linux/drivers/net/wimax/i2400m/fw.c
<<
>>
Prefs
   1/*
   2 * Intel Wireless WiMAX Connection 2400m
   3 * Firmware uploader
   4 *
   5 *
   6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions
  10 * are met:
  11 *
  12 *   * Redistributions of source code must retain the above copyright
  13 *     notice, this list of conditions and the following disclaimer.
  14 *   * Redistributions in binary form must reproduce the above copyright
  15 *     notice, this list of conditions and the following disclaimer in
  16 *     the documentation and/or other materials provided with the
  17 *     distribution.
  18 *   * Neither the name of Intel Corporation nor the names of its
  19 *     contributors may be used to endorse or promote products derived
  20 *     from this software without specific prior written permission.
  21 *
  22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  33 *
  34 *
  35 * Intel Corporation <linux-wimax@intel.com>
  36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
  37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  38 *  - Initial implementation
  39 *
  40 *
  41 * THE PROCEDURE
  42 *
  43 * The 2400m and derived devices work in two modes: boot-mode or
  44 * normal mode. In boot mode we can execute only a handful of commands
  45 * targeted at uploading the firmware and launching it.
  46 *
  47 * The 2400m enters boot mode when it is first connected to the
  48 * system, when it crashes and when you ask it to reboot. There are
  49 * two submodes of the boot mode: signed and non-signed. Signed takes
  50 * firmwares signed with a certain private key, non-signed takes any
  51 * firmware. Normal hardware takes only signed firmware.
  52 *
  53 * On boot mode, in USB, we write to the device using the bulk out
  54 * endpoint and read from it in the notification endpoint. In SDIO we
  55 * talk to it via the write address and read from the read address.
  56 *
  57 * Upon entrance to boot mode, the device sends (preceeded with a few
  58 * zero length packets (ZLPs) on the notification endpoint in USB) a
  59 * reboot barker (4 le32 words with the same value). We ack it by
  60 * sending the same barker to the device. The device acks with a
  61 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
  62 * then is fully booted. At this point we can upload the firmware.
  63 *
  64 * Note that different iterations of the device and EEPROM
  65 * configurations will send different [re]boot barkers; these are
  66 * collected in i2400m_barker_db along with the firmware
  67 * characteristics they require.
  68 *
  69 * This process is accomplished by the i2400m_bootrom_init()
  70 * function. All the device interaction happens through the
  71 * i2400m_bm_cmd() [boot mode command]. Special return values will
  72 * indicate if the device did reset during the process.
  73 *
  74 * After this, we read the MAC address and then (if needed)
  75 * reinitialize the device. We need to read it ahead of time because
  76 * in the future, we might not upload the firmware until userspace
  77 * 'ifconfig up's the device.
  78 *
  79 * We can then upload the firmware file. The file is composed of a BCF
  80 * header (basic data, keys and signatures) and a list of write
  81 * commands and payloads. Optionally more BCF headers might follow the
  82 * main payload. We first upload the header [i2400m_dnload_init()] and
  83 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
  84 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
  85 * the new firmware [i2400m_dnload_finalize()].
  86 *
  87 * Once firmware is uploaded, we are good to go :)
  88 *
  89 * When we don't know in which mode we are, we first try by sending a
  90 * warm reset request that will take us to boot-mode. If we time out
  91 * waiting for a reboot barker, that means maybe we are already in
  92 * boot mode, so we send a reboot barker.
  93 *
  94 * COMMAND EXECUTION
  95 *
  96 * This code (and process) is single threaded; for executing commands,
  97 * we post a URB to the notification endpoint, post the command, wait
  98 * for data on the notification buffer. We don't need to worry about
  99 * others as we know we are the only ones in there.
 100 *
 101 * BACKEND IMPLEMENTATION
 102 *
 103 * This code is bus-generic; the bus-specific driver provides back end
 104 * implementations to send a boot mode command to the device and to
 105 * read an acknolwedgement from it (or an asynchronous notification)
 106 * from it.
 107 *
 108 * FIRMWARE LOADING
 109 *
 110 * Note that in some cases, we can't just load a firmware file (for
 111 * example, when resuming). For that, we might cache the firmware
 112 * file. Thus, when doing the bootstrap, if there is a cache firmware
 113 * file, it is used; if not, loading from disk is attempted.
 114 *
 115 * ROADMAP
 116 *
 117 * i2400m_barker_db_init              Called by i2400m_driver_init()
 118 *   i2400m_barker_db_add
 119 *
 120 * i2400m_barker_db_exit              Called by i2400m_driver_exit()
 121 *
 122 * i2400m_dev_bootstrap               Called by __i2400m_dev_start()
 123 *   request_firmware
 124 *   i2400m_fw_bootstrap
 125 *     i2400m_fw_check
 126 *       i2400m_fw_hdr_check
 127 *     i2400m_fw_dnload
 128 *   release_firmware
 129 *
 130 * i2400m_fw_dnload
 131 *   i2400m_bootrom_init
 132 *     i2400m_bm_cmd
 133 *     i2400m_reset
 134 *   i2400m_dnload_init
 135 *     i2400m_dnload_init_signed
 136 *     i2400m_dnload_init_nonsigned
 137 *       i2400m_download_chunk
 138 *         i2400m_bm_cmd
 139 *   i2400m_dnload_bcf
 140 *     i2400m_bm_cmd
 141 *   i2400m_dnload_finalize
 142 *     i2400m_bm_cmd
 143 *
 144 * i2400m_bm_cmd
 145 *   i2400m->bus_bm_cmd_send()
 146 *   i2400m->bus_bm_wait_for_ack
 147 *   __i2400m_bm_ack_verify
 148 *     i2400m_is_boot_barker
 149 *
 150 * i2400m_bm_cmd_prepare              Used by bus-drivers to prep
 151 *                                    commands before sending
 152 *
 153 * i2400m_pm_notifier                 Called on Power Management events
 154 *   i2400m_fw_cache
 155 *   i2400m_fw_uncache
 156 */
 157#include <linux/firmware.h>
 158#include <linux/sched.h>
 159#include <linux/slab.h>
 160#include <linux/usb.h>
 161#include "i2400m.h"
 162
 163
 164#define D_SUBMODULE fw
 165#include "debug-levels.h"
 166
 167
 168static const __le32 i2400m_ACK_BARKER[4] = {
 169        cpu_to_le32(I2400M_ACK_BARKER),
 170        cpu_to_le32(I2400M_ACK_BARKER),
 171        cpu_to_le32(I2400M_ACK_BARKER),
 172        cpu_to_le32(I2400M_ACK_BARKER)
 173};
 174
 175
 176/**
 177 * Prepare a boot-mode command for delivery
 178 *
 179 * @cmd: pointer to bootrom header to prepare
 180 *
 181 * Computes checksum if so needed. After calling this function, DO NOT
 182 * modify the command or header as the checksum won't work anymore.
 183 *
 184 * We do it from here because some times we cannot do it in the
 185 * original context the command was sent (it is a const), so when we
 186 * copy it to our staging buffer, we add the checksum there.
 187 */
 188void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
 189{
 190        if (i2400m_brh_get_use_checksum(cmd)) {
 191                int i;
 192                u32 checksum = 0;
 193                const u32 *checksum_ptr = (void *) cmd->payload;
 194                for (i = 0; i < cmd->data_size / 4; i++)
 195                        checksum += cpu_to_le32(*checksum_ptr++);
 196                checksum += cmd->command + cmd->target_addr + cmd->data_size;
 197                cmd->block_checksum = cpu_to_le32(checksum);
 198        }
 199}
 200EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
 201
 202
 203/*
 204 * Database of known barkers.
 205 *
 206 * A barker is what the device sends indicating he is ready to be
 207 * bootloaded. Different versions of the device will send different
 208 * barkers. Depending on the barker, it might mean the device wants
 209 * some kind of firmware or the other.
 210 */
 211static struct i2400m_barker_db {
 212        __le32 data[4];
 213} *i2400m_barker_db;
 214static size_t i2400m_barker_db_used, i2400m_barker_db_size;
 215
 216
 217static
 218int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
 219                       gfp_t gfp_flags)
 220{
 221        size_t old_count = *_count,
 222                new_count = old_count ? 2 * old_count : 2,
 223                old_size = el_size * old_count,
 224                new_size = el_size * new_count;
 225        void *nptr = krealloc(*ptr, new_size, gfp_flags);
 226        if (nptr) {
 227                /* zero the other half or the whole thing if old_count
 228                 * was zero */
 229                if (old_size == 0)
 230                        memset(nptr, 0, new_size);
 231                else
 232                        memset(nptr + old_size, 0, old_size);
 233                *_count = new_count;
 234                *ptr = nptr;
 235                return 0;
 236        } else
 237                return -ENOMEM;
 238}
 239
 240
 241/*
 242 * Add a barker to the database
 243 *
 244 * This cannot used outside of this module and only at at module_init
 245 * time. This is to avoid the need to do locking.
 246 */
 247static
 248int i2400m_barker_db_add(u32 barker_id)
 249{
 250        int result;
 251
 252        struct i2400m_barker_db *barker;
 253        if (i2400m_barker_db_used >= i2400m_barker_db_size) {
 254                result = i2400m_zrealloc_2x(
 255                        (void **) &i2400m_barker_db, &i2400m_barker_db_size,
 256                        sizeof(i2400m_barker_db[0]), GFP_KERNEL);
 257                if (result < 0)
 258                        return result;
 259        }
 260        barker = i2400m_barker_db + i2400m_barker_db_used++;
 261        barker->data[0] = le32_to_cpu(barker_id);
 262        barker->data[1] = le32_to_cpu(barker_id);
 263        barker->data[2] = le32_to_cpu(barker_id);
 264        barker->data[3] = le32_to_cpu(barker_id);
 265        return 0;
 266}
 267
 268
 269void i2400m_barker_db_exit(void)
 270{
 271        kfree(i2400m_barker_db);
 272        i2400m_barker_db = NULL;
 273        i2400m_barker_db_size = 0;
 274        i2400m_barker_db_used = 0;
 275}
 276
 277
 278/*
 279 * Helper function to add all the known stable barkers to the barker
 280 * database.
 281 */
 282static
 283int i2400m_barker_db_known_barkers(void)
 284{
 285        int result;
 286
 287        result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
 288        if (result < 0)
 289                goto error_add;
 290        result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
 291        if (result < 0)
 292                goto error_add;
 293        result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
 294        if (result < 0)
 295                goto error_add;
 296error_add:
 297       return result;
 298}
 299
 300
 301/*
 302 * Initialize the barker database
 303 *
 304 * This can only be used from the module_init function for this
 305 * module; this is to avoid the need to do locking.
 306 *
 307 * @options: command line argument with extra barkers to
 308 *     recognize. This is a comma-separated list of 32-bit hex
 309 *     numbers. They are appended to the existing list. Setting 0
 310 *     cleans the existing list and starts a new one.
 311 */
 312int i2400m_barker_db_init(const char *_options)
 313{
 314        int result;
 315        char *options = NULL, *options_orig, *token;
 316
 317        i2400m_barker_db = NULL;
 318        i2400m_barker_db_size = 0;
 319        i2400m_barker_db_used = 0;
 320
 321        result = i2400m_barker_db_known_barkers();
 322        if (result < 0)
 323                goto error_add;
 324        /* parse command line options from i2400m.barkers */
 325        if (_options != NULL) {
 326                unsigned barker;
 327
 328                options_orig = kstrdup(_options, GFP_KERNEL);
 329                if (options_orig == NULL)
 330                        goto error_parse;
 331                options = options_orig;
 332
 333                while ((token = strsep(&options, ",")) != NULL) {
 334                        if (*token == '\0')     /* eat joint commas */
 335                                continue;
 336                        if (sscanf(token, "%x", &barker) != 1
 337                            || barker > 0xffffffff) {
 338                                printk(KERN_ERR "%s: can't recognize "
 339                                       "i2400m.barkers value '%s' as "
 340                                       "a 32-bit number\n",
 341                                       __func__, token);
 342                                result = -EINVAL;
 343                                goto error_parse;
 344                        }
 345                        if (barker == 0) {
 346                                /* clean list and start new */
 347                                i2400m_barker_db_exit();
 348                                continue;
 349                        }
 350                        result = i2400m_barker_db_add(barker);
 351                        if (result < 0)
 352                                goto error_add;
 353                }
 354                kfree(options_orig);
 355        }
 356        return 0;
 357
 358error_parse:
 359error_add:
 360        kfree(i2400m_barker_db);
 361        return result;
 362}
 363
 364
 365/*
 366 * Recognize a boot barker
 367 *
 368 * @buf: buffer where the boot barker.
 369 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
 370 *     here so the function can check it for the caller.
 371 *
 372 * Note that as a side effect, upon identifying the obtained boot
 373 * barker, this function will set i2400m->barker to point to the right
 374 * barker database entry. Subsequent calls to the function will result
 375 * in verifying that the same type of boot barker is returned when the
 376 * device [re]boots (as long as the same device instance is used).
 377 *
 378 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
 379 *     buffer in @buf doesn't match any boot barker in the database or
 380 *     -EILSEQ if the buffer doesn't have the right size.
 381 */
 382int i2400m_is_boot_barker(struct i2400m *i2400m,
 383                          const void *buf, size_t buf_size)
 384{
 385        int result;
 386        struct device *dev = i2400m_dev(i2400m);
 387        struct i2400m_barker_db *barker;
 388        int i;
 389
 390        result = -ENOENT;
 391        if (buf_size != sizeof(i2400m_barker_db[i].data))
 392                return result;
 393
 394        /* Short circuit if we have already discovered the barker
 395         * associated with the device. */
 396        if (i2400m->barker
 397            && !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data))) {
 398                unsigned index = (i2400m->barker - i2400m_barker_db)
 399                        / sizeof(*i2400m->barker);
 400                d_printf(2, dev, "boot barker cache-confirmed #%u/%08x\n",
 401                         index, le32_to_cpu(i2400m->barker->data[0]));
 402                return 0;
 403        }
 404
 405        for (i = 0; i < i2400m_barker_db_used; i++) {
 406                barker = &i2400m_barker_db[i];
 407                BUILD_BUG_ON(sizeof(barker->data) != 16);
 408                if (memcmp(buf, barker->data, sizeof(barker->data)))
 409                        continue;
 410
 411                if (i2400m->barker == NULL) {
 412                        i2400m->barker = barker;
 413                        d_printf(1, dev, "boot barker set to #%u/%08x\n",
 414                                 i, le32_to_cpu(barker->data[0]));
 415                        if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
 416                                i2400m->sboot = 0;
 417                        else
 418                                i2400m->sboot = 1;
 419                } else if (i2400m->barker != barker) {
 420                        dev_err(dev, "HW inconsistency: device "
 421                                "reports a different boot barker "
 422                                "than set (from %08x to %08x)\n",
 423                                le32_to_cpu(i2400m->barker->data[0]),
 424                                le32_to_cpu(barker->data[0]));
 425                        result = -EIO;
 426                } else
 427                        d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
 428                                 i, le32_to_cpu(barker->data[0]));
 429                result = 0;
 430                break;
 431        }
 432        return result;
 433}
 434EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
 435
 436
 437/*
 438 * Verify the ack data received
 439 *
 440 * Given a reply to a boot mode command, chew it and verify everything
 441 * is ok.
 442 *
 443 * @opcode: opcode which generated this ack. For error messages.
 444 * @ack: pointer to ack data we received
 445 * @ack_size: size of that data buffer
 446 * @flags: I2400M_BM_CMD_* flags we called the command with.
 447 *
 448 * Way too long function -- maybe it should be further split
 449 */
 450static
 451ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
 452                               struct i2400m_bootrom_header *ack,
 453                               size_t ack_size, int flags)
 454{
 455        ssize_t result = -ENOMEM;
 456        struct device *dev = i2400m_dev(i2400m);
 457
 458        d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
 459                  i2400m, opcode, ack, ack_size);
 460        if (ack_size < sizeof(*ack)) {
 461                result = -EIO;
 462                dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
 463                        "return enough data (%zu bytes vs %zu expected)\n",
 464                        opcode, ack_size, sizeof(*ack));
 465                goto error_ack_short;
 466        }
 467        result = i2400m_is_boot_barker(i2400m, ack, ack_size);
 468        if (result >= 0) {
 469                result = -ERESTARTSYS;
 470                d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
 471                goto error_reboot;
 472        }
 473        if (ack_size == sizeof(i2400m_ACK_BARKER)
 474                 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
 475                result = -EISCONN;
 476                d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
 477                         opcode);
 478                goto error_reboot_ack;
 479        }
 480        result = 0;
 481        if (flags & I2400M_BM_CMD_RAW)
 482                goto out_raw;
 483        ack->data_size = le32_to_cpu(ack->data_size);
 484        ack->target_addr = le32_to_cpu(ack->target_addr);
 485        ack->block_checksum = le32_to_cpu(ack->block_checksum);
 486        d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
 487                 "response %u csum %u rr %u da %u\n",
 488                 opcode, i2400m_brh_get_opcode(ack),
 489                 i2400m_brh_get_response(ack),
 490                 i2400m_brh_get_use_checksum(ack),
 491                 i2400m_brh_get_response_required(ack),
 492                 i2400m_brh_get_direct_access(ack));
 493        result = -EIO;
 494        if (i2400m_brh_get_signature(ack) != 0xcbbc) {
 495                dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
 496                        "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
 497                goto error_ack_signature;
 498        }
 499        if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
 500                dev_err(dev, "boot-mode cmd %d: HW BUG? "
 501                        "received response for opcode %u, expected %u\n",
 502                        opcode, i2400m_brh_get_opcode(ack), opcode);
 503                goto error_ack_opcode;
 504        }
 505        if (i2400m_brh_get_response(ack) != 0) {        /* failed? */
 506                dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
 507                        opcode, i2400m_brh_get_response(ack));
 508                goto error_ack_failed;
 509        }
 510        if (ack_size < ack->data_size + sizeof(*ack)) {
 511                dev_err(dev, "boot-mode cmd %d: SW BUG "
 512                        "driver provided only %zu bytes for %zu bytes "
 513                        "of data\n", opcode, ack_size,
 514                        (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
 515                goto error_ack_short_buffer;
 516        }
 517        result = ack_size;
 518        /* Don't you love this stack of empty targets? Well, I don't
 519         * either, but it helps track exactly who comes in here and
 520         * why :) */
 521error_ack_short_buffer:
 522error_ack_failed:
 523error_ack_opcode:
 524error_ack_signature:
 525out_raw:
 526error_reboot_ack:
 527error_reboot:
 528error_ack_short:
 529        d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
 530                i2400m, opcode, ack, ack_size, (int) result);
 531        return result;
 532}
 533
 534
 535/**
 536 * i2400m_bm_cmd - Execute a boot mode command
 537 *
 538 * @cmd: buffer containing the command data (pointing at the header).
 539 *     This data can be ANYWHERE (for USB, we will copy it to an
 540 *     specific buffer). Make sure everything is in proper little
 541 *     endian.
 542 *
 543 *     A raw buffer can be also sent, just cast it and set flags to
 544 *     I2400M_BM_CMD_RAW.
 545 *
 546 *     This function will generate a checksum for you if the
 547 *     checksum bit in the command is set (unless I2400M_BM_CMD_RAW
 548 *     is set).
 549 *
 550 *     You can use the i2400m->bm_cmd_buf to stage your commands and
 551 *     send them.
 552 *
 553 *     If NULL, no command is sent (we just wait for an ack).
 554 *
 555 * @cmd_size: size of the command. Will be auto padded to the
 556 *     bus-specific drivers padding requirements.
 557 *
 558 * @ack: buffer where to place the acknowledgement. If it is a regular
 559 *     command response, all fields will be returned with the right,
 560 *     native endianess.
 561 *
 562 *     You *cannot* use i2400m->bm_ack_buf for this buffer.
 563 *
 564 * @ack_size: size of @ack, 16 aligned; you need to provide at least
 565 *     sizeof(*ack) bytes and then enough to contain the return data
 566 *     from the command
 567 *
 568 * @flags: see I2400M_BM_CMD_* above.
 569 *
 570 * @returns: bytes received by the notification; if < 0, an errno code
 571 *     denoting an error or:
 572 *
 573 *     -ERESTARTSYS  The device has rebooted
 574 *
 575 * Executes a boot-mode command and waits for a response, doing basic
 576 * validation on it; if a zero length response is received, it retries
 577 * waiting for a response until a non-zero one is received (timing out
 578 * after %I2400M_BOOT_RETRIES retries).
 579 */
 580static
 581ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
 582                      const struct i2400m_bootrom_header *cmd, size_t cmd_size,
 583                      struct i2400m_bootrom_header *ack, size_t ack_size,
 584                      int flags)
 585{
 586        ssize_t result = -ENOMEM, rx_bytes;
 587        struct device *dev = i2400m_dev(i2400m);
 588        int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
 589
 590        d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
 591                  i2400m, cmd, cmd_size, ack, ack_size);
 592        BUG_ON(ack_size < sizeof(*ack));
 593        BUG_ON(i2400m->boot_mode == 0);
 594
 595        if (cmd != NULL) {              /* send the command */
 596                result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
 597                if (result < 0)
 598                        goto error_cmd_send;
 599                if ((flags & I2400M_BM_CMD_RAW) == 0)
 600                        d_printf(5, dev,
 601                                 "boot-mode cmd %d csum %u rr %u da %u: "
 602                                 "addr 0x%04x size %u block csum 0x%04x\n",
 603                                 opcode, i2400m_brh_get_use_checksum(cmd),
 604                                 i2400m_brh_get_response_required(cmd),
 605                                 i2400m_brh_get_direct_access(cmd),
 606                                 cmd->target_addr, cmd->data_size,
 607                                 cmd->block_checksum);
 608        }
 609        result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
 610        if (result < 0) {
 611                dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
 612                        opcode, (int) result);  /* bah, %zd doesn't work */
 613                goto error_wait_for_ack;
 614        }
 615        rx_bytes = result;
 616        /* verify the ack and read more if necessary [result is the
 617         * final amount of bytes we get in the ack]  */
 618        result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
 619        if (result < 0)
 620                goto error_bad_ack;
 621        /* Don't you love this stack of empty targets? Well, I don't
 622         * either, but it helps track exactly who comes in here and
 623         * why :) */
 624        result = rx_bytes;
 625error_bad_ack:
 626error_wait_for_ack:
 627error_cmd_send:
 628        d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
 629                i2400m, cmd, cmd_size, ack, ack_size, (int) result);
 630        return result;
 631}
 632
 633
 634/**
 635 * i2400m_download_chunk - write a single chunk of data to the device's memory
 636 *
 637 * @i2400m: device descriptor
 638 * @buf: the buffer to write
 639 * @buf_len: length of the buffer to write
 640 * @addr: address in the device memory space
 641 * @direct: bootrom write mode
 642 * @do_csum: should a checksum validation be performed
 643 */
 644static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
 645                                 size_t __chunk_len, unsigned long addr,
 646                                 unsigned int direct, unsigned int do_csum)
 647{
 648        int ret;
 649        size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
 650        struct device *dev = i2400m_dev(i2400m);
 651        struct {
 652                struct i2400m_bootrom_header cmd;
 653                u8 cmd_payload[chunk_len];
 654        } __packed *buf;
 655        struct i2400m_bootrom_header ack;
 656
 657        d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
 658                  "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
 659                  addr, direct, do_csum);
 660        buf = i2400m->bm_cmd_buf;
 661        memcpy(buf->cmd_payload, chunk, __chunk_len);
 662        memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
 663
 664        buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
 665                                              __chunk_len & 0x3 ? 0 : do_csum,
 666                                              __chunk_len & 0xf ? 0 : direct);
 667        buf->cmd.target_addr = cpu_to_le32(addr);
 668        buf->cmd.data_size = cpu_to_le32(__chunk_len);
 669        ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
 670                            &ack, sizeof(ack), 0);
 671        if (ret >= 0)
 672                ret = 0;
 673        d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
 674                "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
 675                addr, direct, do_csum, ret);
 676        return ret;
 677}
 678
 679
 680/*
 681 * Download a BCF file's sections to the device
 682 *
 683 * @i2400m: device descriptor
 684 * @bcf: pointer to firmware data (first header followed by the
 685 *     payloads). Assumed verified and consistent.
 686 * @bcf_len: length (in bytes) of the @bcf buffer.
 687 *
 688 * Returns: < 0 errno code on error or the offset to the jump instruction.
 689 *
 690 * Given a BCF file, downloads each section (a command and a payload)
 691 * to the device's address space. Actually, it just executes each
 692 * command i the BCF file.
 693 *
 694 * The section size has to be aligned to 4 bytes AND the padding has
 695 * to be taken from the firmware file, as the signature takes it into
 696 * account.
 697 */
 698static
 699ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
 700                          const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
 701{
 702        ssize_t ret;
 703        struct device *dev = i2400m_dev(i2400m);
 704        size_t offset,          /* iterator offset */
 705                data_size,      /* Size of the data payload */
 706                section_size,   /* Size of the whole section (cmd + payload) */
 707                section = 1;
 708        const struct i2400m_bootrom_header *bh;
 709        struct i2400m_bootrom_header ack;
 710
 711        d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
 712                  i2400m, bcf, bcf_len);
 713        /* Iterate over the command blocks in the BCF file that start
 714         * after the header */
 715        offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
 716        while (1) {     /* start sending the file */
 717                bh = (void *) bcf + offset;
 718                data_size = le32_to_cpu(bh->data_size);
 719                section_size = ALIGN(sizeof(*bh) + data_size, 4);
 720                d_printf(7, dev,
 721                         "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
 722                         section, offset, sizeof(*bh) + data_size,
 723                         le32_to_cpu(bh->target_addr));
 724                /*
 725                 * We look for JUMP cmd from the bootmode header,
 726                 * either I2400M_BRH_SIGNED_JUMP for secure boot
 727                 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
 728                 * should be the bootmode header with JUMP cmd.
 729                 */
 730                if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
 731                        i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
 732                        d_printf(5, dev,  "jump found @%zu\n", offset);
 733                        break;
 734                }
 735                if (offset + section_size > bcf_len) {
 736                        dev_err(dev, "fw %s: bad section #%zu, "
 737                                "end (@%zu) beyond EOF (@%zu)\n",
 738                                i2400m->fw_name, section,
 739                                offset + section_size,  bcf_len);
 740                        ret = -EINVAL;
 741                        goto error_section_beyond_eof;
 742                }
 743                __i2400m_msleep(20);
 744                ret = i2400m_bm_cmd(i2400m, bh, section_size,
 745                                    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
 746                if (ret < 0) {
 747                        dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
 748                                "failed %d\n", i2400m->fw_name, section,
 749                                offset, sizeof(*bh) + data_size, (int) ret);
 750                        goto error_send;
 751                }
 752                offset += section_size;
 753                section++;
 754        }
 755        ret = offset;
 756error_section_beyond_eof:
 757error_send:
 758        d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
 759                i2400m, bcf, bcf_len, (int) ret);
 760        return ret;
 761}
 762
 763
 764/*
 765 * Indicate if the device emitted a reboot barker that indicates
 766 * "signed boot"
 767 */
 768static
 769unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
 770{
 771        return likely(i2400m->sboot);
 772}
 773
 774
 775/*
 776 * Do the final steps of uploading firmware
 777 *
 778 * @bcf_hdr: BCF header we are actually using
 779 * @bcf: pointer to the firmware image (which matches the first header
 780 *     that is followed by the actual payloads).
 781 * @offset: [byte] offset into @bcf for the command we need to send.
 782 *
 783 * Depending on the boot mode (signed vs non-signed), different
 784 * actions need to be taken.
 785 */
 786static
 787int i2400m_dnload_finalize(struct i2400m *i2400m,
 788                           const struct i2400m_bcf_hdr *bcf_hdr,
 789                           const struct i2400m_bcf_hdr *bcf, size_t offset)
 790{
 791        int ret = 0;
 792        struct device *dev = i2400m_dev(i2400m);
 793        struct i2400m_bootrom_header *cmd, ack;
 794        struct {
 795                struct i2400m_bootrom_header cmd;
 796                u8 cmd_pl[0];
 797        } __packed *cmd_buf;
 798        size_t signature_block_offset, signature_block_size;
 799
 800        d_fnstart(3, dev, "offset %zu\n", offset);
 801        cmd = (void *) bcf + offset;
 802        if (i2400m_boot_is_signed(i2400m) == 0) {
 803                struct i2400m_bootrom_header jump_ack;
 804                d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
 805                        le32_to_cpu(cmd->target_addr));
 806                cmd_buf = i2400m->bm_cmd_buf;
 807                memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
 808                cmd = &cmd_buf->cmd;
 809                /* now cmd points to the actual bootrom_header in cmd_buf */
 810                i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
 811                cmd->data_size = 0;
 812                ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
 813                                    &jump_ack, sizeof(jump_ack), 0);
 814        } else {
 815                d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
 816                         le32_to_cpu(cmd->target_addr));
 817                cmd_buf = i2400m->bm_cmd_buf;
 818                memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
 819                signature_block_offset =
 820                        sizeof(*bcf_hdr)
 821                        + le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
 822                        + le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
 823                signature_block_size =
 824                        le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
 825                memcpy(cmd_buf->cmd_pl,
 826                       (void *) bcf_hdr + signature_block_offset,
 827                       signature_block_size);
 828                ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
 829                                    sizeof(cmd_buf->cmd) + signature_block_size,
 830                                    &ack, sizeof(ack), I2400M_BM_CMD_RAW);
 831        }
 832        d_fnend(3, dev, "returning %d\n", ret);
 833        return ret;
 834}
 835
 836
 837/**
 838 * i2400m_bootrom_init - Reboots a powered device into boot mode
 839 *
 840 * @i2400m: device descriptor
 841 * @flags:
 842 *      I2400M_BRI_SOFT: a reboot barker has been seen
 843 *          already, so don't wait for it.
 844 *
 845 *      I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
 846 *          for a reboot barker notification. This is a one shot; if
 847 *          the state machine needs to send a reboot command it will.
 848 *
 849 * Returns:
 850 *
 851 *     < 0 errno code on error, 0 if ok.
 852 *
 853 * Description:
 854 *
 855 * Tries hard enough to put the device in boot-mode. There are two
 856 * main phases to this:
 857 *
 858 * a. (1) send a reboot command and (2) get a reboot barker
 859 *
 860 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
 861 *        getting an ack barker in return
 862 *
 863 * We want to skip (a) in some cases [soft]. The state machine is
 864 * horrible, but it is basically: on each phase, send what has to be
 865 * sent (if any), wait for the answer and act on the answer. We might
 866 * have to backtrack and retry, so we keep a max tries counter for
 867 * that.
 868 *
 869 * It sucks because we don't know ahead of time which is going to be
 870 * the reboot barker (the device might send different ones depending
 871 * on its EEPROM config) and once the device reboots and waits for the
 872 * echo/ack reboot barker being sent back, it doesn't understand
 873 * anything else. So we can be left at the point where we don't know
 874 * what to send to it -- cold reset and bus reset seem to have little
 875 * effect. So the function iterates (in this case) through all the
 876 * known barkers and tries them all until an ACK is
 877 * received. Otherwise, it gives up.
 878 *
 879 * If we get a timeout after sending a warm reset, we do it again.
 880 */
 881int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
 882{
 883        int result;
 884        struct device *dev = i2400m_dev(i2400m);
 885        struct i2400m_bootrom_header *cmd;
 886        struct i2400m_bootrom_header ack;
 887        int count = i2400m->bus_bm_retries;
 888        int ack_timeout_cnt = 1;
 889        unsigned i;
 890
 891        BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
 892        BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
 893
 894        d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
 895        result = -ENOMEM;
 896        cmd = i2400m->bm_cmd_buf;
 897        if (flags & I2400M_BRI_SOFT)
 898                goto do_reboot_ack;
 899do_reboot:
 900        ack_timeout_cnt = 1;
 901        if (--count < 0)
 902                goto error_timeout;
 903        d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
 904                 count);
 905        if ((flags & I2400M_BRI_NO_REBOOT) == 0)
 906                i2400m_reset(i2400m, I2400M_RT_WARM);
 907        result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
 908                               I2400M_BM_CMD_RAW);
 909        flags &= ~I2400M_BRI_NO_REBOOT;
 910        switch (result) {
 911        case -ERESTARTSYS:
 912                /*
 913                 * at this point, i2400m_bm_cmd(), through
 914                 * __i2400m_bm_ack_process(), has updated
 915                 * i2400m->barker and we are good to go.
 916                 */
 917                d_printf(4, dev, "device reboot: got reboot barker\n");
 918                break;
 919        case -EISCONN:  /* we don't know how it got here...but we follow it */
 920                d_printf(4, dev, "device reboot: got ack barker - whatever\n");
 921                goto do_reboot;
 922        case -ETIMEDOUT:
 923                /*
 924                 * Device has timed out, we might be in boot mode
 925                 * already and expecting an ack; if we don't know what
 926                 * the barker is, we just send them all. Cold reset
 927                 * and bus reset don't work. Beats me.
 928                 */
 929                if (i2400m->barker != NULL) {
 930                        dev_err(dev, "device boot: reboot barker timed out, "
 931                                "trying (set) %08x echo/ack\n",
 932                                le32_to_cpu(i2400m->barker->data[0]));
 933                        goto do_reboot_ack;
 934                }
 935                for (i = 0; i < i2400m_barker_db_used; i++) {
 936                        struct i2400m_barker_db *barker = &i2400m_barker_db[i];
 937                        memcpy(cmd, barker->data, sizeof(barker->data));
 938                        result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
 939                                               &ack, sizeof(ack),
 940                                               I2400M_BM_CMD_RAW);
 941                        if (result == -EISCONN) {
 942                                dev_warn(dev, "device boot: got ack barker "
 943                                         "after sending echo/ack barker "
 944                                         "#%d/%08x; rebooting j.i.c.\n",
 945                                         i, le32_to_cpu(barker->data[0]));
 946                                flags &= ~I2400M_BRI_NO_REBOOT;
 947                                goto do_reboot;
 948                        }
 949                }
 950                dev_err(dev, "device boot: tried all the echo/acks, could "
 951                        "not get device to respond; giving up");
 952                result = -ESHUTDOWN;
 953        case -EPROTO:
 954        case -ESHUTDOWN:        /* dev is gone */
 955        case -EINTR:            /* user cancelled */
 956                goto error_dev_gone;
 957        default:
 958                dev_err(dev, "device reboot: error %d while waiting "
 959                        "for reboot barker - rebooting\n", result);
 960                d_dump(1, dev, &ack, result);
 961                goto do_reboot;
 962        }
 963        /* At this point we ack back with 4 REBOOT barkers and expect
 964         * 4 ACK barkers. This is ugly, as we send a raw command --
 965         * hence the cast. _bm_cmd() will catch the reboot ack
 966         * notification and report it as -EISCONN. */
 967do_reboot_ack:
 968        d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
 969        memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
 970        result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
 971                               &ack, sizeof(ack), I2400M_BM_CMD_RAW);
 972        switch (result) {
 973        case -ERESTARTSYS:
 974                d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
 975                if (--count < 0)
 976                        goto error_timeout;
 977                goto do_reboot_ack;
 978        case -EISCONN:
 979                d_printf(4, dev, "reboot ack: got ack barker - good\n");
 980                break;
 981        case -ETIMEDOUT:        /* no response, maybe it is the other type? */
 982                if (ack_timeout_cnt-- < 0) {
 983                        d_printf(4, dev, "reboot ack timedout: retrying\n");
 984                        goto do_reboot_ack;
 985                } else {
 986                        dev_err(dev, "reboot ack timedout too long: "
 987                                "trying reboot\n");
 988                        goto do_reboot;
 989                }
 990                break;
 991        case -EPROTO:
 992        case -ESHUTDOWN:        /* dev is gone */
 993                goto error_dev_gone;
 994        default:
 995                dev_err(dev, "device reboot ack: error %d while waiting for "
 996                        "reboot ack barker - rebooting\n", result);
 997                goto do_reboot;
 998        }
 999        d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
1000        result = 0;
1001exit_timeout:
1002error_dev_gone:
1003        d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1004                i2400m, flags, result);
1005        return result;
1006
1007error_timeout:
1008        dev_err(dev, "Timed out waiting for reboot ack\n");
1009        result = -ETIMEDOUT;
1010        goto exit_timeout;
1011}
1012
1013
1014/*
1015 * Read the MAC addr
1016 *
1017 * The position this function reads is fixed in device memory and
1018 * always available, even without firmware.
1019 *
1020 * Note we specify we want to read only six bytes, but provide space
1021 * for 16, as we always get it rounded up.
1022 */
1023int i2400m_read_mac_addr(struct i2400m *i2400m)
1024{
1025        int result;
1026        struct device *dev = i2400m_dev(i2400m);
1027        struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1028        struct i2400m_bootrom_header *cmd;
1029        struct {
1030                struct i2400m_bootrom_header ack;
1031                u8 ack_pl[16];
1032        } __packed ack_buf;
1033
1034        d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1035        cmd = i2400m->bm_cmd_buf;
1036        cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1037        cmd->target_addr = cpu_to_le32(0x00203fe8);
1038        cmd->data_size = cpu_to_le32(6);
1039        result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1040                               &ack_buf.ack, sizeof(ack_buf), 0);
1041        if (result < 0) {
1042                dev_err(dev, "BM: read mac addr failed: %d\n", result);
1043                goto error_read_mac;
1044        }
1045        d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1046        if (i2400m->bus_bm_mac_addr_impaired == 1) {
1047                ack_buf.ack_pl[0] = 0x00;
1048                ack_buf.ack_pl[1] = 0x16;
1049                ack_buf.ack_pl[2] = 0xd3;
1050                get_random_bytes(&ack_buf.ack_pl[3], 3);
1051                dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1052                        "mac addr is %pM\n", ack_buf.ack_pl);
1053                result = 0;
1054        }
1055        net_dev->addr_len = ETH_ALEN;
1056        memcpy(net_dev->perm_addr, ack_buf.ack_pl, ETH_ALEN);
1057        memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1058error_read_mac:
1059        d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1060        return result;
1061}
1062
1063
1064/*
1065 * Initialize a non signed boot
1066 *
1067 * This implies sending some magic values to the device's memory. Note
1068 * we convert the values to little endian in the same array
1069 * declaration.
1070 */
1071static
1072int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1073{
1074        unsigned i = 0;
1075        int ret = 0;
1076        struct device *dev = i2400m_dev(i2400m);
1077        d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1078        if (i2400m->bus_bm_pokes_table) {
1079                while (i2400m->bus_bm_pokes_table[i].address) {
1080                        ret = i2400m_download_chunk(
1081                                i2400m,
1082                                &i2400m->bus_bm_pokes_table[i].data,
1083                                sizeof(i2400m->bus_bm_pokes_table[i].data),
1084                                i2400m->bus_bm_pokes_table[i].address, 1, 1);
1085                        if (ret < 0)
1086                                break;
1087                        i++;
1088                }
1089        }
1090        d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1091        return ret;
1092}
1093
1094
1095/*
1096 * Initialize the signed boot process
1097 *
1098 * @i2400m: device descriptor
1099 *
1100 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1101 *     memory (it has gone through basic validation).
1102 *
1103 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1104 *     rebooted.
1105 *
1106 * This writes the firmware BCF header to the device using the
1107 * HASH_PAYLOAD_ONLY command.
1108 */
1109static
1110int i2400m_dnload_init_signed(struct i2400m *i2400m,
1111                              const struct i2400m_bcf_hdr *bcf_hdr)
1112{
1113        int ret;
1114        struct device *dev = i2400m_dev(i2400m);
1115        struct {
1116                struct i2400m_bootrom_header cmd;
1117                struct i2400m_bcf_hdr cmd_pl;
1118        } __packed *cmd_buf;
1119        struct i2400m_bootrom_header ack;
1120
1121        d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1122        cmd_buf = i2400m->bm_cmd_buf;
1123        cmd_buf->cmd.command =
1124                i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1125        cmd_buf->cmd.target_addr = 0;
1126        cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1127        memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1128        ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1129                            &ack, sizeof(ack), 0);
1130        if (ret >= 0)
1131                ret = 0;
1132        d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1133        return ret;
1134}
1135
1136
1137/*
1138 * Initialize the firmware download at the device size
1139 *
1140 * Multiplex to the one that matters based on the device's mode
1141 * (signed or non-signed).
1142 */
1143static
1144int i2400m_dnload_init(struct i2400m *i2400m,
1145                       const struct i2400m_bcf_hdr *bcf_hdr)
1146{
1147        int result;
1148        struct device *dev = i2400m_dev(i2400m);
1149
1150        if (i2400m_boot_is_signed(i2400m)) {
1151                d_printf(1, dev, "signed boot\n");
1152                result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1153                if (result == -ERESTARTSYS)
1154                        return result;
1155                if (result < 0)
1156                        dev_err(dev, "firmware %s: signed boot download "
1157                                "initialization failed: %d\n",
1158                                i2400m->fw_name, result);
1159        } else {
1160                /* non-signed boot process without pokes */
1161                d_printf(1, dev, "non-signed boot\n");
1162                result = i2400m_dnload_init_nonsigned(i2400m);
1163                if (result == -ERESTARTSYS)
1164                        return result;
1165                if (result < 0)
1166                        dev_err(dev, "firmware %s: non-signed download "
1167                                "initialization failed: %d\n",
1168                                i2400m->fw_name, result);
1169        }
1170        return result;
1171}
1172
1173
1174/*
1175 * Run consistency tests on the firmware file and load up headers
1176 *
1177 * Check for the firmware being made for the i2400m device,
1178 * etc...These checks are mostly informative, as the device will make
1179 * them too; but the driver's response is more informative on what
1180 * went wrong.
1181 *
1182 * This will also look at all the headers present on the firmware
1183 * file, and update i2400m->fw_bcf_hdr to point to them.
1184 */
1185static
1186int i2400m_fw_hdr_check(struct i2400m *i2400m,
1187                        const struct i2400m_bcf_hdr *bcf_hdr,
1188                        size_t index, size_t offset)
1189{
1190        struct device *dev = i2400m_dev(i2400m);
1191
1192        unsigned module_type, header_len, major_version, minor_version,
1193                module_id, module_vendor, date, size;
1194
1195        module_type = le32_to_cpu(bcf_hdr->module_type);
1196        header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1197        major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1198                >> 16;
1199        minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1200        module_id = le32_to_cpu(bcf_hdr->module_id);
1201        module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1202        date = le32_to_cpu(bcf_hdr->date);
1203        size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1204
1205        d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1206                 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1207                 i2400m->fw_name, index, offset,
1208                 module_type, module_vendor, module_id,
1209                 major_version, minor_version, header_len, size, date);
1210
1211        /* Hard errors */
1212        if (major_version != 1) {
1213                dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1214                        "v%u.%u not supported\n",
1215                        i2400m->fw_name, index, offset,
1216                        major_version, minor_version);
1217                return -EBADF;
1218        }
1219
1220        if (module_type != 6) {         /* built for the right hardware? */
1221                dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1222                        "type 0x%x; aborting\n",
1223                        i2400m->fw_name, index, offset,
1224                        module_type);
1225                return -EBADF;
1226        }
1227
1228        if (module_vendor != 0x8086) {
1229                dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1230                        "vendor 0x%x; aborting\n",
1231                        i2400m->fw_name, index, offset, module_vendor);
1232                return -EBADF;
1233        }
1234
1235        if (date < 0x20080300)
1236                dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1237                         "too old; unsupported\n",
1238                         i2400m->fw_name, index, offset, date);
1239        return 0;
1240}
1241
1242
1243/*
1244 * Run consistency tests on the firmware file and load up headers
1245 *
1246 * Check for the firmware being made for the i2400m device,
1247 * etc...These checks are mostly informative, as the device will make
1248 * them too; but the driver's response is more informative on what
1249 * went wrong.
1250 *
1251 * This will also look at all the headers present on the firmware
1252 * file, and update i2400m->fw_hdrs to point to them.
1253 */
1254static
1255int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1256{
1257        int result;
1258        struct device *dev = i2400m_dev(i2400m);
1259        size_t headers = 0;
1260        const struct i2400m_bcf_hdr *bcf_hdr;
1261        const void *itr, *next, *top;
1262        size_t slots = 0, used_slots = 0;
1263
1264        for (itr = bcf, top = itr + bcf_size;
1265             itr < top;
1266             headers++, itr = next) {
1267                size_t leftover, offset, header_len, size;
1268
1269                leftover = top - itr;
1270                offset = itr - (const void *) bcf;
1271                if (leftover <= sizeof(*bcf_hdr)) {
1272                        dev_err(dev, "firmware %s: %zu B left at @%zx, "
1273                                "not enough for BCF header\n",
1274                                i2400m->fw_name, leftover, offset);
1275                        break;
1276                }
1277                bcf_hdr = itr;
1278                /* Only the first header is supposed to be followed by
1279                 * payload */
1280                header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1281                size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1282                if (headers == 0)
1283                        next = itr + size;
1284                else
1285                        next = itr + header_len;
1286
1287                result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1288                if (result < 0)
1289                        continue;
1290                if (used_slots + 1 >= slots) {
1291                        /* +1 -> we need to account for the one we'll
1292                         * occupy and at least an extra one for
1293                         * always being NULL */
1294                        result = i2400m_zrealloc_2x(
1295                                (void **) &i2400m->fw_hdrs, &slots,
1296                                sizeof(i2400m->fw_hdrs[0]),
1297                                GFP_KERNEL);
1298                        if (result < 0)
1299                                goto error_zrealloc;
1300                }
1301                i2400m->fw_hdrs[used_slots] = bcf_hdr;
1302                used_slots++;
1303        }
1304        if (headers == 0) {
1305                dev_err(dev, "firmware %s: no usable headers found\n",
1306                        i2400m->fw_name);
1307                result = -EBADF;
1308        } else
1309                result = 0;
1310error_zrealloc:
1311        return result;
1312}
1313
1314
1315/*
1316 * Match a barker to a BCF header module ID
1317 *
1318 * The device sends a barker which tells the firmware loader which
1319 * header in the BCF file has to be used. This does the matching.
1320 */
1321static
1322unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1323                              const struct i2400m_bcf_hdr *bcf_hdr)
1324{
1325        u32 barker = le32_to_cpu(i2400m->barker->data[0])
1326                & 0x7fffffff;
1327        u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1328                & 0x7fffffff;   /* high bit used for something else */
1329
1330        /* special case for 5x50 */
1331        if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1332                return 1;
1333        if (module_id == barker)
1334                return 1;
1335        return 0;
1336}
1337
1338static
1339const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1340{
1341        struct device *dev = i2400m_dev(i2400m);
1342        const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1343        unsigned i = 0;
1344        u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1345
1346        d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1347        if (barker == I2400M_NBOOT_BARKER) {
1348                bcf_hdr = i2400m->fw_hdrs[0];
1349                d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1350                         "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1351                return bcf_hdr;
1352        }
1353        for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1354                bcf_hdr = *bcf_itr;
1355                if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1356                        d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1357                                 i, le32_to_cpu(bcf_hdr->module_id));
1358                        return bcf_hdr;
1359                } else
1360                        d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1361                                 i, le32_to_cpu(bcf_hdr->module_id));
1362        }
1363        dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1364                barker);
1365        return NULL;
1366}
1367
1368
1369/*
1370 * Download the firmware to the device
1371 *
1372 * @i2400m: device descriptor
1373 * @bcf: pointer to loaded (and minimally verified for consistency)
1374 *    firmware
1375 * @bcf_size: size of the @bcf buffer (header plus payloads)
1376 *
1377 * The process for doing this is described in this file's header.
1378 *
1379 * Note we only reinitialize boot-mode if the flags say so. Some hw
1380 * iterations need it, some don't. In any case, if we loop, we always
1381 * need to reinitialize the boot room, hence the flags modification.
1382 */
1383static
1384int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1385                     size_t fw_size, enum i2400m_bri flags)
1386{
1387        int ret = 0;
1388        struct device *dev = i2400m_dev(i2400m);
1389        int count = i2400m->bus_bm_retries;
1390        const struct i2400m_bcf_hdr *bcf_hdr;
1391        size_t bcf_size;
1392
1393        d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1394                  i2400m, bcf, fw_size);
1395        i2400m->boot_mode = 1;
1396        wmb();          /* Make sure other readers see it */
1397hw_reboot:
1398        if (count-- == 0) {
1399                ret = -ERESTARTSYS;
1400                dev_err(dev, "device rebooted too many times, aborting\n");
1401                goto error_too_many_reboots;
1402        }
1403        if (flags & I2400M_BRI_MAC_REINIT) {
1404                ret = i2400m_bootrom_init(i2400m, flags);
1405                if (ret < 0) {
1406                        dev_err(dev, "bootrom init failed: %d\n", ret);
1407                        goto error_bootrom_init;
1408                }
1409        }
1410        flags |= I2400M_BRI_MAC_REINIT;
1411
1412        /*
1413         * Initialize the download, push the bytes to the device and
1414         * then jump to the new firmware. Note @ret is passed with the
1415         * offset of the jump instruction to _dnload_finalize()
1416         *
1417         * Note we need to use the BCF header in the firmware image
1418         * that matches the barker that the device sent when it
1419         * rebooted, so it has to be passed along.
1420         */
1421        ret = -EBADF;
1422        bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1423        if (bcf_hdr == NULL)
1424                goto error_bcf_hdr_find;
1425
1426        ret = i2400m_dnload_init(i2400m, bcf_hdr);
1427        if (ret == -ERESTARTSYS)
1428                goto error_dev_rebooted;
1429        if (ret < 0)
1430                goto error_dnload_init;
1431
1432        /*
1433         * bcf_size refers to one header size plus the fw sections size
1434         * indicated by the header,ie. if there are other extended headers
1435         * at the tail, they are not counted
1436         */
1437        bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1438        ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1439        if (ret == -ERESTARTSYS)
1440                goto error_dev_rebooted;
1441        if (ret < 0) {
1442                dev_err(dev, "fw %s: download failed: %d\n",
1443                        i2400m->fw_name, ret);
1444                goto error_dnload_bcf;
1445        }
1446
1447        ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1448        if (ret == -ERESTARTSYS)
1449                goto error_dev_rebooted;
1450        if (ret < 0) {
1451                dev_err(dev, "fw %s: "
1452                        "download finalization failed: %d\n",
1453                        i2400m->fw_name, ret);
1454                goto error_dnload_finalize;
1455        }
1456
1457        d_printf(2, dev, "fw %s successfully uploaded\n",
1458                 i2400m->fw_name);
1459        i2400m->boot_mode = 0;
1460        wmb();          /* Make sure i2400m_msg_to_dev() sees boot_mode */
1461error_dnload_finalize:
1462error_dnload_bcf:
1463error_dnload_init:
1464error_bcf_hdr_find:
1465error_bootrom_init:
1466error_too_many_reboots:
1467        d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1468                i2400m, bcf, fw_size, ret);
1469        return ret;
1470
1471error_dev_rebooted:
1472        dev_err(dev, "device rebooted, %d tries left\n", count);
1473        /* we got the notification already, no need to wait for it again */
1474        flags |= I2400M_BRI_SOFT;
1475        goto hw_reboot;
1476}
1477
1478static
1479int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1480                        enum i2400m_bri flags)
1481{
1482        int ret;
1483        struct device *dev = i2400m_dev(i2400m);
1484        const struct i2400m_bcf_hdr *bcf;       /* Firmware data */
1485
1486        d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1487        bcf = (void *) fw->data;
1488        ret = i2400m_fw_check(i2400m, bcf, fw->size);
1489        if (ret >= 0)
1490                ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1491        if (ret < 0)
1492                dev_err(dev, "%s: cannot use: %d, skipping\n",
1493                        i2400m->fw_name, ret);
1494        kfree(i2400m->fw_hdrs);
1495        i2400m->fw_hdrs = NULL;
1496        d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1497        return ret;
1498}
1499
1500
1501/* Refcounted container for firmware data */
1502struct i2400m_fw {
1503        struct kref kref;
1504        const struct firmware *fw;
1505};
1506
1507
1508static
1509void i2400m_fw_destroy(struct kref *kref)
1510{
1511        struct i2400m_fw *i2400m_fw =
1512                container_of(kref, struct i2400m_fw, kref);
1513        release_firmware(i2400m_fw->fw);
1514        kfree(i2400m_fw);
1515}
1516
1517
1518static
1519struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1520{
1521        if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1522                kref_get(&i2400m_fw->kref);
1523        return i2400m_fw;
1524}
1525
1526
1527static
1528void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1529{
1530        kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1531}
1532
1533
1534/**
1535 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1536 *
1537 * @i2400m: device descriptor
1538 *
1539 * Returns: >= 0 if ok, < 0 errno code on error.
1540 *
1541 * This sets up the firmware upload environment, loads the firmware
1542 * file from disk, verifies and then calls the firmware upload process
1543 * per se.
1544 *
1545 * Can be called either from probe, or after a warm reset.  Can not be
1546 * called from within an interrupt.  All the flow in this code is
1547 * single-threade; all I/Os are synchronous.
1548 */
1549int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1550{
1551        int ret, itr;
1552        struct device *dev = i2400m_dev(i2400m);
1553        struct i2400m_fw *i2400m_fw;
1554        const struct i2400m_bcf_hdr *bcf;       /* Firmware data */
1555        const struct firmware *fw;
1556        const char *fw_name;
1557
1558        d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1559
1560        ret = -ENODEV;
1561        spin_lock(&i2400m->rx_lock);
1562        i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1563        spin_unlock(&i2400m->rx_lock);
1564        if (i2400m_fw == (void *) ~0) {
1565                dev_err(dev, "can't load firmware now!");
1566                goto out;
1567        } else if (i2400m_fw != NULL) {
1568                dev_info(dev, "firmware %s: loading from cache\n",
1569                         i2400m->fw_name);
1570                ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1571                i2400m_fw_put(i2400m_fw);
1572                goto out;
1573        }
1574
1575        /* Load firmware files to memory. */
1576        for (itr = 0, bcf = NULL, ret = -ENOENT; ; itr++) {
1577                fw_name = i2400m->bus_fw_names[itr];
1578                if (fw_name == NULL) {
1579                        dev_err(dev, "Could not find a usable firmware image\n");
1580                        break;
1581                }
1582                d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1583                ret = request_firmware(&fw, fw_name, dev);
1584                if (ret < 0) {
1585                        dev_err(dev, "fw %s: cannot load file: %d\n",
1586                                fw_name, ret);
1587                        continue;
1588                }
1589                i2400m->fw_name = fw_name;
1590                ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1591                release_firmware(fw);
1592                if (ret >= 0)   /* firmware loaded succesfully */
1593                        break;
1594                i2400m->fw_name = NULL;
1595        }
1596out:
1597        d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1598        return ret;
1599}
1600EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1601
1602
1603void i2400m_fw_cache(struct i2400m *i2400m)
1604{
1605        int result;
1606        struct i2400m_fw *i2400m_fw;
1607        struct device *dev = i2400m_dev(i2400m);
1608
1609        /* if there is anything there, free it -- now, this'd be weird */
1610        spin_lock(&i2400m->rx_lock);
1611        i2400m_fw = i2400m->fw_cached;
1612        spin_unlock(&i2400m->rx_lock);
1613        if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1614                i2400m_fw_put(i2400m_fw);
1615                WARN(1, "%s:%u: still cached fw still present?\n",
1616                     __func__, __LINE__);
1617        }
1618
1619        if (i2400m->fw_name == NULL) {
1620                dev_err(dev, "firmware n/a: can't cache\n");
1621                i2400m_fw = (void *) ~0;
1622                goto out;
1623        }
1624
1625        i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1626        if (i2400m_fw == NULL)
1627                goto out;
1628        kref_init(&i2400m_fw->kref);
1629        result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1630        if (result < 0) {
1631                dev_err(dev, "firmware %s: failed to cache: %d\n",
1632                        i2400m->fw_name, result);
1633                kfree(i2400m_fw);
1634                i2400m_fw = (void *) ~0;
1635        } else
1636                dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1637out:
1638        spin_lock(&i2400m->rx_lock);
1639        i2400m->fw_cached = i2400m_fw;
1640        spin_unlock(&i2400m->rx_lock);
1641}
1642
1643
1644void i2400m_fw_uncache(struct i2400m *i2400m)
1645{
1646        struct i2400m_fw *i2400m_fw;
1647
1648        spin_lock(&i2400m->rx_lock);
1649        i2400m_fw = i2400m->fw_cached;
1650        i2400m->fw_cached = NULL;
1651        spin_unlock(&i2400m->rx_lock);
1652
1653        if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1654                i2400m_fw_put(i2400m_fw);
1655}
1656
1657