linux/drivers/net/wan/farsync.c
<<
>>
Prefs
   1/*
   2 *      FarSync WAN driver for Linux (2.6.x kernel version)
   3 *
   4 *      Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
   5 *
   6 *      Copyright (C) 2001-2004 FarSite Communications Ltd.
   7 *      www.farsite.co.uk
   8 *
   9 *      This program is free software; you can redistribute it and/or
  10 *      modify it under the terms of the GNU General Public License
  11 *      as published by the Free Software Foundation; either version
  12 *      2 of the License, or (at your option) any later version.
  13 *
  14 *      Author:      R.J.Dunlop    <bob.dunlop@farsite.co.uk>
  15 *      Maintainer:  Kevin Curtis  <kevin.curtis@farsite.co.uk>
  16 */
  17
  18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  19
  20#include <linux/module.h>
  21#include <linux/kernel.h>
  22#include <linux/version.h>
  23#include <linux/pci.h>
  24#include <linux/sched.h>
  25#include <linux/slab.h>
  26#include <linux/ioport.h>
  27#include <linux/init.h>
  28#include <linux/if.h>
  29#include <linux/hdlc.h>
  30#include <asm/io.h>
  31#include <asm/uaccess.h>
  32
  33#include "farsync.h"
  34
  35/*
  36 *      Module info
  37 */
  38MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
  39MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
  40MODULE_LICENSE("GPL");
  41
  42/*      Driver configuration and global parameters
  43 *      ==========================================
  44 */
  45
  46/*      Number of ports (per card) and cards supported
  47 */
  48#define FST_MAX_PORTS           4
  49#define FST_MAX_CARDS           32
  50
  51/*      Default parameters for the link
  52 */
  53#define FST_TX_QUEUE_LEN        100     /* At 8Mbps a longer queue length is
  54                                         * useful */
  55#define FST_TXQ_DEPTH           16      /* This one is for the buffering
  56                                         * of frames on the way down to the card
  57                                         * so that we can keep the card busy
  58                                         * and maximise throughput
  59                                         */
  60#define FST_HIGH_WATER_MARK     12      /* Point at which we flow control
  61                                         * network layer */
  62#define FST_LOW_WATER_MARK      8       /* Point at which we remove flow
  63                                         * control from network layer */
  64#define FST_MAX_MTU             8000    /* Huge but possible */
  65#define FST_DEF_MTU             1500    /* Common sane value */
  66
  67#define FST_TX_TIMEOUT          (2*HZ)
  68
  69#ifdef ARPHRD_RAWHDLC
  70#define ARPHRD_MYTYPE   ARPHRD_RAWHDLC  /* Raw frames */
  71#else
  72#define ARPHRD_MYTYPE   ARPHRD_HDLC     /* Cisco-HDLC (keepalives etc) */
  73#endif
  74
  75/*
  76 * Modules parameters and associated variables
  77 */
  78static int fst_txq_low = FST_LOW_WATER_MARK;
  79static int fst_txq_high = FST_HIGH_WATER_MARK;
  80static int fst_max_reads = 7;
  81static int fst_excluded_cards = 0;
  82static int fst_excluded_list[FST_MAX_CARDS];
  83
  84module_param(fst_txq_low, int, 0);
  85module_param(fst_txq_high, int, 0);
  86module_param(fst_max_reads, int, 0);
  87module_param(fst_excluded_cards, int, 0);
  88module_param_array(fst_excluded_list, int, NULL, 0);
  89
  90/*      Card shared memory layout
  91 *      =========================
  92 */
  93#pragma pack(1)
  94
  95/*      This information is derived in part from the FarSite FarSync Smc.h
  96 *      file. Unfortunately various name clashes and the non-portability of the
  97 *      bit field declarations in that file have meant that I have chosen to
  98 *      recreate the information here.
  99 *
 100 *      The SMC (Shared Memory Configuration) has a version number that is
 101 *      incremented every time there is a significant change. This number can
 102 *      be used to check that we have not got out of step with the firmware
 103 *      contained in the .CDE files.
 104 */
 105#define SMC_VERSION 24
 106
 107#define FST_MEMSIZE 0x100000    /* Size of card memory (1Mb) */
 108
 109#define SMC_BASE 0x00002000L    /* Base offset of the shared memory window main
 110                                 * configuration structure */
 111#define BFM_BASE 0x00010000L    /* Base offset of the shared memory window DMA
 112                                 * buffers */
 113
 114#define LEN_TX_BUFFER 8192      /* Size of packet buffers */
 115#define LEN_RX_BUFFER 8192
 116
 117#define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
 118#define LEN_SMALL_RX_BUFFER 256
 119
 120#define NUM_TX_BUFFER 2         /* Must be power of 2. Fixed by firmware */
 121#define NUM_RX_BUFFER 8
 122
 123/* Interrupt retry time in milliseconds */
 124#define INT_RETRY_TIME 2
 125
 126/*      The Am186CH/CC processors support a SmartDMA mode using circular pools
 127 *      of buffer descriptors. The structure is almost identical to that used
 128 *      in the LANCE Ethernet controllers. Details available as PDF from the
 129 *      AMD web site: http://www.amd.com/products/epd/processors/\
 130 *                    2.16bitcont/3.am186cxfa/a21914/21914.pdf
 131 */
 132struct txdesc {                 /* Transmit descriptor */
 133        volatile u16 ladr;      /* Low order address of packet. This is a
 134                                 * linear address in the Am186 memory space
 135                                 */
 136        volatile u8 hadr;       /* High order address. Low 4 bits only, high 4
 137                                 * bits must be zero
 138                                 */
 139        volatile u8 bits;       /* Status and config */
 140        volatile u16 bcnt;      /* 2s complement of packet size in low 15 bits.
 141                                 * Transmit terminal count interrupt enable in
 142                                 * top bit.
 143                                 */
 144        u16 unused;             /* Not used in Tx */
 145};
 146
 147struct rxdesc {                 /* Receive descriptor */
 148        volatile u16 ladr;      /* Low order address of packet */
 149        volatile u8 hadr;       /* High order address */
 150        volatile u8 bits;       /* Status and config */
 151        volatile u16 bcnt;      /* 2s complement of buffer size in low 15 bits.
 152                                 * Receive terminal count interrupt enable in
 153                                 * top bit.
 154                                 */
 155        volatile u16 mcnt;      /* Message byte count (15 bits) */
 156};
 157
 158/* Convert a length into the 15 bit 2's complement */
 159/* #define cnv_bcnt(len)   (( ~(len) + 1 ) & 0x7FFF ) */
 160/* Since we need to set the high bit to enable the completion interrupt this
 161 * can be made a lot simpler
 162 */
 163#define cnv_bcnt(len)   (-(len))
 164
 165/* Status and config bits for the above */
 166#define DMA_OWN         0x80    /* SmartDMA owns the descriptor */
 167#define TX_STP          0x02    /* Tx: start of packet */
 168#define TX_ENP          0x01    /* Tx: end of packet */
 169#define RX_ERR          0x40    /* Rx: error (OR of next 4 bits) */
 170#define RX_FRAM         0x20    /* Rx: framing error */
 171#define RX_OFLO         0x10    /* Rx: overflow error */
 172#define RX_CRC          0x08    /* Rx: CRC error */
 173#define RX_HBUF         0x04    /* Rx: buffer error */
 174#define RX_STP          0x02    /* Rx: start of packet */
 175#define RX_ENP          0x01    /* Rx: end of packet */
 176
 177/* Interrupts from the card are caused by various events which are presented
 178 * in a circular buffer as several events may be processed on one physical int
 179 */
 180#define MAX_CIRBUFF     32
 181
 182struct cirbuff {
 183        u8 rdindex;             /* read, then increment and wrap */
 184        u8 wrindex;             /* write, then increment and wrap */
 185        u8 evntbuff[MAX_CIRBUFF];
 186};
 187
 188/* Interrupt event codes.
 189 * Where appropriate the two low order bits indicate the port number
 190 */
 191#define CTLA_CHG        0x18    /* Control signal changed */
 192#define CTLB_CHG        0x19
 193#define CTLC_CHG        0x1A
 194#define CTLD_CHG        0x1B
 195
 196#define INIT_CPLT       0x20    /* Initialisation complete */
 197#define INIT_FAIL       0x21    /* Initialisation failed */
 198
 199#define ABTA_SENT       0x24    /* Abort sent */
 200#define ABTB_SENT       0x25
 201#define ABTC_SENT       0x26
 202#define ABTD_SENT       0x27
 203
 204#define TXA_UNDF        0x28    /* Transmission underflow */
 205#define TXB_UNDF        0x29
 206#define TXC_UNDF        0x2A
 207#define TXD_UNDF        0x2B
 208
 209#define F56_INT         0x2C
 210#define M32_INT         0x2D
 211
 212#define TE1_ALMA        0x30
 213
 214/* Port physical configuration. See farsync.h for field values */
 215struct port_cfg {
 216        u16 lineInterface;      /* Physical interface type */
 217        u8 x25op;               /* Unused at present */
 218        u8 internalClock;       /* 1 => internal clock, 0 => external */
 219        u8 transparentMode;     /* 1 => on, 0 => off */
 220        u8 invertClock;         /* 0 => normal, 1 => inverted */
 221        u8 padBytes[6];         /* Padding */
 222        u32 lineSpeed;          /* Speed in bps */
 223};
 224
 225/* TE1 port physical configuration */
 226struct su_config {
 227        u32 dataRate;
 228        u8 clocking;
 229        u8 framing;
 230        u8 structure;
 231        u8 interface;
 232        u8 coding;
 233        u8 lineBuildOut;
 234        u8 equalizer;
 235        u8 transparentMode;
 236        u8 loopMode;
 237        u8 range;
 238        u8 txBufferMode;
 239        u8 rxBufferMode;
 240        u8 startingSlot;
 241        u8 losThreshold;
 242        u8 enableIdleCode;
 243        u8 idleCode;
 244        u8 spare[44];
 245};
 246
 247/* TE1 Status */
 248struct su_status {
 249        u32 receiveBufferDelay;
 250        u32 framingErrorCount;
 251        u32 codeViolationCount;
 252        u32 crcErrorCount;
 253        u32 lineAttenuation;
 254        u8 portStarted;
 255        u8 lossOfSignal;
 256        u8 receiveRemoteAlarm;
 257        u8 alarmIndicationSignal;
 258        u8 spare[40];
 259};
 260
 261/* Finally sling all the above together into the shared memory structure.
 262 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
 263 * evolving under NT for some time so I guess we're stuck with it.
 264 * The structure starts at offset SMC_BASE.
 265 * See farsync.h for some field values.
 266 */
 267struct fst_shared {
 268        /* DMA descriptor rings */
 269        struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER];
 270        struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER];
 271
 272        /* Obsolete small buffers */
 273        u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER];
 274        u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER];
 275
 276        u8 taskStatus;          /* 0x00 => initialising, 0x01 => running,
 277                                 * 0xFF => halted
 278                                 */
 279
 280        u8 interruptHandshake;  /* Set to 0x01 by adapter to signal interrupt,
 281                                 * set to 0xEE by host to acknowledge interrupt
 282                                 */
 283
 284        u16 smcVersion;         /* Must match SMC_VERSION */
 285
 286        u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major
 287                                 * version, RR = revision and BB = build
 288                                 */
 289
 290        u16 txa_done;           /* Obsolete completion flags */
 291        u16 rxa_done;
 292        u16 txb_done;
 293        u16 rxb_done;
 294        u16 txc_done;
 295        u16 rxc_done;
 296        u16 txd_done;
 297        u16 rxd_done;
 298
 299        u16 mailbox[4];         /* Diagnostics mailbox. Not used */
 300
 301        struct cirbuff interruptEvent;  /* interrupt causes */
 302
 303        u32 v24IpSts[FST_MAX_PORTS];    /* V.24 control input status */
 304        u32 v24OpSts[FST_MAX_PORTS];    /* V.24 control output status */
 305
 306        struct port_cfg portConfig[FST_MAX_PORTS];
 307
 308        u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */
 309
 310        u16 cableStatus;        /* lsb: 0=> present, 1=> absent */
 311
 312        u16 txDescrIndex[FST_MAX_PORTS];        /* transmit descriptor ring index */
 313        u16 rxDescrIndex[FST_MAX_PORTS];        /* receive descriptor ring index */
 314
 315        u16 portMailbox[FST_MAX_PORTS][2];      /* command, modifier */
 316        u16 cardMailbox[4];     /* Not used */
 317
 318        /* Number of times the card thinks the host has
 319         * missed an interrupt by not acknowledging
 320         * within 2mS (I guess NT has problems)
 321         */
 322        u32 interruptRetryCount;
 323
 324        /* Driver private data used as an ID. We'll not
 325         * use this as I'd rather keep such things
 326         * in main memory rather than on the PCI bus
 327         */
 328        u32 portHandle[FST_MAX_PORTS];
 329
 330        /* Count of Tx underflows for stats */
 331        u32 transmitBufferUnderflow[FST_MAX_PORTS];
 332
 333        /* Debounced V.24 control input status */
 334        u32 v24DebouncedSts[FST_MAX_PORTS];
 335
 336        /* Adapter debounce timers. Don't touch */
 337        u32 ctsTimer[FST_MAX_PORTS];
 338        u32 ctsTimerRun[FST_MAX_PORTS];
 339        u32 dcdTimer[FST_MAX_PORTS];
 340        u32 dcdTimerRun[FST_MAX_PORTS];
 341
 342        u32 numberOfPorts;      /* Number of ports detected at startup */
 343
 344        u16 _reserved[64];
 345
 346        u16 cardMode;           /* Bit-mask to enable features:
 347                                 * Bit 0: 1 enables LED identify mode
 348                                 */
 349
 350        u16 portScheduleOffset;
 351
 352        struct su_config suConfig;      /* TE1 Bits */
 353        struct su_status suStatus;
 354
 355        u32 endOfSmcSignature;  /* endOfSmcSignature MUST be the last member of
 356                                 * the structure and marks the end of shared
 357                                 * memory. Adapter code initializes it as
 358                                 * END_SIG.
 359                                 */
 360};
 361
 362/* endOfSmcSignature value */
 363#define END_SIG                 0x12345678
 364
 365/* Mailbox values. (portMailbox) */
 366#define NOP             0       /* No operation */
 367#define ACK             1       /* Positive acknowledgement to PC driver */
 368#define NAK             2       /* Negative acknowledgement to PC driver */
 369#define STARTPORT       3       /* Start an HDLC port */
 370#define STOPPORT        4       /* Stop an HDLC port */
 371#define ABORTTX         5       /* Abort the transmitter for a port */
 372#define SETV24O         6       /* Set V24 outputs */
 373
 374/* PLX Chip Register Offsets */
 375#define CNTRL_9052      0x50    /* Control Register */
 376#define CNTRL_9054      0x6c    /* Control Register */
 377
 378#define INTCSR_9052     0x4c    /* Interrupt control/status register */
 379#define INTCSR_9054     0x68    /* Interrupt control/status register */
 380
 381/* 9054 DMA Registers */
 382/*
 383 * Note that we will be using DMA Channel 0 for copying rx data
 384 * and Channel 1 for copying tx data
 385 */
 386#define DMAMODE0        0x80
 387#define DMAPADR0        0x84
 388#define DMALADR0        0x88
 389#define DMASIZ0         0x8c
 390#define DMADPR0         0x90
 391#define DMAMODE1        0x94
 392#define DMAPADR1        0x98
 393#define DMALADR1        0x9c
 394#define DMASIZ1         0xa0
 395#define DMADPR1         0xa4
 396#define DMACSR0         0xa8
 397#define DMACSR1         0xa9
 398#define DMAARB          0xac
 399#define DMATHR          0xb0
 400#define DMADAC0         0xb4
 401#define DMADAC1         0xb8
 402#define DMAMARBR        0xac
 403
 404#define FST_MIN_DMA_LEN 64
 405#define FST_RX_DMA_INT  0x01
 406#define FST_TX_DMA_INT  0x02
 407#define FST_CARD_INT    0x04
 408
 409/* Larger buffers are positioned in memory at offset BFM_BASE */
 410struct buf_window {
 411        u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER];
 412        u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER];
 413};
 414
 415/* Calculate offset of a buffer object within the shared memory window */
 416#define BUF_OFFSET(X)   (BFM_BASE + offsetof(struct buf_window, X))
 417
 418#pragma pack()
 419
 420/*      Device driver private information
 421 *      =================================
 422 */
 423/*      Per port (line or channel) information
 424 */
 425struct fst_port_info {
 426        struct net_device *dev; /* Device struct - must be first */
 427        struct fst_card_info *card;     /* Card we're associated with */
 428        int index;              /* Port index on the card */
 429        int hwif;               /* Line hardware (lineInterface copy) */
 430        int run;                /* Port is running */
 431        int mode;               /* Normal or FarSync raw */
 432        int rxpos;              /* Next Rx buffer to use */
 433        int txpos;              /* Next Tx buffer to use */
 434        int txipos;             /* Next Tx buffer to check for free */
 435        int start;              /* Indication of start/stop to network */
 436        /*
 437         * A sixteen entry transmit queue
 438         */
 439        int txqs;               /* index to get next buffer to tx */
 440        int txqe;               /* index to queue next packet */
 441        struct sk_buff *txq[FST_TXQ_DEPTH];     /* The queue */
 442        int rxqdepth;
 443};
 444
 445/*      Per card information
 446 */
 447struct fst_card_info {
 448        char __iomem *mem;      /* Card memory mapped to kernel space */
 449        char __iomem *ctlmem;   /* Control memory for PCI cards */
 450        unsigned int phys_mem;  /* Physical memory window address */
 451        unsigned int phys_ctlmem;       /* Physical control memory address */
 452        unsigned int irq;       /* Interrupt request line number */
 453        unsigned int nports;    /* Number of serial ports */
 454        unsigned int type;      /* Type index of card */
 455        unsigned int state;     /* State of card */
 456        spinlock_t card_lock;   /* Lock for SMP access */
 457        unsigned short pci_conf;        /* PCI card config in I/O space */
 458        /* Per port info */
 459        struct fst_port_info ports[FST_MAX_PORTS];
 460        struct pci_dev *device; /* Information about the pci device */
 461        int card_no;            /* Inst of the card on the system */
 462        int family;             /* TxP or TxU */
 463        int dmarx_in_progress;
 464        int dmatx_in_progress;
 465        unsigned long int_count;
 466        unsigned long int_time_ave;
 467        void *rx_dma_handle_host;
 468        dma_addr_t rx_dma_handle_card;
 469        void *tx_dma_handle_host;
 470        dma_addr_t tx_dma_handle_card;
 471        struct sk_buff *dma_skb_rx;
 472        struct fst_port_info *dma_port_rx;
 473        struct fst_port_info *dma_port_tx;
 474        int dma_len_rx;
 475        int dma_len_tx;
 476        int dma_txpos;
 477        int dma_rxpos;
 478};
 479
 480/* Convert an HDLC device pointer into a port info pointer and similar */
 481#define dev_to_port(D)  (dev_to_hdlc(D)->priv)
 482#define port_to_dev(P)  ((P)->dev)
 483
 484
 485/*
 486 *      Shared memory window access macros
 487 *
 488 *      We have a nice memory based structure above, which could be directly
 489 *      mapped on i386 but might not work on other architectures unless we use
 490 *      the readb,w,l and writeb,w,l macros. Unfortunately these macros take
 491 *      physical offsets so we have to convert. The only saving grace is that
 492 *      this should all collapse back to a simple indirection eventually.
 493 */
 494#define WIN_OFFSET(X)   ((long)&(((struct fst_shared *)SMC_BASE)->X))
 495
 496#define FST_RDB(C,E)    readb ((C)->mem + WIN_OFFSET(E))
 497#define FST_RDW(C,E)    readw ((C)->mem + WIN_OFFSET(E))
 498#define FST_RDL(C,E)    readl ((C)->mem + WIN_OFFSET(E))
 499
 500#define FST_WRB(C,E,B)  writeb ((B), (C)->mem + WIN_OFFSET(E))
 501#define FST_WRW(C,E,W)  writew ((W), (C)->mem + WIN_OFFSET(E))
 502#define FST_WRL(C,E,L)  writel ((L), (C)->mem + WIN_OFFSET(E))
 503
 504/*
 505 *      Debug support
 506 */
 507#if FST_DEBUG
 508
 509static int fst_debug_mask = { FST_DEBUG };
 510
 511/* Most common debug activity is to print something if the corresponding bit
 512 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
 513 * support variable numbers of macro parameters. The inverted if prevents us
 514 * eating someone else's else clause.
 515 */
 516#define dbg(F, fmt, args...)                                    \
 517do {                                                            \
 518        if (fst_debug_mask & (F))                               \
 519                printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
 520} while (0)
 521#else
 522#define dbg(F, fmt, args...)                                    \
 523do {                                                            \
 524        if (0)                                                  \
 525                printk(KERN_DEBUG pr_fmt(fmt), ##args);         \
 526} while (0)
 527#endif
 528
 529/*
 530 *      PCI ID lookup table
 531 */
 532static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id) = {
 533        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, 
 534         PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
 535
 536        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, 
 537         PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
 538
 539        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, 
 540         PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
 541
 542        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, 
 543         PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
 544
 545        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, 
 546         PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
 547
 548        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, 
 549         PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
 550
 551        {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, 
 552         PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
 553        {0,}                    /* End */
 554};
 555
 556MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
 557
 558/*
 559 *      Device Driver Work Queues
 560 *
 561 *      So that we don't spend too much time processing events in the 
 562 *      Interrupt Service routine, we will declare a work queue per Card 
 563 *      and make the ISR schedule a task in the queue for later execution.
 564 *      In the 2.4 Kernel we used to use the immediate queue for BH's
 565 *      Now that they are gone, tasklets seem to be much better than work 
 566 *      queues.
 567 */
 568
 569static void do_bottom_half_tx(struct fst_card_info *card);
 570static void do_bottom_half_rx(struct fst_card_info *card);
 571static void fst_process_tx_work_q(unsigned long work_q);
 572static void fst_process_int_work_q(unsigned long work_q);
 573
 574static DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
 575static DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
 576
 577static struct fst_card_info *fst_card_array[FST_MAX_CARDS];
 578static spinlock_t fst_work_q_lock;
 579static u64 fst_work_txq;
 580static u64 fst_work_intq;
 581
 582static void
 583fst_q_work_item(u64 * queue, int card_index)
 584{
 585        unsigned long flags;
 586        u64 mask;
 587
 588        /*
 589         * Grab the queue exclusively
 590         */
 591        spin_lock_irqsave(&fst_work_q_lock, flags);
 592
 593        /*
 594         * Making an entry in the queue is simply a matter of setting
 595         * a bit for the card indicating that there is work to do in the
 596         * bottom half for the card.  Note the limitation of 64 cards.
 597         * That ought to be enough
 598         */
 599        mask = 1 << card_index;
 600        *queue |= mask;
 601        spin_unlock_irqrestore(&fst_work_q_lock, flags);
 602}
 603
 604static void
 605fst_process_tx_work_q(unsigned long /*void **/work_q)
 606{
 607        unsigned long flags;
 608        u64 work_txq;
 609        int i;
 610
 611        /*
 612         * Grab the queue exclusively
 613         */
 614        dbg(DBG_TX, "fst_process_tx_work_q\n");
 615        spin_lock_irqsave(&fst_work_q_lock, flags);
 616        work_txq = fst_work_txq;
 617        fst_work_txq = 0;
 618        spin_unlock_irqrestore(&fst_work_q_lock, flags);
 619
 620        /*
 621         * Call the bottom half for each card with work waiting
 622         */
 623        for (i = 0; i < FST_MAX_CARDS; i++) {
 624                if (work_txq & 0x01) {
 625                        if (fst_card_array[i] != NULL) {
 626                                dbg(DBG_TX, "Calling tx bh for card %d\n", i);
 627                                do_bottom_half_tx(fst_card_array[i]);
 628                        }
 629                }
 630                work_txq = work_txq >> 1;
 631        }
 632}
 633
 634static void
 635fst_process_int_work_q(unsigned long /*void **/work_q)
 636{
 637        unsigned long flags;
 638        u64 work_intq;
 639        int i;
 640
 641        /*
 642         * Grab the queue exclusively
 643         */
 644        dbg(DBG_INTR, "fst_process_int_work_q\n");
 645        spin_lock_irqsave(&fst_work_q_lock, flags);
 646        work_intq = fst_work_intq;
 647        fst_work_intq = 0;
 648        spin_unlock_irqrestore(&fst_work_q_lock, flags);
 649
 650        /*
 651         * Call the bottom half for each card with work waiting
 652         */
 653        for (i = 0; i < FST_MAX_CARDS; i++) {
 654                if (work_intq & 0x01) {
 655                        if (fst_card_array[i] != NULL) {
 656                                dbg(DBG_INTR,
 657                                    "Calling rx & tx bh for card %d\n", i);
 658                                do_bottom_half_rx(fst_card_array[i]);
 659                                do_bottom_half_tx(fst_card_array[i]);
 660                        }
 661                }
 662                work_intq = work_intq >> 1;
 663        }
 664}
 665
 666/*      Card control functions
 667 *      ======================
 668 */
 669/*      Place the processor in reset state
 670 *
 671 * Used to be a simple write to card control space but a glitch in the latest
 672 * AMD Am186CH processor means that we now have to do it by asserting and de-
 673 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
 674 * at offset 9052_CNTRL.  Note the updates for the TXU.
 675 */
 676static inline void
 677fst_cpureset(struct fst_card_info *card)
 678{
 679        unsigned char interrupt_line_register;
 680        unsigned long j = jiffies + 1;
 681        unsigned int regval;
 682
 683        if (card->family == FST_FAMILY_TXU) {
 684                if (pci_read_config_byte
 685                    (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
 686                        dbg(DBG_ASS,
 687                            "Error in reading interrupt line register\n");
 688                }
 689                /*
 690                 * Assert PLX software reset and Am186 hardware reset
 691                 * and then deassert the PLX software reset but 186 still in reset
 692                 */
 693                outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
 694                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 695                /*
 696                 * We are delaying here to allow the 9054 to reset itself
 697                 */
 698                j = jiffies + 1;
 699                while (jiffies < j)
 700                        /* Do nothing */ ;
 701                outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
 702                /*
 703                 * We are delaying here to allow the 9054 to reload its eeprom
 704                 */
 705                j = jiffies + 1;
 706                while (jiffies < j)
 707                        /* Do nothing */ ;
 708                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 709
 710                if (pci_write_config_byte
 711                    (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
 712                        dbg(DBG_ASS,
 713                            "Error in writing interrupt line register\n");
 714                }
 715
 716        } else {
 717                regval = inl(card->pci_conf + CNTRL_9052);
 718
 719                outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
 720                outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
 721        }
 722}
 723
 724/*      Release the processor from reset
 725 */
 726static inline void
 727fst_cpurelease(struct fst_card_info *card)
 728{
 729        if (card->family == FST_FAMILY_TXU) {
 730                /*
 731                 * Force posted writes to complete
 732                 */
 733                (void) readb(card->mem);
 734
 735                /*
 736                 * Release LRESET DO = 1
 737                 * Then release Local Hold, DO = 1
 738                 */
 739                outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
 740                outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
 741        } else {
 742                (void) readb(card->ctlmem);
 743        }
 744}
 745
 746/*      Clear the cards interrupt flag
 747 */
 748static inline void
 749fst_clear_intr(struct fst_card_info *card)
 750{
 751        if (card->family == FST_FAMILY_TXU) {
 752                (void) readb(card->ctlmem);
 753        } else {
 754                /* Poke the appropriate PLX chip register (same as enabling interrupts)
 755                 */
 756                outw(0x0543, card->pci_conf + INTCSR_9052);
 757        }
 758}
 759
 760/*      Enable card interrupts
 761 */
 762static inline void
 763fst_enable_intr(struct fst_card_info *card)
 764{
 765        if (card->family == FST_FAMILY_TXU) {
 766                outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
 767        } else {
 768                outw(0x0543, card->pci_conf + INTCSR_9052);
 769        }
 770}
 771
 772/*      Disable card interrupts
 773 */
 774static inline void
 775fst_disable_intr(struct fst_card_info *card)
 776{
 777        if (card->family == FST_FAMILY_TXU) {
 778                outl(0x00000000, card->pci_conf + INTCSR_9054);
 779        } else {
 780                outw(0x0000, card->pci_conf + INTCSR_9052);
 781        }
 782}
 783
 784/*      Process the result of trying to pass a received frame up the stack
 785 */
 786static void
 787fst_process_rx_status(int rx_status, char *name)
 788{
 789        switch (rx_status) {
 790        case NET_RX_SUCCESS:
 791                {
 792                        /*
 793                         * Nothing to do here
 794                         */
 795                        break;
 796                }
 797        case NET_RX_DROP:
 798                {
 799                        dbg(DBG_ASS, "%s: Received packet dropped\n", name);
 800                        break;
 801                }
 802        }
 803}
 804
 805/*      Initilaise DMA for PLX 9054
 806 */
 807static inline void
 808fst_init_dma(struct fst_card_info *card)
 809{
 810        /*
 811         * This is only required for the PLX 9054
 812         */
 813        if (card->family == FST_FAMILY_TXU) {
 814                pci_set_master(card->device);
 815                outl(0x00020441, card->pci_conf + DMAMODE0);
 816                outl(0x00020441, card->pci_conf + DMAMODE1);
 817                outl(0x0, card->pci_conf + DMATHR);
 818        }
 819}
 820
 821/*      Tx dma complete interrupt
 822 */
 823static void
 824fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
 825                    int len, int txpos)
 826{
 827        struct net_device *dev = port_to_dev(port);
 828
 829        /*
 830         * Everything is now set, just tell the card to go
 831         */
 832        dbg(DBG_TX, "fst_tx_dma_complete\n");
 833        FST_WRB(card, txDescrRing[port->index][txpos].bits,
 834                DMA_OWN | TX_STP | TX_ENP);
 835        dev->stats.tx_packets++;
 836        dev->stats.tx_bytes += len;
 837        dev->trans_start = jiffies;
 838}
 839
 840/*
 841 * Mark it for our own raw sockets interface
 842 */
 843static __be16 farsync_type_trans(struct sk_buff *skb, struct net_device *dev)
 844{
 845        skb->dev = dev;
 846        skb_reset_mac_header(skb);
 847        skb->pkt_type = PACKET_HOST;
 848        return htons(ETH_P_CUST);
 849}
 850
 851/*      Rx dma complete interrupt
 852 */
 853static void
 854fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
 855                    int len, struct sk_buff *skb, int rxp)
 856{
 857        struct net_device *dev = port_to_dev(port);
 858        int pi;
 859        int rx_status;
 860
 861        dbg(DBG_TX, "fst_rx_dma_complete\n");
 862        pi = port->index;
 863        memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
 864
 865        /* Reset buffer descriptor */
 866        FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
 867
 868        /* Update stats */
 869        dev->stats.rx_packets++;
 870        dev->stats.rx_bytes += len;
 871
 872        /* Push upstream */
 873        dbg(DBG_RX, "Pushing the frame up the stack\n");
 874        if (port->mode == FST_RAW)
 875                skb->protocol = farsync_type_trans(skb, dev);
 876        else
 877                skb->protocol = hdlc_type_trans(skb, dev);
 878        rx_status = netif_rx(skb);
 879        fst_process_rx_status(rx_status, port_to_dev(port)->name);
 880        if (rx_status == NET_RX_DROP)
 881                dev->stats.rx_dropped++;
 882}
 883
 884/*
 885 *      Receive a frame through the DMA
 886 */
 887static inline void
 888fst_rx_dma(struct fst_card_info *card, dma_addr_t skb,
 889           dma_addr_t mem, int len)
 890{
 891        /*
 892         * This routine will setup the DMA and start it
 893         */
 894
 895        dbg(DBG_RX, "In fst_rx_dma %lx %lx %d\n",
 896            (unsigned long) skb, (unsigned long) mem, len);
 897        if (card->dmarx_in_progress) {
 898                dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
 899        }
 900
 901        outl(skb, card->pci_conf + DMAPADR0);   /* Copy to here */
 902        outl(mem, card->pci_conf + DMALADR0);   /* from here */
 903        outl(len, card->pci_conf + DMASIZ0);    /* for this length */
 904        outl(0x00000000c, card->pci_conf + DMADPR0);    /* In this direction */
 905
 906        /*
 907         * We use the dmarx_in_progress flag to flag the channel as busy
 908         */
 909        card->dmarx_in_progress = 1;
 910        outb(0x03, card->pci_conf + DMACSR0);   /* Start the transfer */
 911}
 912
 913/*
 914 *      Send a frame through the DMA
 915 */
 916static inline void
 917fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
 918           unsigned char *mem, int len)
 919{
 920        /*
 921         * This routine will setup the DMA and start it.
 922         */
 923
 924        dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
 925        if (card->dmatx_in_progress) {
 926                dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
 927        }
 928
 929        outl((unsigned long) skb, card->pci_conf + DMAPADR1);   /* Copy from here */
 930        outl((unsigned long) mem, card->pci_conf + DMALADR1);   /* to here */
 931        outl(len, card->pci_conf + DMASIZ1);    /* for this length */
 932        outl(0x000000004, card->pci_conf + DMADPR1);    /* In this direction */
 933
 934        /*
 935         * We use the dmatx_in_progress to flag the channel as busy
 936         */
 937        card->dmatx_in_progress = 1;
 938        outb(0x03, card->pci_conf + DMACSR1);   /* Start the transfer */
 939}
 940
 941/*      Issue a Mailbox command for a port.
 942 *      Note we issue them on a fire and forget basis, not expecting to see an
 943 *      error and not waiting for completion.
 944 */
 945static void
 946fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
 947{
 948        struct fst_card_info *card;
 949        unsigned short mbval;
 950        unsigned long flags;
 951        int safety;
 952
 953        card = port->card;
 954        spin_lock_irqsave(&card->card_lock, flags);
 955        mbval = FST_RDW(card, portMailbox[port->index][0]);
 956
 957        safety = 0;
 958        /* Wait for any previous command to complete */
 959        while (mbval > NAK) {
 960                spin_unlock_irqrestore(&card->card_lock, flags);
 961                schedule_timeout_uninterruptible(1);
 962                spin_lock_irqsave(&card->card_lock, flags);
 963
 964                if (++safety > 2000) {
 965                        pr_err("Mailbox safety timeout\n");
 966                        break;
 967                }
 968
 969                mbval = FST_RDW(card, portMailbox[port->index][0]);
 970        }
 971        if (safety > 0) {
 972                dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
 973        }
 974        if (mbval == NAK) {
 975                dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
 976        }
 977
 978        FST_WRW(card, portMailbox[port->index][0], cmd);
 979
 980        if (cmd == ABORTTX || cmd == STARTPORT) {
 981                port->txpos = 0;
 982                port->txipos = 0;
 983                port->start = 0;
 984        }
 985
 986        spin_unlock_irqrestore(&card->card_lock, flags);
 987}
 988
 989/*      Port output signals control
 990 */
 991static inline void
 992fst_op_raise(struct fst_port_info *port, unsigned int outputs)
 993{
 994        outputs |= FST_RDL(port->card, v24OpSts[port->index]);
 995        FST_WRL(port->card, v24OpSts[port->index], outputs);
 996
 997        if (port->run)
 998                fst_issue_cmd(port, SETV24O);
 999}
1000
1001static inline void
1002fst_op_lower(struct fst_port_info *port, unsigned int outputs)
1003{
1004        outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
1005        FST_WRL(port->card, v24OpSts[port->index], outputs);
1006
1007        if (port->run)
1008                fst_issue_cmd(port, SETV24O);
1009}
1010
1011/*
1012 *      Setup port Rx buffers
1013 */
1014static void
1015fst_rx_config(struct fst_port_info *port)
1016{
1017        int i;
1018        int pi;
1019        unsigned int offset;
1020        unsigned long flags;
1021        struct fst_card_info *card;
1022
1023        pi = port->index;
1024        card = port->card;
1025        spin_lock_irqsave(&card->card_lock, flags);
1026        for (i = 0; i < NUM_RX_BUFFER; i++) {
1027                offset = BUF_OFFSET(rxBuffer[pi][i][0]);
1028
1029                FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
1030                FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
1031                FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
1032                FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
1033                FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
1034        }
1035        port->rxpos = 0;
1036        spin_unlock_irqrestore(&card->card_lock, flags);
1037}
1038
1039/*
1040 *      Setup port Tx buffers
1041 */
1042static void
1043fst_tx_config(struct fst_port_info *port)
1044{
1045        int i;
1046        int pi;
1047        unsigned int offset;
1048        unsigned long flags;
1049        struct fst_card_info *card;
1050
1051        pi = port->index;
1052        card = port->card;
1053        spin_lock_irqsave(&card->card_lock, flags);
1054        for (i = 0; i < NUM_TX_BUFFER; i++) {
1055                offset = BUF_OFFSET(txBuffer[pi][i][0]);
1056
1057                FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
1058                FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
1059                FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
1060                FST_WRB(card, txDescrRing[pi][i].bits, 0);
1061        }
1062        port->txpos = 0;
1063        port->txipos = 0;
1064        port->start = 0;
1065        spin_unlock_irqrestore(&card->card_lock, flags);
1066}
1067
1068/*      TE1 Alarm change interrupt event
1069 */
1070static void
1071fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
1072{
1073        u8 los;
1074        u8 rra;
1075        u8 ais;
1076
1077        los = FST_RDB(card, suStatus.lossOfSignal);
1078        rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
1079        ais = FST_RDB(card, suStatus.alarmIndicationSignal);
1080
1081        if (los) {
1082                /*
1083                 * Lost the link
1084                 */
1085                if (netif_carrier_ok(port_to_dev(port))) {
1086                        dbg(DBG_INTR, "Net carrier off\n");
1087                        netif_carrier_off(port_to_dev(port));
1088                }
1089        } else {
1090                /*
1091                 * Link available
1092                 */
1093                if (!netif_carrier_ok(port_to_dev(port))) {
1094                        dbg(DBG_INTR, "Net carrier on\n");
1095                        netif_carrier_on(port_to_dev(port));
1096                }
1097        }
1098
1099        if (los)
1100                dbg(DBG_INTR, "Assert LOS Alarm\n");
1101        else
1102                dbg(DBG_INTR, "De-assert LOS Alarm\n");
1103        if (rra)
1104                dbg(DBG_INTR, "Assert RRA Alarm\n");
1105        else
1106                dbg(DBG_INTR, "De-assert RRA Alarm\n");
1107
1108        if (ais)
1109                dbg(DBG_INTR, "Assert AIS Alarm\n");
1110        else
1111                dbg(DBG_INTR, "De-assert AIS Alarm\n");
1112}
1113
1114/*      Control signal change interrupt event
1115 */
1116static void
1117fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
1118{
1119        int signals;
1120
1121        signals = FST_RDL(card, v24DebouncedSts[port->index]);
1122
1123        if (signals & (((port->hwif == X21) || (port->hwif == X21D))
1124                       ? IPSTS_INDICATE : IPSTS_DCD)) {
1125                if (!netif_carrier_ok(port_to_dev(port))) {
1126                        dbg(DBG_INTR, "DCD active\n");
1127                        netif_carrier_on(port_to_dev(port));
1128                }
1129        } else {
1130                if (netif_carrier_ok(port_to_dev(port))) {
1131                        dbg(DBG_INTR, "DCD lost\n");
1132                        netif_carrier_off(port_to_dev(port));
1133                }
1134        }
1135}
1136
1137/*      Log Rx Errors
1138 */
1139static void
1140fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1141                 unsigned char dmabits, int rxp, unsigned short len)
1142{
1143        struct net_device *dev = port_to_dev(port);
1144
1145        /*
1146         * Increment the appropriate error counter
1147         */
1148        dev->stats.rx_errors++;
1149        if (dmabits & RX_OFLO) {
1150                dev->stats.rx_fifo_errors++;
1151                dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
1152                    card->card_no, port->index, rxp);
1153        }
1154        if (dmabits & RX_CRC) {
1155                dev->stats.rx_crc_errors++;
1156                dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
1157                    card->card_no, port->index);
1158        }
1159        if (dmabits & RX_FRAM) {
1160                dev->stats.rx_frame_errors++;
1161                dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
1162                    card->card_no, port->index);
1163        }
1164        if (dmabits == (RX_STP | RX_ENP)) {
1165                dev->stats.rx_length_errors++;
1166                dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
1167                    len, card->card_no, port->index);
1168        }
1169}
1170
1171/*      Rx Error Recovery
1172 */
1173static void
1174fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
1175                     unsigned char dmabits, int rxp, unsigned short len)
1176{
1177        int i;
1178        int pi;
1179
1180        pi = port->index;
1181        /* 
1182         * Discard buffer descriptors until we see the start of the
1183         * next frame.  Note that for long frames this could be in
1184         * a subsequent interrupt. 
1185         */
1186        i = 0;
1187        while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
1188                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1189                rxp = (rxp+1) % NUM_RX_BUFFER;
1190                if (++i > NUM_RX_BUFFER) {
1191                        dbg(DBG_ASS, "intr_rx: Discarding more bufs"
1192                            " than we have\n");
1193                        break;
1194                }
1195                dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1196                dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
1197        }
1198        dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
1199
1200        /* Discard the terminal buffer */
1201        if (!(dmabits & DMA_OWN)) {
1202                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1203                rxp = (rxp+1) % NUM_RX_BUFFER;
1204        }
1205        port->rxpos = rxp;
1206        return;
1207
1208}
1209
1210/*      Rx complete interrupt
1211 */
1212static void
1213fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
1214{
1215        unsigned char dmabits;
1216        int pi;
1217        int rxp;
1218        int rx_status;
1219        unsigned short len;
1220        struct sk_buff *skb;
1221        struct net_device *dev = port_to_dev(port);
1222
1223        /* Check we have a buffer to process */
1224        pi = port->index;
1225        rxp = port->rxpos;
1226        dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
1227        if (dmabits & DMA_OWN) {
1228                dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
1229                    pi, rxp);
1230                return;
1231        }
1232        if (card->dmarx_in_progress) {
1233                return;
1234        }
1235
1236        /* Get buffer length */
1237        len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
1238        /* Discard the CRC */
1239        len -= 2;
1240        if (len == 0) {
1241                /*
1242                 * This seems to happen on the TE1 interface sometimes
1243                 * so throw the frame away and log the event.
1244                 */
1245                pr_err("Frame received with 0 length. Card %d Port %d\n",
1246                       card->card_no, port->index);
1247                /* Return descriptor to card */
1248                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1249
1250                rxp = (rxp+1) % NUM_RX_BUFFER;
1251                port->rxpos = rxp;
1252                return;
1253        }
1254
1255        /* Check buffer length and for other errors. We insist on one packet
1256         * in one buffer. This simplifies things greatly and since we've
1257         * allocated 8K it shouldn't be a real world limitation
1258         */
1259        dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
1260        if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
1261                fst_log_rx_error(card, port, dmabits, rxp, len);
1262                fst_recover_rx_error(card, port, dmabits, rxp, len);
1263                return;
1264        }
1265
1266        /* Allocate SKB */
1267        if ((skb = dev_alloc_skb(len)) == NULL) {
1268                dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
1269
1270                dev->stats.rx_dropped++;
1271
1272                /* Return descriptor to card */
1273                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1274
1275                rxp = (rxp+1) % NUM_RX_BUFFER;
1276                port->rxpos = rxp;
1277                return;
1278        }
1279
1280        /*
1281         * We know the length we need to receive, len.
1282         * It's not worth using the DMA for reads of less than
1283         * FST_MIN_DMA_LEN
1284         */
1285
1286        if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
1287                memcpy_fromio(skb_put(skb, len),
1288                              card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
1289                              len);
1290
1291                /* Reset buffer descriptor */
1292                FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
1293
1294                /* Update stats */
1295                dev->stats.rx_packets++;
1296                dev->stats.rx_bytes += len;
1297
1298                /* Push upstream */
1299                dbg(DBG_RX, "Pushing frame up the stack\n");
1300                if (port->mode == FST_RAW)
1301                        skb->protocol = farsync_type_trans(skb, dev);
1302                else
1303                        skb->protocol = hdlc_type_trans(skb, dev);
1304                rx_status = netif_rx(skb);
1305                fst_process_rx_status(rx_status, port_to_dev(port)->name);
1306                if (rx_status == NET_RX_DROP)
1307                        dev->stats.rx_dropped++;
1308        } else {
1309                card->dma_skb_rx = skb;
1310                card->dma_port_rx = port;
1311                card->dma_len_rx = len;
1312                card->dma_rxpos = rxp;
1313                fst_rx_dma(card, card->rx_dma_handle_card,
1314                           BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
1315        }
1316        if (rxp != port->rxpos) {
1317                dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
1318                dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
1319        }
1320        rxp = (rxp+1) % NUM_RX_BUFFER;
1321        port->rxpos = rxp;
1322}
1323
1324/*
1325 *      The bottom halfs to the ISR
1326 *
1327 */
1328
1329static void
1330do_bottom_half_tx(struct fst_card_info *card)
1331{
1332        struct fst_port_info *port;
1333        int pi;
1334        int txq_length;
1335        struct sk_buff *skb;
1336        unsigned long flags;
1337        struct net_device *dev;
1338
1339        /*
1340         *  Find a free buffer for the transmit
1341         *  Step through each port on this card
1342         */
1343
1344        dbg(DBG_TX, "do_bottom_half_tx\n");
1345        for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1346                if (!port->run)
1347                        continue;
1348
1349                dev = port_to_dev(port);
1350                while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
1351                         DMA_OWN) &&
1352                       !(card->dmatx_in_progress)) {
1353                        /*
1354                         * There doesn't seem to be a txdone event per-se
1355                         * We seem to have to deduce it, by checking the DMA_OWN
1356                         * bit on the next buffer we think we can use
1357                         */
1358                        spin_lock_irqsave(&card->card_lock, flags);
1359                        if ((txq_length = port->txqe - port->txqs) < 0) {
1360                                /*
1361                                 * This is the case where one has wrapped and the
1362                                 * maths gives us a negative number
1363                                 */
1364                                txq_length = txq_length + FST_TXQ_DEPTH;
1365                        }
1366                        spin_unlock_irqrestore(&card->card_lock, flags);
1367                        if (txq_length > 0) {
1368                                /*
1369                                 * There is something to send
1370                                 */
1371                                spin_lock_irqsave(&card->card_lock, flags);
1372                                skb = port->txq[port->txqs];
1373                                port->txqs++;
1374                                if (port->txqs == FST_TXQ_DEPTH) {
1375                                        port->txqs = 0;
1376                                }
1377                                spin_unlock_irqrestore(&card->card_lock, flags);
1378                                /*
1379                                 * copy the data and set the required indicators on the
1380                                 * card.
1381                                 */
1382                                FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
1383                                        cnv_bcnt(skb->len));
1384                                if ((skb->len < FST_MIN_DMA_LEN) ||
1385                                    (card->family == FST_FAMILY_TXP)) {
1386                                        /* Enqueue the packet with normal io */
1387                                        memcpy_toio(card->mem +
1388                                                    BUF_OFFSET(txBuffer[pi]
1389                                                               [port->
1390                                                                txpos][0]),
1391                                                    skb->data, skb->len);
1392                                        FST_WRB(card,
1393                                                txDescrRing[pi][port->txpos].
1394                                                bits,
1395                                                DMA_OWN | TX_STP | TX_ENP);
1396                                        dev->stats.tx_packets++;
1397                                        dev->stats.tx_bytes += skb->len;
1398                                        dev->trans_start = jiffies;
1399                                } else {
1400                                        /* Or do it through dma */
1401                                        memcpy(card->tx_dma_handle_host,
1402                                               skb->data, skb->len);
1403                                        card->dma_port_tx = port;
1404                                        card->dma_len_tx = skb->len;
1405                                        card->dma_txpos = port->txpos;
1406                                        fst_tx_dma(card,
1407                                                   (char *) card->
1408                                                   tx_dma_handle_card,
1409                                                   (char *)
1410                                                   BUF_OFFSET(txBuffer[pi]
1411                                                              [port->txpos][0]),
1412                                                   skb->len);
1413                                }
1414                                if (++port->txpos >= NUM_TX_BUFFER)
1415                                        port->txpos = 0;
1416                                /*
1417                                 * If we have flow control on, can we now release it?
1418                                 */
1419                                if (port->start) {
1420                                        if (txq_length < fst_txq_low) {
1421                                                netif_wake_queue(port_to_dev
1422                                                                 (port));
1423                                                port->start = 0;
1424                                        }
1425                                }
1426                                dev_kfree_skb(skb);
1427                        } else {
1428                                /*
1429                                 * Nothing to send so break out of the while loop
1430                                 */
1431                                break;
1432                        }
1433                }
1434        }
1435}
1436
1437static void
1438do_bottom_half_rx(struct fst_card_info *card)
1439{
1440        struct fst_port_info *port;
1441        int pi;
1442        int rx_count = 0;
1443
1444        /* Check for rx completions on all ports on this card */
1445        dbg(DBG_RX, "do_bottom_half_rx\n");
1446        for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
1447                if (!port->run)
1448                        continue;
1449
1450                while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
1451                         & DMA_OWN) && !(card->dmarx_in_progress)) {
1452                        if (rx_count > fst_max_reads) {
1453                                /*
1454                                 * Don't spend forever in receive processing
1455                                 * Schedule another event
1456                                 */
1457                                fst_q_work_item(&fst_work_intq, card->card_no);
1458                                tasklet_schedule(&fst_int_task);
1459                                break;  /* Leave the loop */
1460                        }
1461                        fst_intr_rx(card, port);
1462                        rx_count++;
1463                }
1464        }
1465}
1466
1467/*
1468 *      The interrupt service routine
1469 *      Dev_id is our fst_card_info pointer
1470 */
1471static irqreturn_t
1472fst_intr(int dummy, void *dev_id)
1473{
1474        struct fst_card_info *card = dev_id;
1475        struct fst_port_info *port;
1476        int rdidx;              /* Event buffer indices */
1477        int wridx;
1478        int event;              /* Actual event for processing */
1479        unsigned int dma_intcsr = 0;
1480        unsigned int do_card_interrupt;
1481        unsigned int int_retry_count;
1482
1483        /*
1484         * Check to see if the interrupt was for this card
1485         * return if not
1486         * Note that the call to clear the interrupt is important
1487         */
1488        dbg(DBG_INTR, "intr: %d %p\n", card->irq, card);
1489        if (card->state != FST_RUNNING) {
1490                pr_err("Interrupt received for card %d in a non running state (%d)\n",
1491                       card->card_no, card->state);
1492
1493                /* 
1494                 * It is possible to really be running, i.e. we have re-loaded
1495                 * a running card
1496                 * Clear and reprime the interrupt source 
1497                 */
1498                fst_clear_intr(card);
1499                return IRQ_HANDLED;
1500        }
1501
1502        /* Clear and reprime the interrupt source */
1503        fst_clear_intr(card);
1504
1505        /*
1506         * Is the interrupt for this card (handshake == 1)
1507         */
1508        do_card_interrupt = 0;
1509        if (FST_RDB(card, interruptHandshake) == 1) {
1510                do_card_interrupt += FST_CARD_INT;
1511                /* Set the software acknowledge */
1512                FST_WRB(card, interruptHandshake, 0xEE);
1513        }
1514        if (card->family == FST_FAMILY_TXU) {
1515                /*
1516                 * Is it a DMA Interrupt
1517                 */
1518                dma_intcsr = inl(card->pci_conf + INTCSR_9054);
1519                if (dma_intcsr & 0x00200000) {
1520                        /*
1521                         * DMA Channel 0 (Rx transfer complete)
1522                         */
1523                        dbg(DBG_RX, "DMA Rx xfer complete\n");
1524                        outb(0x8, card->pci_conf + DMACSR0);
1525                        fst_rx_dma_complete(card, card->dma_port_rx,
1526                                            card->dma_len_rx, card->dma_skb_rx,
1527                                            card->dma_rxpos);
1528                        card->dmarx_in_progress = 0;
1529                        do_card_interrupt += FST_RX_DMA_INT;
1530                }
1531                if (dma_intcsr & 0x00400000) {
1532                        /*
1533                         * DMA Channel 1 (Tx transfer complete)
1534                         */
1535                        dbg(DBG_TX, "DMA Tx xfer complete\n");
1536                        outb(0x8, card->pci_conf + DMACSR1);
1537                        fst_tx_dma_complete(card, card->dma_port_tx,
1538                                            card->dma_len_tx, card->dma_txpos);
1539                        card->dmatx_in_progress = 0;
1540                        do_card_interrupt += FST_TX_DMA_INT;
1541                }
1542        }
1543
1544        /*
1545         * Have we been missing Interrupts
1546         */
1547        int_retry_count = FST_RDL(card, interruptRetryCount);
1548        if (int_retry_count) {
1549                dbg(DBG_ASS, "Card %d int_retry_count is  %d\n",
1550                    card->card_no, int_retry_count);
1551                FST_WRL(card, interruptRetryCount, 0);
1552        }
1553
1554        if (!do_card_interrupt) {
1555                return IRQ_HANDLED;
1556        }
1557
1558        /* Scehdule the bottom half of the ISR */
1559        fst_q_work_item(&fst_work_intq, card->card_no);
1560        tasklet_schedule(&fst_int_task);
1561
1562        /* Drain the event queue */
1563        rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
1564        wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
1565        while (rdidx != wridx) {
1566                event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
1567                port = &card->ports[event & 0x03];
1568
1569                dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
1570
1571                switch (event) {
1572                case TE1_ALMA:
1573                        dbg(DBG_INTR, "TE1 Alarm intr\n");
1574                        if (port->run)
1575                                fst_intr_te1_alarm(card, port);
1576                        break;
1577
1578                case CTLA_CHG:
1579                case CTLB_CHG:
1580                case CTLC_CHG:
1581                case CTLD_CHG:
1582                        if (port->run)
1583                                fst_intr_ctlchg(card, port);
1584                        break;
1585
1586                case ABTA_SENT:
1587                case ABTB_SENT:
1588                case ABTC_SENT:
1589                case ABTD_SENT:
1590                        dbg(DBG_TX, "Abort complete port %d\n", port->index);
1591                        break;
1592
1593                case TXA_UNDF:
1594                case TXB_UNDF:
1595                case TXC_UNDF:
1596                case TXD_UNDF:
1597                        /* Difficult to see how we'd get this given that we
1598                         * always load up the entire packet for DMA.
1599                         */
1600                        dbg(DBG_TX, "Tx underflow port %d\n", port->index);
1601                        port_to_dev(port)->stats.tx_errors++;
1602                        port_to_dev(port)->stats.tx_fifo_errors++;
1603                        dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
1604                            card->card_no, port->index);
1605                        break;
1606
1607                case INIT_CPLT:
1608                        dbg(DBG_INIT, "Card init OK intr\n");
1609                        break;
1610
1611                case INIT_FAIL:
1612                        dbg(DBG_INIT, "Card init FAILED intr\n");
1613                        card->state = FST_IFAILED;
1614                        break;
1615
1616                default:
1617                        pr_err("intr: unknown card event %d. ignored\n", event);
1618                        break;
1619                }
1620
1621                /* Bump and wrap the index */
1622                if (++rdidx >= MAX_CIRBUFF)
1623                        rdidx = 0;
1624        }
1625        FST_WRB(card, interruptEvent.rdindex, rdidx);
1626        return IRQ_HANDLED;
1627}
1628
1629/*      Check that the shared memory configuration is one that we can handle
1630 *      and that some basic parameters are correct
1631 */
1632static void
1633check_started_ok(struct fst_card_info *card)
1634{
1635        int i;
1636
1637        /* Check structure version and end marker */
1638        if (FST_RDW(card, smcVersion) != SMC_VERSION) {
1639                pr_err("Bad shared memory version %d expected %d\n",
1640                       FST_RDW(card, smcVersion), SMC_VERSION);
1641                card->state = FST_BADVERSION;
1642                return;
1643        }
1644        if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
1645                pr_err("Missing shared memory signature\n");
1646                card->state = FST_BADVERSION;
1647                return;
1648        }
1649        /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1650        if ((i = FST_RDB(card, taskStatus)) == 0x01) {
1651                card->state = FST_RUNNING;
1652        } else if (i == 0xFF) {
1653                pr_err("Firmware initialisation failed. Card halted\n");
1654                card->state = FST_HALTED;
1655                return;
1656        } else if (i != 0x00) {
1657                pr_err("Unknown firmware status 0x%x\n", i);
1658                card->state = FST_HALTED;
1659                return;
1660        }
1661
1662        /* Finally check the number of ports reported by firmware against the
1663         * number we assumed at card detection. Should never happen with
1664         * existing firmware etc so we just report it for the moment.
1665         */
1666        if (FST_RDL(card, numberOfPorts) != card->nports) {
1667                pr_warning("Port count mismatch on card %d. "
1668                           "Firmware thinks %d we say %d\n",
1669                           card->card_no,
1670                           FST_RDL(card, numberOfPorts), card->nports);
1671        }
1672}
1673
1674static int
1675set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
1676                   struct fstioc_info *info)
1677{
1678        int err;
1679        unsigned char my_framing;
1680
1681        /* Set things according to the user set valid flags 
1682         * Several of the old options have been invalidated/replaced by the 
1683         * generic hdlc package.
1684         */
1685        err = 0;
1686        if (info->valid & FSTVAL_PROTO) {
1687                if (info->proto == FST_RAW)
1688                        port->mode = FST_RAW;
1689                else
1690                        port->mode = FST_GEN_HDLC;
1691        }
1692
1693        if (info->valid & FSTVAL_CABLE)
1694                err = -EINVAL;
1695
1696        if (info->valid & FSTVAL_SPEED)
1697                err = -EINVAL;
1698
1699        if (info->valid & FSTVAL_PHASE)
1700                FST_WRB(card, portConfig[port->index].invertClock,
1701                        info->invertClock);
1702        if (info->valid & FSTVAL_MODE)
1703                FST_WRW(card, cardMode, info->cardMode);
1704        if (info->valid & FSTVAL_TE1) {
1705                FST_WRL(card, suConfig.dataRate, info->lineSpeed);
1706                FST_WRB(card, suConfig.clocking, info->clockSource);
1707                my_framing = FRAMING_E1;
1708                if (info->framing == E1)
1709                        my_framing = FRAMING_E1;
1710                if (info->framing == T1)
1711                        my_framing = FRAMING_T1;
1712                if (info->framing == J1)
1713                        my_framing = FRAMING_J1;
1714                FST_WRB(card, suConfig.framing, my_framing);
1715                FST_WRB(card, suConfig.structure, info->structure);
1716                FST_WRB(card, suConfig.interface, info->interface);
1717                FST_WRB(card, suConfig.coding, info->coding);
1718                FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
1719                FST_WRB(card, suConfig.equalizer, info->equalizer);
1720                FST_WRB(card, suConfig.transparentMode, info->transparentMode);
1721                FST_WRB(card, suConfig.loopMode, info->loopMode);
1722                FST_WRB(card, suConfig.range, info->range);
1723                FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
1724                FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
1725                FST_WRB(card, suConfig.startingSlot, info->startingSlot);
1726                FST_WRB(card, suConfig.losThreshold, info->losThreshold);
1727                if (info->idleCode)
1728                        FST_WRB(card, suConfig.enableIdleCode, 1);
1729                else
1730                        FST_WRB(card, suConfig.enableIdleCode, 0);
1731                FST_WRB(card, suConfig.idleCode, info->idleCode);
1732#if FST_DEBUG
1733                if (info->valid & FSTVAL_TE1) {
1734                        printk("Setting TE1 data\n");
1735                        printk("Line Speed = %d\n", info->lineSpeed);
1736                        printk("Start slot = %d\n", info->startingSlot);
1737                        printk("Clock source = %d\n", info->clockSource);
1738                        printk("Framing = %d\n", my_framing);
1739                        printk("Structure = %d\n", info->structure);
1740                        printk("interface = %d\n", info->interface);
1741                        printk("Coding = %d\n", info->coding);
1742                        printk("Line build out = %d\n", info->lineBuildOut);
1743                        printk("Equaliser = %d\n", info->equalizer);
1744                        printk("Transparent mode = %d\n",
1745                               info->transparentMode);
1746                        printk("Loop mode = %d\n", info->loopMode);
1747                        printk("Range = %d\n", info->range);
1748                        printk("Tx Buffer mode = %d\n", info->txBufferMode);
1749                        printk("Rx Buffer mode = %d\n", info->rxBufferMode);
1750                        printk("LOS Threshold = %d\n", info->losThreshold);
1751                        printk("Idle Code = %d\n", info->idleCode);
1752                }
1753#endif
1754        }
1755#if FST_DEBUG
1756        if (info->valid & FSTVAL_DEBUG) {
1757                fst_debug_mask = info->debug;
1758        }
1759#endif
1760
1761        return err;
1762}
1763
1764static void
1765gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
1766                 struct fstioc_info *info)
1767{
1768        int i;
1769
1770        memset(info, 0, sizeof (struct fstioc_info));
1771
1772        i = port->index;
1773        info->kernelVersion = LINUX_VERSION_CODE;
1774        info->nports = card->nports;
1775        info->type = card->type;
1776        info->state = card->state;
1777        info->proto = FST_GEN_HDLC;
1778        info->index = i;
1779#if FST_DEBUG
1780        info->debug = fst_debug_mask;
1781#endif
1782
1783        /* Only mark information as valid if card is running.
1784         * Copy the data anyway in case it is useful for diagnostics
1785         */
1786        info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
1787#if FST_DEBUG
1788            | FSTVAL_DEBUG
1789#endif
1790            ;
1791
1792        info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
1793        info->internalClock = FST_RDB(card, portConfig[i].internalClock);
1794        info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
1795        info->invertClock = FST_RDB(card, portConfig[i].invertClock);
1796        info->v24IpSts = FST_RDL(card, v24IpSts[i]);
1797        info->v24OpSts = FST_RDL(card, v24OpSts[i]);
1798        info->clockStatus = FST_RDW(card, clockStatus[i]);
1799        info->cableStatus = FST_RDW(card, cableStatus);
1800        info->cardMode = FST_RDW(card, cardMode);
1801        info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
1802
1803        /*
1804         * The T2U can report cable presence for both A or B
1805         * in bits 0 and 1 of cableStatus.  See which port we are and 
1806         * do the mapping.
1807         */
1808        if (card->family == FST_FAMILY_TXU) {
1809                if (port->index == 0) {
1810                        /*
1811                         * Port A
1812                         */
1813                        info->cableStatus = info->cableStatus & 1;
1814                } else {
1815                        /*
1816                         * Port B
1817                         */
1818                        info->cableStatus = info->cableStatus >> 1;
1819                        info->cableStatus = info->cableStatus & 1;
1820                }
1821        }
1822        /*
1823         * Some additional bits if we are TE1
1824         */
1825        if (card->type == FST_TYPE_TE1) {
1826                info->lineSpeed = FST_RDL(card, suConfig.dataRate);
1827                info->clockSource = FST_RDB(card, suConfig.clocking);
1828                info->framing = FST_RDB(card, suConfig.framing);
1829                info->structure = FST_RDB(card, suConfig.structure);
1830                info->interface = FST_RDB(card, suConfig.interface);
1831                info->coding = FST_RDB(card, suConfig.coding);
1832                info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
1833                info->equalizer = FST_RDB(card, suConfig.equalizer);
1834                info->loopMode = FST_RDB(card, suConfig.loopMode);
1835                info->range = FST_RDB(card, suConfig.range);
1836                info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
1837                info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
1838                info->startingSlot = FST_RDB(card, suConfig.startingSlot);
1839                info->losThreshold = FST_RDB(card, suConfig.losThreshold);
1840                if (FST_RDB(card, suConfig.enableIdleCode))
1841                        info->idleCode = FST_RDB(card, suConfig.idleCode);
1842                else
1843                        info->idleCode = 0;
1844                info->receiveBufferDelay =
1845                    FST_RDL(card, suStatus.receiveBufferDelay);
1846                info->framingErrorCount =
1847                    FST_RDL(card, suStatus.framingErrorCount);
1848                info->codeViolationCount =
1849                    FST_RDL(card, suStatus.codeViolationCount);
1850                info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
1851                info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
1852                info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
1853                info->receiveRemoteAlarm =
1854                    FST_RDB(card, suStatus.receiveRemoteAlarm);
1855                info->alarmIndicationSignal =
1856                    FST_RDB(card, suStatus.alarmIndicationSignal);
1857        }
1858}
1859
1860static int
1861fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
1862              struct ifreq *ifr)
1863{
1864        sync_serial_settings sync;
1865        int i;
1866
1867        if (ifr->ifr_settings.size != sizeof (sync)) {
1868                return -ENOMEM;
1869        }
1870
1871        if (copy_from_user
1872            (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
1873                return -EFAULT;
1874        }
1875
1876        if (sync.loopback)
1877                return -EINVAL;
1878
1879        i = port->index;
1880
1881        switch (ifr->ifr_settings.type) {
1882        case IF_IFACE_V35:
1883                FST_WRW(card, portConfig[i].lineInterface, V35);
1884                port->hwif = V35;
1885                break;
1886
1887        case IF_IFACE_V24:
1888                FST_WRW(card, portConfig[i].lineInterface, V24);
1889                port->hwif = V24;
1890                break;
1891
1892        case IF_IFACE_X21:
1893                FST_WRW(card, portConfig[i].lineInterface, X21);
1894                port->hwif = X21;
1895                break;
1896
1897        case IF_IFACE_X21D:
1898                FST_WRW(card, portConfig[i].lineInterface, X21D);
1899                port->hwif = X21D;
1900                break;
1901
1902        case IF_IFACE_T1:
1903                FST_WRW(card, portConfig[i].lineInterface, T1);
1904                port->hwif = T1;
1905                break;
1906
1907        case IF_IFACE_E1:
1908                FST_WRW(card, portConfig[i].lineInterface, E1);
1909                port->hwif = E1;
1910                break;
1911
1912        case IF_IFACE_SYNC_SERIAL:
1913                break;
1914
1915        default:
1916                return -EINVAL;
1917        }
1918
1919        switch (sync.clock_type) {
1920        case CLOCK_EXT:
1921                FST_WRB(card, portConfig[i].internalClock, EXTCLK);
1922                break;
1923
1924        case CLOCK_INT:
1925                FST_WRB(card, portConfig[i].internalClock, INTCLK);
1926                break;
1927
1928        default:
1929                return -EINVAL;
1930        }
1931        FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
1932        return 0;
1933}
1934
1935static int
1936fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
1937              struct ifreq *ifr)
1938{
1939        sync_serial_settings sync;
1940        int i;
1941
1942        /* First check what line type is set, we'll default to reporting X.21
1943         * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1944         * changed
1945         */
1946        switch (port->hwif) {
1947        case E1:
1948                ifr->ifr_settings.type = IF_IFACE_E1;
1949                break;
1950        case T1:
1951                ifr->ifr_settings.type = IF_IFACE_T1;
1952                break;
1953        case V35:
1954                ifr->ifr_settings.type = IF_IFACE_V35;
1955                break;
1956        case V24:
1957                ifr->ifr_settings.type = IF_IFACE_V24;
1958                break;
1959        case X21D:
1960                ifr->ifr_settings.type = IF_IFACE_X21D;
1961                break;
1962        case X21:
1963        default:
1964                ifr->ifr_settings.type = IF_IFACE_X21;
1965                break;
1966        }
1967        if (ifr->ifr_settings.size == 0) {
1968                return 0;       /* only type requested */
1969        }
1970        if (ifr->ifr_settings.size < sizeof (sync)) {
1971                return -ENOMEM;
1972        }
1973
1974        i = port->index;
1975        sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
1976        /* Lucky card and linux use same encoding here */
1977        sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
1978            INTCLK ? CLOCK_INT : CLOCK_EXT;
1979        sync.loopback = 0;
1980
1981        if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
1982                return -EFAULT;
1983        }
1984
1985        ifr->ifr_settings.size = sizeof (sync);
1986        return 0;
1987}
1988
1989static int
1990fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1991{
1992        struct fst_card_info *card;
1993        struct fst_port_info *port;
1994        struct fstioc_write wrthdr;
1995        struct fstioc_info info;
1996        unsigned long flags;
1997        void *buf;
1998
1999        dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
2000
2001        port = dev_to_port(dev);
2002        card = port->card;
2003
2004        if (!capable(CAP_NET_ADMIN))
2005                return -EPERM;
2006
2007        switch (cmd) {
2008        case FSTCPURESET:
2009                fst_cpureset(card);
2010                card->state = FST_RESET;
2011                return 0;
2012
2013        case FSTCPURELEASE:
2014                fst_cpurelease(card);
2015                card->state = FST_STARTING;
2016                return 0;
2017
2018        case FSTWRITE:          /* Code write (download) */
2019
2020                /* First copy in the header with the length and offset of data
2021                 * to write
2022                 */
2023                if (ifr->ifr_data == NULL) {
2024                        return -EINVAL;
2025                }
2026                if (copy_from_user(&wrthdr, ifr->ifr_data,
2027                                   sizeof (struct fstioc_write))) {
2028                        return -EFAULT;
2029                }
2030
2031                /* Sanity check the parameters. We don't support partial writes
2032                 * when going over the top
2033                 */
2034                if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE ||
2035                    wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
2036                        return -ENXIO;
2037                }
2038
2039                /* Now copy the data to the card. */
2040
2041                buf = memdup_user(ifr->ifr_data + sizeof(struct fstioc_write),
2042                                  wrthdr.size);
2043                if (IS_ERR(buf))
2044                        return PTR_ERR(buf);
2045
2046                memcpy_toio(card->mem + wrthdr.offset, buf, wrthdr.size);
2047                kfree(buf);
2048
2049                /* Writes to the memory of a card in the reset state constitute
2050                 * a download
2051                 */
2052                if (card->state == FST_RESET) {
2053                        card->state = FST_DOWNLOAD;
2054                }
2055                return 0;
2056
2057        case FSTGETCONF:
2058
2059                /* If card has just been started check the shared memory config
2060                 * version and marker
2061                 */
2062                if (card->state == FST_STARTING) {
2063                        check_started_ok(card);
2064
2065                        /* If everything checked out enable card interrupts */
2066                        if (card->state == FST_RUNNING) {
2067                                spin_lock_irqsave(&card->card_lock, flags);
2068                                fst_enable_intr(card);
2069                                FST_WRB(card, interruptHandshake, 0xEE);
2070                                spin_unlock_irqrestore(&card->card_lock, flags);
2071                        }
2072                }
2073
2074                if (ifr->ifr_data == NULL) {
2075                        return -EINVAL;
2076                }
2077
2078                gather_conf_info(card, port, &info);
2079
2080                if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
2081                        return -EFAULT;
2082                }
2083                return 0;
2084
2085        case FSTSETCONF:
2086
2087                /*
2088                 * Most of the settings have been moved to the generic ioctls
2089                 * this just covers debug and board ident now
2090                 */
2091
2092                if (card->state != FST_RUNNING) {
2093                        pr_err("Attempt to configure card %d in non-running state (%d)\n",
2094                               card->card_no, card->state);
2095                        return -EIO;
2096                }
2097                if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
2098                        return -EFAULT;
2099                }
2100
2101                return set_conf_from_info(card, port, &info);
2102
2103        case SIOCWANDEV:
2104                switch (ifr->ifr_settings.type) {
2105                case IF_GET_IFACE:
2106                        return fst_get_iface(card, port, ifr);
2107
2108                case IF_IFACE_SYNC_SERIAL:
2109                case IF_IFACE_V35:
2110                case IF_IFACE_V24:
2111                case IF_IFACE_X21:
2112                case IF_IFACE_X21D:
2113                case IF_IFACE_T1:
2114                case IF_IFACE_E1:
2115                        return fst_set_iface(card, port, ifr);
2116
2117                case IF_PROTO_RAW:
2118                        port->mode = FST_RAW;
2119                        return 0;
2120
2121                case IF_GET_PROTO:
2122                        if (port->mode == FST_RAW) {
2123                                ifr->ifr_settings.type = IF_PROTO_RAW;
2124                                return 0;
2125                        }
2126                        return hdlc_ioctl(dev, ifr, cmd);
2127
2128                default:
2129                        port->mode = FST_GEN_HDLC;
2130                        dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
2131                            ifr->ifr_settings.type);
2132                        return hdlc_ioctl(dev, ifr, cmd);
2133                }
2134
2135        default:
2136                /* Not one of ours. Pass through to HDLC package */
2137                return hdlc_ioctl(dev, ifr, cmd);
2138        }
2139}
2140
2141static void
2142fst_openport(struct fst_port_info *port)
2143{
2144        int signals;
2145        int txq_length;
2146
2147        /* Only init things if card is actually running. This allows open to
2148         * succeed for downloads etc.
2149         */
2150        if (port->card->state == FST_RUNNING) {
2151                if (port->run) {
2152                        dbg(DBG_OPEN, "open: found port already running\n");
2153
2154                        fst_issue_cmd(port, STOPPORT);
2155                        port->run = 0;
2156                }
2157
2158                fst_rx_config(port);
2159                fst_tx_config(port);
2160                fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
2161
2162                fst_issue_cmd(port, STARTPORT);
2163                port->run = 1;
2164
2165                signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
2166                if (signals & (((port->hwif == X21) || (port->hwif == X21D))
2167                               ? IPSTS_INDICATE : IPSTS_DCD))
2168                        netif_carrier_on(port_to_dev(port));
2169                else
2170                        netif_carrier_off(port_to_dev(port));
2171
2172                txq_length = port->txqe - port->txqs;
2173                port->txqe = 0;
2174                port->txqs = 0;
2175        }
2176
2177}
2178
2179static void
2180fst_closeport(struct fst_port_info *port)
2181{
2182        if (port->card->state == FST_RUNNING) {
2183                if (port->run) {
2184                        port->run = 0;
2185                        fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
2186
2187                        fst_issue_cmd(port, STOPPORT);
2188                } else {
2189                        dbg(DBG_OPEN, "close: port not running\n");
2190                }
2191        }
2192}
2193
2194static int
2195fst_open(struct net_device *dev)
2196{
2197        int err;
2198        struct fst_port_info *port;
2199
2200        port = dev_to_port(dev);
2201        if (!try_module_get(THIS_MODULE))
2202          return -EBUSY;
2203
2204        if (port->mode != FST_RAW) {
2205                err = hdlc_open(dev);
2206                if (err)
2207                        return err;
2208        }
2209
2210        fst_openport(port);
2211        netif_wake_queue(dev);
2212        return 0;
2213}
2214
2215static int
2216fst_close(struct net_device *dev)
2217{
2218        struct fst_port_info *port;
2219        struct fst_card_info *card;
2220        unsigned char tx_dma_done;
2221        unsigned char rx_dma_done;
2222
2223        port = dev_to_port(dev);
2224        card = port->card;
2225
2226        tx_dma_done = inb(card->pci_conf + DMACSR1);
2227        rx_dma_done = inb(card->pci_conf + DMACSR0);
2228        dbg(DBG_OPEN,
2229            "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2230            card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
2231            rx_dma_done);
2232
2233        netif_stop_queue(dev);
2234        fst_closeport(dev_to_port(dev));
2235        if (port->mode != FST_RAW) {
2236                hdlc_close(dev);
2237        }
2238        module_put(THIS_MODULE);
2239        return 0;
2240}
2241
2242static int
2243fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
2244{
2245        /*
2246         * Setting currently fixed in FarSync card so we check and forget
2247         */
2248        if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
2249                return -EINVAL;
2250        return 0;
2251}
2252
2253static void
2254fst_tx_timeout(struct net_device *dev)
2255{
2256        struct fst_port_info *port;
2257        struct fst_card_info *card;
2258
2259        port = dev_to_port(dev);
2260        card = port->card;
2261        dev->stats.tx_errors++;
2262        dev->stats.tx_aborted_errors++;
2263        dbg(DBG_ASS, "Tx timeout card %d port %d\n",
2264            card->card_no, port->index);
2265        fst_issue_cmd(port, ABORTTX);
2266
2267        dev->trans_start = jiffies;
2268        netif_wake_queue(dev);
2269        port->start = 0;
2270}
2271
2272static netdev_tx_t
2273fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
2274{
2275        struct fst_card_info *card;
2276        struct fst_port_info *port;
2277        unsigned long flags;
2278        int txq_length;
2279
2280        port = dev_to_port(dev);
2281        card = port->card;
2282        dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
2283
2284        /* Drop packet with error if we don't have carrier */
2285        if (!netif_carrier_ok(dev)) {
2286                dev_kfree_skb(skb);
2287                dev->stats.tx_errors++;
2288                dev->stats.tx_carrier_errors++;
2289                dbg(DBG_ASS,
2290                    "Tried to transmit but no carrier on card %d port %d\n",
2291                    card->card_no, port->index);
2292                return NETDEV_TX_OK;
2293        }
2294
2295        /* Drop it if it's too big! MTU failure ? */
2296        if (skb->len > LEN_TX_BUFFER) {
2297                dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
2298                    LEN_TX_BUFFER);
2299                dev_kfree_skb(skb);
2300                dev->stats.tx_errors++;
2301                return NETDEV_TX_OK;
2302        }
2303
2304        /*
2305         * We are always going to queue the packet
2306         * so that the bottom half is the only place we tx from
2307         * Check there is room in the port txq
2308         */
2309        spin_lock_irqsave(&card->card_lock, flags);
2310        if ((txq_length = port->txqe - port->txqs) < 0) {
2311                /*
2312                 * This is the case where the next free has wrapped but the
2313                 * last used hasn't
2314                 */
2315                txq_length = txq_length + FST_TXQ_DEPTH;
2316        }
2317        spin_unlock_irqrestore(&card->card_lock, flags);
2318        if (txq_length > fst_txq_high) {
2319                /*
2320                 * We have got enough buffers in the pipeline.  Ask the network
2321                 * layer to stop sending frames down
2322                 */
2323                netif_stop_queue(dev);
2324                port->start = 1;        /* I'm using this to signal stop sent up */
2325        }
2326
2327        if (txq_length == FST_TXQ_DEPTH - 1) {
2328                /*
2329                 * This shouldn't have happened but such is life
2330                 */
2331                dev_kfree_skb(skb);
2332                dev->stats.tx_errors++;
2333                dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
2334                    card->card_no, port->index);
2335                return NETDEV_TX_OK;
2336        }
2337
2338        /*
2339         * queue the buffer
2340         */
2341        spin_lock_irqsave(&card->card_lock, flags);
2342        port->txq[port->txqe] = skb;
2343        port->txqe++;
2344        if (port->txqe == FST_TXQ_DEPTH)
2345                port->txqe = 0;
2346        spin_unlock_irqrestore(&card->card_lock, flags);
2347
2348        /* Scehdule the bottom half which now does transmit processing */
2349        fst_q_work_item(&fst_work_txq, card->card_no);
2350        tasklet_schedule(&fst_tx_task);
2351
2352        return NETDEV_TX_OK;
2353}
2354
2355/*
2356 *      Card setup having checked hardware resources.
2357 *      Should be pretty bizarre if we get an error here (kernel memory
2358 *      exhaustion is one possibility). If we do see a problem we report it
2359 *      via a printk and leave the corresponding interface and all that follow
2360 *      disabled.
2361 */
2362static char *type_strings[] __devinitdata = {
2363        "no hardware",          /* Should never be seen */
2364        "FarSync T2P",
2365        "FarSync T4P",
2366        "FarSync T1U",
2367        "FarSync T2U",
2368        "FarSync T4U",
2369        "FarSync TE1"
2370};
2371
2372static void __devinit
2373fst_init_card(struct fst_card_info *card)
2374{
2375        int i;
2376        int err;
2377
2378        /* We're working on a number of ports based on the card ID. If the
2379         * firmware detects something different later (should never happen)
2380         * we'll have to revise it in some way then.
2381         */
2382        for (i = 0; i < card->nports; i++) {
2383                err = register_hdlc_device(card->ports[i].dev);
2384                if (err < 0) {
2385                        int j;
2386                        pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2387                               i, -err);
2388                        for (j = i; j < card->nports; j++) {
2389                                free_netdev(card->ports[j].dev);
2390                                card->ports[j].dev = NULL;
2391                        }
2392                        card->nports = i;
2393                        break;
2394                }
2395        }
2396
2397        pr_info("%s-%s: %s IRQ%d, %d ports\n",
2398                port_to_dev(&card->ports[0])->name,
2399                port_to_dev(&card->ports[card->nports - 1])->name,
2400                type_strings[card->type], card->irq, card->nports);
2401}
2402
2403static const struct net_device_ops fst_ops = {
2404        .ndo_open       = fst_open,
2405        .ndo_stop       = fst_close,
2406        .ndo_change_mtu = hdlc_change_mtu,
2407        .ndo_start_xmit = hdlc_start_xmit,
2408        .ndo_do_ioctl   = fst_ioctl,
2409        .ndo_tx_timeout = fst_tx_timeout,
2410};
2411
2412/*
2413 *      Initialise card when detected.
2414 *      Returns 0 to indicate success, or errno otherwise.
2415 */
2416static int __devinit
2417fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2418{
2419        static int no_of_cards_added = 0;
2420        struct fst_card_info *card;
2421        int err = 0;
2422        int i;
2423
2424        printk_once(KERN_INFO
2425                    pr_fmt("FarSync WAN driver " FST_USER_VERSION
2426                           " (c) 2001-2004 FarSite Communications Ltd.\n"));
2427#if FST_DEBUG
2428        dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
2429#endif
2430        /*
2431         * We are going to be clever and allow certain cards not to be
2432         * configured.  An exclude list can be provided in /etc/modules.conf
2433         */
2434        if (fst_excluded_cards != 0) {
2435                /*
2436                 * There are cards to exclude
2437                 *
2438                 */
2439                for (i = 0; i < fst_excluded_cards; i++) {
2440                        if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
2441                                pr_info("FarSync PCI device %d not assigned\n",
2442                                        (pdev->devfn) >> 3);
2443                                return -EBUSY;
2444                        }
2445                }
2446        }
2447
2448        /* Allocate driver private data */
2449        card = kzalloc(sizeof (struct fst_card_info), GFP_KERNEL);
2450        if (card == NULL) {
2451                pr_err("FarSync card found but insufficient memory for driver storage\n");
2452                return -ENOMEM;
2453        }
2454
2455        /* Try to enable the device */
2456        if ((err = pci_enable_device(pdev)) != 0) {
2457                pr_err("Failed to enable card. Err %d\n", -err);
2458                kfree(card);
2459                return err;
2460        }
2461
2462        if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
2463                pr_err("Failed to allocate regions. Err %d\n", -err);
2464                pci_disable_device(pdev);
2465                kfree(card);
2466                return err;
2467        }
2468
2469        /* Get virtual addresses of memory regions */
2470        card->pci_conf = pci_resource_start(pdev, 1);
2471        card->phys_mem = pci_resource_start(pdev, 2);
2472        card->phys_ctlmem = pci_resource_start(pdev, 3);
2473        if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
2474                pr_err("Physical memory remap failed\n");
2475                pci_release_regions(pdev);
2476                pci_disable_device(pdev);
2477                kfree(card);
2478                return -ENODEV;
2479        }
2480        if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
2481                pr_err("Control memory remap failed\n");
2482                pci_release_regions(pdev);
2483                pci_disable_device(pdev);
2484                kfree(card);
2485                return -ENODEV;
2486        }
2487        dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
2488
2489        /* Register the interrupt handler */
2490        if (request_irq(pdev->irq, fst_intr, IRQF_SHARED, FST_DEV_NAME, card)) {
2491                pr_err("Unable to register interrupt %d\n", card->irq);
2492                pci_release_regions(pdev);
2493                pci_disable_device(pdev);
2494                iounmap(card->ctlmem);
2495                iounmap(card->mem);
2496                kfree(card);
2497                return -ENODEV;
2498        }
2499
2500        /* Record info we need */
2501        card->irq = pdev->irq;
2502        card->type = ent->driver_data;
2503        card->family = ((ent->driver_data == FST_TYPE_T2P) ||
2504                        (ent->driver_data == FST_TYPE_T4P))
2505            ? FST_FAMILY_TXP : FST_FAMILY_TXU;
2506        if ((ent->driver_data == FST_TYPE_T1U) ||
2507            (ent->driver_data == FST_TYPE_TE1))
2508                card->nports = 1;
2509        else
2510                card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
2511                                (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
2512
2513        card->state = FST_UNINIT;
2514        spin_lock_init ( &card->card_lock );
2515
2516        for ( i = 0 ; i < card->nports ; i++ ) {
2517                struct net_device *dev = alloc_hdlcdev(&card->ports[i]);
2518                hdlc_device *hdlc;
2519                if (!dev) {
2520                        while (i--)
2521                                free_netdev(card->ports[i].dev);
2522                        pr_err("FarSync: out of memory\n");
2523                        free_irq(card->irq, card);
2524                        pci_release_regions(pdev);
2525                        pci_disable_device(pdev);
2526                        iounmap(card->ctlmem);
2527                        iounmap(card->mem);
2528                        kfree(card);
2529                        return -ENODEV;
2530                }
2531                card->ports[i].dev    = dev;
2532                card->ports[i].card   = card;
2533                card->ports[i].index  = i;
2534                card->ports[i].run    = 0;
2535
2536                hdlc = dev_to_hdlc(dev);
2537
2538                /* Fill in the net device info */
2539                /* Since this is a PCI setup this is purely
2540                 * informational. Give them the buffer addresses
2541                 * and basic card I/O.
2542                 */
2543                dev->mem_start   = card->phys_mem
2544                                 + BUF_OFFSET ( txBuffer[i][0][0]);
2545                dev->mem_end     = card->phys_mem
2546                                 + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]);
2547                dev->base_addr   = card->pci_conf;
2548                dev->irq         = card->irq;
2549
2550                dev->netdev_ops = &fst_ops;
2551                dev->tx_queue_len = FST_TX_QUEUE_LEN;
2552                dev->watchdog_timeo = FST_TX_TIMEOUT;
2553                hdlc->attach = fst_attach;
2554                hdlc->xmit   = fst_start_xmit;
2555        }
2556
2557        card->device = pdev;
2558
2559        dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
2560            card->nports, card->irq);
2561        dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
2562            card->pci_conf, card->phys_mem, card->phys_ctlmem);
2563
2564        /* Reset the card's processor */
2565        fst_cpureset(card);
2566        card->state = FST_RESET;
2567
2568        /* Initialise DMA (if required) */
2569        fst_init_dma(card);
2570
2571        /* Record driver data for later use */
2572        pci_set_drvdata(pdev, card);
2573
2574        /* Remainder of card setup */
2575        fst_card_array[no_of_cards_added] = card;
2576        card->card_no = no_of_cards_added++;    /* Record instance and bump it */
2577        fst_init_card(card);
2578        if (card->family == FST_FAMILY_TXU) {
2579                /*
2580                 * Allocate a dma buffer for transmit and receives
2581                 */
2582                card->rx_dma_handle_host =
2583                    pci_alloc_consistent(card->device, FST_MAX_MTU,
2584                                         &card->rx_dma_handle_card);
2585                if (card->rx_dma_handle_host == NULL) {
2586                        pr_err("Could not allocate rx dma buffer\n");
2587                        fst_disable_intr(card);
2588                        pci_release_regions(pdev);
2589                        pci_disable_device(pdev);
2590                        iounmap(card->ctlmem);
2591                        iounmap(card->mem);
2592                        kfree(card);
2593                        return -ENOMEM;
2594                }
2595                card->tx_dma_handle_host =
2596                    pci_alloc_consistent(card->device, FST_MAX_MTU,
2597                                         &card->tx_dma_handle_card);
2598                if (card->tx_dma_handle_host == NULL) {
2599                        pr_err("Could not allocate tx dma buffer\n");
2600                        fst_disable_intr(card);
2601                        pci_release_regions(pdev);
2602                        pci_disable_device(pdev);
2603                        iounmap(card->ctlmem);
2604                        iounmap(card->mem);
2605                        kfree(card);
2606                        return -ENOMEM;
2607                }
2608        }
2609        return 0;               /* Success */
2610}
2611
2612/*
2613 *      Cleanup and close down a card
2614 */
2615static void __devexit
2616fst_remove_one(struct pci_dev *pdev)
2617{
2618        struct fst_card_info *card;
2619        int i;
2620
2621        card = pci_get_drvdata(pdev);
2622
2623        for (i = 0; i < card->nports; i++) {
2624                struct net_device *dev = port_to_dev(&card->ports[i]);
2625                unregister_hdlc_device(dev);
2626        }
2627
2628        fst_disable_intr(card);
2629        free_irq(card->irq, card);
2630
2631        iounmap(card->ctlmem);
2632        iounmap(card->mem);
2633        pci_release_regions(pdev);
2634        if (card->family == FST_FAMILY_TXU) {
2635                /*
2636                 * Free dma buffers
2637                 */
2638                pci_free_consistent(card->device, FST_MAX_MTU,
2639                                    card->rx_dma_handle_host,
2640                                    card->rx_dma_handle_card);
2641                pci_free_consistent(card->device, FST_MAX_MTU,
2642                                    card->tx_dma_handle_host,
2643                                    card->tx_dma_handle_card);
2644        }
2645        fst_card_array[card->card_no] = NULL;
2646}
2647
2648static struct pci_driver fst_driver = {
2649        .name           = FST_NAME,
2650        .id_table       = fst_pci_dev_id,
2651        .probe          = fst_add_one,
2652        .remove = __devexit_p(fst_remove_one),
2653        .suspend        = NULL,
2654        .resume = NULL,
2655};
2656
2657static int __init
2658fst_init(void)
2659{
2660        int i;
2661
2662        for (i = 0; i < FST_MAX_CARDS; i++)
2663                fst_card_array[i] = NULL;
2664        spin_lock_init(&fst_work_q_lock);
2665        return pci_register_driver(&fst_driver);
2666}
2667
2668static void __exit
2669fst_cleanup_module(void)
2670{
2671        pr_info("FarSync WAN driver unloading\n");
2672        pci_unregister_driver(&fst_driver);
2673}
2674
2675module_init(fst_init);
2676module_exit(fst_cleanup_module);
2677