linux/drivers/net/skge.c
<<
>>
Prefs
   1/*
   2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
   3 * Ethernet adapters. Based on earlier sk98lin, e100 and
   4 * FreeBSD if_sk drivers.
   5 *
   6 * This driver intentionally does not support all the features
   7 * of the original driver such as link fail-over and link management because
   8 * those should be done at higher levels.
   9 *
  10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/in.h>
  29#include <linux/kernel.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
  32#include <linux/netdevice.h>
  33#include <linux/etherdevice.h>
  34#include <linux/ethtool.h>
  35#include <linux/pci.h>
  36#include <linux/if_vlan.h>
  37#include <linux/ip.h>
  38#include <linux/delay.h>
  39#include <linux/crc32.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/debugfs.h>
  42#include <linux/sched.h>
  43#include <linux/seq_file.h>
  44#include <linux/mii.h>
  45#include <linux/slab.h>
  46#include <linux/dmi.h>
  47#include <asm/irq.h>
  48
  49#include "skge.h"
  50
  51#define DRV_NAME                "skge"
  52#define DRV_VERSION             "1.13"
  53
  54#define DEFAULT_TX_RING_SIZE    128
  55#define DEFAULT_RX_RING_SIZE    512
  56#define MAX_TX_RING_SIZE        1024
  57#define TX_LOW_WATER            (MAX_SKB_FRAGS + 1)
  58#define MAX_RX_RING_SIZE        4096
  59#define RX_COPY_THRESHOLD       128
  60#define RX_BUF_SIZE             1536
  61#define PHY_RETRIES             1000
  62#define ETH_JUMBO_MTU           9000
  63#define TX_WATCHDOG             (5 * HZ)
  64#define NAPI_WEIGHT             64
  65#define BLINK_MS                250
  66#define LINK_HZ                 HZ
  67
  68#define SKGE_EEPROM_MAGIC       0x9933aabb
  69
  70
  71MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  72MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  73MODULE_LICENSE("GPL");
  74MODULE_VERSION(DRV_VERSION);
  75
  76static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  77                                NETIF_MSG_LINK | NETIF_MSG_IFUP |
  78                                NETIF_MSG_IFDOWN);
  79
  80static int debug = -1;  /* defaults above */
  81module_param(debug, int, 0);
  82MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  83
  84static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
  85        { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  86        { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  87        { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  88        { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  89        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  90        { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },    /* DGE-530T */
  91        { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  92        { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  93        { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  94        { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  95        { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  96        { 0 }
  97};
  98MODULE_DEVICE_TABLE(pci, skge_id_table);
  99
 100static int skge_up(struct net_device *dev);
 101static int skge_down(struct net_device *dev);
 102static void skge_phy_reset(struct skge_port *skge);
 103static void skge_tx_clean(struct net_device *dev);
 104static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
 105static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
 106static void genesis_get_stats(struct skge_port *skge, u64 *data);
 107static void yukon_get_stats(struct skge_port *skge, u64 *data);
 108static void yukon_init(struct skge_hw *hw, int port);
 109static void genesis_mac_init(struct skge_hw *hw, int port);
 110static void genesis_link_up(struct skge_port *skge);
 111static void skge_set_multicast(struct net_device *dev);
 112
 113/* Avoid conditionals by using array */
 114static const int txqaddr[] = { Q_XA1, Q_XA2 };
 115static const int rxqaddr[] = { Q_R1, Q_R2 };
 116static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
 117static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
 118static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
 119static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
 120
 121static int skge_get_regs_len(struct net_device *dev)
 122{
 123        return 0x4000;
 124}
 125
 126/*
 127 * Returns copy of whole control register region
 128 * Note: skip RAM address register because accessing it will
 129 *       cause bus hangs!
 130 */
 131static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
 132                          void *p)
 133{
 134        const struct skge_port *skge = netdev_priv(dev);
 135        const void __iomem *io = skge->hw->regs;
 136
 137        regs->version = 1;
 138        memset(p, 0, regs->len);
 139        memcpy_fromio(p, io, B3_RAM_ADDR);
 140
 141        memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
 142                      regs->len - B3_RI_WTO_R1);
 143}
 144
 145/* Wake on Lan only supported on Yukon chips with rev 1 or above */
 146static u32 wol_supported(const struct skge_hw *hw)
 147{
 148        if (hw->chip_id == CHIP_ID_GENESIS)
 149                return 0;
 150
 151        if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
 152                return 0;
 153
 154        return WAKE_MAGIC | WAKE_PHY;
 155}
 156
 157static void skge_wol_init(struct skge_port *skge)
 158{
 159        struct skge_hw *hw = skge->hw;
 160        int port = skge->port;
 161        u16 ctrl;
 162
 163        skge_write16(hw, B0_CTST, CS_RST_CLR);
 164        skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
 165
 166        /* Turn on Vaux */
 167        skge_write8(hw, B0_POWER_CTRL,
 168                    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
 169
 170        /* WA code for COMA mode -- clear PHY reset */
 171        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
 172            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
 173                u32 reg = skge_read32(hw, B2_GP_IO);
 174                reg |= GP_DIR_9;
 175                reg &= ~GP_IO_9;
 176                skge_write32(hw, B2_GP_IO, reg);
 177        }
 178
 179        skge_write32(hw, SK_REG(port, GPHY_CTRL),
 180                     GPC_DIS_SLEEP |
 181                     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 182                     GPC_ANEG_1 | GPC_RST_SET);
 183
 184        skge_write32(hw, SK_REG(port, GPHY_CTRL),
 185                     GPC_DIS_SLEEP |
 186                     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
 187                     GPC_ANEG_1 | GPC_RST_CLR);
 188
 189        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
 190
 191        /* Force to 10/100 skge_reset will re-enable on resume   */
 192        gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
 193                     (PHY_AN_100FULL | PHY_AN_100HALF |
 194                      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
 195        /* no 1000 HD/FD */
 196        gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
 197        gm_phy_write(hw, port, PHY_MARV_CTRL,
 198                     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
 199                     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
 200
 201
 202        /* Set GMAC to no flow control and auto update for speed/duplex */
 203        gma_write16(hw, port, GM_GP_CTRL,
 204                    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
 205                    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
 206
 207        /* Set WOL address */
 208        memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
 209                    skge->netdev->dev_addr, ETH_ALEN);
 210
 211        /* Turn on appropriate WOL control bits */
 212        skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
 213        ctrl = 0;
 214        if (skge->wol & WAKE_PHY)
 215                ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
 216        else
 217                ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
 218
 219        if (skge->wol & WAKE_MAGIC)
 220                ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
 221        else
 222                ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
 223
 224        ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
 225        skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
 226
 227        /* block receiver */
 228        skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
 229}
 230
 231static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 232{
 233        struct skge_port *skge = netdev_priv(dev);
 234
 235        wol->supported = wol_supported(skge->hw);
 236        wol->wolopts = skge->wol;
 237}
 238
 239static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
 240{
 241        struct skge_port *skge = netdev_priv(dev);
 242        struct skge_hw *hw = skge->hw;
 243
 244        if ((wol->wolopts & ~wol_supported(hw)) ||
 245            !device_can_wakeup(&hw->pdev->dev))
 246                return -EOPNOTSUPP;
 247
 248        skge->wol = wol->wolopts;
 249
 250        device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
 251
 252        return 0;
 253}
 254
 255/* Determine supported/advertised modes based on hardware.
 256 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
 257 */
 258static u32 skge_supported_modes(const struct skge_hw *hw)
 259{
 260        u32 supported;
 261
 262        if (hw->copper) {
 263                supported = (SUPPORTED_10baseT_Half |
 264                             SUPPORTED_10baseT_Full |
 265                             SUPPORTED_100baseT_Half |
 266                             SUPPORTED_100baseT_Full |
 267                             SUPPORTED_1000baseT_Half |
 268                             SUPPORTED_1000baseT_Full |
 269                             SUPPORTED_Autoneg |
 270                             SUPPORTED_TP);
 271
 272                if (hw->chip_id == CHIP_ID_GENESIS)
 273                        supported &= ~(SUPPORTED_10baseT_Half |
 274                                       SUPPORTED_10baseT_Full |
 275                                       SUPPORTED_100baseT_Half |
 276                                       SUPPORTED_100baseT_Full);
 277
 278                else if (hw->chip_id == CHIP_ID_YUKON)
 279                        supported &= ~SUPPORTED_1000baseT_Half;
 280        } else
 281                supported = (SUPPORTED_1000baseT_Full |
 282                             SUPPORTED_1000baseT_Half |
 283                             SUPPORTED_FIBRE |
 284                             SUPPORTED_Autoneg);
 285
 286        return supported;
 287}
 288
 289static int skge_get_settings(struct net_device *dev,
 290                             struct ethtool_cmd *ecmd)
 291{
 292        struct skge_port *skge = netdev_priv(dev);
 293        struct skge_hw *hw = skge->hw;
 294
 295        ecmd->transceiver = XCVR_INTERNAL;
 296        ecmd->supported = skge_supported_modes(hw);
 297
 298        if (hw->copper) {
 299                ecmd->port = PORT_TP;
 300                ecmd->phy_address = hw->phy_addr;
 301        } else
 302                ecmd->port = PORT_FIBRE;
 303
 304        ecmd->advertising = skge->advertising;
 305        ecmd->autoneg = skge->autoneg;
 306        ecmd->speed = skge->speed;
 307        ecmd->duplex = skge->duplex;
 308        return 0;
 309}
 310
 311static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 312{
 313        struct skge_port *skge = netdev_priv(dev);
 314        const struct skge_hw *hw = skge->hw;
 315        u32 supported = skge_supported_modes(hw);
 316        int err = 0;
 317
 318        if (ecmd->autoneg == AUTONEG_ENABLE) {
 319                ecmd->advertising = supported;
 320                skge->duplex = -1;
 321                skge->speed = -1;
 322        } else {
 323                u32 setting;
 324
 325                switch (ecmd->speed) {
 326                case SPEED_1000:
 327                        if (ecmd->duplex == DUPLEX_FULL)
 328                                setting = SUPPORTED_1000baseT_Full;
 329                        else if (ecmd->duplex == DUPLEX_HALF)
 330                                setting = SUPPORTED_1000baseT_Half;
 331                        else
 332                                return -EINVAL;
 333                        break;
 334                case SPEED_100:
 335                        if (ecmd->duplex == DUPLEX_FULL)
 336                                setting = SUPPORTED_100baseT_Full;
 337                        else if (ecmd->duplex == DUPLEX_HALF)
 338                                setting = SUPPORTED_100baseT_Half;
 339                        else
 340                                return -EINVAL;
 341                        break;
 342
 343                case SPEED_10:
 344                        if (ecmd->duplex == DUPLEX_FULL)
 345                                setting = SUPPORTED_10baseT_Full;
 346                        else if (ecmd->duplex == DUPLEX_HALF)
 347                                setting = SUPPORTED_10baseT_Half;
 348                        else
 349                                return -EINVAL;
 350                        break;
 351                default:
 352                        return -EINVAL;
 353                }
 354
 355                if ((setting & supported) == 0)
 356                        return -EINVAL;
 357
 358                skge->speed = ecmd->speed;
 359                skge->duplex = ecmd->duplex;
 360        }
 361
 362        skge->autoneg = ecmd->autoneg;
 363        skge->advertising = ecmd->advertising;
 364
 365        if (netif_running(dev)) {
 366                skge_down(dev);
 367                err = skge_up(dev);
 368                if (err) {
 369                        dev_close(dev);
 370                        return err;
 371                }
 372        }
 373
 374        return 0;
 375}
 376
 377static void skge_get_drvinfo(struct net_device *dev,
 378                             struct ethtool_drvinfo *info)
 379{
 380        struct skge_port *skge = netdev_priv(dev);
 381
 382        strcpy(info->driver, DRV_NAME);
 383        strcpy(info->version, DRV_VERSION);
 384        strcpy(info->fw_version, "N/A");
 385        strcpy(info->bus_info, pci_name(skge->hw->pdev));
 386}
 387
 388static const struct skge_stat {
 389        char       name[ETH_GSTRING_LEN];
 390        u16        xmac_offset;
 391        u16        gma_offset;
 392} skge_stats[] = {
 393        { "tx_bytes",           XM_TXO_OK_HI,  GM_TXO_OK_HI },
 394        { "rx_bytes",           XM_RXO_OK_HI,  GM_RXO_OK_HI },
 395
 396        { "tx_broadcast",       XM_TXF_BC_OK,  GM_TXF_BC_OK },
 397        { "rx_broadcast",       XM_RXF_BC_OK,  GM_RXF_BC_OK },
 398        { "tx_multicast",       XM_TXF_MC_OK,  GM_TXF_MC_OK },
 399        { "rx_multicast",       XM_RXF_MC_OK,  GM_RXF_MC_OK },
 400        { "tx_unicast",         XM_TXF_UC_OK,  GM_TXF_UC_OK },
 401        { "rx_unicast",         XM_RXF_UC_OK,  GM_RXF_UC_OK },
 402        { "tx_mac_pause",       XM_TXF_MPAUSE, GM_TXF_MPAUSE },
 403        { "rx_mac_pause",       XM_RXF_MPAUSE, GM_RXF_MPAUSE },
 404
 405        { "collisions",         XM_TXF_SNG_COL, GM_TXF_SNG_COL },
 406        { "multi_collisions",   XM_TXF_MUL_COL, GM_TXF_MUL_COL },
 407        { "aborted",            XM_TXF_ABO_COL, GM_TXF_ABO_COL },
 408        { "late_collision",     XM_TXF_LAT_COL, GM_TXF_LAT_COL },
 409        { "fifo_underrun",      XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
 410        { "fifo_overflow",      XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
 411
 412        { "rx_toolong",         XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 413        { "rx_jabber",          XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
 414        { "rx_runt",            XM_RXE_RUNT,    GM_RXE_FRAG },
 415        { "rx_too_long",        XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
 416        { "rx_fcs_error",       XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
 417};
 418
 419static int skge_get_sset_count(struct net_device *dev, int sset)
 420{
 421        switch (sset) {
 422        case ETH_SS_STATS:
 423                return ARRAY_SIZE(skge_stats);
 424        default:
 425                return -EOPNOTSUPP;
 426        }
 427}
 428
 429static void skge_get_ethtool_stats(struct net_device *dev,
 430                                   struct ethtool_stats *stats, u64 *data)
 431{
 432        struct skge_port *skge = netdev_priv(dev);
 433
 434        if (skge->hw->chip_id == CHIP_ID_GENESIS)
 435                genesis_get_stats(skge, data);
 436        else
 437                yukon_get_stats(skge, data);
 438}
 439
 440/* Use hardware MIB variables for critical path statistics and
 441 * transmit feedback not reported at interrupt.
 442 * Other errors are accounted for in interrupt handler.
 443 */
 444static struct net_device_stats *skge_get_stats(struct net_device *dev)
 445{
 446        struct skge_port *skge = netdev_priv(dev);
 447        u64 data[ARRAY_SIZE(skge_stats)];
 448
 449        if (skge->hw->chip_id == CHIP_ID_GENESIS)
 450                genesis_get_stats(skge, data);
 451        else
 452                yukon_get_stats(skge, data);
 453
 454        dev->stats.tx_bytes = data[0];
 455        dev->stats.rx_bytes = data[1];
 456        dev->stats.tx_packets = data[2] + data[4] + data[6];
 457        dev->stats.rx_packets = data[3] + data[5] + data[7];
 458        dev->stats.multicast = data[3] + data[5];
 459        dev->stats.collisions = data[10];
 460        dev->stats.tx_aborted_errors = data[12];
 461
 462        return &dev->stats;
 463}
 464
 465static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
 466{
 467        int i;
 468
 469        switch (stringset) {
 470        case ETH_SS_STATS:
 471                for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
 472                        memcpy(data + i * ETH_GSTRING_LEN,
 473                               skge_stats[i].name, ETH_GSTRING_LEN);
 474                break;
 475        }
 476}
 477
 478static void skge_get_ring_param(struct net_device *dev,
 479                                struct ethtool_ringparam *p)
 480{
 481        struct skge_port *skge = netdev_priv(dev);
 482
 483        p->rx_max_pending = MAX_RX_RING_SIZE;
 484        p->tx_max_pending = MAX_TX_RING_SIZE;
 485        p->rx_mini_max_pending = 0;
 486        p->rx_jumbo_max_pending = 0;
 487
 488        p->rx_pending = skge->rx_ring.count;
 489        p->tx_pending = skge->tx_ring.count;
 490        p->rx_mini_pending = 0;
 491        p->rx_jumbo_pending = 0;
 492}
 493
 494static int skge_set_ring_param(struct net_device *dev,
 495                               struct ethtool_ringparam *p)
 496{
 497        struct skge_port *skge = netdev_priv(dev);
 498        int err = 0;
 499
 500        if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
 501            p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
 502                return -EINVAL;
 503
 504        skge->rx_ring.count = p->rx_pending;
 505        skge->tx_ring.count = p->tx_pending;
 506
 507        if (netif_running(dev)) {
 508                skge_down(dev);
 509                err = skge_up(dev);
 510                if (err)
 511                        dev_close(dev);
 512        }
 513
 514        return err;
 515}
 516
 517static u32 skge_get_msglevel(struct net_device *netdev)
 518{
 519        struct skge_port *skge = netdev_priv(netdev);
 520        return skge->msg_enable;
 521}
 522
 523static void skge_set_msglevel(struct net_device *netdev, u32 value)
 524{
 525        struct skge_port *skge = netdev_priv(netdev);
 526        skge->msg_enable = value;
 527}
 528
 529static int skge_nway_reset(struct net_device *dev)
 530{
 531        struct skge_port *skge = netdev_priv(dev);
 532
 533        if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
 534                return -EINVAL;
 535
 536        skge_phy_reset(skge);
 537        return 0;
 538}
 539
 540static int skge_set_sg(struct net_device *dev, u32 data)
 541{
 542        struct skge_port *skge = netdev_priv(dev);
 543        struct skge_hw *hw = skge->hw;
 544
 545        if (hw->chip_id == CHIP_ID_GENESIS && data)
 546                return -EOPNOTSUPP;
 547        return ethtool_op_set_sg(dev, data);
 548}
 549
 550static int skge_set_tx_csum(struct net_device *dev, u32 data)
 551{
 552        struct skge_port *skge = netdev_priv(dev);
 553        struct skge_hw *hw = skge->hw;
 554
 555        if (hw->chip_id == CHIP_ID_GENESIS && data)
 556                return -EOPNOTSUPP;
 557
 558        return ethtool_op_set_tx_csum(dev, data);
 559}
 560
 561static u32 skge_get_rx_csum(struct net_device *dev)
 562{
 563        struct skge_port *skge = netdev_priv(dev);
 564
 565        return skge->rx_csum;
 566}
 567
 568/* Only Yukon supports checksum offload. */
 569static int skge_set_rx_csum(struct net_device *dev, u32 data)
 570{
 571        struct skge_port *skge = netdev_priv(dev);
 572
 573        if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
 574                return -EOPNOTSUPP;
 575
 576        skge->rx_csum = data;
 577        return 0;
 578}
 579
 580static void skge_get_pauseparam(struct net_device *dev,
 581                                struct ethtool_pauseparam *ecmd)
 582{
 583        struct skge_port *skge = netdev_priv(dev);
 584
 585        ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
 586                          (skge->flow_control == FLOW_MODE_SYM_OR_REM));
 587        ecmd->tx_pause = (ecmd->rx_pause ||
 588                          (skge->flow_control == FLOW_MODE_LOC_SEND));
 589
 590        ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
 591}
 592
 593static int skge_set_pauseparam(struct net_device *dev,
 594                               struct ethtool_pauseparam *ecmd)
 595{
 596        struct skge_port *skge = netdev_priv(dev);
 597        struct ethtool_pauseparam old;
 598        int err = 0;
 599
 600        skge_get_pauseparam(dev, &old);
 601
 602        if (ecmd->autoneg != old.autoneg)
 603                skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
 604        else {
 605                if (ecmd->rx_pause && ecmd->tx_pause)
 606                        skge->flow_control = FLOW_MODE_SYMMETRIC;
 607                else if (ecmd->rx_pause && !ecmd->tx_pause)
 608                        skge->flow_control = FLOW_MODE_SYM_OR_REM;
 609                else if (!ecmd->rx_pause && ecmd->tx_pause)
 610                        skge->flow_control = FLOW_MODE_LOC_SEND;
 611                else
 612                        skge->flow_control = FLOW_MODE_NONE;
 613        }
 614
 615        if (netif_running(dev)) {
 616                skge_down(dev);
 617                err = skge_up(dev);
 618                if (err) {
 619                        dev_close(dev);
 620                        return err;
 621                }
 622        }
 623
 624        return 0;
 625}
 626
 627/* Chip internal frequency for clock calculations */
 628static inline u32 hwkhz(const struct skge_hw *hw)
 629{
 630        return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
 631}
 632
 633/* Chip HZ to microseconds */
 634static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
 635{
 636        return (ticks * 1000) / hwkhz(hw);
 637}
 638
 639/* Microseconds to chip HZ */
 640static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
 641{
 642        return hwkhz(hw) * usec / 1000;
 643}
 644
 645static int skge_get_coalesce(struct net_device *dev,
 646                             struct ethtool_coalesce *ecmd)
 647{
 648        struct skge_port *skge = netdev_priv(dev);
 649        struct skge_hw *hw = skge->hw;
 650        int port = skge->port;
 651
 652        ecmd->rx_coalesce_usecs = 0;
 653        ecmd->tx_coalesce_usecs = 0;
 654
 655        if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
 656                u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
 657                u32 msk = skge_read32(hw, B2_IRQM_MSK);
 658
 659                if (msk & rxirqmask[port])
 660                        ecmd->rx_coalesce_usecs = delay;
 661                if (msk & txirqmask[port])
 662                        ecmd->tx_coalesce_usecs = delay;
 663        }
 664
 665        return 0;
 666}
 667
 668/* Note: interrupt timer is per board, but can turn on/off per port */
 669static int skge_set_coalesce(struct net_device *dev,
 670                             struct ethtool_coalesce *ecmd)
 671{
 672        struct skge_port *skge = netdev_priv(dev);
 673        struct skge_hw *hw = skge->hw;
 674        int port = skge->port;
 675        u32 msk = skge_read32(hw, B2_IRQM_MSK);
 676        u32 delay = 25;
 677
 678        if (ecmd->rx_coalesce_usecs == 0)
 679                msk &= ~rxirqmask[port];
 680        else if (ecmd->rx_coalesce_usecs < 25 ||
 681                 ecmd->rx_coalesce_usecs > 33333)
 682                return -EINVAL;
 683        else {
 684                msk |= rxirqmask[port];
 685                delay = ecmd->rx_coalesce_usecs;
 686        }
 687
 688        if (ecmd->tx_coalesce_usecs == 0)
 689                msk &= ~txirqmask[port];
 690        else if (ecmd->tx_coalesce_usecs < 25 ||
 691                 ecmd->tx_coalesce_usecs > 33333)
 692                return -EINVAL;
 693        else {
 694                msk |= txirqmask[port];
 695                delay = min(delay, ecmd->rx_coalesce_usecs);
 696        }
 697
 698        skge_write32(hw, B2_IRQM_MSK, msk);
 699        if (msk == 0)
 700                skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
 701        else {
 702                skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
 703                skge_write32(hw, B2_IRQM_CTRL, TIM_START);
 704        }
 705        return 0;
 706}
 707
 708enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
 709static void skge_led(struct skge_port *skge, enum led_mode mode)
 710{
 711        struct skge_hw *hw = skge->hw;
 712        int port = skge->port;
 713
 714        spin_lock_bh(&hw->phy_lock);
 715        if (hw->chip_id == CHIP_ID_GENESIS) {
 716                switch (mode) {
 717                case LED_MODE_OFF:
 718                        if (hw->phy_type == SK_PHY_BCOM)
 719                                xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
 720                        else {
 721                                skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
 722                                skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
 723                        }
 724                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
 725                        skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
 726                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
 727                        break;
 728
 729                case LED_MODE_ON:
 730                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
 731                        skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
 732
 733                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 734                        skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 735
 736                        break;
 737
 738                case LED_MODE_TST:
 739                        skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
 740                        skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
 741                        skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
 742
 743                        if (hw->phy_type == SK_PHY_BCOM)
 744                                xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
 745                        else {
 746                                skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
 747                                skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
 748                                skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
 749                        }
 750
 751                }
 752        } else {
 753                switch (mode) {
 754                case LED_MODE_OFF:
 755                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 756                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 757                                     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
 758                                     PHY_M_LED_MO_10(MO_LED_OFF)   |
 759                                     PHY_M_LED_MO_100(MO_LED_OFF)  |
 760                                     PHY_M_LED_MO_1000(MO_LED_OFF) |
 761                                     PHY_M_LED_MO_RX(MO_LED_OFF));
 762                        break;
 763                case LED_MODE_ON:
 764                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
 765                                     PHY_M_LED_PULS_DUR(PULS_170MS) |
 766                                     PHY_M_LED_BLINK_RT(BLINK_84MS) |
 767                                     PHY_M_LEDC_TX_CTRL |
 768                                     PHY_M_LEDC_DP_CTRL);
 769
 770                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 771                                     PHY_M_LED_MO_RX(MO_LED_OFF) |
 772                                     (skge->speed == SPEED_100 ?
 773                                      PHY_M_LED_MO_100(MO_LED_ON) : 0));
 774                        break;
 775                case LED_MODE_TST:
 776                        gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
 777                        gm_phy_write(hw, port, PHY_MARV_LED_OVER,
 778                                     PHY_M_LED_MO_DUP(MO_LED_ON)  |
 779                                     PHY_M_LED_MO_10(MO_LED_ON)   |
 780                                     PHY_M_LED_MO_100(MO_LED_ON)  |
 781                                     PHY_M_LED_MO_1000(MO_LED_ON) |
 782                                     PHY_M_LED_MO_RX(MO_LED_ON));
 783                }
 784        }
 785        spin_unlock_bh(&hw->phy_lock);
 786}
 787
 788/* blink LED's for finding board */
 789static int skge_phys_id(struct net_device *dev, u32 data)
 790{
 791        struct skge_port *skge = netdev_priv(dev);
 792        unsigned long ms;
 793        enum led_mode mode = LED_MODE_TST;
 794
 795        if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
 796                ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
 797        else
 798                ms = data * 1000;
 799
 800        while (ms > 0) {
 801                skge_led(skge, mode);
 802                mode ^= LED_MODE_TST;
 803
 804                if (msleep_interruptible(BLINK_MS))
 805                        break;
 806                ms -= BLINK_MS;
 807        }
 808
 809        /* back to regular LED state */
 810        skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
 811
 812        return 0;
 813}
 814
 815static int skge_get_eeprom_len(struct net_device *dev)
 816{
 817        struct skge_port *skge = netdev_priv(dev);
 818        u32 reg2;
 819
 820        pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
 821        return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
 822}
 823
 824static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
 825{
 826        u32 val;
 827
 828        pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
 829
 830        do {
 831                pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 832        } while (!(offset & PCI_VPD_ADDR_F));
 833
 834        pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
 835        return val;
 836}
 837
 838static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
 839{
 840        pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
 841        pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
 842                              offset | PCI_VPD_ADDR_F);
 843
 844        do {
 845                pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
 846        } while (offset & PCI_VPD_ADDR_F);
 847}
 848
 849static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 850                           u8 *data)
 851{
 852        struct skge_port *skge = netdev_priv(dev);
 853        struct pci_dev *pdev = skge->hw->pdev;
 854        int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 855        int length = eeprom->len;
 856        u16 offset = eeprom->offset;
 857
 858        if (!cap)
 859                return -EINVAL;
 860
 861        eeprom->magic = SKGE_EEPROM_MAGIC;
 862
 863        while (length > 0) {
 864                u32 val = skge_vpd_read(pdev, cap, offset);
 865                int n = min_t(int, length, sizeof(val));
 866
 867                memcpy(data, &val, n);
 868                length -= n;
 869                data += n;
 870                offset += n;
 871        }
 872        return 0;
 873}
 874
 875static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
 876                           u8 *data)
 877{
 878        struct skge_port *skge = netdev_priv(dev);
 879        struct pci_dev *pdev = skge->hw->pdev;
 880        int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
 881        int length = eeprom->len;
 882        u16 offset = eeprom->offset;
 883
 884        if (!cap)
 885                return -EINVAL;
 886
 887        if (eeprom->magic != SKGE_EEPROM_MAGIC)
 888                return -EINVAL;
 889
 890        while (length > 0) {
 891                u32 val;
 892                int n = min_t(int, length, sizeof(val));
 893
 894                if (n < sizeof(val))
 895                        val = skge_vpd_read(pdev, cap, offset);
 896                memcpy(&val, data, n);
 897
 898                skge_vpd_write(pdev, cap, offset, val);
 899
 900                length -= n;
 901                data += n;
 902                offset += n;
 903        }
 904        return 0;
 905}
 906
 907static const struct ethtool_ops skge_ethtool_ops = {
 908        .get_settings   = skge_get_settings,
 909        .set_settings   = skge_set_settings,
 910        .get_drvinfo    = skge_get_drvinfo,
 911        .get_regs_len   = skge_get_regs_len,
 912        .get_regs       = skge_get_regs,
 913        .get_wol        = skge_get_wol,
 914        .set_wol        = skge_set_wol,
 915        .get_msglevel   = skge_get_msglevel,
 916        .set_msglevel   = skge_set_msglevel,
 917        .nway_reset     = skge_nway_reset,
 918        .get_link       = ethtool_op_get_link,
 919        .get_eeprom_len = skge_get_eeprom_len,
 920        .get_eeprom     = skge_get_eeprom,
 921        .set_eeprom     = skge_set_eeprom,
 922        .get_ringparam  = skge_get_ring_param,
 923        .set_ringparam  = skge_set_ring_param,
 924        .get_pauseparam = skge_get_pauseparam,
 925        .set_pauseparam = skge_set_pauseparam,
 926        .get_coalesce   = skge_get_coalesce,
 927        .set_coalesce   = skge_set_coalesce,
 928        .set_sg         = skge_set_sg,
 929        .set_tx_csum    = skge_set_tx_csum,
 930        .get_rx_csum    = skge_get_rx_csum,
 931        .set_rx_csum    = skge_set_rx_csum,
 932        .get_strings    = skge_get_strings,
 933        .phys_id        = skge_phys_id,
 934        .get_sset_count = skge_get_sset_count,
 935        .get_ethtool_stats = skge_get_ethtool_stats,
 936};
 937
 938/*
 939 * Allocate ring elements and chain them together
 940 * One-to-one association of board descriptors with ring elements
 941 */
 942static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
 943{
 944        struct skge_tx_desc *d;
 945        struct skge_element *e;
 946        int i;
 947
 948        ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
 949        if (!ring->start)
 950                return -ENOMEM;
 951
 952        for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
 953                e->desc = d;
 954                if (i == ring->count - 1) {
 955                        e->next = ring->start;
 956                        d->next_offset = base;
 957                } else {
 958                        e->next = e + 1;
 959                        d->next_offset = base + (i+1) * sizeof(*d);
 960                }
 961        }
 962        ring->to_use = ring->to_clean = ring->start;
 963
 964        return 0;
 965}
 966
 967/* Allocate and setup a new buffer for receiving */
 968static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
 969                          struct sk_buff *skb, unsigned int bufsize)
 970{
 971        struct skge_rx_desc *rd = e->desc;
 972        u64 map;
 973
 974        map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
 975                             PCI_DMA_FROMDEVICE);
 976
 977        rd->dma_lo = map;
 978        rd->dma_hi = map >> 32;
 979        e->skb = skb;
 980        rd->csum1_start = ETH_HLEN;
 981        rd->csum2_start = ETH_HLEN;
 982        rd->csum1 = 0;
 983        rd->csum2 = 0;
 984
 985        wmb();
 986
 987        rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
 988        dma_unmap_addr_set(e, mapaddr, map);
 989        dma_unmap_len_set(e, maplen, bufsize);
 990}
 991
 992/* Resume receiving using existing skb,
 993 * Note: DMA address is not changed by chip.
 994 *       MTU not changed while receiver active.
 995 */
 996static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
 997{
 998        struct skge_rx_desc *rd = e->desc;
 999
1000        rd->csum2 = 0;
1001        rd->csum2_start = ETH_HLEN;
1002
1003        wmb();
1004
1005        rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
1006}
1007
1008
1009/* Free all  buffers in receive ring, assumes receiver stopped */
1010static void skge_rx_clean(struct skge_port *skge)
1011{
1012        struct skge_hw *hw = skge->hw;
1013        struct skge_ring *ring = &skge->rx_ring;
1014        struct skge_element *e;
1015
1016        e = ring->start;
1017        do {
1018                struct skge_rx_desc *rd = e->desc;
1019                rd->control = 0;
1020                if (e->skb) {
1021                        pci_unmap_single(hw->pdev,
1022                                         dma_unmap_addr(e, mapaddr),
1023                                         dma_unmap_len(e, maplen),
1024                                         PCI_DMA_FROMDEVICE);
1025                        dev_kfree_skb(e->skb);
1026                        e->skb = NULL;
1027                }
1028        } while ((e = e->next) != ring->start);
1029}
1030
1031
1032/* Allocate buffers for receive ring
1033 * For receive:  to_clean is next received frame.
1034 */
1035static int skge_rx_fill(struct net_device *dev)
1036{
1037        struct skge_port *skge = netdev_priv(dev);
1038        struct skge_ring *ring = &skge->rx_ring;
1039        struct skge_element *e;
1040
1041        e = ring->start;
1042        do {
1043                struct sk_buff *skb;
1044
1045                skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1046                                         GFP_KERNEL);
1047                if (!skb)
1048                        return -ENOMEM;
1049
1050                skb_reserve(skb, NET_IP_ALIGN);
1051                skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1052        } while ((e = e->next) != ring->start);
1053
1054        ring->to_clean = ring->start;
1055        return 0;
1056}
1057
1058static const char *skge_pause(enum pause_status status)
1059{
1060        switch (status) {
1061        case FLOW_STAT_NONE:
1062                return "none";
1063        case FLOW_STAT_REM_SEND:
1064                return "rx only";
1065        case FLOW_STAT_LOC_SEND:
1066                return "tx_only";
1067        case FLOW_STAT_SYMMETRIC:               /* Both station may send PAUSE */
1068                return "both";
1069        default:
1070                return "indeterminated";
1071        }
1072}
1073
1074
1075static void skge_link_up(struct skge_port *skge)
1076{
1077        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1078                    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1079
1080        netif_carrier_on(skge->netdev);
1081        netif_wake_queue(skge->netdev);
1082
1083        netif_info(skge, link, skge->netdev,
1084                   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1085                   skge->speed,
1086                   skge->duplex == DUPLEX_FULL ? "full" : "half",
1087                   skge_pause(skge->flow_status));
1088}
1089
1090static void skge_link_down(struct skge_port *skge)
1091{
1092        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1093        netif_carrier_off(skge->netdev);
1094        netif_stop_queue(skge->netdev);
1095
1096        netif_info(skge, link, skge->netdev, "Link is down\n");
1097}
1098
1099
1100static void xm_link_down(struct skge_hw *hw, int port)
1101{
1102        struct net_device *dev = hw->dev[port];
1103        struct skge_port *skge = netdev_priv(dev);
1104
1105        xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1106
1107        if (netif_carrier_ok(dev))
1108                skge_link_down(skge);
1109}
1110
1111static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1112{
1113        int i;
1114
1115        xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1116        *val = xm_read16(hw, port, XM_PHY_DATA);
1117
1118        if (hw->phy_type == SK_PHY_XMAC)
1119                goto ready;
1120
1121        for (i = 0; i < PHY_RETRIES; i++) {
1122                if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1123                        goto ready;
1124                udelay(1);
1125        }
1126
1127        return -ETIMEDOUT;
1128 ready:
1129        *val = xm_read16(hw, port, XM_PHY_DATA);
1130
1131        return 0;
1132}
1133
1134static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1135{
1136        u16 v = 0;
1137        if (__xm_phy_read(hw, port, reg, &v))
1138                pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
1139        return v;
1140}
1141
1142static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1143{
1144        int i;
1145
1146        xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1147        for (i = 0; i < PHY_RETRIES; i++) {
1148                if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1149                        goto ready;
1150                udelay(1);
1151        }
1152        return -EIO;
1153
1154 ready:
1155        xm_write16(hw, port, XM_PHY_DATA, val);
1156        for (i = 0; i < PHY_RETRIES; i++) {
1157                if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1158                        return 0;
1159                udelay(1);
1160        }
1161        return -ETIMEDOUT;
1162}
1163
1164static void genesis_init(struct skge_hw *hw)
1165{
1166        /* set blink source counter */
1167        skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1168        skge_write8(hw, B2_BSC_CTRL, BSC_START);
1169
1170        /* configure mac arbiter */
1171        skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1172
1173        /* configure mac arbiter timeout values */
1174        skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1175        skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1176        skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1177        skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1178
1179        skge_write8(hw, B3_MA_RCINI_RX1, 0);
1180        skge_write8(hw, B3_MA_RCINI_RX2, 0);
1181        skge_write8(hw, B3_MA_RCINI_TX1, 0);
1182        skge_write8(hw, B3_MA_RCINI_TX2, 0);
1183
1184        /* configure packet arbiter timeout */
1185        skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1186        skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1187        skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1188        skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1189        skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1190}
1191
1192static void genesis_reset(struct skge_hw *hw, int port)
1193{
1194        static const u8 zero[8]  = { 0 };
1195        u32 reg;
1196
1197        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1198
1199        /* reset the statistics module */
1200        xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1201        xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1202        xm_write32(hw, port, XM_MODE, 0);               /* clear Mode Reg */
1203        xm_write16(hw, port, XM_TX_CMD, 0);     /* reset TX CMD Reg */
1204        xm_write16(hw, port, XM_RX_CMD, 0);     /* reset RX CMD Reg */
1205
1206        /* disable Broadcom PHY IRQ */
1207        if (hw->phy_type == SK_PHY_BCOM)
1208                xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1209
1210        xm_outhash(hw, port, XM_HSM, zero);
1211
1212        /* Flush TX and RX fifo */
1213        reg = xm_read32(hw, port, XM_MODE);
1214        xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1215        xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1216}
1217
1218
1219/* Convert mode to MII values  */
1220static const u16 phy_pause_map[] = {
1221        [FLOW_MODE_NONE] =      0,
1222        [FLOW_MODE_LOC_SEND] =  PHY_AN_PAUSE_ASYM,
1223        [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1224        [FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1225};
1226
1227/* special defines for FIBER (88E1011S only) */
1228static const u16 fiber_pause_map[] = {
1229        [FLOW_MODE_NONE]        = PHY_X_P_NO_PAUSE,
1230        [FLOW_MODE_LOC_SEND]    = PHY_X_P_ASYM_MD,
1231        [FLOW_MODE_SYMMETRIC]   = PHY_X_P_SYM_MD,
1232        [FLOW_MODE_SYM_OR_REM]  = PHY_X_P_BOTH_MD,
1233};
1234
1235
1236/* Check status of Broadcom phy link */
1237static void bcom_check_link(struct skge_hw *hw, int port)
1238{
1239        struct net_device *dev = hw->dev[port];
1240        struct skge_port *skge = netdev_priv(dev);
1241        u16 status;
1242
1243        /* read twice because of latch */
1244        xm_phy_read(hw, port, PHY_BCOM_STAT);
1245        status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1246
1247        if ((status & PHY_ST_LSYNC) == 0) {
1248                xm_link_down(hw, port);
1249                return;
1250        }
1251
1252        if (skge->autoneg == AUTONEG_ENABLE) {
1253                u16 lpa, aux;
1254
1255                if (!(status & PHY_ST_AN_OVER))
1256                        return;
1257
1258                lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1259                if (lpa & PHY_B_AN_RF) {
1260                        netdev_notice(dev, "remote fault\n");
1261                        return;
1262                }
1263
1264                aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1265
1266                /* Check Duplex mismatch */
1267                switch (aux & PHY_B_AS_AN_RES_MSK) {
1268                case PHY_B_RES_1000FD:
1269                        skge->duplex = DUPLEX_FULL;
1270                        break;
1271                case PHY_B_RES_1000HD:
1272                        skge->duplex = DUPLEX_HALF;
1273                        break;
1274                default:
1275                        netdev_notice(dev, "duplex mismatch\n");
1276                        return;
1277                }
1278
1279                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1280                switch (aux & PHY_B_AS_PAUSE_MSK) {
1281                case PHY_B_AS_PAUSE_MSK:
1282                        skge->flow_status = FLOW_STAT_SYMMETRIC;
1283                        break;
1284                case PHY_B_AS_PRR:
1285                        skge->flow_status = FLOW_STAT_REM_SEND;
1286                        break;
1287                case PHY_B_AS_PRT:
1288                        skge->flow_status = FLOW_STAT_LOC_SEND;
1289                        break;
1290                default:
1291                        skge->flow_status = FLOW_STAT_NONE;
1292                }
1293                skge->speed = SPEED_1000;
1294        }
1295
1296        if (!netif_carrier_ok(dev))
1297                genesis_link_up(skge);
1298}
1299
1300/* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1301 * Phy on for 100 or 10Mbit operation
1302 */
1303static void bcom_phy_init(struct skge_port *skge)
1304{
1305        struct skge_hw *hw = skge->hw;
1306        int port = skge->port;
1307        int i;
1308        u16 id1, r, ext, ctl;
1309
1310        /* magic workaround patterns for Broadcom */
1311        static const struct {
1312                u16 reg;
1313                u16 val;
1314        } A1hack[] = {
1315                { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1316                { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1317                { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1318                { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1319        }, C0hack[] = {
1320                { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1321                { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1322        };
1323
1324        /* read Id from external PHY (all have the same address) */
1325        id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1326
1327        /* Optimize MDIO transfer by suppressing preamble. */
1328        r = xm_read16(hw, port, XM_MMU_CMD);
1329        r |=  XM_MMU_NO_PRE;
1330        xm_write16(hw, port, XM_MMU_CMD, r);
1331
1332        switch (id1) {
1333        case PHY_BCOM_ID1_C0:
1334                /*
1335                 * Workaround BCOM Errata for the C0 type.
1336                 * Write magic patterns to reserved registers.
1337                 */
1338                for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1339                        xm_phy_write(hw, port,
1340                                     C0hack[i].reg, C0hack[i].val);
1341
1342                break;
1343        case PHY_BCOM_ID1_A1:
1344                /*
1345                 * Workaround BCOM Errata for the A1 type.
1346                 * Write magic patterns to reserved registers.
1347                 */
1348                for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1349                        xm_phy_write(hw, port,
1350                                     A1hack[i].reg, A1hack[i].val);
1351                break;
1352        }
1353
1354        /*
1355         * Workaround BCOM Errata (#10523) for all BCom PHYs.
1356         * Disable Power Management after reset.
1357         */
1358        r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1359        r |= PHY_B_AC_DIS_PM;
1360        xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1361
1362        /* Dummy read */
1363        xm_read16(hw, port, XM_ISRC);
1364
1365        ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1366        ctl = PHY_CT_SP1000;    /* always 1000mbit */
1367
1368        if (skge->autoneg == AUTONEG_ENABLE) {
1369                /*
1370                 * Workaround BCOM Errata #1 for the C5 type.
1371                 * 1000Base-T Link Acquisition Failure in Slave Mode
1372                 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1373                 */
1374                u16 adv = PHY_B_1000C_RD;
1375                if (skge->advertising & ADVERTISED_1000baseT_Half)
1376                        adv |= PHY_B_1000C_AHD;
1377                if (skge->advertising & ADVERTISED_1000baseT_Full)
1378                        adv |= PHY_B_1000C_AFD;
1379                xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1380
1381                ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1382        } else {
1383                if (skge->duplex == DUPLEX_FULL)
1384                        ctl |= PHY_CT_DUP_MD;
1385                /* Force to slave */
1386                xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1387        }
1388
1389        /* Set autonegotiation pause parameters */
1390        xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1391                     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1392
1393        /* Handle Jumbo frames */
1394        if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1395                xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1396                             PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1397
1398                ext |= PHY_B_PEC_HIGH_LA;
1399
1400        }
1401
1402        xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1403        xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1404
1405        /* Use link status change interrupt */
1406        xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1407}
1408
1409static void xm_phy_init(struct skge_port *skge)
1410{
1411        struct skge_hw *hw = skge->hw;
1412        int port = skge->port;
1413        u16 ctrl = 0;
1414
1415        if (skge->autoneg == AUTONEG_ENABLE) {
1416                if (skge->advertising & ADVERTISED_1000baseT_Half)
1417                        ctrl |= PHY_X_AN_HD;
1418                if (skge->advertising & ADVERTISED_1000baseT_Full)
1419                        ctrl |= PHY_X_AN_FD;
1420
1421                ctrl |= fiber_pause_map[skge->flow_control];
1422
1423                xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1424
1425                /* Restart Auto-negotiation */
1426                ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1427        } else {
1428                /* Set DuplexMode in Config register */
1429                if (skge->duplex == DUPLEX_FULL)
1430                        ctrl |= PHY_CT_DUP_MD;
1431                /*
1432                 * Do NOT enable Auto-negotiation here. This would hold
1433                 * the link down because no IDLEs are transmitted
1434                 */
1435        }
1436
1437        xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1438
1439        /* Poll PHY for status changes */
1440        mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1441}
1442
1443static int xm_check_link(struct net_device *dev)
1444{
1445        struct skge_port *skge = netdev_priv(dev);
1446        struct skge_hw *hw = skge->hw;
1447        int port = skge->port;
1448        u16 status;
1449
1450        /* read twice because of latch */
1451        xm_phy_read(hw, port, PHY_XMAC_STAT);
1452        status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1453
1454        if ((status & PHY_ST_LSYNC) == 0) {
1455                xm_link_down(hw, port);
1456                return 0;
1457        }
1458
1459        if (skge->autoneg == AUTONEG_ENABLE) {
1460                u16 lpa, res;
1461
1462                if (!(status & PHY_ST_AN_OVER))
1463                        return 0;
1464
1465                lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1466                if (lpa & PHY_B_AN_RF) {
1467                        netdev_notice(dev, "remote fault\n");
1468                        return 0;
1469                }
1470
1471                res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1472
1473                /* Check Duplex mismatch */
1474                switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1475                case PHY_X_RS_FD:
1476                        skge->duplex = DUPLEX_FULL;
1477                        break;
1478                case PHY_X_RS_HD:
1479                        skge->duplex = DUPLEX_HALF;
1480                        break;
1481                default:
1482                        netdev_notice(dev, "duplex mismatch\n");
1483                        return 0;
1484                }
1485
1486                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1487                if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1488                     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1489                    (lpa & PHY_X_P_SYM_MD))
1490                        skge->flow_status = FLOW_STAT_SYMMETRIC;
1491                else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1492                         (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1493                        /* Enable PAUSE receive, disable PAUSE transmit */
1494                        skge->flow_status  = FLOW_STAT_REM_SEND;
1495                else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1496                         (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1497                        /* Disable PAUSE receive, enable PAUSE transmit */
1498                        skge->flow_status = FLOW_STAT_LOC_SEND;
1499                else
1500                        skge->flow_status = FLOW_STAT_NONE;
1501
1502                skge->speed = SPEED_1000;
1503        }
1504
1505        if (!netif_carrier_ok(dev))
1506                genesis_link_up(skge);
1507        return 1;
1508}
1509
1510/* Poll to check for link coming up.
1511 *
1512 * Since internal PHY is wired to a level triggered pin, can't
1513 * get an interrupt when carrier is detected, need to poll for
1514 * link coming up.
1515 */
1516static void xm_link_timer(unsigned long arg)
1517{
1518        struct skge_port *skge = (struct skge_port *) arg;
1519        struct net_device *dev = skge->netdev;
1520        struct skge_hw *hw = skge->hw;
1521        int port = skge->port;
1522        int i;
1523        unsigned long flags;
1524
1525        if (!netif_running(dev))
1526                return;
1527
1528        spin_lock_irqsave(&hw->phy_lock, flags);
1529
1530        /*
1531         * Verify that the link by checking GPIO register three times.
1532         * This pin has the signal from the link_sync pin connected to it.
1533         */
1534        for (i = 0; i < 3; i++) {
1535                if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1536                        goto link_down;
1537        }
1538
1539        /* Re-enable interrupt to detect link down */
1540        if (xm_check_link(dev)) {
1541                u16 msk = xm_read16(hw, port, XM_IMSK);
1542                msk &= ~XM_IS_INP_ASS;
1543                xm_write16(hw, port, XM_IMSK, msk);
1544                xm_read16(hw, port, XM_ISRC);
1545        } else {
1546link_down:
1547                mod_timer(&skge->link_timer,
1548                          round_jiffies(jiffies + LINK_HZ));
1549        }
1550        spin_unlock_irqrestore(&hw->phy_lock, flags);
1551}
1552
1553static void genesis_mac_init(struct skge_hw *hw, int port)
1554{
1555        struct net_device *dev = hw->dev[port];
1556        struct skge_port *skge = netdev_priv(dev);
1557        int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1558        int i;
1559        u32 r;
1560        static const u8 zero[6]  = { 0 };
1561
1562        for (i = 0; i < 10; i++) {
1563                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1564                             MFF_SET_MAC_RST);
1565                if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1566                        goto reset_ok;
1567                udelay(1);
1568        }
1569
1570        netdev_warn(dev, "genesis reset failed\n");
1571
1572 reset_ok:
1573        /* Unreset the XMAC. */
1574        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1575
1576        /*
1577         * Perform additional initialization for external PHYs,
1578         * namely for the 1000baseTX cards that use the XMAC's
1579         * GMII mode.
1580         */
1581        if (hw->phy_type != SK_PHY_XMAC) {
1582                /* Take external Phy out of reset */
1583                r = skge_read32(hw, B2_GP_IO);
1584                if (port == 0)
1585                        r |= GP_DIR_0|GP_IO_0;
1586                else
1587                        r |= GP_DIR_2|GP_IO_2;
1588
1589                skge_write32(hw, B2_GP_IO, r);
1590
1591                /* Enable GMII interface */
1592                xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1593        }
1594
1595
1596        switch (hw->phy_type) {
1597        case SK_PHY_XMAC:
1598                xm_phy_init(skge);
1599                break;
1600        case SK_PHY_BCOM:
1601                bcom_phy_init(skge);
1602                bcom_check_link(hw, port);
1603        }
1604
1605        /* Set Station Address */
1606        xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1607
1608        /* We don't use match addresses so clear */
1609        for (i = 1; i < 16; i++)
1610                xm_outaddr(hw, port, XM_EXM(i), zero);
1611
1612        /* Clear MIB counters */
1613        xm_write16(hw, port, XM_STAT_CMD,
1614                        XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1615        /* Clear two times according to Errata #3 */
1616        xm_write16(hw, port, XM_STAT_CMD,
1617                        XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1618
1619        /* configure Rx High Water Mark (XM_RX_HI_WM) */
1620        xm_write16(hw, port, XM_RX_HI_WM, 1450);
1621
1622        /* We don't need the FCS appended to the packet. */
1623        r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1624        if (jumbo)
1625                r |= XM_RX_BIG_PK_OK;
1626
1627        if (skge->duplex == DUPLEX_HALF) {
1628                /*
1629                 * If in manual half duplex mode the other side might be in
1630                 * full duplex mode, so ignore if a carrier extension is not seen
1631                 * on frames received
1632                 */
1633                r |= XM_RX_DIS_CEXT;
1634        }
1635        xm_write16(hw, port, XM_RX_CMD, r);
1636
1637        /* We want short frames padded to 60 bytes. */
1638        xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1639
1640        /* Increase threshold for jumbo frames on dual port */
1641        if (hw->ports > 1 && jumbo)
1642                xm_write16(hw, port, XM_TX_THR, 1020);
1643        else
1644                xm_write16(hw, port, XM_TX_THR, 512);
1645
1646        /*
1647         * Enable the reception of all error frames. This is is
1648         * a necessary evil due to the design of the XMAC. The
1649         * XMAC's receive FIFO is only 8K in size, however jumbo
1650         * frames can be up to 9000 bytes in length. When bad
1651         * frame filtering is enabled, the XMAC's RX FIFO operates
1652         * in 'store and forward' mode. For this to work, the
1653         * entire frame has to fit into the FIFO, but that means
1654         * that jumbo frames larger than 8192 bytes will be
1655         * truncated. Disabling all bad frame filtering causes
1656         * the RX FIFO to operate in streaming mode, in which
1657         * case the XMAC will start transferring frames out of the
1658         * RX FIFO as soon as the FIFO threshold is reached.
1659         */
1660        xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1661
1662
1663        /*
1664         * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1665         *      - Enable all bits excepting 'Octets Rx OK Low CntOv'
1666         *        and 'Octets Rx OK Hi Cnt Ov'.
1667         */
1668        xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1669
1670        /*
1671         * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1672         *      - Enable all bits excepting 'Octets Tx OK Low CntOv'
1673         *        and 'Octets Tx OK Hi Cnt Ov'.
1674         */
1675        xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1676
1677        /* Configure MAC arbiter */
1678        skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1679
1680        /* configure timeout values */
1681        skge_write8(hw, B3_MA_TOINI_RX1, 72);
1682        skge_write8(hw, B3_MA_TOINI_RX2, 72);
1683        skge_write8(hw, B3_MA_TOINI_TX1, 72);
1684        skge_write8(hw, B3_MA_TOINI_TX2, 72);
1685
1686        skge_write8(hw, B3_MA_RCINI_RX1, 0);
1687        skge_write8(hw, B3_MA_RCINI_RX2, 0);
1688        skge_write8(hw, B3_MA_RCINI_TX1, 0);
1689        skge_write8(hw, B3_MA_RCINI_TX2, 0);
1690
1691        /* Configure Rx MAC FIFO */
1692        skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1693        skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1694        skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1695
1696        /* Configure Tx MAC FIFO */
1697        skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1698        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1699        skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1700
1701        if (jumbo) {
1702                /* Enable frame flushing if jumbo frames used */
1703                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1704        } else {
1705                /* enable timeout timers if normal frames */
1706                skge_write16(hw, B3_PA_CTRL,
1707                             (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1708        }
1709}
1710
1711static void genesis_stop(struct skge_port *skge)
1712{
1713        struct skge_hw *hw = skge->hw;
1714        int port = skge->port;
1715        unsigned retries = 1000;
1716        u16 cmd;
1717
1718        /* Disable Tx and Rx */
1719        cmd = xm_read16(hw, port, XM_MMU_CMD);
1720        cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1721        xm_write16(hw, port, XM_MMU_CMD, cmd);
1722
1723        genesis_reset(hw, port);
1724
1725        /* Clear Tx packet arbiter timeout IRQ */
1726        skge_write16(hw, B3_PA_CTRL,
1727                     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1728
1729        /* Reset the MAC */
1730        skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1731        do {
1732                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1733                if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1734                        break;
1735        } while (--retries > 0);
1736
1737        /* For external PHYs there must be special handling */
1738        if (hw->phy_type != SK_PHY_XMAC) {
1739                u32 reg = skge_read32(hw, B2_GP_IO);
1740                if (port == 0) {
1741                        reg |= GP_DIR_0;
1742                        reg &= ~GP_IO_0;
1743                } else {
1744                        reg |= GP_DIR_2;
1745                        reg &= ~GP_IO_2;
1746                }
1747                skge_write32(hw, B2_GP_IO, reg);
1748                skge_read32(hw, B2_GP_IO);
1749        }
1750
1751        xm_write16(hw, port, XM_MMU_CMD,
1752                        xm_read16(hw, port, XM_MMU_CMD)
1753                        & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1754
1755        xm_read16(hw, port, XM_MMU_CMD);
1756}
1757
1758
1759static void genesis_get_stats(struct skge_port *skge, u64 *data)
1760{
1761        struct skge_hw *hw = skge->hw;
1762        int port = skge->port;
1763        int i;
1764        unsigned long timeout = jiffies + HZ;
1765
1766        xm_write16(hw, port,
1767                        XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1768
1769        /* wait for update to complete */
1770        while (xm_read16(hw, port, XM_STAT_CMD)
1771               & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1772                if (time_after(jiffies, timeout))
1773                        break;
1774                udelay(10);
1775        }
1776
1777        /* special case for 64 bit octet counter */
1778        data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1779                | xm_read32(hw, port, XM_TXO_OK_LO);
1780        data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1781                | xm_read32(hw, port, XM_RXO_OK_LO);
1782
1783        for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1784                data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1785}
1786
1787static void genesis_mac_intr(struct skge_hw *hw, int port)
1788{
1789        struct net_device *dev = hw->dev[port];
1790        struct skge_port *skge = netdev_priv(dev);
1791        u16 status = xm_read16(hw, port, XM_ISRC);
1792
1793        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1794                     "mac interrupt status 0x%x\n", status);
1795
1796        if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1797                xm_link_down(hw, port);
1798                mod_timer(&skge->link_timer, jiffies + 1);
1799        }
1800
1801        if (status & XM_IS_TXF_UR) {
1802                xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1803                ++dev->stats.tx_fifo_errors;
1804        }
1805}
1806
1807static void genesis_link_up(struct skge_port *skge)
1808{
1809        struct skge_hw *hw = skge->hw;
1810        int port = skge->port;
1811        u16 cmd, msk;
1812        u32 mode;
1813
1814        cmd = xm_read16(hw, port, XM_MMU_CMD);
1815
1816        /*
1817         * enabling pause frame reception is required for 1000BT
1818         * because the XMAC is not reset if the link is going down
1819         */
1820        if (skge->flow_status == FLOW_STAT_NONE ||
1821            skge->flow_status == FLOW_STAT_LOC_SEND)
1822                /* Disable Pause Frame Reception */
1823                cmd |= XM_MMU_IGN_PF;
1824        else
1825                /* Enable Pause Frame Reception */
1826                cmd &= ~XM_MMU_IGN_PF;
1827
1828        xm_write16(hw, port, XM_MMU_CMD, cmd);
1829
1830        mode = xm_read32(hw, port, XM_MODE);
1831        if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1832            skge->flow_status == FLOW_STAT_LOC_SEND) {
1833                /*
1834                 * Configure Pause Frame Generation
1835                 * Use internal and external Pause Frame Generation.
1836                 * Sending pause frames is edge triggered.
1837                 * Send a Pause frame with the maximum pause time if
1838                 * internal oder external FIFO full condition occurs.
1839                 * Send a zero pause time frame to re-start transmission.
1840                 */
1841                /* XM_PAUSE_DA = '010000C28001' (default) */
1842                /* XM_MAC_PTIME = 0xffff (maximum) */
1843                /* remember this value is defined in big endian (!) */
1844                xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1845
1846                mode |= XM_PAUSE_MODE;
1847                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1848        } else {
1849                /*
1850                 * disable pause frame generation is required for 1000BT
1851                 * because the XMAC is not reset if the link is going down
1852                 */
1853                /* Disable Pause Mode in Mode Register */
1854                mode &= ~XM_PAUSE_MODE;
1855
1856                skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1857        }
1858
1859        xm_write32(hw, port, XM_MODE, mode);
1860
1861        /* Turn on detection of Tx underrun */
1862        msk = xm_read16(hw, port, XM_IMSK);
1863        msk &= ~XM_IS_TXF_UR;
1864        xm_write16(hw, port, XM_IMSK, msk);
1865
1866        xm_read16(hw, port, XM_ISRC);
1867
1868        /* get MMU Command Reg. */
1869        cmd = xm_read16(hw, port, XM_MMU_CMD);
1870        if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1871                cmd |= XM_MMU_GMII_FD;
1872
1873        /*
1874         * Workaround BCOM Errata (#10523) for all BCom Phys
1875         * Enable Power Management after link up
1876         */
1877        if (hw->phy_type == SK_PHY_BCOM) {
1878                xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1879                             xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1880                             & ~PHY_B_AC_DIS_PM);
1881                xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1882        }
1883
1884        /* enable Rx/Tx */
1885        xm_write16(hw, port, XM_MMU_CMD,
1886                        cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1887        skge_link_up(skge);
1888}
1889
1890
1891static inline void bcom_phy_intr(struct skge_port *skge)
1892{
1893        struct skge_hw *hw = skge->hw;
1894        int port = skge->port;
1895        u16 isrc;
1896
1897        isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1898        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1899                     "phy interrupt status 0x%x\n", isrc);
1900
1901        if (isrc & PHY_B_IS_PSE)
1902                pr_err("%s: uncorrectable pair swap error\n",
1903                       hw->dev[port]->name);
1904
1905        /* Workaround BCom Errata:
1906         *      enable and disable loopback mode if "NO HCD" occurs.
1907         */
1908        if (isrc & PHY_B_IS_NO_HDCL) {
1909                u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1910                xm_phy_write(hw, port, PHY_BCOM_CTRL,
1911                                  ctrl | PHY_CT_LOOP);
1912                xm_phy_write(hw, port, PHY_BCOM_CTRL,
1913                                  ctrl & ~PHY_CT_LOOP);
1914        }
1915
1916        if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1917                bcom_check_link(hw, port);
1918
1919}
1920
1921static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1922{
1923        int i;
1924
1925        gma_write16(hw, port, GM_SMI_DATA, val);
1926        gma_write16(hw, port, GM_SMI_CTRL,
1927                         GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1928        for (i = 0; i < PHY_RETRIES; i++) {
1929                udelay(1);
1930
1931                if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1932                        return 0;
1933        }
1934
1935        pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
1936        return -EIO;
1937}
1938
1939static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1940{
1941        int i;
1942
1943        gma_write16(hw, port, GM_SMI_CTRL,
1944                         GM_SMI_CT_PHY_AD(hw->phy_addr)
1945                         | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1946
1947        for (i = 0; i < PHY_RETRIES; i++) {
1948                udelay(1);
1949                if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1950                        goto ready;
1951        }
1952
1953        return -ETIMEDOUT;
1954 ready:
1955        *val = gma_read16(hw, port, GM_SMI_DATA);
1956        return 0;
1957}
1958
1959static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1960{
1961        u16 v = 0;
1962        if (__gm_phy_read(hw, port, reg, &v))
1963                pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
1964        return v;
1965}
1966
1967/* Marvell Phy Initialization */
1968static void yukon_init(struct skge_hw *hw, int port)
1969{
1970        struct skge_port *skge = netdev_priv(hw->dev[port]);
1971        u16 ctrl, ct1000, adv;
1972
1973        if (skge->autoneg == AUTONEG_ENABLE) {
1974                u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1975
1976                ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1977                          PHY_M_EC_MAC_S_MSK);
1978                ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1979
1980                ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1981
1982                gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1983        }
1984
1985        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1986        if (skge->autoneg == AUTONEG_DISABLE)
1987                ctrl &= ~PHY_CT_ANE;
1988
1989        ctrl |= PHY_CT_RESET;
1990        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1991
1992        ctrl = 0;
1993        ct1000 = 0;
1994        adv = PHY_AN_CSMA;
1995
1996        if (skge->autoneg == AUTONEG_ENABLE) {
1997                if (hw->copper) {
1998                        if (skge->advertising & ADVERTISED_1000baseT_Full)
1999                                ct1000 |= PHY_M_1000C_AFD;
2000                        if (skge->advertising & ADVERTISED_1000baseT_Half)
2001                                ct1000 |= PHY_M_1000C_AHD;
2002                        if (skge->advertising & ADVERTISED_100baseT_Full)
2003                                adv |= PHY_M_AN_100_FD;
2004                        if (skge->advertising & ADVERTISED_100baseT_Half)
2005                                adv |= PHY_M_AN_100_HD;
2006                        if (skge->advertising & ADVERTISED_10baseT_Full)
2007                                adv |= PHY_M_AN_10_FD;
2008                        if (skge->advertising & ADVERTISED_10baseT_Half)
2009                                adv |= PHY_M_AN_10_HD;
2010
2011                        /* Set Flow-control capabilities */
2012                        adv |= phy_pause_map[skge->flow_control];
2013                } else {
2014                        if (skge->advertising & ADVERTISED_1000baseT_Full)
2015                                adv |= PHY_M_AN_1000X_AFD;
2016                        if (skge->advertising & ADVERTISED_1000baseT_Half)
2017                                adv |= PHY_M_AN_1000X_AHD;
2018
2019                        adv |= fiber_pause_map[skge->flow_control];
2020                }
2021
2022                /* Restart Auto-negotiation */
2023                ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2024        } else {
2025                /* forced speed/duplex settings */
2026                ct1000 = PHY_M_1000C_MSE;
2027
2028                if (skge->duplex == DUPLEX_FULL)
2029                        ctrl |= PHY_CT_DUP_MD;
2030
2031                switch (skge->speed) {
2032                case SPEED_1000:
2033                        ctrl |= PHY_CT_SP1000;
2034                        break;
2035                case SPEED_100:
2036                        ctrl |= PHY_CT_SP100;
2037                        break;
2038                }
2039
2040                ctrl |= PHY_CT_RESET;
2041        }
2042
2043        gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2044
2045        gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2046        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2047
2048        /* Enable phy interrupt on autonegotiation complete (or link up) */
2049        if (skge->autoneg == AUTONEG_ENABLE)
2050                gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2051        else
2052                gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2053}
2054
2055static void yukon_reset(struct skge_hw *hw, int port)
2056{
2057        gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2058        gma_write16(hw, port, GM_MC_ADDR_H1, 0);        /* clear MC hash */
2059        gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2060        gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2061        gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2062
2063        gma_write16(hw, port, GM_RX_CTRL,
2064                         gma_read16(hw, port, GM_RX_CTRL)
2065                         | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2066}
2067
2068/* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2069static int is_yukon_lite_a0(struct skge_hw *hw)
2070{
2071        u32 reg;
2072        int ret;
2073
2074        if (hw->chip_id != CHIP_ID_YUKON)
2075                return 0;
2076
2077        reg = skge_read32(hw, B2_FAR);
2078        skge_write8(hw, B2_FAR + 3, 0xff);
2079        ret = (skge_read8(hw, B2_FAR + 3) != 0);
2080        skge_write32(hw, B2_FAR, reg);
2081        return ret;
2082}
2083
2084static void yukon_mac_init(struct skge_hw *hw, int port)
2085{
2086        struct skge_port *skge = netdev_priv(hw->dev[port]);
2087        int i;
2088        u32 reg;
2089        const u8 *addr = hw->dev[port]->dev_addr;
2090
2091        /* WA code for COMA mode -- set PHY reset */
2092        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2093            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2094                reg = skge_read32(hw, B2_GP_IO);
2095                reg |= GP_DIR_9 | GP_IO_9;
2096                skge_write32(hw, B2_GP_IO, reg);
2097        }
2098
2099        /* hard reset */
2100        skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2101        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2102
2103        /* WA code for COMA mode -- clear PHY reset */
2104        if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2105            hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2106                reg = skge_read32(hw, B2_GP_IO);
2107                reg |= GP_DIR_9;
2108                reg &= ~GP_IO_9;
2109                skge_write32(hw, B2_GP_IO, reg);
2110        }
2111
2112        /* Set hardware config mode */
2113        reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2114                GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2115        reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2116
2117        /* Clear GMC reset */
2118        skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2119        skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2120        skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2121
2122        if (skge->autoneg == AUTONEG_DISABLE) {
2123                reg = GM_GPCR_AU_ALL_DIS;
2124                gma_write16(hw, port, GM_GP_CTRL,
2125                                 gma_read16(hw, port, GM_GP_CTRL) | reg);
2126
2127                switch (skge->speed) {
2128                case SPEED_1000:
2129                        reg &= ~GM_GPCR_SPEED_100;
2130                        reg |= GM_GPCR_SPEED_1000;
2131                        break;
2132                case SPEED_100:
2133                        reg &= ~GM_GPCR_SPEED_1000;
2134                        reg |= GM_GPCR_SPEED_100;
2135                        break;
2136                case SPEED_10:
2137                        reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2138                        break;
2139                }
2140
2141                if (skge->duplex == DUPLEX_FULL)
2142                        reg |= GM_GPCR_DUP_FULL;
2143        } else
2144                reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2145
2146        switch (skge->flow_control) {
2147        case FLOW_MODE_NONE:
2148                skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2149                reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2150                break;
2151        case FLOW_MODE_LOC_SEND:
2152                /* disable Rx flow-control */
2153                reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2154                break;
2155        case FLOW_MODE_SYMMETRIC:
2156        case FLOW_MODE_SYM_OR_REM:
2157                /* enable Tx & Rx flow-control */
2158                break;
2159        }
2160
2161        gma_write16(hw, port, GM_GP_CTRL, reg);
2162        skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2163
2164        yukon_init(hw, port);
2165
2166        /* MIB clear */
2167        reg = gma_read16(hw, port, GM_PHY_ADDR);
2168        gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2169
2170        for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2171                gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2172        gma_write16(hw, port, GM_PHY_ADDR, reg);
2173
2174        /* transmit control */
2175        gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2176
2177        /* receive control reg: unicast + multicast + no FCS  */
2178        gma_write16(hw, port, GM_RX_CTRL,
2179                         GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2180
2181        /* transmit flow control */
2182        gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2183
2184        /* transmit parameter */
2185        gma_write16(hw, port, GM_TX_PARAM,
2186                         TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2187                         TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2188                         TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2189
2190        /* configure the Serial Mode Register */
2191        reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2192                | GM_SMOD_VLAN_ENA
2193                | IPG_DATA_VAL(IPG_DATA_DEF);
2194
2195        if (hw->dev[port]->mtu > ETH_DATA_LEN)
2196                reg |= GM_SMOD_JUMBO_ENA;
2197
2198        gma_write16(hw, port, GM_SERIAL_MODE, reg);
2199
2200        /* physical address: used for pause frames */
2201        gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2202        /* virtual address for data */
2203        gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2204
2205        /* enable interrupt mask for counter overflows */
2206        gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2207        gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2208        gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2209
2210        /* Initialize Mac Fifo */
2211
2212        /* Configure Rx MAC FIFO */
2213        skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2214        reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2215
2216        /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2217        if (is_yukon_lite_a0(hw))
2218                reg &= ~GMF_RX_F_FL_ON;
2219
2220        skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2221        skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2222        /*
2223         * because Pause Packet Truncation in GMAC is not working
2224         * we have to increase the Flush Threshold to 64 bytes
2225         * in order to flush pause packets in Rx FIFO on Yukon-1
2226         */
2227        skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2228
2229        /* Configure Tx MAC FIFO */
2230        skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2231        skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2232}
2233
2234/* Go into power down mode */
2235static void yukon_suspend(struct skge_hw *hw, int port)
2236{
2237        u16 ctrl;
2238
2239        ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2240        ctrl |= PHY_M_PC_POL_R_DIS;
2241        gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2242
2243        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2244        ctrl |= PHY_CT_RESET;
2245        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2246
2247        /* switch IEEE compatible power down mode on */
2248        ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2249        ctrl |= PHY_CT_PDOWN;
2250        gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2251}
2252
2253static void yukon_stop(struct skge_port *skge)
2254{
2255        struct skge_hw *hw = skge->hw;
2256        int port = skge->port;
2257
2258        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2259        yukon_reset(hw, port);
2260
2261        gma_write16(hw, port, GM_GP_CTRL,
2262                         gma_read16(hw, port, GM_GP_CTRL)
2263                         & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2264        gma_read16(hw, port, GM_GP_CTRL);
2265
2266        yukon_suspend(hw, port);
2267
2268        /* set GPHY Control reset */
2269        skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2270        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2271}
2272
2273static void yukon_get_stats(struct skge_port *skge, u64 *data)
2274{
2275        struct skge_hw *hw = skge->hw;
2276        int port = skge->port;
2277        int i;
2278
2279        data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2280                | gma_read32(hw, port, GM_TXO_OK_LO);
2281        data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2282                | gma_read32(hw, port, GM_RXO_OK_LO);
2283
2284        for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2285                data[i] = gma_read32(hw, port,
2286                                          skge_stats[i].gma_offset);
2287}
2288
2289static void yukon_mac_intr(struct skge_hw *hw, int port)
2290{
2291        struct net_device *dev = hw->dev[port];
2292        struct skge_port *skge = netdev_priv(dev);
2293        u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2294
2295        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2296                     "mac interrupt status 0x%x\n", status);
2297
2298        if (status & GM_IS_RX_FF_OR) {
2299                ++dev->stats.rx_fifo_errors;
2300                skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2301        }
2302
2303        if (status & GM_IS_TX_FF_UR) {
2304                ++dev->stats.tx_fifo_errors;
2305                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2306        }
2307
2308}
2309
2310static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2311{
2312        switch (aux & PHY_M_PS_SPEED_MSK) {
2313        case PHY_M_PS_SPEED_1000:
2314                return SPEED_1000;
2315        case PHY_M_PS_SPEED_100:
2316                return SPEED_100;
2317        default:
2318                return SPEED_10;
2319        }
2320}
2321
2322static void yukon_link_up(struct skge_port *skge)
2323{
2324        struct skge_hw *hw = skge->hw;
2325        int port = skge->port;
2326        u16 reg;
2327
2328        /* Enable Transmit FIFO Underrun */
2329        skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2330
2331        reg = gma_read16(hw, port, GM_GP_CTRL);
2332        if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2333                reg |= GM_GPCR_DUP_FULL;
2334
2335        /* enable Rx/Tx */
2336        reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2337        gma_write16(hw, port, GM_GP_CTRL, reg);
2338
2339        gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2340        skge_link_up(skge);
2341}
2342
2343static void yukon_link_down(struct skge_port *skge)
2344{
2345        struct skge_hw *hw = skge->hw;
2346        int port = skge->port;
2347        u16 ctrl;
2348
2349        ctrl = gma_read16(hw, port, GM_GP_CTRL);
2350        ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2351        gma_write16(hw, port, GM_GP_CTRL, ctrl);
2352
2353        if (skge->flow_status == FLOW_STAT_REM_SEND) {
2354                ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2355                ctrl |= PHY_M_AN_ASP;
2356                /* restore Asymmetric Pause bit */
2357                gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2358        }
2359
2360        skge_link_down(skge);
2361
2362        yukon_init(hw, port);
2363}
2364
2365static void yukon_phy_intr(struct skge_port *skge)
2366{
2367        struct skge_hw *hw = skge->hw;
2368        int port = skge->port;
2369        const char *reason = NULL;
2370        u16 istatus, phystat;
2371
2372        istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2373        phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2374
2375        netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2376                     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2377
2378        if (istatus & PHY_M_IS_AN_COMPL) {
2379                if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2380                    & PHY_M_AN_RF) {
2381                        reason = "remote fault";
2382                        goto failed;
2383                }
2384
2385                if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2386                        reason = "master/slave fault";
2387                        goto failed;
2388                }
2389
2390                if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2391                        reason = "speed/duplex";
2392                        goto failed;
2393                }
2394
2395                skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2396                        ? DUPLEX_FULL : DUPLEX_HALF;
2397                skge->speed = yukon_speed(hw, phystat);
2398
2399                /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2400                switch (phystat & PHY_M_PS_PAUSE_MSK) {
2401                case PHY_M_PS_PAUSE_MSK:
2402                        skge->flow_status = FLOW_STAT_SYMMETRIC;
2403                        break;
2404                case PHY_M_PS_RX_P_EN:
2405                        skge->flow_status = FLOW_STAT_REM_SEND;
2406                        break;
2407                case PHY_M_PS_TX_P_EN:
2408                        skge->flow_status = FLOW_STAT_LOC_SEND;
2409                        break;
2410                default:
2411                        skge->flow_status = FLOW_STAT_NONE;
2412                }
2413
2414                if (skge->flow_status == FLOW_STAT_NONE ||
2415                    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2416                        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2417                else
2418                        skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2419                yukon_link_up(skge);
2420                return;
2421        }
2422
2423        if (istatus & PHY_M_IS_LSP_CHANGE)
2424                skge->speed = yukon_speed(hw, phystat);
2425
2426        if (istatus & PHY_M_IS_DUP_CHANGE)
2427                skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2428        if (istatus & PHY_M_IS_LST_CHANGE) {
2429                if (phystat & PHY_M_PS_LINK_UP)
2430                        yukon_link_up(skge);
2431                else
2432                        yukon_link_down(skge);
2433        }
2434        return;
2435 failed:
2436        pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2437
2438        /* XXX restart autonegotiation? */
2439}
2440
2441static void skge_phy_reset(struct skge_port *skge)
2442{
2443        struct skge_hw *hw = skge->hw;
2444        int port = skge->port;
2445        struct net_device *dev = hw->dev[port];
2446
2447        netif_stop_queue(skge->netdev);
2448        netif_carrier_off(skge->netdev);
2449
2450        spin_lock_bh(&hw->phy_lock);
2451        if (hw->chip_id == CHIP_ID_GENESIS) {
2452                genesis_reset(hw, port);
2453                genesis_mac_init(hw, port);
2454        } else {
2455                yukon_reset(hw, port);
2456                yukon_init(hw, port);
2457        }
2458        spin_unlock_bh(&hw->phy_lock);
2459
2460        skge_set_multicast(dev);
2461}
2462
2463/* Basic MII support */
2464static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2465{
2466        struct mii_ioctl_data *data = if_mii(ifr);
2467        struct skge_port *skge = netdev_priv(dev);
2468        struct skge_hw *hw = skge->hw;
2469        int err = -EOPNOTSUPP;
2470
2471        if (!netif_running(dev))
2472                return -ENODEV; /* Phy still in reset */
2473
2474        switch (cmd) {
2475        case SIOCGMIIPHY:
2476                data->phy_id = hw->phy_addr;
2477
2478                /* fallthru */
2479        case SIOCGMIIREG: {
2480                u16 val = 0;
2481                spin_lock_bh(&hw->phy_lock);
2482                if (hw->chip_id == CHIP_ID_GENESIS)
2483                        err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2484                else
2485                        err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2486                spin_unlock_bh(&hw->phy_lock);
2487                data->val_out = val;
2488                break;
2489        }
2490
2491        case SIOCSMIIREG:
2492                spin_lock_bh(&hw->phy_lock);
2493                if (hw->chip_id == CHIP_ID_GENESIS)
2494                        err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2495                                   data->val_in);
2496                else
2497                        err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2498                                   data->val_in);
2499                spin_unlock_bh(&hw->phy_lock);
2500                break;
2501        }
2502        return err;
2503}
2504
2505static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2506{
2507        u32 end;
2508
2509        start /= 8;
2510        len /= 8;
2511        end = start + len - 1;
2512
2513        skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2514        skge_write32(hw, RB_ADDR(q, RB_START), start);
2515        skge_write32(hw, RB_ADDR(q, RB_WP), start);
2516        skge_write32(hw, RB_ADDR(q, RB_RP), start);
2517        skge_write32(hw, RB_ADDR(q, RB_END), end);
2518
2519        if (q == Q_R1 || q == Q_R2) {
2520                /* Set thresholds on receive queue's */
2521                skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2522                             start + (2*len)/3);
2523                skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2524                             start + (len/3));
2525        } else {
2526                /* Enable store & forward on Tx queue's because
2527                 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2528                 */
2529                skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2530        }
2531
2532        skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2533}
2534
2535/* Setup Bus Memory Interface */
2536static void skge_qset(struct skge_port *skge, u16 q,
2537                      const struct skge_element *e)
2538{
2539        struct skge_hw *hw = skge->hw;
2540        u32 watermark = 0x600;
2541        u64 base = skge->dma + (e->desc - skge->mem);
2542
2543        /* optimization to reduce window on 32bit/33mhz */
2544        if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2545                watermark /= 2;
2546
2547        skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2548        skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2549        skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2550        skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2551}
2552
2553static int skge_up(struct net_device *dev)
2554{
2555        struct skge_port *skge = netdev_priv(dev);
2556        struct skge_hw *hw = skge->hw;
2557        int port = skge->port;
2558        u32 chunk, ram_addr;
2559        size_t rx_size, tx_size;
2560        int err;
2561
2562        if (!is_valid_ether_addr(dev->dev_addr))
2563                return -EINVAL;
2564
2565        netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2566
2567        if (dev->mtu > RX_BUF_SIZE)
2568                skge->rx_buf_size = dev->mtu + ETH_HLEN;
2569        else
2570                skge->rx_buf_size = RX_BUF_SIZE;
2571
2572
2573        rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2574        tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2575        skge->mem_size = tx_size + rx_size;
2576        skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2577        if (!skge->mem)
2578                return -ENOMEM;
2579
2580        BUG_ON(skge->dma & 7);
2581
2582        if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2583                dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2584                err = -EINVAL;
2585                goto free_pci_mem;
2586        }
2587
2588        memset(skge->mem, 0, skge->mem_size);
2589
2590        err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2591        if (err)
2592                goto free_pci_mem;
2593
2594        err = skge_rx_fill(dev);
2595        if (err)
2596                goto free_rx_ring;
2597
2598        err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2599                              skge->dma + rx_size);
2600        if (err)
2601                goto free_rx_ring;
2602
2603        /* Initialize MAC */
2604        spin_lock_bh(&hw->phy_lock);
2605        if (hw->chip_id == CHIP_ID_GENESIS)
2606                genesis_mac_init(hw, port);
2607        else
2608                yukon_mac_init(hw, port);
2609        spin_unlock_bh(&hw->phy_lock);
2610
2611        /* Configure RAMbuffers - equally between ports and tx/rx */
2612        chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2613        ram_addr = hw->ram_offset + 2 * chunk * port;
2614
2615        skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2616        skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2617
2618        BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2619        skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2620        skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2621
2622        /* Start receiver BMU */
2623        wmb();
2624        skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2625        skge_led(skge, LED_MODE_ON);
2626
2627        spin_lock_irq(&hw->hw_lock);
2628        hw->intr_mask |= portmask[port];
2629        skge_write32(hw, B0_IMSK, hw->intr_mask);
2630        spin_unlock_irq(&hw->hw_lock);
2631
2632        napi_enable(&skge->napi);
2633        return 0;
2634
2635 free_rx_ring:
2636        skge_rx_clean(skge);
2637        kfree(skge->rx_ring.start);
2638 free_pci_mem:
2639        pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2640        skge->mem = NULL;
2641
2642        return err;
2643}
2644
2645/* stop receiver */
2646static void skge_rx_stop(struct skge_hw *hw, int port)
2647{
2648        skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2649        skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2650                     RB_RST_SET|RB_DIS_OP_MD);
2651        skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2652}
2653
2654static int skge_down(struct net_device *dev)
2655{
2656        struct skge_port *skge = netdev_priv(dev);
2657        struct skge_hw *hw = skge->hw;
2658        int port = skge->port;
2659
2660        if (skge->mem == NULL)
2661                return 0;
2662
2663        netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2664
2665        netif_tx_disable(dev);
2666
2667        if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2668                del_timer_sync(&skge->link_timer);
2669
2670        napi_disable(&skge->napi);
2671        netif_carrier_off(dev);
2672
2673        spin_lock_irq(&hw->hw_lock);
2674        hw->intr_mask &= ~portmask[port];
2675        skge_write32(hw, B0_IMSK, hw->intr_mask);
2676        spin_unlock_irq(&hw->hw_lock);
2677
2678        skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2679        if (hw->chip_id == CHIP_ID_GENESIS)
2680                genesis_stop(skge);
2681        else
2682                yukon_stop(skge);
2683
2684        /* Stop transmitter */
2685        skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2686        skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2687                     RB_RST_SET|RB_DIS_OP_MD);
2688
2689
2690        /* Disable Force Sync bit and Enable Alloc bit */
2691        skge_write8(hw, SK_REG(port, TXA_CTRL),
2692                    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2693
2694        /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2695        skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2696        skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2697
2698        /* Reset PCI FIFO */
2699        skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2700        skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2701
2702        /* Reset the RAM Buffer async Tx queue */
2703        skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2704
2705        skge_rx_stop(hw, port);
2706
2707        if (hw->chip_id == CHIP_ID_GENESIS) {
2708                skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2709                skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2710        } else {
2711                skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2712                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2713        }
2714
2715        skge_led(skge, LED_MODE_OFF);
2716
2717        netif_tx_lock_bh(dev);
2718        skge_tx_clean(dev);
2719        netif_tx_unlock_bh(dev);
2720
2721        skge_rx_clean(skge);
2722
2723        kfree(skge->rx_ring.start);
2724        kfree(skge->tx_ring.start);
2725        pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2726        skge->mem = NULL;
2727        return 0;
2728}
2729
2730static inline int skge_avail(const struct skge_ring *ring)
2731{
2732        smp_mb();
2733        return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2734                + (ring->to_clean - ring->to_use) - 1;
2735}
2736
2737static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2738                                   struct net_device *dev)
2739{
2740        struct skge_port *skge = netdev_priv(dev);
2741        struct skge_hw *hw = skge->hw;
2742        struct skge_element *e;
2743        struct skge_tx_desc *td;
2744        int i;
2745        u32 control, len;
2746        u64 map;
2747
2748        if (skb_padto(skb, ETH_ZLEN))
2749                return NETDEV_TX_OK;
2750
2751        if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2752                return NETDEV_TX_BUSY;
2753
2754        e = skge->tx_ring.to_use;
2755        td = e->desc;
2756        BUG_ON(td->control & BMU_OWN);
2757        e->skb = skb;
2758        len = skb_headlen(skb);
2759        map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2760        dma_unmap_addr_set(e, mapaddr, map);
2761        dma_unmap_len_set(e, maplen, len);
2762
2763        td->dma_lo = map;
2764        td->dma_hi = map >> 32;
2765
2766        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2767                const int offset = skb_checksum_start_offset(skb);
2768
2769                /* This seems backwards, but it is what the sk98lin
2770                 * does.  Looks like hardware is wrong?
2771                 */
2772                if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2773                    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2774                        control = BMU_TCP_CHECK;
2775                else
2776                        control = BMU_UDP_CHECK;
2777
2778                td->csum_offs = 0;
2779                td->csum_start = offset;
2780                td->csum_write = offset + skb->csum_offset;
2781        } else
2782                control = BMU_CHECK;
2783
2784        if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2785                control |= BMU_EOF | BMU_IRQ_EOF;
2786        else {
2787                struct skge_tx_desc *tf = td;
2788
2789                control |= BMU_STFWD;
2790                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2791                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2792
2793                        map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2794                                           frag->size, PCI_DMA_TODEVICE);
2795
2796                        e = e->next;
2797                        e->skb = skb;
2798                        tf = e->desc;
2799                        BUG_ON(tf->control & BMU_OWN);
2800
2801                        tf->dma_lo = map;
2802                        tf->dma_hi = (u64) map >> 32;
2803                        dma_unmap_addr_set(e, mapaddr, map);
2804                        dma_unmap_len_set(e, maplen, frag->size);
2805
2806                        tf->control = BMU_OWN | BMU_SW | control | frag->size;
2807                }
2808                tf->control |= BMU_EOF | BMU_IRQ_EOF;
2809        }
2810        /* Make sure all the descriptors written */
2811        wmb();
2812        td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2813        wmb();
2814
2815        skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2816
2817        netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2818                     "tx queued, slot %td, len %d\n",
2819                     e - skge->tx_ring.start, skb->len);
2820
2821        skge->tx_ring.to_use = e->next;
2822        smp_wmb();
2823
2824        if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2825                netdev_dbg(dev, "transmit queue full\n");
2826                netif_stop_queue(dev);
2827        }
2828
2829        return NETDEV_TX_OK;
2830}
2831
2832
2833/* Free resources associated with this reing element */
2834static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2835                         u32 control)
2836{
2837        struct pci_dev *pdev = skge->hw->pdev;
2838
2839        /* skb header vs. fragment */
2840        if (control & BMU_STF)
2841                pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2842                                 dma_unmap_len(e, maplen),
2843                                 PCI_DMA_TODEVICE);
2844        else
2845                pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2846                               dma_unmap_len(e, maplen),
2847                               PCI_DMA_TODEVICE);
2848
2849        if (control & BMU_EOF) {
2850                netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
2851                             "tx done slot %td\n", e - skge->tx_ring.start);
2852
2853                dev_kfree_skb(e->skb);
2854        }
2855}
2856
2857/* Free all buffers in transmit ring */
2858static void skge_tx_clean(struct net_device *dev)
2859{
2860        struct skge_port *skge = netdev_priv(dev);
2861        struct skge_element *e;
2862
2863        for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2864                struct skge_tx_desc *td = e->desc;
2865                skge_tx_free(skge, e, td->control);
2866                td->control = 0;
2867        }
2868
2869        skge->tx_ring.to_clean = e;
2870}
2871
2872static void skge_tx_timeout(struct net_device *dev)
2873{
2874        struct skge_port *skge = netdev_priv(dev);
2875
2876        netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2877
2878        skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2879        skge_tx_clean(dev);
2880        netif_wake_queue(dev);
2881}
2882
2883static int skge_change_mtu(struct net_device *dev, int new_mtu)
2884{
2885        int err;
2886
2887        if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2888                return -EINVAL;
2889
2890        if (!netif_running(dev)) {
2891                dev->mtu = new_mtu;
2892                return 0;
2893        }
2894
2895        skge_down(dev);
2896
2897        dev->mtu = new_mtu;
2898
2899        err = skge_up(dev);
2900        if (err)
2901                dev_close(dev);
2902
2903        return err;
2904}
2905
2906static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2907
2908static void genesis_add_filter(u8 filter[8], const u8 *addr)
2909{
2910        u32 crc, bit;
2911
2912        crc = ether_crc_le(ETH_ALEN, addr);
2913        bit = ~crc & 0x3f;
2914        filter[bit/8] |= 1 << (bit%8);
2915}
2916
2917static void genesis_set_multicast(struct net_device *dev)
2918{
2919        struct skge_port *skge = netdev_priv(dev);
2920        struct skge_hw *hw = skge->hw;
2921        int port = skge->port;
2922        struct netdev_hw_addr *ha;
2923        u32 mode;
2924        u8 filter[8];
2925
2926        mode = xm_read32(hw, port, XM_MODE);
2927        mode |= XM_MD_ENA_HASH;
2928        if (dev->flags & IFF_PROMISC)
2929                mode |= XM_MD_ENA_PROM;
2930        else
2931                mode &= ~XM_MD_ENA_PROM;
2932
2933        if (dev->flags & IFF_ALLMULTI)
2934                memset(filter, 0xff, sizeof(filter));
2935        else {
2936                memset(filter, 0, sizeof(filter));
2937
2938                if (skge->flow_status == FLOW_STAT_REM_SEND ||
2939                    skge->flow_status == FLOW_STAT_SYMMETRIC)
2940                        genesis_add_filter(filter, pause_mc_addr);
2941
2942                netdev_for_each_mc_addr(ha, dev)
2943                        genesis_add_filter(filter, ha->addr);
2944        }
2945
2946        xm_write32(hw, port, XM_MODE, mode);
2947        xm_outhash(hw, port, XM_HSM, filter);
2948}
2949
2950static void yukon_add_filter(u8 filter[8], const u8 *addr)
2951{
2952         u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2953         filter[bit/8] |= 1 << (bit%8);
2954}
2955
2956static void yukon_set_multicast(struct net_device *dev)
2957{
2958        struct skge_port *skge = netdev_priv(dev);
2959        struct skge_hw *hw = skge->hw;
2960        int port = skge->port;
2961        struct netdev_hw_addr *ha;
2962        int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2963                        skge->flow_status == FLOW_STAT_SYMMETRIC);
2964        u16 reg;
2965        u8 filter[8];
2966
2967        memset(filter, 0, sizeof(filter));
2968
2969        reg = gma_read16(hw, port, GM_RX_CTRL);
2970        reg |= GM_RXCR_UCF_ENA;
2971
2972        if (dev->flags & IFF_PROMISC)           /* promiscuous */
2973                reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2974        else if (dev->flags & IFF_ALLMULTI)     /* all multicast */
2975                memset(filter, 0xff, sizeof(filter));
2976        else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2977                reg &= ~GM_RXCR_MCF_ENA;
2978        else {
2979                reg |= GM_RXCR_MCF_ENA;
2980
2981                if (rx_pause)
2982                        yukon_add_filter(filter, pause_mc_addr);
2983
2984                netdev_for_each_mc_addr(ha, dev)
2985                        yukon_add_filter(filter, ha->addr);
2986        }
2987
2988
2989        gma_write16(hw, port, GM_MC_ADDR_H1,
2990                         (u16)filter[0] | ((u16)filter[1] << 8));
2991        gma_write16(hw, port, GM_MC_ADDR_H2,
2992                         (u16)filter[2] | ((u16)filter[3] << 8));
2993        gma_write16(hw, port, GM_MC_ADDR_H3,
2994                         (u16)filter[4] | ((u16)filter[5] << 8));
2995        gma_write16(hw, port, GM_MC_ADDR_H4,
2996                         (u16)filter[6] | ((u16)filter[7] << 8));
2997
2998        gma_write16(hw, port, GM_RX_CTRL, reg);
2999}
3000
3001static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3002{
3003        if (hw->chip_id == CHIP_ID_GENESIS)
3004                return status >> XMR_FS_LEN_SHIFT;
3005        else
3006                return status >> GMR_FS_LEN_SHIFT;
3007}
3008
3009static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3010{
3011        if (hw->chip_id == CHIP_ID_GENESIS)
3012                return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3013        else
3014                return (status & GMR_FS_ANY_ERR) ||
3015                        (status & GMR_FS_RX_OK) == 0;
3016}
3017
3018static void skge_set_multicast(struct net_device *dev)
3019{
3020        struct skge_port *skge = netdev_priv(dev);
3021        struct skge_hw *hw = skge->hw;
3022
3023        if (hw->chip_id == CHIP_ID_GENESIS)
3024                genesis_set_multicast(dev);
3025        else
3026                yukon_set_multicast(dev);
3027
3028}
3029
3030
3031/* Get receive buffer from descriptor.
3032 * Handles copy of small buffers and reallocation failures
3033 */
3034static struct sk_buff *skge_rx_get(struct net_device *dev,
3035                                   struct skge_element *e,
3036                                   u32 control, u32 status, u16 csum)
3037{
3038        struct skge_port *skge = netdev_priv(dev);
3039        struct sk_buff *skb;
3040        u16 len = control & BMU_BBC;
3041
3042        netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3043                     "rx slot %td status 0x%x len %d\n",
3044                     e - skge->rx_ring.start, status, len);
3045
3046        if (len > skge->rx_buf_size)
3047                goto error;
3048
3049        if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3050                goto error;
3051
3052        if (bad_phy_status(skge->hw, status))
3053                goto error;
3054
3055        if (phy_length(skge->hw, status) != len)
3056                goto error;
3057
3058        if (len < RX_COPY_THRESHOLD) {
3059                skb = netdev_alloc_skb_ip_align(dev, len);
3060                if (!skb)
3061                        goto resubmit;
3062
3063                pci_dma_sync_single_for_cpu(skge->hw->pdev,
3064                                            dma_unmap_addr(e, mapaddr),
3065                                            len, PCI_DMA_FROMDEVICE);
3066                skb_copy_from_linear_data(e->skb, skb->data, len);
3067                pci_dma_sync_single_for_device(skge->hw->pdev,
3068                                               dma_unmap_addr(e, mapaddr),
3069                                               len, PCI_DMA_FROMDEVICE);
3070                skge_rx_reuse(e, skge->rx_buf_size);
3071        } else {
3072                struct sk_buff *nskb;
3073
3074                nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3075                if (!nskb)
3076                        goto resubmit;
3077
3078                pci_unmap_single(skge->hw->pdev,
3079                                 dma_unmap_addr(e, mapaddr),
3080                                 dma_unmap_len(e, maplen),
3081                                 PCI_DMA_FROMDEVICE);
3082                skb = e->skb;
3083                prefetch(skb->data);
3084                skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3085        }
3086
3087        skb_put(skb, len);
3088        if (skge->rx_csum) {
3089                skb->csum = csum;
3090                skb->ip_summed = CHECKSUM_COMPLETE;
3091        }
3092
3093        skb->protocol = eth_type_trans(skb, dev);
3094
3095        return skb;
3096error:
3097
3098        netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3099                     "rx err, slot %td control 0x%x status 0x%x\n",
3100                     e - skge->rx_ring.start, control, status);
3101
3102        if (skge->hw->chip_id == CHIP_ID_GENESIS) {
3103                if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3104                        dev->stats.rx_length_errors++;
3105                if (status & XMR_FS_FRA_ERR)
3106                        dev->stats.rx_frame_errors++;
3107                if (status & XMR_FS_FCS_ERR)
3108                        dev->stats.rx_crc_errors++;
3109        } else {
3110                if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3111                        dev->stats.rx_length_errors++;
3112                if (status & GMR_FS_FRAGMENT)
3113                        dev->stats.rx_frame_errors++;
3114                if (status & GMR_FS_CRC_ERR)
3115                        dev->stats.rx_crc_errors++;
3116        }
3117
3118resubmit:
3119        skge_rx_reuse(e, skge->rx_buf_size);
3120        return NULL;
3121}
3122
3123/* Free all buffers in Tx ring which are no longer owned by device */
3124static void skge_tx_done(struct net_device *dev)
3125{
3126        struct skge_port *skge = netdev_priv(dev);
3127        struct skge_ring *ring = &skge->tx_ring;
3128        struct skge_element *e;
3129
3130        skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3131
3132        for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3133                u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3134
3135                if (control & BMU_OWN)
3136                        break;
3137
3138                skge_tx_free(skge, e, control);
3139        }
3140        skge->tx_ring.to_clean = e;
3141
3142        /* Can run lockless until we need to synchronize to restart queue. */
3143        smp_mb();
3144
3145        if (unlikely(netif_queue_stopped(dev) &&
3146                     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3147                netif_tx_lock(dev);
3148                if (unlikely(netif_queue_stopped(dev) &&
3149                             skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3150                        netif_wake_queue(dev);
3151
3152                }
3153                netif_tx_unlock(dev);
3154        }
3155}
3156
3157static int skge_poll(struct napi_struct *napi, int to_do)
3158{
3159        struct skge_port *skge = container_of(napi, struct skge_port, napi);
3160        struct net_device *dev = skge->netdev;
3161        struct skge_hw *hw = skge->hw;
3162        struct skge_ring *ring = &skge->rx_ring;
3163        struct skge_element *e;
3164        int work_done = 0;
3165
3166        skge_tx_done(dev);
3167
3168        skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3169
3170        for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3171                struct skge_rx_desc *rd = e->desc;
3172                struct sk_buff *skb;
3173                u32 control;
3174
3175                rmb();
3176                control = rd->control;
3177                if (control & BMU_OWN)
3178                        break;
3179
3180                skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3181                if (likely(skb)) {
3182                        napi_gro_receive(napi, skb);
3183                        ++work_done;
3184                }
3185        }
3186        ring->to_clean = e;
3187
3188        /* restart receiver */
3189        wmb();
3190        skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3191
3192        if (work_done < to_do) {
3193                unsigned long flags;
3194
3195                napi_gro_flush(napi);
3196                spin_lock_irqsave(&hw->hw_lock, flags);
3197                __napi_complete(napi);
3198                hw->intr_mask |= napimask[skge->port];
3199                skge_write32(hw, B0_IMSK, hw->intr_mask);
3200                skge_read32(hw, B0_IMSK);
3201                spin_unlock_irqrestore(&hw->hw_lock, flags);
3202        }
3203
3204        return work_done;
3205}
3206
3207/* Parity errors seem to happen when Genesis is connected to a switch
3208 * with no other ports present. Heartbeat error??
3209 */
3210static void skge_mac_parity(struct skge_hw *hw, int port)
3211{
3212        struct net_device *dev = hw->dev[port];
3213
3214        ++dev->stats.tx_heartbeat_errors;
3215
3216        if (hw->chip_id == CHIP_ID_GENESIS)
3217                skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3218                             MFF_CLR_PERR);
3219        else
3220                /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3221                skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3222                            (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3223                            ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3224}
3225
3226static void skge_mac_intr(struct skge_hw *hw, int port)
3227{
3228        if (hw->chip_id == CHIP_ID_GENESIS)
3229                genesis_mac_intr(hw, port);
3230        else
3231                yukon_mac_intr(hw, port);
3232}
3233
3234/* Handle device specific framing and timeout interrupts */
3235static void skge_error_irq(struct skge_hw *hw)
3236{
3237        struct pci_dev *pdev = hw->pdev;
3238        u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3239
3240        if (hw->chip_id == CHIP_ID_GENESIS) {
3241                /* clear xmac errors */
3242                if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3243                        skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3244                if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3245                        skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3246        } else {
3247                /* Timestamp (unused) overflow */
3248                if (hwstatus & IS_IRQ_TIST_OV)
3249                        skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3250        }
3251
3252        if (hwstatus & IS_RAM_RD_PAR) {
3253                dev_err(&pdev->dev, "Ram read data parity error\n");
3254                skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3255        }
3256
3257        if (hwstatus & IS_RAM_WR_PAR) {
3258                dev_err(&pdev->dev, "Ram write data parity error\n");
3259                skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3260        }
3261
3262        if (hwstatus & IS_M1_PAR_ERR)
3263                skge_mac_parity(hw, 0);
3264
3265        if (hwstatus & IS_M2_PAR_ERR)
3266                skge_mac_parity(hw, 1);
3267
3268        if (hwstatus & IS_R1_PAR_ERR) {
3269                dev_err(&pdev->dev, "%s: receive queue parity error\n",
3270                        hw->dev[0]->name);
3271                skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3272        }
3273
3274        if (hwstatus & IS_R2_PAR_ERR) {
3275                dev_err(&pdev->dev, "%s: receive queue parity error\n",
3276                        hw->dev[1]->name);
3277                skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3278        }
3279
3280        if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3281                u16 pci_status, pci_cmd;
3282
3283                pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3284                pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3285
3286                dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3287                        pci_cmd, pci_status);
3288
3289                /* Write the error bits back to clear them. */
3290                pci_status &= PCI_STATUS_ERROR_BITS;
3291                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3292                pci_write_config_word(pdev, PCI_COMMAND,
3293                                      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3294                pci_write_config_word(pdev, PCI_STATUS, pci_status);
3295                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3296
3297                /* if error still set then just ignore it */
3298                hwstatus = skge_read32(hw, B0_HWE_ISRC);
3299                if (hwstatus & IS_IRQ_STAT) {
3300                        dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3301                        hw->intr_mask &= ~IS_HW_ERR;
3302                }
3303        }
3304}
3305
3306/*
3307 * Interrupt from PHY are handled in tasklet (softirq)
3308 * because accessing phy registers requires spin wait which might
3309 * cause excess interrupt latency.
3310 */
3311static void skge_extirq(unsigned long arg)
3312{
3313        struct skge_hw *hw = (struct skge_hw *) arg;
3314        int port;
3315
3316        for (port = 0; port < hw->ports; port++) {
3317                struct net_device *dev = hw->dev[port];
3318
3319                if (netif_running(dev)) {
3320                        struct skge_port *skge = netdev_priv(dev);
3321
3322                        spin_lock(&hw->phy_lock);
3323                        if (hw->chip_id != CHIP_ID_GENESIS)
3324                                yukon_phy_intr(skge);
3325                        else if (hw->phy_type == SK_PHY_BCOM)
3326                                bcom_phy_intr(skge);
3327                        spin_unlock(&hw->phy_lock);
3328                }
3329        }
3330
3331        spin_lock_irq(&hw->hw_lock);
3332        hw->intr_mask |= IS_EXT_REG;
3333        skge_write32(hw, B0_IMSK, hw->intr_mask);
3334        skge_read32(hw, B0_IMSK);
3335        spin_unlock_irq(&hw->hw_lock);
3336}
3337
3338static irqreturn_t skge_intr(int irq, void *dev_id)
3339{
3340        struct skge_hw *hw = dev_id;
3341        u32 status;
3342        int handled = 0;
3343
3344        spin_lock(&hw->hw_lock);
3345        /* Reading this register masks IRQ */
3346        status = skge_read32(hw, B0_SP_ISRC);
3347        if (status == 0 || status == ~0)
3348                goto out;
3349
3350        handled = 1;
3351        status &= hw->intr_mask;
3352        if (status & IS_EXT_REG) {
3353                hw->intr_mask &= ~IS_EXT_REG;
3354                tasklet_schedule(&hw->phy_task);
3355        }
3356
3357        if (status & (IS_XA1_F|IS_R1_F)) {
3358                struct skge_port *skge = netdev_priv(hw->dev[0]);
3359                hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3360                napi_schedule(&skge->napi);
3361        }
3362
3363        if (status & IS_PA_TO_TX1)
3364                skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3365
3366        if (status & IS_PA_TO_RX1) {
3367                ++hw->dev[0]->stats.rx_over_errors;
3368                skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3369        }
3370
3371
3372        if (status & IS_MAC1)
3373                skge_mac_intr(hw, 0);
3374
3375        if (hw->dev[1]) {
3376                struct skge_port *skge = netdev_priv(hw->dev[1]);
3377
3378                if (status & (IS_XA2_F|IS_R2_F)) {
3379                        hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3380                        napi_schedule(&skge->napi);
3381                }
3382
3383                if (status & IS_PA_TO_RX2) {
3384                        ++hw->dev[1]->stats.rx_over_errors;
3385                        skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3386                }
3387
3388                if (status & IS_PA_TO_TX2)
3389                        skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3390
3391                if (status & IS_MAC2)
3392                        skge_mac_intr(hw, 1);
3393        }
3394
3395        if (status & IS_HW_ERR)
3396                skge_error_irq(hw);
3397
3398        skge_write32(hw, B0_IMSK, hw->intr_mask);
3399        skge_read32(hw, B0_IMSK);
3400out:
3401        spin_unlock(&hw->hw_lock);
3402
3403        return IRQ_RETVAL(handled);
3404}
3405
3406#ifdef CONFIG_NET_POLL_CONTROLLER
3407static void skge_netpoll(struct net_device *dev)
3408{
3409        struct skge_port *skge = netdev_priv(dev);
3410
3411        disable_irq(dev->irq);
3412        skge_intr(dev->irq, skge->hw);
3413        enable_irq(dev->irq);
3414}
3415#endif
3416
3417static int skge_set_mac_address(struct net_device *dev, void *p)
3418{
3419        struct skge_port *skge = netdev_priv(dev);
3420        struct skge_hw *hw = skge->hw;
3421        unsigned port = skge->port;
3422        const struct sockaddr *addr = p;
3423        u16 ctrl;
3424
3425        if (!is_valid_ether_addr(addr->sa_data))
3426                return -EADDRNOTAVAIL;
3427
3428        memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3429
3430        if (!netif_running(dev)) {
3431                memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3432                memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3433        } else {
3434                /* disable Rx */
3435                spin_lock_bh(&hw->phy_lock);
3436                ctrl = gma_read16(hw, port, GM_GP_CTRL);
3437                gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3438
3439                memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3440                memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3441
3442                if (hw->chip_id == CHIP_ID_GENESIS)
3443                        xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3444                else {
3445                        gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3446                        gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3447                }
3448
3449                gma_write16(hw, port, GM_GP_CTRL, ctrl);
3450                spin_unlock_bh(&hw->phy_lock);
3451        }
3452
3453        return 0;
3454}
3455
3456static const struct {
3457        u8 id;
3458        const char *name;
3459} skge_chips[] = {
3460        { CHIP_ID_GENESIS,      "Genesis" },
3461        { CHIP_ID_YUKON,         "Yukon" },
3462        { CHIP_ID_YUKON_LITE,    "Yukon-Lite"},
3463        { CHIP_ID_YUKON_LP,      "Yukon-LP"},
3464};
3465
3466static const char *skge_board_name(const struct skge_hw *hw)
3467{
3468        int i;
3469        static char buf[16];
3470
3471        for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3472                if (skge_chips[i].id == hw->chip_id)
3473                        return skge_chips[i].name;
3474
3475        snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3476        return buf;
3477}
3478
3479
3480/*
3481 * Setup the board data structure, but don't bring up
3482 * the port(s)
3483 */
3484static int skge_reset(struct skge_hw *hw)
3485{
3486        u32 reg;
3487        u16 ctst, pci_status;
3488        u8 t8, mac_cfg, pmd_type;
3489        int i;
3490
3491        ctst = skge_read16(hw, B0_CTST);
3492
3493        /* do a SW reset */
3494        skge_write8(hw, B0_CTST, CS_RST_SET);
3495        skge_write8(hw, B0_CTST, CS_RST_CLR);
3496
3497        /* clear PCI errors, if any */
3498        skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3499        skge_write8(hw, B2_TST_CTRL2, 0);
3500
3501        pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3502        pci_write_config_word(hw->pdev, PCI_STATUS,
3503                              pci_status | PCI_STATUS_ERROR_BITS);
3504        skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3505        skge_write8(hw, B0_CTST, CS_MRST_CLR);
3506
3507        /* restore CLK_RUN bits (for Yukon-Lite) */
3508        skge_write16(hw, B0_CTST,
3509                     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3510
3511        hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3512        hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3513        pmd_type = skge_read8(hw, B2_PMD_TYP);
3514        hw->copper = (pmd_type == 'T' || pmd_type == '1');
3515
3516        switch (hw->chip_id) {
3517        case CHIP_ID_GENESIS:
3518                switch (hw->phy_type) {
3519                case SK_PHY_XMAC:
3520                        hw->phy_addr = PHY_ADDR_XMAC;
3521                        break;
3522                case SK_PHY_BCOM:
3523                        hw->phy_addr = PHY_ADDR_BCOM;
3524                        break;
3525                default:
3526                        dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3527                               hw->phy_type);
3528                        return -EOPNOTSUPP;
3529                }
3530                break;
3531
3532        case CHIP_ID_YUKON:
3533        case CHIP_ID_YUKON_LITE:
3534        case CHIP_ID_YUKON_LP:
3535                if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3536                        hw->copper = 1;
3537
3538                hw->phy_addr = PHY_ADDR_MARV;
3539                break;
3540
3541        default:
3542                dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3543                       hw->chip_id);
3544                return -EOPNOTSUPP;
3545        }
3546
3547        mac_cfg = skge_read8(hw, B2_MAC_CFG);
3548        hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3549        hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3550
3551        /* read the adapters RAM size */
3552        t8 = skge_read8(hw, B2_E_0);
3553        if (hw->chip_id == CHIP_ID_GENESIS) {
3554                if (t8 == 3) {
3555                        /* special case: 4 x 64k x 36, offset = 0x80000 */
3556                        hw->ram_size = 0x100000;
3557                        hw->ram_offset = 0x80000;
3558                } else
3559                        hw->ram_size = t8 * 512;
3560        } else if (t8 == 0)
3561                hw->ram_size = 0x20000;
3562        else
3563                hw->ram_size = t8 * 4096;
3564
3565        hw->intr_mask = IS_HW_ERR;
3566
3567        /* Use PHY IRQ for all but fiber based Genesis board */
3568        if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3569                hw->intr_mask |= IS_EXT_REG;
3570
3571        if (hw->chip_id == CHIP_ID_GENESIS)
3572                genesis_init(hw);
3573        else {
3574                /* switch power to VCC (WA for VAUX problem) */
3575                skge_write8(hw, B0_POWER_CTRL,
3576                            PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3577
3578                /* avoid boards with stuck Hardware error bits */
3579                if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3580                    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3581                        dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3582                        hw->intr_mask &= ~IS_HW_ERR;
3583                }
3584
3585                /* Clear PHY COMA */
3586                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3587                pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3588                reg &= ~PCI_PHY_COMA;
3589                pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3590                skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3591
3592
3593                for (i = 0; i < hw->ports; i++) {
3594                        skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3595                        skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3596                }
3597        }
3598
3599        /* turn off hardware timer (unused) */
3600        skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3601        skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3602        skge_write8(hw, B0_LED, LED_STAT_ON);
3603
3604        /* enable the Tx Arbiters */
3605        for (i = 0; i < hw->ports; i++)
3606                skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3607
3608        /* Initialize ram interface */
3609        skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3610
3611        skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3612        skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3613        skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3614        skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3615        skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3616        skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3617        skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3618        skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3619        skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3620        skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3621        skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3622        skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3623
3624        skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3625
3626        /* Set interrupt moderation for Transmit only
3627         * Receive interrupts avoided by NAPI
3628         */
3629        skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3630        skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3631        skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3632
3633        skge_write32(hw, B0_IMSK, hw->intr_mask);
3634
3635        for (i = 0; i < hw->ports; i++) {
3636                if (hw->chip_id == CHIP_ID_GENESIS)
3637                        genesis_reset(hw, i);
3638                else
3639                        yukon_reset(hw, i);
3640        }
3641
3642        return 0;
3643}
3644
3645
3646#ifdef CONFIG_SKGE_DEBUG
3647
3648static struct dentry *skge_debug;
3649
3650static int skge_debug_show(struct seq_file *seq, void *v)
3651{
3652        struct net_device *dev = seq->private;
3653        const struct skge_port *skge = netdev_priv(dev);
3654        const struct skge_hw *hw = skge->hw;
3655        const struct skge_element *e;
3656
3657        if (!netif_running(dev))
3658                return -ENETDOWN;
3659
3660        seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3661                   skge_read32(hw, B0_IMSK));
3662
3663        seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3664        for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3665                const struct skge_tx_desc *t = e->desc;
3666                seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3667                           t->control, t->dma_hi, t->dma_lo, t->status,
3668                           t->csum_offs, t->csum_write, t->csum_start);
3669        }
3670
3671        seq_printf(seq, "\nRx Ring:\n");
3672        for (e = skge->rx_ring.to_clean; ; e = e->next) {
3673                const struct skge_rx_desc *r = e->desc;
3674
3675                if (r->control & BMU_OWN)
3676                        break;
3677
3678                seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3679                           r->control, r->dma_hi, r->dma_lo, r->status,
3680                           r->timestamp, r->csum1, r->csum1_start);
3681        }
3682
3683        return 0;
3684}
3685
3686static int skge_debug_open(struct inode *inode, struct file *file)
3687{
3688        return single_open(file, skge_debug_show, inode->i_private);
3689}
3690
3691static const struct file_operations skge_debug_fops = {
3692        .owner          = THIS_MODULE,
3693        .open           = skge_debug_open,
3694        .read           = seq_read,
3695        .llseek         = seq_lseek,
3696        .release        = single_release,
3697};
3698
3699/*
3700 * Use network device events to create/remove/rename
3701 * debugfs file entries
3702 */
3703static int skge_device_event(struct notifier_block *unused,
3704                             unsigned long event, void *ptr)
3705{
3706        struct net_device *dev = ptr;
3707        struct skge_port *skge;
3708        struct dentry *d;
3709
3710        if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3711                goto done;
3712
3713        skge = netdev_priv(dev);
3714        switch (event) {
3715        case NETDEV_CHANGENAME:
3716                if (skge->debugfs) {
3717                        d = debugfs_rename(skge_debug, skge->debugfs,
3718                                           skge_debug, dev->name);
3719                        if (d)
3720                                skge->debugfs = d;
3721                        else {
3722                                netdev_info(dev, "rename failed\n");
3723                                debugfs_remove(skge->debugfs);
3724                        }
3725                }
3726                break;
3727
3728        case NETDEV_GOING_DOWN:
3729                if (skge->debugfs) {
3730                        debugfs_remove(skge->debugfs);
3731                        skge->debugfs = NULL;
3732                }
3733                break;
3734
3735        case NETDEV_UP:
3736                d = debugfs_create_file(dev->name, S_IRUGO,
3737                                        skge_debug, dev,
3738                                        &skge_debug_fops);
3739                if (!d || IS_ERR(d))
3740                        netdev_info(dev, "debugfs create failed\n");
3741                else
3742                        skge->debugfs = d;
3743                break;
3744        }
3745
3746done:
3747        return NOTIFY_DONE;
3748}
3749
3750static struct notifier_block skge_notifier = {
3751        .notifier_call = skge_device_event,
3752};
3753
3754
3755static __init void skge_debug_init(void)
3756{
3757        struct dentry *ent;
3758
3759        ent = debugfs_create_dir("skge", NULL);
3760        if (!ent || IS_ERR(ent)) {
3761                pr_info("debugfs create directory failed\n");
3762                return;
3763        }
3764
3765        skge_debug = ent;
3766        register_netdevice_notifier(&skge_notifier);
3767}
3768
3769static __exit void skge_debug_cleanup(void)
3770{
3771        if (skge_debug) {
3772                unregister_netdevice_notifier(&skge_notifier);
3773                debugfs_remove(skge_debug);
3774                skge_debug = NULL;
3775        }
3776}
3777
3778#else
3779#define skge_debug_init()
3780#define skge_debug_cleanup()
3781#endif
3782
3783static const struct net_device_ops skge_netdev_ops = {
3784        .ndo_open               = skge_up,
3785        .ndo_stop               = skge_down,
3786        .ndo_start_xmit         = skge_xmit_frame,
3787        .ndo_do_ioctl           = skge_ioctl,
3788        .ndo_get_stats          = skge_get_stats,
3789        .ndo_tx_timeout         = skge_tx_timeout,
3790        .ndo_change_mtu         = skge_change_mtu,
3791        .ndo_validate_addr      = eth_validate_addr,
3792        .ndo_set_multicast_list = skge_set_multicast,
3793        .ndo_set_mac_address    = skge_set_mac_address,
3794#ifdef CONFIG_NET_POLL_CONTROLLER
3795        .ndo_poll_controller    = skge_netpoll,
3796#endif
3797};
3798
3799
3800/* Initialize network device */
3801static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3802                                       int highmem)
3803{
3804        struct skge_port *skge;
3805        struct net_device *dev = alloc_etherdev(sizeof(*skge));
3806
3807        if (!dev) {
3808                dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3809                return NULL;
3810        }
3811
3812        SET_NETDEV_DEV(dev, &hw->pdev->dev);
3813        dev->netdev_ops = &skge_netdev_ops;
3814        dev->ethtool_ops = &skge_ethtool_ops;
3815        dev->watchdog_timeo = TX_WATCHDOG;
3816        dev->irq = hw->pdev->irq;
3817
3818        if (highmem)
3819                dev->features |= NETIF_F_HIGHDMA;
3820
3821        skge = netdev_priv(dev);
3822        netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3823        skge->netdev = dev;
3824        skge->hw = hw;
3825        skge->msg_enable = netif_msg_init(debug, default_msg);
3826
3827        skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3828        skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3829
3830        /* Auto speed and flow control */
3831        skge->autoneg = AUTONEG_ENABLE;
3832        skge->flow_control = FLOW_MODE_SYM_OR_REM;
3833        skge->duplex = -1;
3834        skge->speed = -1;
3835        skge->advertising = skge_supported_modes(hw);
3836
3837        if (device_can_wakeup(&hw->pdev->dev)) {
3838                skge->wol = wol_supported(hw) & WAKE_MAGIC;
3839                device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3840        }
3841
3842        hw->dev[port] = dev;
3843
3844        skge->port = port;
3845
3846        /* Only used for Genesis XMAC */
3847        setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3848
3849        if (hw->chip_id != CHIP_ID_GENESIS) {
3850                dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3851                skge->rx_csum = 1;
3852        }
3853        dev->features |= NETIF_F_GRO;
3854
3855        /* read the mac address */
3856        memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3857        memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3858
3859        return dev;
3860}
3861
3862static void __devinit skge_show_addr(struct net_device *dev)
3863{
3864        const struct skge_port *skge = netdev_priv(dev);
3865
3866        netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3867}
3868
3869static int only_32bit_dma;
3870
3871static int __devinit skge_probe(struct pci_dev *pdev,
3872                                const struct pci_device_id *ent)
3873{
3874        struct net_device *dev, *dev1;
3875        struct skge_hw *hw;
3876        int err, using_dac = 0;
3877
3878        err = pci_enable_device(pdev);
3879        if (err) {
3880                dev_err(&pdev->dev, "cannot enable PCI device\n");
3881                goto err_out;
3882        }
3883
3884        err = pci_request_regions(pdev, DRV_NAME);
3885        if (err) {
3886                dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3887                goto err_out_disable_pdev;
3888        }
3889
3890        pci_set_master(pdev);
3891
3892        if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3893                using_dac = 1;
3894                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3895        } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3896                using_dac = 0;
3897                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3898        }
3899
3900        if (err) {
3901                dev_err(&pdev->dev, "no usable DMA configuration\n");
3902                goto err_out_free_regions;
3903        }
3904
3905#ifdef __BIG_ENDIAN
3906        /* byte swap descriptors in hardware */
3907        {
3908                u32 reg;
3909
3910                pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3911                reg |= PCI_REV_DESC;
3912                pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3913        }
3914#endif
3915
3916        err = -ENOMEM;
3917        /* space for skge@pci:0000:04:00.0 */
3918        hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3919                     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3920        if (!hw) {
3921                dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3922                goto err_out_free_regions;
3923        }
3924        sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3925
3926        hw->pdev = pdev;
3927        spin_lock_init(&hw->hw_lock);
3928        spin_lock_init(&hw->phy_lock);
3929        tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3930
3931        hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3932        if (!hw->regs) {
3933                dev_err(&pdev->dev, "cannot map device registers\n");
3934                goto err_out_free_hw;
3935        }
3936
3937        err = skge_reset(hw);
3938        if (err)
3939                goto err_out_iounmap;
3940
3941        pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3942                DRV_VERSION,
3943                (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3944                skge_board_name(hw), hw->chip_rev);
3945
3946        dev = skge_devinit(hw, 0, using_dac);
3947        if (!dev)
3948                goto err_out_led_off;
3949
3950        /* Some motherboards are broken and has zero in ROM. */
3951        if (!is_valid_ether_addr(dev->dev_addr))
3952                dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3953
3954        err = register_netdev(dev);
3955        if (err) {
3956                dev_err(&pdev->dev, "cannot register net device\n");
3957                goto err_out_free_netdev;
3958        }
3959
3960        err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, hw->irq_name, hw);
3961        if (err) {
3962                dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3963                       dev->name, pdev->irq);
3964                goto err_out_unregister;
3965        }
3966        skge_show_addr(dev);
3967
3968        if (hw->ports > 1) {
3969                dev1 = skge_devinit(hw, 1, using_dac);
3970                if (dev1 && register_netdev(dev1) == 0)
3971                        skge_show_addr(dev1);
3972                else {
3973                        /* Failure to register second port need not be fatal */
3974                        dev_warn(&pdev->dev, "register of second port failed\n");
3975                        hw->dev[1] = NULL;
3976                        hw->ports = 1;
3977                        if (dev1)
3978                                free_netdev(dev1);
3979                }
3980        }
3981        pci_set_drvdata(pdev, hw);
3982
3983        return 0;
3984
3985err_out_unregister:
3986        unregister_netdev(dev);
3987err_out_free_netdev:
3988        free_netdev(dev);
3989err_out_led_off:
3990        skge_write16(hw, B0_LED, LED_STAT_OFF);
3991err_out_iounmap:
3992        iounmap(hw->regs);
3993err_out_free_hw:
3994        kfree(hw);
3995err_out_free_regions:
3996        pci_release_regions(pdev);
3997err_out_disable_pdev:
3998        pci_disable_device(pdev);
3999        pci_set_drvdata(pdev, NULL);
4000err_out:
4001        return err;
4002}
4003
4004static void __devexit skge_remove(struct pci_dev *pdev)
4005{
4006        struct skge_hw *hw  = pci_get_drvdata(pdev);
4007        struct net_device *dev0, *dev1;
4008
4009        if (!hw)
4010                return;
4011
4012        dev1 = hw->dev[1];
4013        if (dev1)
4014                unregister_netdev(dev1);
4015        dev0 = hw->dev[0];
4016        unregister_netdev(dev0);
4017
4018        tasklet_disable(&hw->phy_task);
4019
4020        spin_lock_irq(&hw->hw_lock);
4021        hw->intr_mask = 0;
4022        skge_write32(hw, B0_IMSK, 0);
4023        skge_read32(hw, B0_IMSK);
4024        spin_unlock_irq(&hw->hw_lock);
4025
4026        skge_write16(hw, B0_LED, LED_STAT_OFF);
4027        skge_write8(hw, B0_CTST, CS_RST_SET);
4028
4029        free_irq(pdev->irq, hw);
4030        pci_release_regions(pdev);
4031        pci_disable_device(pdev);
4032        if (dev1)
4033                free_netdev(dev1);
4034        free_netdev(dev0);
4035
4036        iounmap(hw->regs);
4037        kfree(hw);
4038        pci_set_drvdata(pdev, NULL);
4039}
4040
4041#ifdef CONFIG_PM
4042static int skge_suspend(struct device *dev)
4043{
4044        struct pci_dev *pdev = to_pci_dev(dev);
4045        struct skge_hw *hw  = pci_get_drvdata(pdev);
4046        int i;
4047
4048        if (!hw)
4049                return 0;
4050
4051        for (i = 0; i < hw->ports; i++) {
4052                struct net_device *dev = hw->dev[i];
4053                struct skge_port *skge = netdev_priv(dev);
4054
4055                if (netif_running(dev))
4056                        skge_down(dev);
4057
4058                if (skge->wol)
4059                        skge_wol_init(skge);
4060        }
4061
4062        skge_write32(hw, B0_IMSK, 0);
4063
4064        return 0;
4065}
4066
4067static int skge_resume(struct device *dev)
4068{
4069        struct pci_dev *pdev = to_pci_dev(dev);
4070        struct skge_hw *hw  = pci_get_drvdata(pdev);
4071        int i, err;
4072
4073        if (!hw)
4074                return 0;
4075
4076        err = skge_reset(hw);
4077        if (err)
4078                goto out;
4079
4080        for (i = 0; i < hw->ports; i++) {
4081                struct net_device *dev = hw->dev[i];
4082
4083                if (netif_running(dev)) {
4084                        err = skge_up(dev);
4085
4086                        if (err) {
4087                                netdev_err(dev, "could not up: %d\n", err);
4088                                dev_close(dev);
4089                                goto out;
4090                        }
4091                }
4092        }
4093out:
4094        return err;
4095}
4096
4097static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4098#define SKGE_PM_OPS (&skge_pm_ops)
4099
4100#else
4101
4102#define SKGE_PM_OPS NULL
4103#endif
4104
4105static void skge_shutdown(struct pci_dev *pdev)
4106{
4107        struct skge_hw *hw  = pci_get_drvdata(pdev);
4108        int i;
4109
4110        if (!hw)
4111                return;
4112
4113        for (i = 0; i < hw->ports; i++) {
4114                struct net_device *dev = hw->dev[i];
4115                struct skge_port *skge = netdev_priv(dev);
4116
4117                if (skge->wol)
4118                        skge_wol_init(skge);
4119        }
4120
4121        pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4122        pci_set_power_state(pdev, PCI_D3hot);
4123}
4124
4125static struct pci_driver skge_driver = {
4126        .name =         DRV_NAME,
4127        .id_table =     skge_id_table,
4128        .probe =        skge_probe,
4129        .remove =       __devexit_p(skge_remove),
4130        .shutdown =     skge_shutdown,
4131        .driver.pm =    SKGE_PM_OPS,
4132};
4133
4134static struct dmi_system_id skge_32bit_dma_boards[] = {
4135        {
4136                .ident = "Gigabyte nForce boards",
4137                .matches = {
4138                        DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4139                        DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4140                },
4141        },
4142        {}
4143};
4144
4145static int __init skge_init_module(void)
4146{
4147        if (dmi_check_system(skge_32bit_dma_boards))
4148                only_32bit_dma = 1;
4149        skge_debug_init();
4150        return pci_register_driver(&skge_driver);
4151}
4152
4153static void __exit skge_cleanup_module(void)
4154{
4155        pci_unregister_driver(&skge_driver);
4156        skge_debug_cleanup();
4157}
4158
4159module_init(skge_init_module);
4160module_exit(skge_cleanup_module);
4161