linux/drivers/net/pxa168_eth.c
<<
>>
Prefs
   1/*
   2 * PXA168 ethernet driver.
   3 * Most of the code is derived from mv643xx ethernet driver.
   4 *
   5 * Copyright (C) 2010 Marvell International Ltd.
   6 *              Sachin Sanap <ssanap@marvell.com>
   7 *              Zhangfei Gao <zgao6@marvell.com>
   8 *              Philip Rakity <prakity@marvell.com>
   9 *              Mark Brown <markb@marvell.com>
  10 *
  11 * This program is free software; you can redistribute it and/or
  12 * modify it under the terms of the GNU General Public License
  13 * as published by the Free Software Foundation; either version 2
  14 * of the License, or (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/in.h>
  29#include <linux/ip.h>
  30#include <linux/tcp.h>
  31#include <linux/udp.h>
  32#include <linux/etherdevice.h>
  33#include <linux/bitops.h>
  34#include <linux/delay.h>
  35#include <linux/ethtool.h>
  36#include <linux/platform_device.h>
  37#include <linux/module.h>
  38#include <linux/kernel.h>
  39#include <linux/workqueue.h>
  40#include <linux/clk.h>
  41#include <linux/phy.h>
  42#include <linux/io.h>
  43#include <linux/types.h>
  44#include <asm/pgtable.h>
  45#include <asm/system.h>
  46#include <asm/cacheflush.h>
  47#include <linux/pxa168_eth.h>
  48
  49#define DRIVER_NAME     "pxa168-eth"
  50#define DRIVER_VERSION  "0.3"
  51
  52/*
  53 * Registers
  54 */
  55
  56#define PHY_ADDRESS             0x0000
  57#define SMI                     0x0010
  58#define PORT_CONFIG             0x0400
  59#define PORT_CONFIG_EXT         0x0408
  60#define PORT_COMMAND            0x0410
  61#define PORT_STATUS             0x0418
  62#define HTPR                    0x0428
  63#define SDMA_CONFIG             0x0440
  64#define SDMA_CMD                0x0448
  65#define INT_CAUSE               0x0450
  66#define INT_W_CLEAR             0x0454
  67#define INT_MASK                0x0458
  68#define ETH_F_RX_DESC_0         0x0480
  69#define ETH_C_RX_DESC_0         0x04A0
  70#define ETH_C_TX_DESC_1         0x04E4
  71
  72/* smi register */
  73#define SMI_BUSY                (1 << 28)       /* 0 - Write, 1 - Read  */
  74#define SMI_R_VALID             (1 << 27)       /* 0 - Write, 1 - Read  */
  75#define SMI_OP_W                (0 << 26)       /* Write operation      */
  76#define SMI_OP_R                (1 << 26)       /* Read operation */
  77
  78#define PHY_WAIT_ITERATIONS     10
  79
  80#define PXA168_ETH_PHY_ADDR_DEFAULT     0
  81/* RX & TX descriptor command */
  82#define BUF_OWNED_BY_DMA        (1 << 31)
  83
  84/* RX descriptor status */
  85#define RX_EN_INT               (1 << 23)
  86#define RX_FIRST_DESC           (1 << 17)
  87#define RX_LAST_DESC            (1 << 16)
  88#define RX_ERROR                (1 << 15)
  89
  90/* TX descriptor command */
  91#define TX_EN_INT               (1 << 23)
  92#define TX_GEN_CRC              (1 << 22)
  93#define TX_ZERO_PADDING         (1 << 18)
  94#define TX_FIRST_DESC           (1 << 17)
  95#define TX_LAST_DESC            (1 << 16)
  96#define TX_ERROR                (1 << 15)
  97
  98/* SDMA_CMD */
  99#define SDMA_CMD_AT             (1 << 31)
 100#define SDMA_CMD_TXDL           (1 << 24)
 101#define SDMA_CMD_TXDH           (1 << 23)
 102#define SDMA_CMD_AR             (1 << 15)
 103#define SDMA_CMD_ERD            (1 << 7)
 104
 105/* Bit definitions of the Port Config Reg */
 106#define PCR_HS                  (1 << 12)
 107#define PCR_EN                  (1 << 7)
 108#define PCR_PM                  (1 << 0)
 109
 110/* Bit definitions of the Port Config Extend Reg */
 111#define PCXR_2BSM               (1 << 28)
 112#define PCXR_DSCP_EN            (1 << 21)
 113#define PCXR_MFL_1518           (0 << 14)
 114#define PCXR_MFL_1536           (1 << 14)
 115#define PCXR_MFL_2048           (2 << 14)
 116#define PCXR_MFL_64K            (3 << 14)
 117#define PCXR_FLP                (1 << 11)
 118#define PCXR_PRIO_TX_OFF        3
 119#define PCXR_TX_HIGH_PRI        (7 << PCXR_PRIO_TX_OFF)
 120
 121/* Bit definitions of the SDMA Config Reg */
 122#define SDCR_BSZ_OFF            12
 123#define SDCR_BSZ8               (3 << SDCR_BSZ_OFF)
 124#define SDCR_BSZ4               (2 << SDCR_BSZ_OFF)
 125#define SDCR_BSZ2               (1 << SDCR_BSZ_OFF)
 126#define SDCR_BSZ1               (0 << SDCR_BSZ_OFF)
 127#define SDCR_BLMR               (1 << 6)
 128#define SDCR_BLMT               (1 << 7)
 129#define SDCR_RIFB               (1 << 9)
 130#define SDCR_RC_OFF             2
 131#define SDCR_RC_MAX_RETRANS     (0xf << SDCR_RC_OFF)
 132
 133/*
 134 * Bit definitions of the Interrupt Cause Reg
 135 * and Interrupt MASK Reg is the same
 136 */
 137#define ICR_RXBUF               (1 << 0)
 138#define ICR_TXBUF_H             (1 << 2)
 139#define ICR_TXBUF_L             (1 << 3)
 140#define ICR_TXEND_H             (1 << 6)
 141#define ICR_TXEND_L             (1 << 7)
 142#define ICR_RXERR               (1 << 8)
 143#define ICR_TXERR_H             (1 << 10)
 144#define ICR_TXERR_L             (1 << 11)
 145#define ICR_TX_UDR              (1 << 13)
 146#define ICR_MII_CH              (1 << 28)
 147
 148#define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
 149                                ICR_TXERR_H  | ICR_TXERR_L |\
 150                                ICR_TXEND_H  | ICR_TXEND_L |\
 151                                ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
 152
 153#define ETH_HW_IP_ALIGN         2       /* hw aligns IP header */
 154
 155#define NUM_RX_DESCS            64
 156#define NUM_TX_DESCS            64
 157
 158#define HASH_ADD                0
 159#define HASH_DELETE             1
 160#define HASH_ADDR_TABLE_SIZE    0x4000  /* 16K (1/2K address - PCR_HS == 1) */
 161#define HOP_NUMBER              12
 162
 163/* Bit definitions for Port status */
 164#define PORT_SPEED_100          (1 << 0)
 165#define FULL_DUPLEX             (1 << 1)
 166#define FLOW_CONTROL_ENABLED    (1 << 2)
 167#define LINK_UP                 (1 << 3)
 168
 169/* Bit definitions for work to be done */
 170#define WORK_LINK               (1 << 0)
 171#define WORK_TX_DONE            (1 << 1)
 172
 173/*
 174 * Misc definitions.
 175 */
 176#define SKB_DMA_REALIGN         ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
 177
 178struct rx_desc {
 179        u32 cmd_sts;            /* Descriptor command status            */
 180        u16 byte_cnt;           /* Descriptor buffer byte count         */
 181        u16 buf_size;           /* Buffer size                          */
 182        u32 buf_ptr;            /* Descriptor buffer pointer            */
 183        u32 next_desc_ptr;      /* Next descriptor pointer              */
 184};
 185
 186struct tx_desc {
 187        u32 cmd_sts;            /* Command/status field                 */
 188        u16 reserved;
 189        u16 byte_cnt;           /* buffer byte count                    */
 190        u32 buf_ptr;            /* pointer to buffer for this descriptor */
 191        u32 next_desc_ptr;      /* Pointer to next descriptor           */
 192};
 193
 194struct pxa168_eth_private {
 195        int port_num;           /* User Ethernet port number    */
 196
 197        int rx_resource_err;    /* Rx ring resource error flag */
 198
 199        /* Next available and first returning Rx resource */
 200        int rx_curr_desc_q, rx_used_desc_q;
 201
 202        /* Next available and first returning Tx resource */
 203        int tx_curr_desc_q, tx_used_desc_q;
 204
 205        struct rx_desc *p_rx_desc_area;
 206        dma_addr_t rx_desc_dma;
 207        int rx_desc_area_size;
 208        struct sk_buff **rx_skb;
 209
 210        struct tx_desc *p_tx_desc_area;
 211        dma_addr_t tx_desc_dma;
 212        int tx_desc_area_size;
 213        struct sk_buff **tx_skb;
 214
 215        struct work_struct tx_timeout_task;
 216
 217        struct net_device *dev;
 218        struct napi_struct napi;
 219        u8 work_todo;
 220        int skb_size;
 221
 222        struct net_device_stats stats;
 223        /* Size of Tx Ring per queue */
 224        int tx_ring_size;
 225        /* Number of tx descriptors in use */
 226        int tx_desc_count;
 227        /* Size of Rx Ring per queue */
 228        int rx_ring_size;
 229        /* Number of rx descriptors in use */
 230        int rx_desc_count;
 231
 232        /*
 233         * Used in case RX Ring is empty, which can occur when
 234         * system does not have resources (skb's)
 235         */
 236        struct timer_list timeout;
 237        struct mii_bus *smi_bus;
 238        struct phy_device *phy;
 239
 240        /* clock */
 241        struct clk *clk;
 242        struct pxa168_eth_platform_data *pd;
 243        /*
 244         * Ethernet controller base address.
 245         */
 246        void __iomem *base;
 247
 248        /* Pointer to the hardware address filter table */
 249        void *htpr;
 250        dma_addr_t htpr_dma;
 251};
 252
 253struct addr_table_entry {
 254        __le32 lo;
 255        __le32 hi;
 256};
 257
 258/* Bit fields of a Hash Table Entry */
 259enum hash_table_entry {
 260        HASH_ENTRY_VALID = 1,
 261        SKIP = 2,
 262        HASH_ENTRY_RECEIVE_DISCARD = 4,
 263        HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
 264};
 265
 266static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
 267static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
 268static int pxa168_init_hw(struct pxa168_eth_private *pep);
 269static void eth_port_reset(struct net_device *dev);
 270static void eth_port_start(struct net_device *dev);
 271static int pxa168_eth_open(struct net_device *dev);
 272static int pxa168_eth_stop(struct net_device *dev);
 273static int ethernet_phy_setup(struct net_device *dev);
 274
 275static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
 276{
 277        return readl(pep->base + offset);
 278}
 279
 280static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
 281{
 282        writel(data, pep->base + offset);
 283}
 284
 285static void abort_dma(struct pxa168_eth_private *pep)
 286{
 287        int delay;
 288        int max_retries = 40;
 289
 290        do {
 291                wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
 292                udelay(100);
 293
 294                delay = 10;
 295                while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
 296                       && delay-- > 0) {
 297                        udelay(10);
 298                }
 299        } while (max_retries-- > 0 && delay <= 0);
 300
 301        if (max_retries <= 0)
 302                printk(KERN_ERR "%s : DMA Stuck\n", __func__);
 303}
 304
 305static int ethernet_phy_get(struct pxa168_eth_private *pep)
 306{
 307        unsigned int reg_data;
 308
 309        reg_data = rdl(pep, PHY_ADDRESS);
 310
 311        return (reg_data >> (5 * pep->port_num)) & 0x1f;
 312}
 313
 314static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
 315{
 316        u32 reg_data;
 317        int addr_shift = 5 * pep->port_num;
 318
 319        reg_data = rdl(pep, PHY_ADDRESS);
 320        reg_data &= ~(0x1f << addr_shift);
 321        reg_data |= (phy_addr & 0x1f) << addr_shift;
 322        wrl(pep, PHY_ADDRESS, reg_data);
 323}
 324
 325static void ethernet_phy_reset(struct pxa168_eth_private *pep)
 326{
 327        int data;
 328
 329        data = phy_read(pep->phy, MII_BMCR);
 330        if (data < 0)
 331                return;
 332
 333        data |= BMCR_RESET;
 334        if (phy_write(pep->phy, MII_BMCR, data) < 0)
 335                return;
 336
 337        do {
 338                data = phy_read(pep->phy, MII_BMCR);
 339        } while (data >= 0 && data & BMCR_RESET);
 340}
 341
 342static void rxq_refill(struct net_device *dev)
 343{
 344        struct pxa168_eth_private *pep = netdev_priv(dev);
 345        struct sk_buff *skb;
 346        struct rx_desc *p_used_rx_desc;
 347        int used_rx_desc;
 348
 349        while (pep->rx_desc_count < pep->rx_ring_size) {
 350                int size;
 351
 352                skb = dev_alloc_skb(pep->skb_size);
 353                if (!skb)
 354                        break;
 355                if (SKB_DMA_REALIGN)
 356                        skb_reserve(skb, SKB_DMA_REALIGN);
 357                pep->rx_desc_count++;
 358                /* Get 'used' Rx descriptor */
 359                used_rx_desc = pep->rx_used_desc_q;
 360                p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
 361                size = skb->end - skb->data;
 362                p_used_rx_desc->buf_ptr = dma_map_single(NULL,
 363                                                         skb->data,
 364                                                         size,
 365                                                         DMA_FROM_DEVICE);
 366                p_used_rx_desc->buf_size = size;
 367                pep->rx_skb[used_rx_desc] = skb;
 368
 369                /* Return the descriptor to DMA ownership */
 370                wmb();
 371                p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
 372                wmb();
 373
 374                /* Move the used descriptor pointer to the next descriptor */
 375                pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
 376
 377                /* Any Rx return cancels the Rx resource error status */
 378                pep->rx_resource_err = 0;
 379
 380                skb_reserve(skb, ETH_HW_IP_ALIGN);
 381        }
 382
 383        /*
 384         * If RX ring is empty of SKB, set a timer to try allocating
 385         * again at a later time.
 386         */
 387        if (pep->rx_desc_count == 0) {
 388                pep->timeout.expires = jiffies + (HZ / 10);
 389                add_timer(&pep->timeout);
 390        }
 391}
 392
 393static inline void rxq_refill_timer_wrapper(unsigned long data)
 394{
 395        struct pxa168_eth_private *pep = (void *)data;
 396        napi_schedule(&pep->napi);
 397}
 398
 399static inline u8 flip_8_bits(u8 x)
 400{
 401        return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
 402            | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
 403            | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
 404            | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
 405}
 406
 407static void nibble_swap_every_byte(unsigned char *mac_addr)
 408{
 409        int i;
 410        for (i = 0; i < ETH_ALEN; i++) {
 411                mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
 412                                ((mac_addr[i] & 0xf0) >> 4);
 413        }
 414}
 415
 416static void inverse_every_nibble(unsigned char *mac_addr)
 417{
 418        int i;
 419        for (i = 0; i < ETH_ALEN; i++)
 420                mac_addr[i] = flip_8_bits(mac_addr[i]);
 421}
 422
 423/*
 424 * ----------------------------------------------------------------------------
 425 * This function will calculate the hash function of the address.
 426 * Inputs
 427 * mac_addr_orig    - MAC address.
 428 * Outputs
 429 * return the calculated entry.
 430 */
 431static u32 hash_function(unsigned char *mac_addr_orig)
 432{
 433        u32 hash_result;
 434        u32 addr0;
 435        u32 addr1;
 436        u32 addr2;
 437        u32 addr3;
 438        unsigned char mac_addr[ETH_ALEN];
 439
 440        /* Make a copy of MAC address since we are going to performe bit
 441         * operations on it
 442         */
 443        memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
 444
 445        nibble_swap_every_byte(mac_addr);
 446        inverse_every_nibble(mac_addr);
 447
 448        addr0 = (mac_addr[5] >> 2) & 0x3f;
 449        addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
 450        addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
 451        addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
 452
 453        hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
 454        hash_result = hash_result & 0x07ff;
 455        return hash_result;
 456}
 457
 458/*
 459 * ----------------------------------------------------------------------------
 460 * This function will add/del an entry to the address table.
 461 * Inputs
 462 * pep - ETHERNET .
 463 * mac_addr - MAC address.
 464 * skip - if 1, skip this address.Used in case of deleting an entry which is a
 465 *        part of chain in the hash table.We cant just delete the entry since
 466 *        that will break the chain.We need to defragment the tables time to
 467 *        time.
 468 * rd   - 0 Discard packet upon match.
 469 *      - 1 Receive packet upon match.
 470 * Outputs
 471 * address table entry is added/deleted.
 472 * 0 if success.
 473 * -ENOSPC if table full
 474 */
 475static int add_del_hash_entry(struct pxa168_eth_private *pep,
 476                              unsigned char *mac_addr,
 477                              u32 rd, u32 skip, int del)
 478{
 479        struct addr_table_entry *entry, *start;
 480        u32 new_high;
 481        u32 new_low;
 482        u32 i;
 483
 484        new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
 485            | (((mac_addr[1] >> 0) & 0xf) << 11)
 486            | (((mac_addr[0] >> 4) & 0xf) << 7)
 487            | (((mac_addr[0] >> 0) & 0xf) << 3)
 488            | (((mac_addr[3] >> 4) & 0x1) << 31)
 489            | (((mac_addr[3] >> 0) & 0xf) << 27)
 490            | (((mac_addr[2] >> 4) & 0xf) << 23)
 491            | (((mac_addr[2] >> 0) & 0xf) << 19)
 492            | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
 493            | HASH_ENTRY_VALID;
 494
 495        new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
 496            | (((mac_addr[5] >> 0) & 0xf) << 11)
 497            | (((mac_addr[4] >> 4) & 0xf) << 7)
 498            | (((mac_addr[4] >> 0) & 0xf) << 3)
 499            | (((mac_addr[3] >> 5) & 0x7) << 0);
 500
 501        /*
 502         * Pick the appropriate table, start scanning for free/reusable
 503         * entries at the index obtained by hashing the specified MAC address
 504         */
 505        start = (struct addr_table_entry *)(pep->htpr);
 506        entry = start + hash_function(mac_addr);
 507        for (i = 0; i < HOP_NUMBER; i++) {
 508                if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
 509                        break;
 510                } else {
 511                        /* if same address put in same position */
 512                        if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
 513                                (new_low & 0xfffffff8)) &&
 514                                (le32_to_cpu(entry->hi) == new_high)) {
 515                                break;
 516                        }
 517                }
 518                if (entry == start + 0x7ff)
 519                        entry = start;
 520                else
 521                        entry++;
 522        }
 523
 524        if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
 525            (le32_to_cpu(entry->hi) != new_high) && del)
 526                return 0;
 527
 528        if (i == HOP_NUMBER) {
 529                if (!del) {
 530                        printk(KERN_INFO "%s: table section is full, need to "
 531                                        "move to 16kB implementation?\n",
 532                                         __FILE__);
 533                        return -ENOSPC;
 534                } else
 535                        return 0;
 536        }
 537
 538        /*
 539         * Update the selected entry
 540         */
 541        if (del) {
 542                entry->hi = 0;
 543                entry->lo = 0;
 544        } else {
 545                entry->hi = cpu_to_le32(new_high);
 546                entry->lo = cpu_to_le32(new_low);
 547        }
 548
 549        return 0;
 550}
 551
 552/*
 553 * ----------------------------------------------------------------------------
 554 *  Create an addressTable entry from MAC address info
 555 *  found in the specifed net_device struct
 556 *
 557 *  Input : pointer to ethernet interface network device structure
 558 *  Output : N/A
 559 */
 560static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
 561                                          unsigned char *oaddr,
 562                                          unsigned char *addr)
 563{
 564        /* Delete old entry */
 565        if (oaddr)
 566                add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
 567        /* Add new entry */
 568        add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
 569}
 570
 571static int init_hash_table(struct pxa168_eth_private *pep)
 572{
 573        /*
 574         * Hardware expects CPU to build a hash table based on a predefined
 575         * hash function and populate it based on hardware address. The
 576         * location of the hash table is identified by 32-bit pointer stored
 577         * in HTPR internal register. Two possible sizes exists for the hash
 578         * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
 579         * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
 580         * 1/2kB.
 581         */
 582        /* TODO: Add support for 8kB hash table and alternative hash
 583         * function.Driver can dynamically switch to them if the 1/2kB hash
 584         * table is full.
 585         */
 586        if (pep->htpr == NULL) {
 587                pep->htpr = dma_alloc_coherent(pep->dev->dev.parent,
 588                                              HASH_ADDR_TABLE_SIZE,
 589                                              &pep->htpr_dma, GFP_KERNEL);
 590                if (pep->htpr == NULL)
 591                        return -ENOMEM;
 592        }
 593        memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
 594        wrl(pep, HTPR, pep->htpr_dma);
 595        return 0;
 596}
 597
 598static void pxa168_eth_set_rx_mode(struct net_device *dev)
 599{
 600        struct pxa168_eth_private *pep = netdev_priv(dev);
 601        struct netdev_hw_addr *ha;
 602        u32 val;
 603
 604        val = rdl(pep, PORT_CONFIG);
 605        if (dev->flags & IFF_PROMISC)
 606                val |= PCR_PM;
 607        else
 608                val &= ~PCR_PM;
 609        wrl(pep, PORT_CONFIG, val);
 610
 611        /*
 612         * Remove the old list of MAC address and add dev->addr
 613         * and multicast address.
 614         */
 615        memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
 616        update_hash_table_mac_address(pep, NULL, dev->dev_addr);
 617
 618        netdev_for_each_mc_addr(ha, dev)
 619                update_hash_table_mac_address(pep, NULL, ha->addr);
 620}
 621
 622static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
 623{
 624        struct sockaddr *sa = addr;
 625        struct pxa168_eth_private *pep = netdev_priv(dev);
 626        unsigned char oldMac[ETH_ALEN];
 627
 628        if (!is_valid_ether_addr(sa->sa_data))
 629                return -EINVAL;
 630        memcpy(oldMac, dev->dev_addr, ETH_ALEN);
 631        memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
 632        netif_addr_lock_bh(dev);
 633        update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
 634        netif_addr_unlock_bh(dev);
 635        return 0;
 636}
 637
 638static void eth_port_start(struct net_device *dev)
 639{
 640        unsigned int val = 0;
 641        struct pxa168_eth_private *pep = netdev_priv(dev);
 642        int tx_curr_desc, rx_curr_desc;
 643
 644        /* Perform PHY reset, if there is a PHY. */
 645        if (pep->phy != NULL) {
 646                struct ethtool_cmd cmd;
 647
 648                pxa168_get_settings(pep->dev, &cmd);
 649                ethernet_phy_reset(pep);
 650                pxa168_set_settings(pep->dev, &cmd);
 651        }
 652
 653        /* Assignment of Tx CTRP of given queue */
 654        tx_curr_desc = pep->tx_curr_desc_q;
 655        wrl(pep, ETH_C_TX_DESC_1,
 656            (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
 657
 658        /* Assignment of Rx CRDP of given queue */
 659        rx_curr_desc = pep->rx_curr_desc_q;
 660        wrl(pep, ETH_C_RX_DESC_0,
 661            (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
 662
 663        wrl(pep, ETH_F_RX_DESC_0,
 664            (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
 665
 666        /* Clear all interrupts */
 667        wrl(pep, INT_CAUSE, 0);
 668
 669        /* Enable all interrupts for receive, transmit and error. */
 670        wrl(pep, INT_MASK, ALL_INTS);
 671
 672        val = rdl(pep, PORT_CONFIG);
 673        val |= PCR_EN;
 674        wrl(pep, PORT_CONFIG, val);
 675
 676        /* Start RX DMA engine */
 677        val = rdl(pep, SDMA_CMD);
 678        val |= SDMA_CMD_ERD;
 679        wrl(pep, SDMA_CMD, val);
 680}
 681
 682static void eth_port_reset(struct net_device *dev)
 683{
 684        struct pxa168_eth_private *pep = netdev_priv(dev);
 685        unsigned int val = 0;
 686
 687        /* Stop all interrupts for receive, transmit and error. */
 688        wrl(pep, INT_MASK, 0);
 689
 690        /* Clear all interrupts */
 691        wrl(pep, INT_CAUSE, 0);
 692
 693        /* Stop RX DMA */
 694        val = rdl(pep, SDMA_CMD);
 695        val &= ~SDMA_CMD_ERD;   /* abort dma command */
 696
 697        /* Abort any transmit and receive operations and put DMA
 698         * in idle state.
 699         */
 700        abort_dma(pep);
 701
 702        /* Disable port */
 703        val = rdl(pep, PORT_CONFIG);
 704        val &= ~PCR_EN;
 705        wrl(pep, PORT_CONFIG, val);
 706}
 707
 708/*
 709 * txq_reclaim - Free the tx desc data for completed descriptors
 710 * If force is non-zero, frees uncompleted descriptors as well
 711 */
 712static int txq_reclaim(struct net_device *dev, int force)
 713{
 714        struct pxa168_eth_private *pep = netdev_priv(dev);
 715        struct tx_desc *desc;
 716        u32 cmd_sts;
 717        struct sk_buff *skb;
 718        int tx_index;
 719        dma_addr_t addr;
 720        int count;
 721        int released = 0;
 722
 723        netif_tx_lock(dev);
 724
 725        pep->work_todo &= ~WORK_TX_DONE;
 726        while (pep->tx_desc_count > 0) {
 727                tx_index = pep->tx_used_desc_q;
 728                desc = &pep->p_tx_desc_area[tx_index];
 729                cmd_sts = desc->cmd_sts;
 730                if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
 731                        if (released > 0) {
 732                                goto txq_reclaim_end;
 733                        } else {
 734                                released = -1;
 735                                goto txq_reclaim_end;
 736                        }
 737                }
 738                pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
 739                pep->tx_desc_count--;
 740                addr = desc->buf_ptr;
 741                count = desc->byte_cnt;
 742                skb = pep->tx_skb[tx_index];
 743                if (skb)
 744                        pep->tx_skb[tx_index] = NULL;
 745
 746                if (cmd_sts & TX_ERROR) {
 747                        if (net_ratelimit())
 748                                printk(KERN_ERR "%s: Error in TX\n", dev->name);
 749                        dev->stats.tx_errors++;
 750                }
 751                dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
 752                if (skb)
 753                        dev_kfree_skb_irq(skb);
 754                released++;
 755        }
 756txq_reclaim_end:
 757        netif_tx_unlock(dev);
 758        return released;
 759}
 760
 761static void pxa168_eth_tx_timeout(struct net_device *dev)
 762{
 763        struct pxa168_eth_private *pep = netdev_priv(dev);
 764
 765        printk(KERN_INFO "%s: TX timeout  desc_count %d\n",
 766               dev->name, pep->tx_desc_count);
 767
 768        schedule_work(&pep->tx_timeout_task);
 769}
 770
 771static void pxa168_eth_tx_timeout_task(struct work_struct *work)
 772{
 773        struct pxa168_eth_private *pep = container_of(work,
 774                                                 struct pxa168_eth_private,
 775                                                 tx_timeout_task);
 776        struct net_device *dev = pep->dev;
 777        pxa168_eth_stop(dev);
 778        pxa168_eth_open(dev);
 779}
 780
 781static int rxq_process(struct net_device *dev, int budget)
 782{
 783        struct pxa168_eth_private *pep = netdev_priv(dev);
 784        struct net_device_stats *stats = &dev->stats;
 785        unsigned int received_packets = 0;
 786        struct sk_buff *skb;
 787
 788        while (budget-- > 0) {
 789                int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
 790                struct rx_desc *rx_desc;
 791                unsigned int cmd_sts;
 792
 793                /* Do not process Rx ring in case of Rx ring resource error */
 794                if (pep->rx_resource_err)
 795                        break;
 796                rx_curr_desc = pep->rx_curr_desc_q;
 797                rx_used_desc = pep->rx_used_desc_q;
 798                rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
 799                cmd_sts = rx_desc->cmd_sts;
 800                rmb();
 801                if (cmd_sts & (BUF_OWNED_BY_DMA))
 802                        break;
 803                skb = pep->rx_skb[rx_curr_desc];
 804                pep->rx_skb[rx_curr_desc] = NULL;
 805
 806                rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
 807                pep->rx_curr_desc_q = rx_next_curr_desc;
 808
 809                /* Rx descriptors exhausted. */
 810                /* Set the Rx ring resource error flag */
 811                if (rx_next_curr_desc == rx_used_desc)
 812                        pep->rx_resource_err = 1;
 813                pep->rx_desc_count--;
 814                dma_unmap_single(NULL, rx_desc->buf_ptr,
 815                                 rx_desc->buf_size,
 816                                 DMA_FROM_DEVICE);
 817                received_packets++;
 818                /*
 819                 * Update statistics.
 820                 * Note byte count includes 4 byte CRC count
 821                 */
 822                stats->rx_packets++;
 823                stats->rx_bytes += rx_desc->byte_cnt;
 824                /*
 825                 * In case received a packet without first / last bits on OR
 826                 * the error summary bit is on, the packets needs to be droped.
 827                 */
 828                if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
 829                     (RX_FIRST_DESC | RX_LAST_DESC))
 830                    || (cmd_sts & RX_ERROR)) {
 831
 832                        stats->rx_dropped++;
 833                        if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
 834                            (RX_FIRST_DESC | RX_LAST_DESC)) {
 835                                if (net_ratelimit())
 836                                        printk(KERN_ERR
 837                                               "%s: Rx pkt on multiple desc\n",
 838                                               dev->name);
 839                        }
 840                        if (cmd_sts & RX_ERROR)
 841                                stats->rx_errors++;
 842                        dev_kfree_skb_irq(skb);
 843                } else {
 844                        /*
 845                         * The -4 is for the CRC in the trailer of the
 846                         * received packet
 847                         */
 848                        skb_put(skb, rx_desc->byte_cnt - 4);
 849                        skb->protocol = eth_type_trans(skb, dev);
 850                        netif_receive_skb(skb);
 851                }
 852        }
 853        /* Fill RX ring with skb's */
 854        rxq_refill(dev);
 855        return received_packets;
 856}
 857
 858static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
 859                                     struct net_device *dev)
 860{
 861        u32 icr;
 862        int ret = 0;
 863
 864        icr = rdl(pep, INT_CAUSE);
 865        if (icr == 0)
 866                return IRQ_NONE;
 867
 868        wrl(pep, INT_CAUSE, ~icr);
 869        if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
 870                pep->work_todo |= WORK_TX_DONE;
 871                ret = 1;
 872        }
 873        if (icr & ICR_RXBUF)
 874                ret = 1;
 875        if (icr & ICR_MII_CH) {
 876                pep->work_todo |= WORK_LINK;
 877                ret = 1;
 878        }
 879        return ret;
 880}
 881
 882static void handle_link_event(struct pxa168_eth_private *pep)
 883{
 884        struct net_device *dev = pep->dev;
 885        u32 port_status;
 886        int speed;
 887        int duplex;
 888        int fc;
 889
 890        port_status = rdl(pep, PORT_STATUS);
 891        if (!(port_status & LINK_UP)) {
 892                if (netif_carrier_ok(dev)) {
 893                        printk(KERN_INFO "%s: link down\n", dev->name);
 894                        netif_carrier_off(dev);
 895                        txq_reclaim(dev, 1);
 896                }
 897                return;
 898        }
 899        if (port_status & PORT_SPEED_100)
 900                speed = 100;
 901        else
 902                speed = 10;
 903
 904        duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
 905        fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0;
 906        printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
 907               "flow control %sabled\n", dev->name,
 908               speed, duplex ? "full" : "half", fc ? "en" : "dis");
 909        if (!netif_carrier_ok(dev))
 910                netif_carrier_on(dev);
 911}
 912
 913static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
 914{
 915        struct net_device *dev = (struct net_device *)dev_id;
 916        struct pxa168_eth_private *pep = netdev_priv(dev);
 917
 918        if (unlikely(!pxa168_eth_collect_events(pep, dev)))
 919                return IRQ_NONE;
 920        /* Disable interrupts */
 921        wrl(pep, INT_MASK, 0);
 922        napi_schedule(&pep->napi);
 923        return IRQ_HANDLED;
 924}
 925
 926static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
 927{
 928        int skb_size;
 929
 930        /*
 931         * Reserve 2+14 bytes for an ethernet header (the hardware
 932         * automatically prepends 2 bytes of dummy data to each
 933         * received packet), 16 bytes for up to four VLAN tags, and
 934         * 4 bytes for the trailing FCS -- 36 bytes total.
 935         */
 936        skb_size = pep->dev->mtu + 36;
 937
 938        /*
 939         * Make sure that the skb size is a multiple of 8 bytes, as
 940         * the lower three bits of the receive descriptor's buffer
 941         * size field are ignored by the hardware.
 942         */
 943        pep->skb_size = (skb_size + 7) & ~7;
 944
 945        /*
 946         * If NET_SKB_PAD is smaller than a cache line,
 947         * netdev_alloc_skb() will cause skb->data to be misaligned
 948         * to a cache line boundary.  If this is the case, include
 949         * some extra space to allow re-aligning the data area.
 950         */
 951        pep->skb_size += SKB_DMA_REALIGN;
 952
 953}
 954
 955static int set_port_config_ext(struct pxa168_eth_private *pep)
 956{
 957        int skb_size;
 958
 959        pxa168_eth_recalc_skb_size(pep);
 960        if  (pep->skb_size <= 1518)
 961                skb_size = PCXR_MFL_1518;
 962        else if (pep->skb_size <= 1536)
 963                skb_size = PCXR_MFL_1536;
 964        else if (pep->skb_size <= 2048)
 965                skb_size = PCXR_MFL_2048;
 966        else
 967                skb_size = PCXR_MFL_64K;
 968
 969        /* Extended Port Configuration */
 970        wrl(pep,
 971            PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
 972            PCXR_DSCP_EN |               /* Enable DSCP in IP */
 973            skb_size | PCXR_FLP |        /* do not force link pass */
 974            PCXR_TX_HIGH_PRI);           /* Transmit - high priority queue */
 975
 976        return 0;
 977}
 978
 979static int pxa168_init_hw(struct pxa168_eth_private *pep)
 980{
 981        int err = 0;
 982
 983        /* Disable interrupts */
 984        wrl(pep, INT_MASK, 0);
 985        wrl(pep, INT_CAUSE, 0);
 986        /* Write to ICR to clear interrupts. */
 987        wrl(pep, INT_W_CLEAR, 0);
 988        /* Abort any transmit and receive operations and put DMA
 989         * in idle state.
 990         */
 991        abort_dma(pep);
 992        /* Initialize address hash table */
 993        err = init_hash_table(pep);
 994        if (err)
 995                return err;
 996        /* SDMA configuration */
 997        wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |       /* Burst size = 32 bytes */
 998            SDCR_RIFB |                         /* Rx interrupt on frame */
 999            SDCR_BLMT |                         /* Little endian transmit */
1000            SDCR_BLMR |                         /* Little endian receive */
1001            SDCR_RC_MAX_RETRANS);               /* Max retransmit count */
1002        /* Port Configuration */
1003        wrl(pep, PORT_CONFIG, PCR_HS);          /* Hash size is 1/2kb */
1004        set_port_config_ext(pep);
1005
1006        return err;
1007}
1008
1009static int rxq_init(struct net_device *dev)
1010{
1011        struct pxa168_eth_private *pep = netdev_priv(dev);
1012        struct rx_desc *p_rx_desc;
1013        int size = 0, i = 0;
1014        int rx_desc_num = pep->rx_ring_size;
1015
1016        /* Allocate RX skb rings */
1017        pep->rx_skb = kmalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1018                             GFP_KERNEL);
1019        if (!pep->rx_skb) {
1020                printk(KERN_ERR "%s: Cannot alloc RX skb ring\n", dev->name);
1021                return -ENOMEM;
1022        }
1023        /* Allocate RX ring */
1024        pep->rx_desc_count = 0;
1025        size = pep->rx_ring_size * sizeof(struct rx_desc);
1026        pep->rx_desc_area_size = size;
1027        pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1028                                                &pep->rx_desc_dma, GFP_KERNEL);
1029        if (!pep->p_rx_desc_area) {
1030                printk(KERN_ERR "%s: Cannot alloc RX ring (size %d bytes)\n",
1031                       dev->name, size);
1032                goto out;
1033        }
1034        memset((void *)pep->p_rx_desc_area, 0, size);
1035        /* initialize the next_desc_ptr links in the Rx descriptors ring */
1036        p_rx_desc = (struct rx_desc *)pep->p_rx_desc_area;
1037        for (i = 0; i < rx_desc_num; i++) {
1038                p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1039                    ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1040        }
1041        /* Save Rx desc pointer to driver struct. */
1042        pep->rx_curr_desc_q = 0;
1043        pep->rx_used_desc_q = 0;
1044        pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1045        return 0;
1046out:
1047        kfree(pep->rx_skb);
1048        return -ENOMEM;
1049}
1050
1051static void rxq_deinit(struct net_device *dev)
1052{
1053        struct pxa168_eth_private *pep = netdev_priv(dev);
1054        int curr;
1055
1056        /* Free preallocated skb's on RX rings */
1057        for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1058                if (pep->rx_skb[curr]) {
1059                        dev_kfree_skb(pep->rx_skb[curr]);
1060                        pep->rx_desc_count--;
1061                }
1062        }
1063        if (pep->rx_desc_count)
1064                printk(KERN_ERR
1065                       "Error in freeing Rx Ring. %d skb's still\n",
1066                       pep->rx_desc_count);
1067        /* Free RX ring */
1068        if (pep->p_rx_desc_area)
1069                dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1070                                  pep->p_rx_desc_area, pep->rx_desc_dma);
1071        kfree(pep->rx_skb);
1072}
1073
1074static int txq_init(struct net_device *dev)
1075{
1076        struct pxa168_eth_private *pep = netdev_priv(dev);
1077        struct tx_desc *p_tx_desc;
1078        int size = 0, i = 0;
1079        int tx_desc_num = pep->tx_ring_size;
1080
1081        pep->tx_skb = kmalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1082                             GFP_KERNEL);
1083        if (!pep->tx_skb) {
1084                printk(KERN_ERR "%s: Cannot alloc TX skb ring\n", dev->name);
1085                return -ENOMEM;
1086        }
1087        /* Allocate TX ring */
1088        pep->tx_desc_count = 0;
1089        size = pep->tx_ring_size * sizeof(struct tx_desc);
1090        pep->tx_desc_area_size = size;
1091        pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1092                                                &pep->tx_desc_dma, GFP_KERNEL);
1093        if (!pep->p_tx_desc_area) {
1094                printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
1095                       dev->name, size);
1096                goto out;
1097        }
1098        memset((void *)pep->p_tx_desc_area, 0, pep->tx_desc_area_size);
1099        /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1100        p_tx_desc = (struct tx_desc *)pep->p_tx_desc_area;
1101        for (i = 0; i < tx_desc_num; i++) {
1102                p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1103                    ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1104        }
1105        pep->tx_curr_desc_q = 0;
1106        pep->tx_used_desc_q = 0;
1107        pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1108        return 0;
1109out:
1110        kfree(pep->tx_skb);
1111        return -ENOMEM;
1112}
1113
1114static void txq_deinit(struct net_device *dev)
1115{
1116        struct pxa168_eth_private *pep = netdev_priv(dev);
1117
1118        /* Free outstanding skb's on TX ring */
1119        txq_reclaim(dev, 1);
1120        BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1121        /* Free TX ring */
1122        if (pep->p_tx_desc_area)
1123                dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1124                                  pep->p_tx_desc_area, pep->tx_desc_dma);
1125        kfree(pep->tx_skb);
1126}
1127
1128static int pxa168_eth_open(struct net_device *dev)
1129{
1130        struct pxa168_eth_private *pep = netdev_priv(dev);
1131        int err;
1132
1133        err = request_irq(dev->irq, pxa168_eth_int_handler,
1134                          IRQF_DISABLED, dev->name, dev);
1135        if (err) {
1136                dev_printk(KERN_ERR, &dev->dev, "can't assign irq\n");
1137                return -EAGAIN;
1138        }
1139        pep->rx_resource_err = 0;
1140        err = rxq_init(dev);
1141        if (err != 0)
1142                goto out_free_irq;
1143        err = txq_init(dev);
1144        if (err != 0)
1145                goto out_free_rx_skb;
1146        pep->rx_used_desc_q = 0;
1147        pep->rx_curr_desc_q = 0;
1148
1149        /* Fill RX ring with skb's */
1150        rxq_refill(dev);
1151        pep->rx_used_desc_q = 0;
1152        pep->rx_curr_desc_q = 0;
1153        netif_carrier_off(dev);
1154        eth_port_start(dev);
1155        napi_enable(&pep->napi);
1156        return 0;
1157out_free_rx_skb:
1158        rxq_deinit(dev);
1159out_free_irq:
1160        free_irq(dev->irq, dev);
1161        return err;
1162}
1163
1164static int pxa168_eth_stop(struct net_device *dev)
1165{
1166        struct pxa168_eth_private *pep = netdev_priv(dev);
1167        eth_port_reset(dev);
1168
1169        /* Disable interrupts */
1170        wrl(pep, INT_MASK, 0);
1171        wrl(pep, INT_CAUSE, 0);
1172        /* Write to ICR to clear interrupts. */
1173        wrl(pep, INT_W_CLEAR, 0);
1174        napi_disable(&pep->napi);
1175        del_timer_sync(&pep->timeout);
1176        netif_carrier_off(dev);
1177        free_irq(dev->irq, dev);
1178        rxq_deinit(dev);
1179        txq_deinit(dev);
1180
1181        return 0;
1182}
1183
1184static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1185{
1186        int retval;
1187        struct pxa168_eth_private *pep = netdev_priv(dev);
1188
1189        if ((mtu > 9500) || (mtu < 68))
1190                return -EINVAL;
1191
1192        dev->mtu = mtu;
1193        retval = set_port_config_ext(pep);
1194
1195        if (!netif_running(dev))
1196                return 0;
1197
1198        /*
1199         * Stop and then re-open the interface. This will allocate RX
1200         * skbs of the new MTU.
1201         * There is a possible danger that the open will not succeed,
1202         * due to memory being full.
1203         */
1204        pxa168_eth_stop(dev);
1205        if (pxa168_eth_open(dev)) {
1206                dev_printk(KERN_ERR, &dev->dev,
1207                           "fatal error on re-opening device after "
1208                           "MTU change\n");
1209        }
1210
1211        return 0;
1212}
1213
1214static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1215{
1216        int tx_desc_curr;
1217
1218        tx_desc_curr = pep->tx_curr_desc_q;
1219        pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1220        BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1221        pep->tx_desc_count++;
1222
1223        return tx_desc_curr;
1224}
1225
1226static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1227{
1228        struct pxa168_eth_private *pep =
1229            container_of(napi, struct pxa168_eth_private, napi);
1230        struct net_device *dev = pep->dev;
1231        int work_done = 0;
1232
1233        if (unlikely(pep->work_todo & WORK_LINK)) {
1234                pep->work_todo &= ~(WORK_LINK);
1235                handle_link_event(pep);
1236        }
1237        /*
1238         * We call txq_reclaim every time since in NAPI interupts are disabled
1239         * and due to this we miss the TX_DONE interrupt,which is not updated in
1240         * interrupt status register.
1241         */
1242        txq_reclaim(dev, 0);
1243        if (netif_queue_stopped(dev)
1244            && pep->tx_ring_size - pep->tx_desc_count > 1) {
1245                netif_wake_queue(dev);
1246        }
1247        work_done = rxq_process(dev, budget);
1248        if (work_done < budget) {
1249                napi_complete(napi);
1250                wrl(pep, INT_MASK, ALL_INTS);
1251        }
1252
1253        return work_done;
1254}
1255
1256static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1257{
1258        struct pxa168_eth_private *pep = netdev_priv(dev);
1259        struct net_device_stats *stats = &dev->stats;
1260        struct tx_desc *desc;
1261        int tx_index;
1262        int length;
1263
1264        tx_index = eth_alloc_tx_desc_index(pep);
1265        desc = &pep->p_tx_desc_area[tx_index];
1266        length = skb->len;
1267        pep->tx_skb[tx_index] = skb;
1268        desc->byte_cnt = length;
1269        desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1270        wmb();
1271        desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1272                        TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1273        wmb();
1274        wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1275
1276        stats->tx_bytes += skb->len;
1277        stats->tx_packets++;
1278        dev->trans_start = jiffies;
1279        if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1280                /* We handled the current skb, but now we are out of space.*/
1281                netif_stop_queue(dev);
1282        }
1283
1284        return NETDEV_TX_OK;
1285}
1286
1287static int smi_wait_ready(struct pxa168_eth_private *pep)
1288{
1289        int i = 0;
1290
1291        /* wait for the SMI register to become available */
1292        for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1293                if (i == PHY_WAIT_ITERATIONS)
1294                        return -ETIMEDOUT;
1295                msleep(10);
1296        }
1297
1298        return 0;
1299}
1300
1301static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1302{
1303        struct pxa168_eth_private *pep = bus->priv;
1304        int i = 0;
1305        int val;
1306
1307        if (smi_wait_ready(pep)) {
1308                printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1309                return -ETIMEDOUT;
1310        }
1311        wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1312        /* now wait for the data to be valid */
1313        for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1314                if (i == PHY_WAIT_ITERATIONS) {
1315                        printk(KERN_WARNING
1316                                "pxa168_eth: SMI bus read not valid\n");
1317                        return -ENODEV;
1318                }
1319                msleep(10);
1320        }
1321
1322        return val & 0xffff;
1323}
1324
1325static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1326                            u16 value)
1327{
1328        struct pxa168_eth_private *pep = bus->priv;
1329
1330        if (smi_wait_ready(pep)) {
1331                printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1332                return -ETIMEDOUT;
1333        }
1334
1335        wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1336            SMI_OP_W | (value & 0xffff));
1337
1338        if (smi_wait_ready(pep)) {
1339                printk(KERN_ERR "pxa168_eth: SMI bus busy timeout\n");
1340                return -ETIMEDOUT;
1341        }
1342
1343        return 0;
1344}
1345
1346static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1347                               int cmd)
1348{
1349        struct pxa168_eth_private *pep = netdev_priv(dev);
1350        if (pep->phy != NULL)
1351                return phy_mii_ioctl(pep->phy, ifr, cmd);
1352
1353        return -EOPNOTSUPP;
1354}
1355
1356static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
1357{
1358        struct mii_bus *bus = pep->smi_bus;
1359        struct phy_device *phydev;
1360        int start;
1361        int num;
1362        int i;
1363
1364        if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
1365                /* Scan entire range */
1366                start = ethernet_phy_get(pep);
1367                num = 32;
1368        } else {
1369                /* Use phy addr specific to platform */
1370                start = phy_addr & 0x1f;
1371                num = 1;
1372        }
1373        phydev = NULL;
1374        for (i = 0; i < num; i++) {
1375                int addr = (start + i) & 0x1f;
1376                if (bus->phy_map[addr] == NULL)
1377                        mdiobus_scan(bus, addr);
1378
1379                if (phydev == NULL) {
1380                        phydev = bus->phy_map[addr];
1381                        if (phydev != NULL)
1382                                ethernet_phy_set_addr(pep, addr);
1383                }
1384        }
1385
1386        return phydev;
1387}
1388
1389static void phy_init(struct pxa168_eth_private *pep, int speed, int duplex)
1390{
1391        struct phy_device *phy = pep->phy;
1392        ethernet_phy_reset(pep);
1393
1394        phy_attach(pep->dev, dev_name(&phy->dev), 0, PHY_INTERFACE_MODE_MII);
1395
1396        if (speed == 0) {
1397                phy->autoneg = AUTONEG_ENABLE;
1398                phy->speed = 0;
1399                phy->duplex = 0;
1400                phy->supported &= PHY_BASIC_FEATURES;
1401                phy->advertising = phy->supported | ADVERTISED_Autoneg;
1402        } else {
1403                phy->autoneg = AUTONEG_DISABLE;
1404                phy->advertising = 0;
1405                phy->speed = speed;
1406                phy->duplex = duplex;
1407        }
1408        phy_start_aneg(phy);
1409}
1410
1411static int ethernet_phy_setup(struct net_device *dev)
1412{
1413        struct pxa168_eth_private *pep = netdev_priv(dev);
1414
1415        if (pep->pd->init)
1416                pep->pd->init();
1417        pep->phy = phy_scan(pep, pep->pd->phy_addr & 0x1f);
1418        if (pep->phy != NULL)
1419                phy_init(pep, pep->pd->speed, pep->pd->duplex);
1420        update_hash_table_mac_address(pep, NULL, dev->dev_addr);
1421
1422        return 0;
1423}
1424
1425static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1426{
1427        struct pxa168_eth_private *pep = netdev_priv(dev);
1428        int err;
1429
1430        err = phy_read_status(pep->phy);
1431        if (err == 0)
1432                err = phy_ethtool_gset(pep->phy, cmd);
1433
1434        return err;
1435}
1436
1437static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1438{
1439        struct pxa168_eth_private *pep = netdev_priv(dev);
1440
1441        return phy_ethtool_sset(pep->phy, cmd);
1442}
1443
1444static void pxa168_get_drvinfo(struct net_device *dev,
1445                               struct ethtool_drvinfo *info)
1446{
1447        strncpy(info->driver, DRIVER_NAME, 32);
1448        strncpy(info->version, DRIVER_VERSION, 32);
1449        strncpy(info->fw_version, "N/A", 32);
1450        strncpy(info->bus_info, "N/A", 32);
1451}
1452
1453static const struct ethtool_ops pxa168_ethtool_ops = {
1454        .get_settings = pxa168_get_settings,
1455        .set_settings = pxa168_set_settings,
1456        .get_drvinfo = pxa168_get_drvinfo,
1457        .get_link = ethtool_op_get_link,
1458};
1459
1460static const struct net_device_ops pxa168_eth_netdev_ops = {
1461        .ndo_open = pxa168_eth_open,
1462        .ndo_stop = pxa168_eth_stop,
1463        .ndo_start_xmit = pxa168_eth_start_xmit,
1464        .ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1465        .ndo_set_mac_address = pxa168_eth_set_mac_address,
1466        .ndo_validate_addr = eth_validate_addr,
1467        .ndo_do_ioctl = pxa168_eth_do_ioctl,
1468        .ndo_change_mtu = pxa168_eth_change_mtu,
1469        .ndo_tx_timeout = pxa168_eth_tx_timeout,
1470};
1471
1472static int pxa168_eth_probe(struct platform_device *pdev)
1473{
1474        struct pxa168_eth_private *pep = NULL;
1475        struct net_device *dev = NULL;
1476        struct resource *res;
1477        struct clk *clk;
1478        int err;
1479
1480        printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1481
1482        clk = clk_get(&pdev->dev, "MFUCLK");
1483        if (IS_ERR(clk)) {
1484                printk(KERN_ERR "%s: Fast Ethernet failed to get clock\n",
1485                        DRIVER_NAME);
1486                return -ENODEV;
1487        }
1488        clk_enable(clk);
1489
1490        dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1491        if (!dev) {
1492                err = -ENOMEM;
1493                goto err_clk;
1494        }
1495
1496        platform_set_drvdata(pdev, dev);
1497        pep = netdev_priv(dev);
1498        pep->dev = dev;
1499        pep->clk = clk;
1500        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1501        if (res == NULL) {
1502                err = -ENODEV;
1503                goto err_netdev;
1504        }
1505        pep->base = ioremap(res->start, res->end - res->start + 1);
1506        if (pep->base == NULL) {
1507                err = -ENOMEM;
1508                goto err_netdev;
1509        }
1510        res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1511        BUG_ON(!res);
1512        dev->irq = res->start;
1513        dev->netdev_ops = &pxa168_eth_netdev_ops;
1514        dev->watchdog_timeo = 2 * HZ;
1515        dev->base_addr = 0;
1516        SET_ETHTOOL_OPS(dev, &pxa168_ethtool_ops);
1517
1518        INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1519
1520        printk(KERN_INFO "%s:Using random mac address\n", DRIVER_NAME);
1521        random_ether_addr(dev->dev_addr);
1522
1523        pep->pd = pdev->dev.platform_data;
1524        pep->rx_ring_size = NUM_RX_DESCS;
1525        if (pep->pd->rx_queue_size)
1526                pep->rx_ring_size = pep->pd->rx_queue_size;
1527
1528        pep->tx_ring_size = NUM_TX_DESCS;
1529        if (pep->pd->tx_queue_size)
1530                pep->tx_ring_size = pep->pd->tx_queue_size;
1531
1532        pep->port_num = pep->pd->port_number;
1533        /* Hardware supports only 3 ports */
1534        BUG_ON(pep->port_num > 2);
1535        netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1536
1537        memset(&pep->timeout, 0, sizeof(struct timer_list));
1538        init_timer(&pep->timeout);
1539        pep->timeout.function = rxq_refill_timer_wrapper;
1540        pep->timeout.data = (unsigned long)pep;
1541
1542        pep->smi_bus = mdiobus_alloc();
1543        if (pep->smi_bus == NULL) {
1544                err = -ENOMEM;
1545                goto err_base;
1546        }
1547        pep->smi_bus->priv = pep;
1548        pep->smi_bus->name = "pxa168_eth smi";
1549        pep->smi_bus->read = pxa168_smi_read;
1550        pep->smi_bus->write = pxa168_smi_write;
1551        snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%d", pdev->id);
1552        pep->smi_bus->parent = &pdev->dev;
1553        pep->smi_bus->phy_mask = 0xffffffff;
1554        err = mdiobus_register(pep->smi_bus);
1555        if (err)
1556                goto err_free_mdio;
1557
1558        pxa168_init_hw(pep);
1559        err = ethernet_phy_setup(dev);
1560        if (err)
1561                goto err_mdiobus;
1562        SET_NETDEV_DEV(dev, &pdev->dev);
1563        err = register_netdev(dev);
1564        if (err)
1565                goto err_mdiobus;
1566        return 0;
1567
1568err_mdiobus:
1569        mdiobus_unregister(pep->smi_bus);
1570err_free_mdio:
1571        mdiobus_free(pep->smi_bus);
1572err_base:
1573        iounmap(pep->base);
1574err_netdev:
1575        free_netdev(dev);
1576err_clk:
1577        clk_disable(clk);
1578        clk_put(clk);
1579        return err;
1580}
1581
1582static int pxa168_eth_remove(struct platform_device *pdev)
1583{
1584        struct net_device *dev = platform_get_drvdata(pdev);
1585        struct pxa168_eth_private *pep = netdev_priv(dev);
1586
1587        if (pep->htpr) {
1588                dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1589                                  pep->htpr, pep->htpr_dma);
1590                pep->htpr = NULL;
1591        }
1592        if (pep->clk) {
1593                clk_disable(pep->clk);
1594                clk_put(pep->clk);
1595                pep->clk = NULL;
1596        }
1597        if (pep->phy != NULL)
1598                phy_detach(pep->phy);
1599
1600        iounmap(pep->base);
1601        pep->base = NULL;
1602        mdiobus_unregister(pep->smi_bus);
1603        mdiobus_free(pep->smi_bus);
1604        unregister_netdev(dev);
1605        cancel_work_sync(&pep->tx_timeout_task);
1606        free_netdev(dev);
1607        platform_set_drvdata(pdev, NULL);
1608        return 0;
1609}
1610
1611static void pxa168_eth_shutdown(struct platform_device *pdev)
1612{
1613        struct net_device *dev = platform_get_drvdata(pdev);
1614        eth_port_reset(dev);
1615}
1616
1617#ifdef CONFIG_PM
1618static int pxa168_eth_resume(struct platform_device *pdev)
1619{
1620        return -ENOSYS;
1621}
1622
1623static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1624{
1625        return -ENOSYS;
1626}
1627
1628#else
1629#define pxa168_eth_resume NULL
1630#define pxa168_eth_suspend NULL
1631#endif
1632
1633static struct platform_driver pxa168_eth_driver = {
1634        .probe = pxa168_eth_probe,
1635        .remove = pxa168_eth_remove,
1636        .shutdown = pxa168_eth_shutdown,
1637        .resume = pxa168_eth_resume,
1638        .suspend = pxa168_eth_suspend,
1639        .driver = {
1640                   .name = DRIVER_NAME,
1641                   },
1642};
1643
1644static int __init pxa168_init_module(void)
1645{
1646        return platform_driver_register(&pxa168_eth_driver);
1647}
1648
1649static void __exit pxa168_cleanup_module(void)
1650{
1651        platform_driver_unregister(&pxa168_eth_driver);
1652}
1653
1654module_init(pxa168_init_module);
1655module_exit(pxa168_cleanup_module);
1656
1657MODULE_LICENSE("GPL");
1658MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1659MODULE_ALIAS("platform:pxa168_eth");
1660