ':')
7086                get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7087
7088        /* Read MAC address and initialize override address if not overrided. */
7089        hw_read_addr(hw);
7090
7091        /* Multiple device interfaces mode requires a second MAC address. */
7092        if (hw->dev_count > 1) {
7093                memcpy(sw->other_addr, hw->override_addr, MAC_ADDR_LEN);
7094                read_other_addr(hw);
7095                if (mac1addr[0] != ':')
7096                        get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7097        }
7098
7099        hw_setup(hw);
7100        if (hw->ksz_switch)
7101                sw_setup(hw);
7102        else {
7103                hw_priv->wol_support = WOL_SUPPORT;
7104                hw_priv->wol_enable = 0;
7105        }
7106
7107        INIT_WORK(&hw_priv->mib_read, mib_read_work);
7108
7109        /* 500 ms timeout */
7110        ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7111                mib_monitor, hw_priv);
7112
7113        for (i = 0; i < hw->dev_count; i++) {
7114                dev = alloc_etherdev(sizeof(struct dev_priv));
7115                if (!dev)
7116                        goto pcidev_init_reg_err;
7117                info->netdev[i] = dev;
7118
7119                priv = netdev_priv(dev);
7120                priv->adapter = hw_priv;
7121                priv->id = net_device_present++;
7122
7123                port = &priv->port;
7124                port->port_cnt = port_count;
7125                port->mib_port_cnt = mib_port_count;
7126                port->first_port = i;
7127                port->flow_ctrl = PHY_FLOW_CTRL;
7128
7129                port->hw = hw;
7130                port->linked = &hw->port_info[port->first_port];
7131
7132                for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7133                        hw->port_info[pi].port_id = pi;
7134                        hw->port_info[pi].pdev = dev;
7135                        hw->port_info[pi].state = media_disconnected;
7136                }
7137
7138                dev->mem_start = (unsigned long) hw->io;
7139                dev->mem_end = dev->mem_start + reg_len - 1;
7140                dev->irq = pdev->irq;
7141                if (MAIN_PORT == i)
7142                        memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7143                                MAC_ADDR_LEN);
7144                else {
7145                        memcpy(dev->dev_addr, sw->other_addr,
7146                                MAC_ADDR_LEN);
7147                        if (!memcmp(sw->other_addr, hw->override_addr,
7148                                        MAC_ADDR_LEN))
7149                                dev->dev_addr[5] += port->first_port;
7150                }
7151
7152                dev->netdev_ops = &netdev_ops;
7153                SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7154                if (register_netdev(dev))
7155                        goto pcidev_init_reg_err;
7156                port_set_power_saving(port, true);
7157        }
7158
7159        pci_dev_get(hw_priv->pdev);
7160        pci_set_drvdata(pdev, info);
7161        return 0;
7162
7163pcidev_init_reg_err:
7164        for (i = 0; i < hw->dev_count; i++) {
7165                if (info->netdev[i]) {
7166                        netdev_free(info->netdev[i]);
7167                        info->netdev[i] = NULL;
7168                }
7169        }
7170
7171pcidev_init_mem_err:
7172        ksz_free_mem(hw_priv);
7173        kfree(hw->ksz_switch);
7174
7175pcidev_init_alloc_err:
7176        iounmap(hw->io);
7177
7178pcidev_init_io_err:
7179        kfree(info);
7180
7181pcidev_init_dev_err:
7182        release_mem_region(reg_base, reg_len);
7183
7184        return result;
7185}
7186
7187static void pcidev_exit(struct pci_dev *pdev)
7188{
7189        int i;
7190        struct platform_info *info = pci_get_drvdata(pdev);
7191        struct dev_info *hw_priv = &info->dev_info;
7192
7193        pci_set_drvdata(pdev, NULL);
7194
7195        release_mem_region(pci_resource_start(pdev, 0),
7196                pci_resource_len(pdev, 0));
7197        for (i = 0; i < hw_priv->hw.dev_count; i++) {
7198                if (info->netdev[i])
7199                        netdev_free(info->netdev[i]);
7200        }
7201        if (hw_priv->hw.io)
7202                iounmap(hw_priv->hw.io);
7203        ksz_free_mem(hw_priv);
7204        kfree(hw_priv->hw.ksz_switch);
7205        pci_dev_put(hw_priv->pdev);
7206        kfree(info);
7207}
7208
7209#ifdef CONFIG_PM
7210static int pcidev_resume(struct pci_dev *pdev)
7211{
7212        int i;
7213        struct platform_info *info = pci_get_drvdata(pdev);
7214        struct dev_info *hw_priv = &info->dev_info;
7215        struct ksz_hw *hw = &hw_priv->hw;
7216
7217        pci_set_power_state(pdev, PCI_D0);
7218        pci_restore_state(pdev);
7219        pci_enable_wake(pdev, PCI_D0, 0);
7220
7221        if (hw_priv->wol_enable)
7222                hw_cfg_wol_pme(hw, 0);
7223        for (i = 0; i < hw->dev_count; i++) {
7224                if (info->netdev[i]) {
7225                        struct net_device *dev = info->netdev[i];
7226
7227                        if (netif_running(dev)) {
7228                                netdev_open(dev);
7229                                netif_device_attach(dev);
7230                        }
7231                }
7232        }
7233        return 0;
7234}
7235
7236static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7237{
7238        int i;
7239        struct platform_info *info = pci_get_drvdata(pdev);
7240        struct dev_info *hw_priv = &info->dev_info;
7241        struct ksz_hw *hw = &hw_priv->hw;
7242
7243        /* Need to find a way to retrieve the device IP address. */
7244        static const u8 net_addr[] = { 192, 168, 1, 1 };
7245
7246        for (i = 0; i < hw->dev_count; i++) {
7247                if (info->netdev[i]) {
7248                        struct net_device *dev = info->netdev[i];
7249
7250                        if (netif_running(dev)) {
7251                                netif_device_detach(dev);
7252                                netdev_close(dev);
7253                        }
7254                }
7255        }
7256        if (hw_priv->wol_enable) {
7257                hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7258                hw_cfg_wol_pme(hw, 1);
7259        }
7260
7261        pci_save_state(pdev);
7262        pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7263        pci_set_power_state(pdev, pci_choose_state(pdev, state));
7264        return 0;
7265}
7266#endif
7267
7268static char pcidev_name[] = "ksz884xp";
7269
7270static struct pci_device_id pcidev_table[] = {
7271        { PCI_VENDOR_ID_MICREL_KS, 0x8841,
7272                PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7273        { PCI_VENDOR_ID_MICREL_KS, 0x8842,
7274                PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7275        { 0 }
7276};
7277
7278MODULE_DEVICE_TABLE(pci, pcidev_table);
7279
7280static struct pci_driver pci_device_driver = {
7281#ifdef CONFIG_PM
7282        .suspend        = pcidev_suspend,
7283        .resume         = pcidev_resume,
7284#endif
7285        .name           = pcidev_name,
7286        .id_table       = pcidev_table,
7287        .probe          = pcidev_init,
7288        .remove         = pcidev_exit
7289};
7290
7291static int __init ksz884x_init_module(void)
7292{
7293        return pci_register_driver(&pci_device_driver);
7294}
7295
7296static void __exit ksz884x_cleanup_module(void)
7297{
7298        pci_unregister_driver(&pci_device_driver);
7299}
7300
7301module_init(ksz884x_init_module);
7302module_exit(ksz884x_cleanup_module);
7303
7304MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7305MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7306MODULE_LICENSE("GPL");
7307
7308module_param_named(message, msg_enable, int, 0);
7309MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7310
7311module_param(macaddr, charp, 0);
7312module_param(mac1addr, charp, 0);
7313module_param(fast_aging, int, 0);
7314module_param(multi_dev, int, 0);
7315module_param(stp, int, 0);
7316MODULE_PARM_DESC(macaddr, "MAC address");
7317MODULE_PARM_DESC(mac1addr, "Second MAC address");
7318MODULE_PARM_DESC(fast_aging, "Fast aging");
7319MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7320MODULE_PARM_DESC(stp, "STP support");
7321