linux/drivers/net/wireless/ath/ath5k/base.c
<<
>>
Prefs
   1/*-
   2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
   3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
   4 * Copyright (c) 2006 Devicescape Software, Inc.
   5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
   6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
   7 *
   8 * All rights reserved.
   9 *
  10 * Redistribution and use in source and binary forms, with or without
  11 * modification, are permitted provided that the following conditions
  12 * are met:
  13 * 1. Redistributions of source code must retain the above copyright
  14 *    notice, this list of conditions and the following disclaimer,
  15 *    without modification.
  16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
  17 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
  18 *    redistribution must be conditioned upon including a substantially
  19 *    similar Disclaimer requirement for further binary redistribution.
  20 * 3. Neither the names of the above-listed copyright holders nor the names
  21 *    of any contributors may be used to endorse or promote products derived
  22 *    from this software without specific prior written permission.
  23 *
  24 * Alternatively, this software may be distributed under the terms of the
  25 * GNU General Public License ("GPL") version 2 as published by the Free
  26 * Software Foundation.
  27 *
  28 * NO WARRANTY
  29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
  32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
  33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
  34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
  37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  39 * THE POSSIBILITY OF SUCH DAMAGES.
  40 *
  41 */
  42
  43#include <linux/module.h>
  44#include <linux/delay.h>
  45#include <linux/hardirq.h>
  46#include <linux/if.h>
  47#include <linux/io.h>
  48#include <linux/netdevice.h>
  49#include <linux/cache.h>
  50#include <linux/ethtool.h>
  51#include <linux/uaccess.h>
  52#include <linux/slab.h>
  53#include <linux/etherdevice.h>
  54
  55#include <net/ieee80211_radiotap.h>
  56
  57#include <asm/unaligned.h>
  58
  59#include "base.h"
  60#include "reg.h"
  61#include "debug.h"
  62#include "ani.h"
  63
  64int ath5k_modparam_nohwcrypt;
  65module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
  66MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  67
  68static int modparam_all_channels;
  69module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
  70MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
  71
  72/* Module info */
  73MODULE_AUTHOR("Jiri Slaby");
  74MODULE_AUTHOR("Nick Kossifidis");
  75MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
  76MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
  77MODULE_LICENSE("Dual BSD/GPL");
  78
  79static int ath5k_init(struct ieee80211_hw *hw);
  80static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan,
  81                                                                bool skip_pcu);
  82int ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
  83void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
  84
  85/* Known SREVs */
  86static const struct ath5k_srev_name srev_names[] = {
  87#ifdef CONFIG_ATHEROS_AR231X
  88        { "5312",       AR5K_VERSION_MAC,       AR5K_SREV_AR5312_R2 },
  89        { "5312",       AR5K_VERSION_MAC,       AR5K_SREV_AR5312_R7 },
  90        { "2313",       AR5K_VERSION_MAC,       AR5K_SREV_AR2313_R8 },
  91        { "2315",       AR5K_VERSION_MAC,       AR5K_SREV_AR2315_R6 },
  92        { "2315",       AR5K_VERSION_MAC,       AR5K_SREV_AR2315_R7 },
  93        { "2317",       AR5K_VERSION_MAC,       AR5K_SREV_AR2317_R1 },
  94        { "2317",       AR5K_VERSION_MAC,       AR5K_SREV_AR2317_R2 },
  95#else
  96        { "5210",       AR5K_VERSION_MAC,       AR5K_SREV_AR5210 },
  97        { "5311",       AR5K_VERSION_MAC,       AR5K_SREV_AR5311 },
  98        { "5311A",      AR5K_VERSION_MAC,       AR5K_SREV_AR5311A },
  99        { "5311B",      AR5K_VERSION_MAC,       AR5K_SREV_AR5311B },
 100        { "5211",       AR5K_VERSION_MAC,       AR5K_SREV_AR5211 },
 101        { "5212",       AR5K_VERSION_MAC,       AR5K_SREV_AR5212 },
 102        { "5213",       AR5K_VERSION_MAC,       AR5K_SREV_AR5213 },
 103        { "5213A",      AR5K_VERSION_MAC,       AR5K_SREV_AR5213A },
 104        { "2413",       AR5K_VERSION_MAC,       AR5K_SREV_AR2413 },
 105        { "2414",       AR5K_VERSION_MAC,       AR5K_SREV_AR2414 },
 106        { "5424",       AR5K_VERSION_MAC,       AR5K_SREV_AR5424 },
 107        { "5413",       AR5K_VERSION_MAC,       AR5K_SREV_AR5413 },
 108        { "5414",       AR5K_VERSION_MAC,       AR5K_SREV_AR5414 },
 109        { "2415",       AR5K_VERSION_MAC,       AR5K_SREV_AR2415 },
 110        { "5416",       AR5K_VERSION_MAC,       AR5K_SREV_AR5416 },
 111        { "5418",       AR5K_VERSION_MAC,       AR5K_SREV_AR5418 },
 112        { "2425",       AR5K_VERSION_MAC,       AR5K_SREV_AR2425 },
 113        { "2417",       AR5K_VERSION_MAC,       AR5K_SREV_AR2417 },
 114#endif
 115        { "xxxxx",      AR5K_VERSION_MAC,       AR5K_SREV_UNKNOWN },
 116        { "5110",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5110 },
 117        { "5111",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5111 },
 118        { "5111A",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_5111A },
 119        { "2111",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2111 },
 120        { "5112",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5112 },
 121        { "5112A",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_5112A },
 122        { "5112B",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_5112B },
 123        { "2112",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2112 },
 124        { "2112A",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_2112A },
 125        { "2112B",      AR5K_VERSION_RAD,       AR5K_SREV_RAD_2112B },
 126        { "2413",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2413 },
 127        { "5413",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5413 },
 128        { "5424",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5424 },
 129        { "5133",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_5133 },
 130#ifdef CONFIG_ATHEROS_AR231X
 131        { "2316",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2316 },
 132        { "2317",       AR5K_VERSION_RAD,       AR5K_SREV_RAD_2317 },
 133#endif
 134        { "xxxxx",      AR5K_VERSION_RAD,       AR5K_SREV_UNKNOWN },
 135};
 136
 137static const struct ieee80211_rate ath5k_rates[] = {
 138        { .bitrate = 10,
 139          .hw_value = ATH5K_RATE_CODE_1M, },
 140        { .bitrate = 20,
 141          .hw_value = ATH5K_RATE_CODE_2M,
 142          .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
 143          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 144        { .bitrate = 55,
 145          .hw_value = ATH5K_RATE_CODE_5_5M,
 146          .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
 147          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 148        { .bitrate = 110,
 149          .hw_value = ATH5K_RATE_CODE_11M,
 150          .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
 151          .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 152        { .bitrate = 60,
 153          .hw_value = ATH5K_RATE_CODE_6M,
 154          .flags = 0 },
 155        { .bitrate = 90,
 156          .hw_value = ATH5K_RATE_CODE_9M,
 157          .flags = 0 },
 158        { .bitrate = 120,
 159          .hw_value = ATH5K_RATE_CODE_12M,
 160          .flags = 0 },
 161        { .bitrate = 180,
 162          .hw_value = ATH5K_RATE_CODE_18M,
 163          .flags = 0 },
 164        { .bitrate = 240,
 165          .hw_value = ATH5K_RATE_CODE_24M,
 166          .flags = 0 },
 167        { .bitrate = 360,
 168          .hw_value = ATH5K_RATE_CODE_36M,
 169          .flags = 0 },
 170        { .bitrate = 480,
 171          .hw_value = ATH5K_RATE_CODE_48M,
 172          .flags = 0 },
 173        { .bitrate = 540,
 174          .hw_value = ATH5K_RATE_CODE_54M,
 175          .flags = 0 },
 176        /* XR missing */
 177};
 178
 179static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
 180{
 181        u64 tsf = ath5k_hw_get_tsf64(ah);
 182
 183        if ((tsf & 0x7fff) < rstamp)
 184                tsf -= 0x8000;
 185
 186        return (tsf & ~0x7fff) | rstamp;
 187}
 188
 189const char *
 190ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
 191{
 192        const char *name = "xxxxx";
 193        unsigned int i;
 194
 195        for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
 196                if (srev_names[i].sr_type != type)
 197                        continue;
 198
 199                if ((val & 0xf0) == srev_names[i].sr_val)
 200                        name = srev_names[i].sr_name;
 201
 202                if ((val & 0xff) == srev_names[i].sr_val) {
 203                        name = srev_names[i].sr_name;
 204                        break;
 205                }
 206        }
 207
 208        return name;
 209}
 210static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
 211{
 212        struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 213        return ath5k_hw_reg_read(ah, reg_offset);
 214}
 215
 216static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
 217{
 218        struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
 219        ath5k_hw_reg_write(ah, val, reg_offset);
 220}
 221
 222static const struct ath_ops ath5k_common_ops = {
 223        .read = ath5k_ioread32,
 224        .write = ath5k_iowrite32,
 225};
 226
 227/***********************\
 228* Driver Initialization *
 229\***********************/
 230
 231static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
 232{
 233        struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
 234        struct ath5k_softc *sc = hw->priv;
 235        struct ath_regulatory *regulatory = ath5k_hw_regulatory(sc->ah);
 236
 237        return ath_reg_notifier_apply(wiphy, request, regulatory);
 238}
 239
 240/********************\
 241* Channel/mode setup *
 242\********************/
 243
 244/*
 245 * Convert IEEE channel number to MHz frequency.
 246 */
 247static inline short
 248ath5k_ieee2mhz(short chan)
 249{
 250        if (chan <= 14 || chan >= 27)
 251                return ieee80211chan2mhz(chan);
 252        else
 253                return 2212 + chan * 20;
 254}
 255
 256/*
 257 * Returns true for the channel numbers used without all_channels modparam.
 258 */
 259static bool ath5k_is_standard_channel(short chan)
 260{
 261        return ((chan <= 14) ||
 262                /* UNII 1,2 */
 263                ((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
 264                /* midband */
 265                ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
 266                /* UNII-3 */
 267                ((chan & 3) == 1 && chan >= 149 && chan <= 165));
 268}
 269
 270static unsigned int
 271ath5k_copy_channels(struct ath5k_hw *ah,
 272                struct ieee80211_channel *channels,
 273                unsigned int mode,
 274                unsigned int max)
 275{
 276        unsigned int i, count, size, chfreq, freq, ch;
 277
 278        if (!test_bit(mode, ah->ah_modes))
 279                return 0;
 280
 281        switch (mode) {
 282        case AR5K_MODE_11A:
 283                /* 1..220, but 2GHz frequencies are filtered by check_channel */
 284                size = 220 ;
 285                chfreq = CHANNEL_5GHZ;
 286                break;
 287        case AR5K_MODE_11B:
 288        case AR5K_MODE_11G:
 289                size = 26;
 290                chfreq = CHANNEL_2GHZ;
 291                break;
 292        default:
 293                ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
 294                return 0;
 295        }
 296
 297        for (i = 0, count = 0; i < size && max > 0; i++) {
 298                ch = i + 1 ;
 299                freq = ath5k_ieee2mhz(ch);
 300
 301                /* Check if channel is supported by the chipset */
 302                if (!ath5k_channel_ok(ah, freq, chfreq))
 303                        continue;
 304
 305                if (!modparam_all_channels && !ath5k_is_standard_channel(ch))
 306                        continue;
 307
 308                /* Write channel info and increment counter */
 309                channels[count].center_freq = freq;
 310                channels[count].band = (chfreq == CHANNEL_2GHZ) ?
 311                        IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
 312                switch (mode) {
 313                case AR5K_MODE_11A:
 314                case AR5K_MODE_11G:
 315                        channels[count].hw_value = chfreq | CHANNEL_OFDM;
 316                        break;
 317                case AR5K_MODE_11B:
 318                        channels[count].hw_value = CHANNEL_B;
 319                }
 320
 321                count++;
 322                max--;
 323        }
 324
 325        return count;
 326}
 327
 328static void
 329ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
 330{
 331        u8 i;
 332
 333        for (i = 0; i < AR5K_MAX_RATES; i++)
 334                sc->rate_idx[b->band][i] = -1;
 335
 336        for (i = 0; i < b->n_bitrates; i++) {
 337                sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
 338                if (b->bitrates[i].hw_value_short)
 339                        sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
 340        }
 341}
 342
 343static int
 344ath5k_setup_bands(struct ieee80211_hw *hw)
 345{
 346        struct ath5k_softc *sc = hw->priv;
 347        struct ath5k_hw *ah = sc->ah;
 348        struct ieee80211_supported_band *sband;
 349        int max_c, count_c = 0;
 350        int i;
 351
 352        BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
 353        max_c = ARRAY_SIZE(sc->channels);
 354
 355        /* 2GHz band */
 356        sband = &sc->sbands[IEEE80211_BAND_2GHZ];
 357        sband->band = IEEE80211_BAND_2GHZ;
 358        sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
 359
 360        if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
 361                /* G mode */
 362                memcpy(sband->bitrates, &ath5k_rates[0],
 363                       sizeof(struct ieee80211_rate) * 12);
 364                sband->n_bitrates = 12;
 365
 366                sband->channels = sc->channels;
 367                sband->n_channels = ath5k_copy_channels(ah, sband->channels,
 368                                        AR5K_MODE_11G, max_c);
 369
 370                hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
 371                count_c = sband->n_channels;
 372                max_c -= count_c;
 373        } else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
 374                /* B mode */
 375                memcpy(sband->bitrates, &ath5k_rates[0],
 376                       sizeof(struct ieee80211_rate) * 4);
 377                sband->n_bitrates = 4;
 378
 379                /* 5211 only supports B rates and uses 4bit rate codes
 380                 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
 381                 * fix them up here:
 382                 */
 383                if (ah->ah_version == AR5K_AR5211) {
 384                        for (i = 0; i < 4; i++) {
 385                                sband->bitrates[i].hw_value =
 386                                        sband->bitrates[i].hw_value & 0xF;
 387                                sband->bitrates[i].hw_value_short =
 388                                        sband->bitrates[i].hw_value_short & 0xF;
 389                        }
 390                }
 391
 392                sband->channels = sc->channels;
 393                sband->n_channels = ath5k_copy_channels(ah, sband->channels,
 394                                        AR5K_MODE_11B, max_c);
 395
 396                hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
 397                count_c = sband->n_channels;
 398                max_c -= count_c;
 399        }
 400        ath5k_setup_rate_idx(sc, sband);
 401
 402        /* 5GHz band, A mode */
 403        if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
 404                sband = &sc->sbands[IEEE80211_BAND_5GHZ];
 405                sband->band = IEEE80211_BAND_5GHZ;
 406                sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
 407
 408                memcpy(sband->bitrates, &ath5k_rates[4],
 409                       sizeof(struct ieee80211_rate) * 8);
 410                sband->n_bitrates = 8;
 411
 412                sband->channels = &sc->channels[count_c];
 413                sband->n_channels = ath5k_copy_channels(ah, sband->channels,
 414                                        AR5K_MODE_11A, max_c);
 415
 416                hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
 417        }
 418        ath5k_setup_rate_idx(sc, sband);
 419
 420        ath5k_debug_dump_bands(sc);
 421
 422        return 0;
 423}
 424
 425/*
 426 * Set/change channels. We always reset the chip.
 427 * To accomplish this we must first cleanup any pending DMA,
 428 * then restart stuff after a la  ath5k_init.
 429 *
 430 * Called with sc->lock.
 431 */
 432int
 433ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
 434{
 435        ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
 436                  "channel set, resetting (%u -> %u MHz)\n",
 437                  sc->curchan->center_freq, chan->center_freq);
 438
 439        /*
 440         * To switch channels clear any pending DMA operations;
 441         * wait long enough for the RX fifo to drain, reset the
 442         * hardware at the new frequency, and then re-enable
 443         * the relevant bits of the h/w.
 444         */
 445        return ath5k_reset(sc, chan, true);
 446}
 447
 448static void
 449ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
 450{
 451        sc->curmode = mode;
 452
 453        if (mode == AR5K_MODE_11A) {
 454                sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
 455        } else {
 456                sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
 457        }
 458}
 459
 460struct ath_vif_iter_data {
 461        const u8        *hw_macaddr;
 462        u8              mask[ETH_ALEN];
 463        u8              active_mac[ETH_ALEN]; /* first active MAC */
 464        bool            need_set_hw_addr;
 465        bool            found_active;
 466        bool            any_assoc;
 467        enum nl80211_iftype opmode;
 468};
 469
 470static void ath_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
 471{
 472        struct ath_vif_iter_data *iter_data = data;
 473        int i;
 474        struct ath5k_vif *avf = (void *)vif->drv_priv;
 475
 476        if (iter_data->hw_macaddr)
 477                for (i = 0; i < ETH_ALEN; i++)
 478                        iter_data->mask[i] &=
 479                                ~(iter_data->hw_macaddr[i] ^ mac[i]);
 480
 481        if (!iter_data->found_active) {
 482                iter_data->found_active = true;
 483                memcpy(iter_data->active_mac, mac, ETH_ALEN);
 484        }
 485
 486        if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
 487                if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
 488                        iter_data->need_set_hw_addr = false;
 489
 490        if (!iter_data->any_assoc) {
 491                if (avf->assoc)
 492                        iter_data->any_assoc = true;
 493        }
 494
 495        /* Calculate combined mode - when APs are active, operate in AP mode.
 496         * Otherwise use the mode of the new interface. This can currently
 497         * only deal with combinations of APs and STAs. Only one ad-hoc
 498         * interfaces is allowed.
 499         */
 500        if (avf->opmode == NL80211_IFTYPE_AP)
 501                iter_data->opmode = NL80211_IFTYPE_AP;
 502        else
 503                if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
 504                        iter_data->opmode = avf->opmode;
 505}
 506
 507void
 508ath5k_update_bssid_mask_and_opmode(struct ath5k_softc *sc,
 509                                   struct ieee80211_vif *vif)
 510{
 511        struct ath_common *common = ath5k_hw_common(sc->ah);
 512        struct ath_vif_iter_data iter_data;
 513
 514        /*
 515         * Use the hardware MAC address as reference, the hardware uses it
 516         * together with the BSSID mask when matching addresses.
 517         */
 518        iter_data.hw_macaddr = common->macaddr;
 519        memset(&iter_data.mask, 0xff, ETH_ALEN);
 520        iter_data.found_active = false;
 521        iter_data.need_set_hw_addr = true;
 522        iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
 523
 524        if (vif)
 525                ath_vif_iter(&iter_data, vif->addr, vif);
 526
 527        /* Get list of all active MAC addresses */
 528        ieee80211_iterate_active_interfaces_atomic(sc->hw, ath_vif_iter,
 529                                                   &iter_data);
 530        memcpy(sc->bssidmask, iter_data.mask, ETH_ALEN);
 531
 532        sc->opmode = iter_data.opmode;
 533        if (sc->opmode == NL80211_IFTYPE_UNSPECIFIED)
 534                /* Nothing active, default to station mode */
 535                sc->opmode = NL80211_IFTYPE_STATION;
 536
 537        ath5k_hw_set_opmode(sc->ah, sc->opmode);
 538        ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
 539                  sc->opmode, ath_opmode_to_string(sc->opmode));
 540
 541        if (iter_data.need_set_hw_addr && iter_data.found_active)
 542                ath5k_hw_set_lladdr(sc->ah, iter_data.active_mac);
 543
 544        if (ath5k_hw_hasbssidmask(sc->ah))
 545                ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
 546}
 547
 548void
 549ath5k_mode_setup(struct ath5k_softc *sc, struct ieee80211_vif *vif)
 550{
 551        struct ath5k_hw *ah = sc->ah;
 552        u32 rfilt;
 553
 554        /* configure rx filter */
 555        rfilt = sc->filter_flags;
 556        ath5k_hw_set_rx_filter(ah, rfilt);
 557        ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
 558
 559        ath5k_update_bssid_mask_and_opmode(sc, vif);
 560}
 561
 562static inline int
 563ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
 564{
 565        int rix;
 566
 567        /* return base rate on errors */
 568        if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
 569                        "hw_rix out of bounds: %x\n", hw_rix))
 570                return 0;
 571
 572        rix = sc->rate_idx[sc->curband->band][hw_rix];
 573        if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
 574                rix = 0;
 575
 576        return rix;
 577}
 578
 579/***************\
 580* Buffers setup *
 581\***************/
 582
 583static
 584struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
 585{
 586        struct ath_common *common = ath5k_hw_common(sc->ah);
 587        struct sk_buff *skb;
 588
 589        /*
 590         * Allocate buffer with headroom_needed space for the
 591         * fake physical layer header at the start.
 592         */
 593        skb = ath_rxbuf_alloc(common,
 594                              common->rx_bufsize,
 595                              GFP_ATOMIC);
 596
 597        if (!skb) {
 598                ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
 599                                common->rx_bufsize);
 600                return NULL;
 601        }
 602
 603        *skb_addr = dma_map_single(sc->dev,
 604                                   skb->data, common->rx_bufsize,
 605                                   DMA_FROM_DEVICE);
 606
 607        if (unlikely(dma_mapping_error(sc->dev, *skb_addr))) {
 608                ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
 609                dev_kfree_skb(skb);
 610                return NULL;
 611        }
 612        return skb;
 613}
 614
 615static int
 616ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
 617{
 618        struct ath5k_hw *ah = sc->ah;
 619        struct sk_buff *skb = bf->skb;
 620        struct ath5k_desc *ds;
 621        int ret;
 622
 623        if (!skb) {
 624                skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
 625                if (!skb)
 626                        return -ENOMEM;
 627                bf->skb = skb;
 628        }
 629
 630        /*
 631         * Setup descriptors.  For receive we always terminate
 632         * the descriptor list with a self-linked entry so we'll
 633         * not get overrun under high load (as can happen with a
 634         * 5212 when ANI processing enables PHY error frames).
 635         *
 636         * To ensure the last descriptor is self-linked we create
 637         * each descriptor as self-linked and add it to the end.  As
 638         * each additional descriptor is added the previous self-linked
 639         * entry is "fixed" naturally.  This should be safe even
 640         * if DMA is happening.  When processing RX interrupts we
 641         * never remove/process the last, self-linked, entry on the
 642         * descriptor list.  This ensures the hardware always has
 643         * someplace to write a new frame.
 644         */
 645        ds = bf->desc;
 646        ds->ds_link = bf->daddr;        /* link to self */
 647        ds->ds_data = bf->skbaddr;
 648        ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
 649        if (ret) {
 650                ATH5K_ERR(sc, "%s: could not setup RX desc\n", __func__);
 651                return ret;
 652        }
 653
 654        if (sc->rxlink != NULL)
 655                *sc->rxlink = bf->daddr;
 656        sc->rxlink = &ds->ds_link;
 657        return 0;
 658}
 659
 660static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
 661{
 662        struct ieee80211_hdr *hdr;
 663        enum ath5k_pkt_type htype;
 664        __le16 fc;
 665
 666        hdr = (struct ieee80211_hdr *)skb->data;
 667        fc = hdr->frame_control;
 668
 669        if (ieee80211_is_beacon(fc))
 670                htype = AR5K_PKT_TYPE_BEACON;
 671        else if (ieee80211_is_probe_resp(fc))
 672                htype = AR5K_PKT_TYPE_PROBE_RESP;
 673        else if (ieee80211_is_atim(fc))
 674                htype = AR5K_PKT_TYPE_ATIM;
 675        else if (ieee80211_is_pspoll(fc))
 676                htype = AR5K_PKT_TYPE_PSPOLL;
 677        else
 678                htype = AR5K_PKT_TYPE_NORMAL;
 679
 680        return htype;
 681}
 682
 683static int
 684ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
 685                  struct ath5k_txq *txq, int padsize)
 686{
 687        struct ath5k_hw *ah = sc->ah;
 688        struct ath5k_desc *ds = bf->desc;
 689        struct sk_buff *skb = bf->skb;
 690        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 691        unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
 692        struct ieee80211_rate *rate;
 693        unsigned int mrr_rate[3], mrr_tries[3];
 694        int i, ret;
 695        u16 hw_rate;
 696        u16 cts_rate = 0;
 697        u16 duration = 0;
 698        u8 rc_flags;
 699
 700        flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
 701
 702        /* XXX endianness */
 703        bf->skbaddr = dma_map_single(sc->dev, skb->data, skb->len,
 704                        DMA_TO_DEVICE);
 705
 706        rate = ieee80211_get_tx_rate(sc->hw, info);
 707        if (!rate) {
 708                ret = -EINVAL;
 709                goto err_unmap;
 710        }
 711
 712        if (info->flags & IEEE80211_TX_CTL_NO_ACK)
 713                flags |= AR5K_TXDESC_NOACK;
 714
 715        rc_flags = info->control.rates[0].flags;
 716        hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
 717                rate->hw_value_short : rate->hw_value;
 718
 719        pktlen = skb->len;
 720
 721        /* FIXME: If we are in g mode and rate is a CCK rate
 722         * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
 723         * from tx power (value is in dB units already) */
 724        if (info->control.hw_key) {
 725                keyidx = info->control.hw_key->hw_key_idx;
 726                pktlen += info->control.hw_key->icv_len;
 727        }
 728        if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 729                flags |= AR5K_TXDESC_RTSENA;
 730                cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
 731                duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
 732                        info->control.vif, pktlen, info));
 733        }
 734        if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
 735                flags |= AR5K_TXDESC_CTSENA;
 736                cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
 737                duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
 738                        info->control.vif, pktlen, info));
 739        }
 740        ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
 741                ieee80211_get_hdrlen_from_skb(skb), padsize,
 742                get_hw_packet_type(skb),
 743                (sc->power_level * 2),
 744                hw_rate,
 745                info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
 746                cts_rate, duration);
 747        if (ret)
 748                goto err_unmap;
 749
 750        memset(mrr_rate, 0, sizeof(mrr_rate));
 751        memset(mrr_tries, 0, sizeof(mrr_tries));
 752        for (i = 0; i < 3; i++) {
 753                rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
 754                if (!rate)
 755                        break;
 756
 757                mrr_rate[i] = rate->hw_value;
 758                mrr_tries[i] = info->control.rates[i + 1].count;
 759        }
 760
 761        ath5k_hw_setup_mrr_tx_desc(ah, ds,
 762                mrr_rate[0], mrr_tries[0],
 763                mrr_rate[1], mrr_tries[1],
 764                mrr_rate[2], mrr_tries[2]);
 765
 766        ds->ds_link = 0;
 767        ds->ds_data = bf->skbaddr;
 768
 769        spin_lock_bh(&txq->lock);
 770        list_add_tail(&bf->list, &txq->q);
 771        txq->txq_len++;
 772        if (txq->link == NULL) /* is this first packet? */
 773                ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
 774        else /* no, so only link it */
 775                *txq->link = bf->daddr;
 776
 777        txq->link = &ds->ds_link;
 778        ath5k_hw_start_tx_dma(ah, txq->qnum);
 779        mmiowb();
 780        spin_unlock_bh(&txq->lock);
 781
 782        return 0;
 783err_unmap:
 784        dma_unmap_single(sc->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
 785        return ret;
 786}
 787
 788/*******************\
 789* Descriptors setup *
 790\*******************/
 791
 792static int
 793ath5k_desc_alloc(struct ath5k_softc *sc)
 794{
 795        struct ath5k_desc *ds;
 796        struct ath5k_buf *bf;
 797        dma_addr_t da;
 798        unsigned int i;
 799        int ret;
 800
 801        /* allocate descriptors */
 802        sc->desc_len = sizeof(struct ath5k_desc) *
 803                        (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
 804
 805        sc->desc = dma_alloc_coherent(sc->dev, sc->desc_len,
 806                                &sc->desc_daddr, GFP_KERNEL);
 807        if (sc->desc == NULL) {
 808                ATH5K_ERR(sc, "can't allocate descriptors\n");
 809                ret = -ENOMEM;
 810                goto err;
 811        }
 812        ds = sc->desc;
 813        da = sc->desc_daddr;
 814        ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
 815                ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
 816
 817        bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
 818                        sizeof(struct ath5k_buf), GFP_KERNEL);
 819        if (bf == NULL) {
 820                ATH5K_ERR(sc, "can't allocate bufptr\n");
 821                ret = -ENOMEM;
 822                goto err_free;
 823        }
 824        sc->bufptr = bf;
 825
 826        INIT_LIST_HEAD(&sc->rxbuf);
 827        for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 828                bf->desc = ds;
 829                bf->daddr = da;
 830                list_add_tail(&bf->list, &sc->rxbuf);
 831        }
 832
 833        INIT_LIST_HEAD(&sc->txbuf);
 834        sc->txbuf_len = ATH_TXBUF;
 835        for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
 836                        da += sizeof(*ds)) {
 837                bf->desc = ds;
 838                bf->daddr = da;
 839                list_add_tail(&bf->list, &sc->txbuf);
 840        }
 841
 842        /* beacon buffers */
 843        INIT_LIST_HEAD(&sc->bcbuf);
 844        for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
 845                bf->desc = ds;
 846                bf->daddr = da;
 847                list_add_tail(&bf->list, &sc->bcbuf);
 848        }
 849
 850        return 0;
 851err_free:
 852        dma_free_coherent(sc->dev, sc->desc_len, sc->desc, sc->desc_daddr);
 853err:
 854        sc->desc = NULL;
 855        return ret;
 856}
 857
 858void
 859ath5k_txbuf_free_skb(struct ath5k_softc *sc, struct ath5k_buf *bf)
 860{
 861        BUG_ON(!bf);
 862        if (!bf->skb)
 863                return;
 864        dma_unmap_single(sc->dev, bf->skbaddr, bf->skb->len,
 865                        DMA_TO_DEVICE);
 866        dev_kfree_skb_any(bf->skb);
 867        bf->skb = NULL;
 868        bf->skbaddr = 0;
 869        bf->desc->ds_data = 0;
 870}
 871
 872void
 873ath5k_rxbuf_free_skb(struct ath5k_softc *sc, struct ath5k_buf *bf)
 874{
 875        struct ath5k_hw *ah = sc->ah;
 876        struct ath_common *common = ath5k_hw_common(ah);
 877
 878        BUG_ON(!bf);
 879        if (!bf->skb)
 880                return;
 881        dma_unmap_single(sc->dev, bf->skbaddr, common->rx_bufsize,
 882                        DMA_FROM_DEVICE);
 883        dev_kfree_skb_any(bf->skb);
 884        bf->skb = NULL;
 885        bf->skbaddr = 0;
 886        bf->desc->ds_data = 0;
 887}
 888
 889static void
 890ath5k_desc_free(struct ath5k_softc *sc)
 891{
 892        struct ath5k_buf *bf;
 893
 894        list_for_each_entry(bf, &sc->txbuf, list)
 895                ath5k_txbuf_free_skb(sc, bf);
 896        list_for_each_entry(bf, &sc->rxbuf, list)
 897                ath5k_rxbuf_free_skb(sc, bf);
 898        list_for_each_entry(bf, &sc->bcbuf, list)
 899                ath5k_txbuf_free_skb(sc, bf);
 900
 901        /* Free memory associated with all descriptors */
 902        dma_free_coherent(sc->dev, sc->desc_len, sc->desc, sc->desc_daddr);
 903        sc->desc = NULL;
 904        sc->desc_daddr = 0;
 905
 906        kfree(sc->bufptr);
 907        sc->bufptr = NULL;
 908}
 909
 910
 911/**************\
 912* Queues setup *
 913\**************/
 914
 915static struct ath5k_txq *
 916ath5k_txq_setup(struct ath5k_softc *sc,
 917                int qtype, int subtype)
 918{
 919        struct ath5k_hw *ah = sc->ah;
 920        struct ath5k_txq *txq;
 921        struct ath5k_txq_info qi = {
 922                .tqi_subtype = subtype,
 923                /* XXX: default values not correct for B and XR channels,
 924                 * but who cares? */
 925                .tqi_aifs = AR5K_TUNE_AIFS,
 926                .tqi_cw_min = AR5K_TUNE_CWMIN,
 927                .tqi_cw_max = AR5K_TUNE_CWMAX
 928        };
 929        int qnum;
 930
 931        /*
 932         * Enable interrupts only for EOL and DESC conditions.
 933         * We mark tx descriptors to receive a DESC interrupt
 934         * when a tx queue gets deep; otherwise we wait for the
 935         * EOL to reap descriptors.  Note that this is done to
 936         * reduce interrupt load and this only defers reaping
 937         * descriptors, never transmitting frames.  Aside from
 938         * reducing interrupts this also permits more concurrency.
 939         * The only potential downside is if the tx queue backs
 940         * up in which case the top half of the kernel may backup
 941         * due to a lack of tx descriptors.
 942         */
 943        qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
 944                                AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
 945        qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
 946        if (qnum < 0) {
 947                /*
 948                 * NB: don't print a message, this happens
 949                 * normally on parts with too few tx queues
 950                 */
 951                return ERR_PTR(qnum);
 952        }
 953        if (qnum >= ARRAY_SIZE(sc->txqs)) {
 954                ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
 955                        qnum, ARRAY_SIZE(sc->txqs));
 956                ath5k_hw_release_tx_queue(ah, qnum);
 957                return ERR_PTR(-EINVAL);
 958        }
 959        txq = &sc->txqs[qnum];
 960        if (!txq->setup) {
 961                txq->qnum = qnum;
 962                txq->link = NULL;
 963                INIT_LIST_HEAD(&txq->q);
 964                spin_lock_init(&txq->lock);
 965                txq->setup = true;
 966                txq->txq_len = 0;
 967                txq->txq_poll_mark = false;
 968                txq->txq_stuck = 0;
 969        }
 970        return &sc->txqs[qnum];
 971}
 972
 973static int
 974ath5k_beaconq_setup(struct ath5k_hw *ah)
 975{
 976        struct ath5k_txq_info qi = {
 977                /* XXX: default values not correct for B and XR channels,
 978                 * but who cares? */
 979                .tqi_aifs = AR5K_TUNE_AIFS,
 980                .tqi_cw_min = AR5K_TUNE_CWMIN,
 981                .tqi_cw_max = AR5K_TUNE_CWMAX,
 982                /* NB: for dynamic turbo, don't enable any other interrupts */
 983                .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
 984        };
 985
 986        return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
 987}
 988
 989static int
 990ath5k_beaconq_config(struct ath5k_softc *sc)
 991{
 992        struct ath5k_hw *ah = sc->ah;
 993        struct ath5k_txq_info qi;
 994        int ret;
 995
 996        ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
 997        if (ret)
 998                goto err;
 999
1000        if (sc->opmode == NL80211_IFTYPE_AP ||
1001                sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1002                /*
1003                 * Always burst out beacon and CAB traffic
1004                 * (aifs = cwmin = cwmax = 0)
1005                 */
1006                qi.tqi_aifs = 0;
1007                qi.tqi_cw_min = 0;
1008                qi.tqi_cw_max = 0;
1009        } else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
1010                /*
1011                 * Adhoc mode; backoff between 0 and (2 * cw_min).
1012                 */
1013                qi.tqi_aifs = 0;
1014                qi.tqi_cw_min = 0;
1015                qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1016        }
1017
1018        ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1019                "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1020                qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1021
1022        ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1023        if (ret) {
1024                ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1025                        "hardware queue!\n", __func__);
1026                goto err;
1027        }
1028        ret = ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */
1029        if (ret)
1030                goto err;
1031
1032        /* reconfigure cabq with ready time to 80% of beacon_interval */
1033        ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1034        if (ret)
1035                goto err;
1036
1037        qi.tqi_ready_time = (sc->bintval * 80) / 100;
1038        ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1039        if (ret)
1040                goto err;
1041
1042        ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1043err:
1044        return ret;
1045}
1046
1047/**
1048 * ath5k_drain_tx_buffs - Empty tx buffers
1049 *
1050 * @sc The &struct ath5k_softc
1051 *
1052 * Empty tx buffers from all queues in preparation
1053 * of a reset or during shutdown.
1054 *
1055 * NB:  this assumes output has been stopped and
1056 *      we do not need to block ath5k_tx_tasklet
1057 */
1058static void
1059ath5k_drain_tx_buffs(struct ath5k_softc *sc)
1060{
1061        struct ath5k_txq *txq;
1062        struct ath5k_buf *bf, *bf0;
1063        int i;
1064
1065        for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
1066                if (sc->txqs[i].setup) {
1067                        txq = &sc->txqs[i];
1068                        spin_lock_bh(&txq->lock);
1069                        list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1070                                ath5k_debug_printtxbuf(sc, bf);
1071
1072                                ath5k_txbuf_free_skb(sc, bf);
1073
1074                                spin_lock_bh(&sc->txbuflock);
1075                                list_move_tail(&bf->list, &sc->txbuf);
1076                                sc->txbuf_len++;
1077                                txq->txq_len--;
1078                                spin_unlock_bh(&sc->txbuflock);
1079                        }
1080                        txq->link = NULL;
1081                        txq->txq_poll_mark = false;
1082                        spin_unlock_bh(&txq->lock);
1083                }
1084        }
1085}
1086
1087static void
1088ath5k_txq_release(struct ath5k_softc *sc)
1089{
1090        struct ath5k_txq *txq = sc->txqs;
1091        unsigned int i;
1092
1093        for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1094                if (txq->setup) {
1095                        ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1096                        txq->setup = false;
1097                }
1098}
1099
1100
1101/*************\
1102* RX Handling *
1103\*************/
1104
1105/*
1106 * Enable the receive h/w following a reset.
1107 */
1108static int
1109ath5k_rx_start(struct ath5k_softc *sc)
1110{
1111        struct ath5k_hw *ah = sc->ah;
1112        struct ath_common *common = ath5k_hw_common(ah);
1113        struct ath5k_buf *bf;
1114        int ret;
1115
1116        common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1117
1118        ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1119                  common->cachelsz, common->rx_bufsize);
1120
1121        spin_lock_bh(&sc->rxbuflock);
1122        sc->rxlink = NULL;
1123        list_for_each_entry(bf, &sc->rxbuf, list) {
1124                ret = ath5k_rxbuf_setup(sc, bf);
1125                if (ret != 0) {
1126                        spin_unlock_bh(&sc->rxbuflock);
1127                        goto err;
1128                }
1129        }
1130        bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1131        ath5k_hw_set_rxdp(ah, bf->daddr);
1132        spin_unlock_bh(&sc->rxbuflock);
1133
1134        ath5k_hw_start_rx_dma(ah);      /* enable recv descriptors */
1135        ath5k_mode_setup(sc, NULL);             /* set filters, etc. */
1136        ath5k_hw_start_rx_pcu(ah);      /* re-enable PCU/DMA engine */
1137
1138        return 0;
1139err:
1140        return ret;
1141}
1142
1143/*
1144 * Disable the receive logic on PCU (DRU)
1145 * In preparation for a shutdown.
1146 *
1147 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1148 * does.
1149 */
1150static void
1151ath5k_rx_stop(struct ath5k_softc *sc)
1152{
1153        struct ath5k_hw *ah = sc->ah;
1154
1155        ath5k_hw_set_rx_filter(ah, 0);  /* clear recv filter */
1156        ath5k_hw_stop_rx_pcu(ah);       /* disable PCU */
1157
1158        ath5k_debug_printrxbuffs(sc, ah);
1159}
1160
1161static unsigned int
1162ath5k_rx_decrypted(struct ath5k_softc *sc, struct sk_buff *skb,
1163                   struct ath5k_rx_status *rs)
1164{
1165        struct ath5k_hw *ah = sc->ah;
1166        struct ath_common *common = ath5k_hw_common(ah);
1167        struct ieee80211_hdr *hdr = (void *)skb->data;
1168        unsigned int keyix, hlen;
1169
1170        if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1171                        rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1172                return RX_FLAG_DECRYPTED;
1173
1174        /* Apparently when a default key is used to decrypt the packet
1175           the hw does not set the index used to decrypt.  In such cases
1176           get the index from the packet. */
1177        hlen = ieee80211_hdrlen(hdr->frame_control);
1178        if (ieee80211_has_protected(hdr->frame_control) &&
1179            !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1180            skb->len >= hlen + 4) {
1181                keyix = skb->data[hlen + 3] >> 6;
1182
1183                if (test_bit(keyix, common->keymap))
1184                        return RX_FLAG_DECRYPTED;
1185        }
1186
1187        return 0;
1188}
1189
1190
1191static void
1192ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1193                     struct ieee80211_rx_status *rxs)
1194{
1195        struct ath_common *common = ath5k_hw_common(sc->ah);
1196        u64 tsf, bc_tstamp;
1197        u32 hw_tu;
1198        struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1199
1200        if (ieee80211_is_beacon(mgmt->frame_control) &&
1201            le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1202            memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1203                /*
1204                 * Received an IBSS beacon with the same BSSID. Hardware *must*
1205                 * have updated the local TSF. We have to work around various
1206                 * hardware bugs, though...
1207                 */
1208                tsf = ath5k_hw_get_tsf64(sc->ah);
1209                bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1210                hw_tu = TSF_TO_TU(tsf);
1211
1212                ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1213                        "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1214                        (unsigned long long)bc_tstamp,
1215                        (unsigned long long)rxs->mactime,
1216                        (unsigned long long)(rxs->mactime - bc_tstamp),
1217                        (unsigned long long)tsf);
1218
1219                /*
1220                 * Sometimes the HW will give us a wrong tstamp in the rx
1221                 * status, causing the timestamp extension to go wrong.
1222                 * (This seems to happen especially with beacon frames bigger
1223                 * than 78 byte (incl. FCS))
1224                 * But we know that the receive timestamp must be later than the
1225                 * timestamp of the beacon since HW must have synced to that.
1226                 *
1227                 * NOTE: here we assume mactime to be after the frame was
1228                 * received, not like mac80211 which defines it at the start.
1229                 */
1230                if (bc_tstamp > rxs->mactime) {
1231                        ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1232                                "fixing mactime from %llx to %llx\n",
1233                                (unsigned long long)rxs->mactime,
1234                                (unsigned long long)tsf);
1235                        rxs->mactime = tsf;
1236                }
1237
1238                /*
1239                 * Local TSF might have moved higher than our beacon timers,
1240                 * in that case we have to update them to continue sending
1241                 * beacons. This also takes care of synchronizing beacon sending
1242                 * times with other stations.
1243                 */
1244                if (hw_tu >= sc->nexttbtt)
1245                        ath5k_beacon_update_timers(sc, bc_tstamp);
1246
1247                /* Check if the beacon timers are still correct, because a TSF
1248                 * update might have created a window between them - for a
1249                 * longer description see the comment of this function: */
1250                if (!ath5k_hw_check_beacon_timers(sc->ah, sc->bintval)) {
1251                        ath5k_beacon_update_timers(sc, bc_tstamp);
1252                        ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1253                                "fixed beacon timers after beacon receive\n");
1254                }
1255        }
1256}
1257
1258static void
1259ath5k_update_beacon_rssi(struct ath5k_softc *sc, struct sk_buff *skb, int rssi)
1260{
1261        struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1262        struct ath5k_hw *ah = sc->ah;
1263        struct ath_common *common = ath5k_hw_common(ah);
1264
1265        /* only beacons from our BSSID */
1266        if (!ieee80211_is_beacon(mgmt->frame_control) ||
1267            memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1268                return;
1269
1270        ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1271
1272        /* in IBSS mode we should keep RSSI statistics per neighbour */
1273        /* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1274}
1275
1276/*
1277 * Compute padding position. skb must contain an IEEE 802.11 frame
1278 */
1279static int ath5k_common_padpos(struct sk_buff *skb)
1280{
1281        struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1282        __le16 frame_control = hdr->frame_control;
1283        int padpos = 24;
1284
1285        if (ieee80211_has_a4(frame_control)) {
1286                padpos += ETH_ALEN;
1287        }
1288        if (ieee80211_is_data_qos(frame_control)) {
1289                padpos += IEEE80211_QOS_CTL_LEN;
1290        }
1291
1292        return padpos;
1293}
1294
1295/*
1296 * This function expects an 802.11 frame and returns the number of
1297 * bytes added, or -1 if we don't have enough header room.
1298 */
1299static int ath5k_add_padding(struct sk_buff *skb)
1300{
1301        int padpos = ath5k_common_padpos(skb);
1302        int padsize = padpos & 3;
1303
1304        if (padsize && skb->len>padpos) {
1305
1306                if (skb_headroom(skb) < padsize)
1307                        return -1;
1308
1309                skb_push(skb, padsize);
1310                memmove(skb->data, skb->data+padsize, padpos);
1311                return padsize;
1312        }
1313
1314        return 0;
1315}
1316
1317/*
1318 * The MAC header is padded to have 32-bit boundary if the
1319 * packet payload is non-zero. The general calculation for
1320 * padsize would take into account odd header lengths:
1321 * padsize = 4 - (hdrlen & 3); however, since only
1322 * even-length headers are used, padding can only be 0 or 2
1323 * bytes and we can optimize this a bit.  We must not try to
1324 * remove padding from short control frames that do not have a
1325 * payload.
1326 *
1327 * This function expects an 802.11 frame and returns the number of
1328 * bytes removed.
1329 */
1330static int ath5k_remove_padding(struct sk_buff *skb)
1331{
1332        int padpos = ath5k_common_padpos(skb);
1333        int padsize = padpos & 3;
1334
1335        if (padsize && skb->len>=padpos+padsize) {
1336                memmove(skb->data + padsize, skb->data, padpos);
1337                skb_pull(skb, padsize);
1338                return padsize;
1339        }
1340
1341        return 0;
1342}
1343
1344static void
1345ath5k_receive_frame(struct ath5k_softc *sc, struct sk_buff *skb,
1346                    struct ath5k_rx_status *rs)
1347{
1348        struct ieee80211_rx_status *rxs;
1349
1350        ath5k_remove_padding(skb);
1351
1352        rxs = IEEE80211_SKB_RXCB(skb);
1353
1354        rxs->flag = 0;
1355        if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1356                rxs->flag |= RX_FLAG_MMIC_ERROR;
1357
1358        /*
1359         * always extend the mac timestamp, since this information is
1360         * also needed for proper IBSS merging.
1361         *
1362         * XXX: it might be too late to do it here, since rs_tstamp is
1363         * 15bit only. that means TSF extension has to be done within
1364         * 32768usec (about 32ms). it might be necessary to move this to
1365         * the interrupt handler, like it is done in madwifi.
1366         *
1367         * Unfortunately we don't know when the hardware takes the rx
1368         * timestamp (beginning of phy frame, data frame, end of rx?).
1369         * The only thing we know is that it is hardware specific...
1370         * On AR5213 it seems the rx timestamp is at the end of the
1371         * frame, but i'm not sure.
1372         *
1373         * NOTE: mac80211 defines mactime at the beginning of the first
1374         * data symbol. Since we don't have any time references it's
1375         * impossible to comply to that. This affects IBSS merge only
1376         * right now, so it's not too bad...
1377         */
1378        rxs->mactime = ath5k_extend_tsf(sc->ah, rs->rs_tstamp);
1379        rxs->flag |= RX_FLAG_TSFT;
1380
1381        rxs->freq = sc->curchan->center_freq;
1382        rxs->band = sc->curband->band;
1383
1384        rxs->signal = sc->ah->ah_noise_floor + rs->rs_rssi;
1385
1386        rxs->antenna = rs->rs_antenna;
1387
1388        if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1389                sc->stats.antenna_rx[rs->rs_antenna]++;
1390        else
1391                sc->stats.antenna_rx[0]++; /* invalid */
1392
1393        rxs->rate_idx = ath5k_hw_to_driver_rix(sc, rs->rs_rate);
1394        rxs->flag |= ath5k_rx_decrypted(sc, skb, rs);
1395
1396        if (rxs->rate_idx >= 0 && rs->rs_rate ==
1397            sc->curband->bitrates[rxs->rate_idx].hw_value_short)
1398                rxs->flag |= RX_FLAG_SHORTPRE;
1399
1400        ath5k_debug_dump_skb(sc, skb, "RX  ", 0);
1401
1402        ath5k_update_beacon_rssi(sc, skb, rs->rs_rssi);
1403
1404        /* check beacons in IBSS mode */
1405        if (sc->opmode == NL80211_IFTYPE_ADHOC)
1406                ath5k_check_ibss_tsf(sc, skb, rxs);
1407
1408        ieee80211_rx(sc->hw, skb);
1409}
1410
1411/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1412 *
1413 * Check if we want to further process this frame or not. Also update
1414 * statistics. Return true if we want this frame, false if not.
1415 */
1416static bool
1417ath5k_receive_frame_ok(struct ath5k_softc *sc, struct ath5k_rx_status *rs)
1418{
1419        sc->stats.rx_all_count++;
1420        sc->stats.rx_bytes_count += rs->rs_datalen;
1421
1422        if (unlikely(rs->rs_status)) {
1423                if (rs->rs_status & AR5K_RXERR_CRC)
1424                        sc->stats.rxerr_crc++;
1425                if (rs->rs_status & AR5K_RXERR_FIFO)
1426                        sc->stats.rxerr_fifo++;
1427                if (rs->rs_status & AR5K_RXERR_PHY) {
1428                        sc->stats.rxerr_phy++;
1429                        if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1430                                sc->stats.rxerr_phy_code[rs->rs_phyerr]++;
1431                        return false;
1432                }
1433                if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1434                        /*
1435                         * Decrypt error.  If the error occurred
1436                         * because there was no hardware key, then
1437                         * let the frame through so the upper layers
1438                         * can process it.  This is necessary for 5210
1439                         * parts which have no way to setup a ``clear''
1440                         * key cache entry.
1441                         *
1442                         * XXX do key cache faulting
1443                         */
1444                        sc->stats.rxerr_decrypt++;
1445                        if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1446                            !(rs->rs_status & AR5K_RXERR_CRC))
1447                                return true;
1448                }
1449                if (rs->rs_status & AR5K_RXERR_MIC) {
1450                        sc->stats.rxerr_mic++;
1451                        return true;
1452                }
1453
1454                /* reject any frames with non-crypto errors */
1455                if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1456                        return false;
1457        }
1458
1459        if (unlikely(rs->rs_more)) {
1460                sc->stats.rxerr_jumbo++;
1461                return false;
1462        }
1463        return true;
1464}
1465
1466static void
1467ath5k_tasklet_rx(unsigned long data)
1468{
1469        struct ath5k_rx_status rs = {};
1470        struct sk_buff *skb, *next_skb;
1471        dma_addr_t next_skb_addr;
1472        struct ath5k_softc *sc = (void *)data;
1473        struct ath5k_hw *ah = sc->ah;
1474        struct ath_common *common = ath5k_hw_common(ah);
1475        struct ath5k_buf *bf;
1476        struct ath5k_desc *ds;
1477        int ret;
1478
1479        spin_lock(&sc->rxbuflock);
1480        if (list_empty(&sc->rxbuf)) {
1481                ATH5K_WARN(sc, "empty rx buf pool\n");
1482                goto unlock;
1483        }
1484        do {
1485                bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1486                BUG_ON(bf->skb == NULL);
1487                skb = bf->skb;
1488                ds = bf->desc;
1489
1490                /* bail if HW is still using self-linked descriptor */
1491                if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
1492                        break;
1493
1494                ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1495                if (unlikely(ret == -EINPROGRESS))
1496                        break;
1497                else if (unlikely(ret)) {
1498                        ATH5K_ERR(sc, "error in processing rx descriptor\n");
1499                        sc->stats.rxerr_proc++;
1500                        break;
1501                }
1502
1503                if (ath5k_receive_frame_ok(sc, &rs)) {
1504                        next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
1505
1506                        /*
1507                         * If we can't replace bf->skb with a new skb under
1508                         * memory pressure, just skip this packet
1509                         */
1510                        if (!next_skb)
1511                                goto next;
1512
1513                        dma_unmap_single(sc->dev, bf->skbaddr,
1514                                         common->rx_bufsize,
1515                                         DMA_FROM_DEVICE);
1516
1517                        skb_put(skb, rs.rs_datalen);
1518
1519                        ath5k_receive_frame(sc, skb, &rs);
1520
1521                        bf->skb = next_skb;
1522                        bf->skbaddr = next_skb_addr;
1523                }
1524next:
1525                list_move_tail(&bf->list, &sc->rxbuf);
1526        } while (ath5k_rxbuf_setup(sc, bf) == 0);
1527unlock:
1528        spin_unlock(&sc->rxbuflock);
1529}
1530
1531
1532/*************\
1533* TX Handling *
1534\*************/
1535
1536int
1537ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1538               struct ath5k_txq *txq)
1539{
1540        struct ath5k_softc *sc = hw->priv;
1541        struct ath5k_buf *bf;
1542        unsigned long flags;
1543        int padsize;
1544
1545        ath5k_debug_dump_skb(sc, skb, "TX  ", 1);
1546
1547        /*
1548         * The hardware expects the header padded to 4 byte boundaries.
1549         * If this is not the case, we add the padding after the header.
1550         */
1551        padsize = ath5k_add_padding(skb);
1552        if (padsize < 0) {
1553                ATH5K_ERR(sc, "tx hdrlen not %%4: not enough"
1554                          " headroom to pad");
1555                goto drop_packet;
1556        }
1557
1558        if (txq->txq_len >= ATH5K_TXQ_LEN_MAX)
1559                ieee80211_stop_queue(hw, txq->qnum);
1560
1561        spin_lock_irqsave(&sc->txbuflock, flags);
1562        if (list_empty(&sc->txbuf)) {
1563                ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
1564                spin_unlock_irqrestore(&sc->txbuflock, flags);
1565                ieee80211_stop_queues(hw);
1566                goto drop_packet;
1567        }
1568        bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
1569        list_del(&bf->list);
1570        sc->txbuf_len--;
1571        if (list_empty(&sc->txbuf))
1572                ieee80211_stop_queues(hw);
1573        spin_unlock_irqrestore(&sc->txbuflock, flags);
1574
1575        bf->skb = skb;
1576
1577        if (ath5k_txbuf_setup(sc, bf, txq, padsize)) {
1578                bf->skb = NULL;
1579                spin_lock_irqsave(&sc->txbuflock, flags);
1580                list_add_tail(&bf->list, &sc->txbuf);
1581                sc->txbuf_len++;
1582                spin_unlock_irqrestore(&sc->txbuflock, flags);
1583                goto drop_packet;
1584        }
1585        return NETDEV_TX_OK;
1586
1587drop_packet:
1588        dev_kfree_skb_any(skb);
1589        return NETDEV_TX_OK;
1590}
1591
1592static void
1593ath5k_tx_frame_completed(struct ath5k_softc *sc, struct sk_buff *skb,
1594                         struct ath5k_tx_status *ts)
1595{
1596        struct ieee80211_tx_info *info;
1597        int i;
1598
1599        sc->stats.tx_all_count++;
1600        sc->stats.tx_bytes_count += skb->len;
1601        info = IEEE80211_SKB_CB(skb);
1602
1603        ieee80211_tx_info_clear_status(info);
1604        for (i = 0; i < 4; i++) {
1605                struct ieee80211_tx_rate *r =
1606                        &info->status.rates[i];
1607
1608                if (ts->ts_rate[i]) {
1609                        r->idx = ath5k_hw_to_driver_rix(sc, ts->ts_rate[i]);
1610                        r->count = ts->ts_retry[i];
1611                } else {
1612                        r->idx = -1;
1613                        r->count = 0;
1614                }
1615        }
1616
1617        /* count the successful attempt as well */
1618        info->status.rates[ts->ts_final_idx].count++;
1619
1620        if (unlikely(ts->ts_status)) {
1621                sc->stats.ack_fail++;
1622                if (ts->ts_status & AR5K_TXERR_FILT) {
1623                        info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1624                        sc->stats.txerr_filt++;
1625                }
1626                if (ts->ts_status & AR5K_TXERR_XRETRY)
1627                        sc->stats.txerr_retry++;
1628                if (ts->ts_status & AR5K_TXERR_FIFO)
1629                        sc->stats.txerr_fifo++;
1630        } else {
1631                info->flags |= IEEE80211_TX_STAT_ACK;
1632                info->status.ack_signal = ts->ts_rssi;
1633        }
1634
1635        /*
1636        * Remove MAC header padding before giving the frame
1637        * back to mac80211.
1638        */
1639        ath5k_remove_padding(skb);
1640
1641        if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1642                sc->stats.antenna_tx[ts->ts_antenna]++;
1643        else
1644                sc->stats.antenna_tx[0]++; /* invalid */
1645
1646        ieee80211_tx_status(sc->hw, skb);
1647}
1648
1649static void
1650ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1651{
1652        struct ath5k_tx_status ts = {};
1653        struct ath5k_buf *bf, *bf0;
1654        struct ath5k_desc *ds;
1655        struct sk_buff *skb;
1656        int ret;
1657
1658        spin_lock(&txq->lock);
1659        list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1660
1661                txq->txq_poll_mark = false;
1662
1663                /* skb might already have been processed last time. */
1664                if (bf->skb != NULL) {
1665                        ds = bf->desc;
1666
1667                        ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1668                        if (unlikely(ret == -EINPROGRESS))
1669                                break;
1670                        else if (unlikely(ret)) {
1671                                ATH5K_ERR(sc,
1672                                        "error %d while processing "
1673                                        "queue %u\n", ret, txq->qnum);
1674                                break;
1675                        }
1676
1677                        skb = bf->skb;
1678                        bf->skb = NULL;
1679
1680                        dma_unmap_single(sc->dev, bf->skbaddr, skb->len,
1681                                        DMA_TO_DEVICE);
1682                        ath5k_tx_frame_completed(sc, skb, &ts);
1683                }
1684
1685                /*
1686                 * It's possible that the hardware can say the buffer is
1687                 * completed when it hasn't yet loaded the ds_link from
1688                 * host memory and moved on.
1689                 * Always keep the last descriptor to avoid HW races...
1690                 */
1691                if (ath5k_hw_get_txdp(sc->ah, txq->qnum) != bf->daddr) {
1692                        spin_lock(&sc->txbuflock);
1693                        list_move_tail(&bf->list, &sc->txbuf);
1694                        sc->txbuf_len++;
1695                        txq->txq_len--;
1696                        spin_unlock(&sc->txbuflock);
1697                }
1698        }
1699        spin_unlock(&txq->lock);
1700        if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1701                ieee80211_wake_queue(sc->hw, txq->qnum);
1702}
1703
1704static void
1705ath5k_tasklet_tx(unsigned long data)
1706{
1707        int i;
1708        struct ath5k_softc *sc = (void *)data;
1709
1710        for (i=0; i < AR5K_NUM_TX_QUEUES; i++)
1711                if (sc->txqs[i].setup && (sc->ah->ah_txq_isr & BIT(i)))
1712                        ath5k_tx_processq(sc, &sc->txqs[i]);
1713}
1714
1715
1716/*****************\
1717* Beacon handling *
1718\*****************/
1719
1720/*
1721 * Setup the beacon frame for transmit.
1722 */
1723static int
1724ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1725{
1726        struct sk_buff *skb = bf->skb;
1727        struct  ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1728        struct ath5k_hw *ah = sc->ah;
1729        struct ath5k_desc *ds;
1730        int ret = 0;
1731        u8 antenna;
1732        u32 flags;
1733        const int padsize = 0;
1734
1735        bf->skbaddr = dma_map_single(sc->dev, skb->data, skb->len,
1736                        DMA_TO_DEVICE);
1737        ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1738                        "skbaddr %llx\n", skb, skb->data, skb->len,
1739                        (unsigned long long)bf->skbaddr);
1740
1741        if (dma_mapping_error(sc->dev, bf->skbaddr)) {
1742                ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1743                return -EIO;
1744        }
1745
1746        ds = bf->desc;
1747        antenna = ah->ah_tx_ant;
1748
1749        flags = AR5K_TXDESC_NOACK;
1750        if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1751                ds->ds_link = bf->daddr;        /* self-linked */
1752                flags |= AR5K_TXDESC_VEOL;
1753        } else
1754                ds->ds_link = 0;
1755
1756        /*
1757         * If we use multiple antennas on AP and use
1758         * the Sectored AP scenario, switch antenna every
1759         * 4 beacons to make sure everybody hears our AP.
1760         * When a client tries to associate, hw will keep
1761         * track of the tx antenna to be used for this client
1762         * automaticaly, based on ACKed packets.
1763         *
1764         * Note: AP still listens and transmits RTS on the
1765         * default antenna which is supposed to be an omni.
1766         *
1767         * Note2: On sectored scenarios it's possible to have
1768         * multiple antennas (1 omni -- the default -- and 14
1769         * sectors), so if we choose to actually support this
1770         * mode, we need to allow the user to set how many antennas
1771         * we have and tweak the code below to send beacons
1772         * on all of them.
1773         */
1774        if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1775                antenna = sc->bsent & 4 ? 2 : 1;
1776
1777
1778        /* FIXME: If we are in g mode and rate is a CCK rate
1779         * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1780         * from tx power (value is in dB units already) */
1781        ds->ds_data = bf->skbaddr;
1782        ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1783                        ieee80211_get_hdrlen_from_skb(skb), padsize,
1784                        AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
1785                        ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1786                        1, AR5K_TXKEYIX_INVALID,
1787                        antenna, flags, 0, 0);
1788        if (ret)
1789                goto err_unmap;
1790
1791        return 0;
1792err_unmap:
1793        dma_unmap_single(sc->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1794        return ret;
1795}
1796
1797/*
1798 * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1799 * this is called only once at config_bss time, for AP we do it every
1800 * SWBA interrupt so that the TIM will reflect buffered frames.
1801 *
1802 * Called with the beacon lock.
1803 */
1804int
1805ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1806{
1807        int ret;
1808        struct ath5k_softc *sc = hw->priv;
1809        struct ath5k_vif *avf = (void *)vif->drv_priv;
1810        struct sk_buff *skb;
1811
1812        if (WARN_ON(!vif)) {
1813                ret = -EINVAL;
1814                goto out;
1815        }
1816
1817        skb = ieee80211_beacon_get(hw, vif);
1818
1819        if (!skb) {
1820                ret = -ENOMEM;
1821                goto out;
1822        }
1823
1824        ath5k_debug_dump_skb(sc, skb, "BC  ", 1);
1825
1826        ath5k_txbuf_free_skb(sc, avf->bbuf);
1827        avf->bbuf->skb = skb;
1828        ret = ath5k_beacon_setup(sc, avf->bbuf);
1829        if (ret)
1830                avf->bbuf->skb = NULL;
1831out:
1832        return ret;
1833}
1834
1835/*
1836 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1837 * frame contents are done as needed and the slot time is
1838 * also adjusted based on current state.
1839 *
1840 * This is called from software irq context (beacontq tasklets)
1841 * or user context from ath5k_beacon_config.
1842 */
1843static void
1844ath5k_beacon_send(struct ath5k_softc *sc)
1845{
1846        struct ath5k_hw *ah = sc->ah;
1847        struct ieee80211_vif *vif;
1848        struct ath5k_vif *avf;
1849        struct ath5k_buf *bf;
1850        struct sk_buff *skb;
1851
1852        ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1853
1854        /*
1855         * Check if the previous beacon has gone out.  If
1856         * not, don't don't try to post another: skip this
1857         * period and wait for the next.  Missed beacons
1858         * indicate a problem and should not occur.  If we
1859         * miss too many consecutive beacons reset the device.
1860         */
1861        if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
1862                sc->bmisscount++;
1863                ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1864                        "missed %u consecutive beacons\n", sc->bmisscount);
1865                if (sc->bmisscount > 10) {      /* NB: 10 is a guess */
1866                        ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1867                                "stuck beacon time (%u missed)\n",
1868                                sc->bmisscount);
1869                        ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
1870                                  "stuck beacon, resetting\n");
1871                        ieee80211_queue_work(sc->hw, &sc->reset_work);
1872                }
1873                return;
1874        }
1875        if (unlikely(sc->bmisscount != 0)) {
1876                ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1877                        "resume beacon xmit after %u misses\n",
1878                        sc->bmisscount);
1879                sc->bmisscount = 0;
1880        }
1881
1882        if ((sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) ||
1883                        sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1884                u64 tsf = ath5k_hw_get_tsf64(ah);
1885                u32 tsftu = TSF_TO_TU(tsf);
1886                int slot = ((tsftu % sc->bintval) * ATH_BCBUF) / sc->bintval;
1887                vif = sc->bslot[(slot + 1) % ATH_BCBUF];
1888                ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1889                        "tsf %llx tsftu %x intval %u slot %u vif %p\n",
1890                        (unsigned long long)tsf, tsftu, sc->bintval, slot, vif);
1891        } else /* only one interface */
1892                vif = sc->bslot[0];
1893
1894        if (!vif)
1895                return;
1896
1897        avf = (void *)vif->drv_priv;
1898        bf = avf->bbuf;
1899        if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
1900                        sc->opmode == NL80211_IFTYPE_MONITOR)) {
1901                ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1902                return;
1903        }
1904
1905        /*
1906         * Stop any current dma and put the new frame on the queue.
1907         * This should never fail since we check above that no frames
1908         * are still pending on the queue.
1909         */
1910        if (unlikely(ath5k_hw_stop_beacon_queue(ah, sc->bhalq))) {
1911                ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
1912                /* NB: hw still stops DMA, so proceed */
1913        }
1914
1915        /* refresh the beacon for AP or MESH mode */
1916        if (sc->opmode == NL80211_IFTYPE_AP ||
1917                        sc->opmode == NL80211_IFTYPE_MESH_POINT)
1918                ath5k_beacon_update(sc->hw, vif);
1919
1920        ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
1921        ath5k_hw_start_tx_dma(ah, sc->bhalq);
1922        ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1923                sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
1924
1925        skb = ieee80211_get_buffered_bc(sc->hw, vif);
1926        while (skb) {
1927                ath5k_tx_queue(sc->hw, skb, sc->cabq);
1928                skb = ieee80211_get_buffered_bc(sc->hw, vif);
1929        }
1930
1931        sc->bsent++;
1932}
1933
1934/**
1935 * ath5k_beacon_update_timers - update beacon timers
1936 *
1937 * @sc: struct ath5k_softc pointer we are operating on
1938 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1939 *          beacon timer update based on the current HW TSF.
1940 *
1941 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1942 * of a received beacon or the current local hardware TSF and write it to the
1943 * beacon timer registers.
1944 *
1945 * This is called in a variety of situations, e.g. when a beacon is received,
1946 * when a TSF update has been detected, but also when an new IBSS is created or
1947 * when we otherwise know we have to update the timers, but we keep it in this
1948 * function to have it all together in one place.
1949 */
1950void
1951ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
1952{
1953        struct ath5k_hw *ah = sc->ah;
1954        u32 nexttbtt, intval, hw_tu, bc_tu;
1955        u64 hw_tsf;
1956
1957        intval = sc->bintval & AR5K_BEACON_PERIOD;
1958        if (sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) {
1959                intval /= ATH_BCBUF;    /* staggered multi-bss beacons */
1960                if (intval < 15)
1961                        ATH5K_WARN(sc, "intval %u is too low, min 15\n",
1962                                   intval);
1963        }
1964        if (WARN_ON(!intval))
1965                return;
1966
1967        /* beacon TSF converted to TU */
1968        bc_tu = TSF_TO_TU(bc_tsf);
1969
1970        /* current TSF converted to TU */
1971        hw_tsf = ath5k_hw_get_tsf64(ah);
1972        hw_tu = TSF_TO_TU(hw_tsf);
1973
1974#define FUDGE AR5K_TUNE_SW_BEACON_RESP + 3
1975        /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1976         * Since we later substract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1977         * configuration we need to make sure it is bigger than that. */
1978
1979        if (bc_tsf == -1) {
1980                /*
1981                 * no beacons received, called internally.
1982                 * just need to refresh timers based on HW TSF.
1983                 */
1984                nexttbtt = roundup(hw_tu + FUDGE, intval);
1985        } else if (bc_tsf == 0) {
1986                /*
1987                 * no beacon received, probably called by ath5k_reset_tsf().
1988                 * reset TSF to start with 0.
1989                 */
1990                nexttbtt = intval;
1991                intval |= AR5K_BEACON_RESET_TSF;
1992        } else if (bc_tsf > hw_tsf) {
1993                /*
1994                 * beacon received, SW merge happend but HW TSF not yet updated.
1995                 * not possible to reconfigure timers yet, but next time we
1996                 * receive a beacon with the same BSSID, the hardware will
1997                 * automatically update the TSF and then we need to reconfigure
1998                 * the timers.
1999                 */
2000                ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2001                        "need to wait for HW TSF sync\n");
2002                return;
2003        } else {
2004                /*
2005                 * most important case for beacon synchronization between STA.
2006                 *
2007                 * beacon received and HW TSF has been already updated by HW.
2008                 * update next TBTT based on the TSF of the beacon, but make
2009                 * sure it is ahead of our local TSF timer.
2010                 */
2011                nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2012        }
2013#undef FUDGE
2014
2015        sc->nexttbtt = nexttbtt;
2016
2017        intval |= AR5K_BEACON_ENA;
2018        ath5k_hw_init_beacon(ah, nexttbtt, intval);
2019
2020        /*
2021         * debugging output last in order to preserve the time critical aspect
2022         * of this function
2023         */
2024        if (bc_tsf == -1)
2025                ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2026                        "reconfigured timers based on HW TSF\n");
2027        else if (bc_tsf == 0)
2028                ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2029                        "reset HW TSF and timers\n");
2030        else
2031                ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2032                        "updated timers based on beacon TSF\n");
2033
2034        ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2035                          "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2036                          (unsigned long long) bc_tsf,
2037                          (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2038        ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2039                intval & AR5K_BEACON_PERIOD,
2040                intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2041                intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2042}
2043
2044/**
2045 * ath5k_beacon_config - Configure the beacon queues and interrupts
2046 *
2047 * @sc: struct ath5k_softc pointer we are operating on
2048 *
2049 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2050 * interrupts to detect TSF updates only.
2051 */
2052void
2053ath5k_beacon_config(struct ath5k_softc *sc)
2054{
2055        struct ath5k_hw *ah = sc->ah;
2056        unsigned long flags;
2057
2058        spin_lock_irqsave(&sc->block, flags);
2059        sc->bmisscount = 0;
2060        sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2061
2062        if (sc->enable_beacon) {
2063                /*
2064                 * In IBSS mode we use a self-linked tx descriptor and let the
2065                 * hardware send the beacons automatically. We have to load it
2066                 * only once here.
2067                 * We use the SWBA interrupt only to keep track of the beacon
2068                 * timers in order to detect automatic TSF updates.
2069                 */
2070                ath5k_beaconq_config(sc);
2071
2072                sc->imask |= AR5K_INT_SWBA;
2073
2074                if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2075                        if (ath5k_hw_hasveol(ah))
2076                                ath5k_beacon_send(sc);
2077                } else
2078                        ath5k_beacon_update_timers(sc, -1);
2079        } else {
2080                ath5k_hw_stop_beacon_queue(sc->ah, sc->bhalq);
2081        }
2082
2083        ath5k_hw_set_imr(ah, sc->imask);
2084        mmiowb();
2085        spin_unlock_irqrestore(&sc->block, flags);
2086}
2087
2088static void ath5k_tasklet_beacon(unsigned long data)
2089{
2090        struct ath5k_softc *sc = (struct ath5k_softc *) data;
2091
2092        /*
2093         * Software beacon alert--time to send a beacon.
2094         *
2095         * In IBSS mode we use this interrupt just to
2096         * keep track of the next TBTT (target beacon
2097         * transmission time) in order to detect wether
2098         * automatic TSF updates happened.
2099         */
2100        if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2101                /* XXX: only if VEOL suppported */
2102                u64 tsf = ath5k_hw_get_tsf64(sc->ah);
2103                sc->nexttbtt += sc->bintval;
2104                ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2105                                "SWBA nexttbtt: %x hw_tu: %x "
2106                                "TSF: %llx\n",
2107                                sc->nexttbtt,
2108                                TSF_TO_TU(tsf),
2109                                (unsigned long long) tsf);
2110        } else {
2111                spin_lock(&sc->block);
2112                ath5k_beacon_send(sc);
2113                spin_unlock(&sc->block);
2114        }
2115}
2116
2117
2118/********************\
2119* Interrupt handling *
2120\********************/
2121
2122static void
2123ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2124{
2125        if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2126            !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2127                /* run ANI only when full calibration is not active */
2128                ah->ah_cal_next_ani = jiffies +
2129                        msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2130                tasklet_schedule(&ah->ah_sc->ani_tasklet);
2131
2132        } else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2133                ah->ah_cal_next_full = jiffies +
2134                        msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2135                tasklet_schedule(&ah->ah_sc->calib);
2136        }
2137        /* we could use SWI to generate enough interrupts to meet our
2138         * calibration interval requirements, if necessary:
2139         * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2140}
2141
2142irqreturn_t
2143ath5k_intr(int irq, void *dev_id)
2144{
2145        struct ath5k_softc *sc = dev_id;
2146        struct ath5k_hw *ah = sc->ah;
2147        enum ath5k_int status;
2148        unsigned int counter = 1000;
2149
2150        if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2151                ((ath5k_get_bus_type(ah) != ATH_AHB) &&
2152                                !ath5k_hw_is_intr_pending(ah))))
2153                return IRQ_NONE;
2154
2155        do {
2156                ath5k_hw_get_isr(ah, &status);          /* NB: clears IRQ too */
2157                ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2158                                status, sc->imask);
2159                if (unlikely(status & AR5K_INT_FATAL)) {
2160                        /*
2161                         * Fatal errors are unrecoverable.
2162                         * Typically these are caused by DMA errors.
2163                         */
2164                        ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2165                                  "fatal int, resetting\n");
2166                        ieee80211_queue_work(sc->hw, &sc->reset_work);
2167                } else if (unlikely(status & AR5K_INT_RXORN)) {
2168                        /*
2169                         * Receive buffers are full. Either the bus is busy or
2170                         * the CPU is not fast enough to process all received
2171                         * frames.
2172                         * Older chipsets need a reset to come out of this
2173                         * condition, but we treat it as RX for newer chips.
2174                         * We don't know exactly which versions need a reset -
2175                         * this guess is copied from the HAL.
2176                         */
2177                        sc->stats.rxorn_intr++;
2178                        if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2179                                ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2180                                          "rx overrun, resetting\n");
2181                                ieee80211_queue_work(sc->hw, &sc->reset_work);
2182                        }
2183                        else
2184                                tasklet_schedule(&sc->rxtq);
2185                } else {
2186                        if (status & AR5K_INT_SWBA) {
2187                                tasklet_hi_schedule(&sc->beacontq);
2188                        }
2189                        if (status & AR5K_INT_RXEOL) {
2190                                /*
2191                                * NB: the hardware should re-read the link when
2192                                *     RXE bit is written, but it doesn't work at
2193                                *     least on older hardware revs.
2194                                */
2195                                sc->stats.rxeol_intr++;
2196                        }
2197                        if (status & AR5K_INT_TXURN) {
2198                                /* bump tx trigger level */
2199                                ath5k_hw_update_tx_triglevel(ah, true);
2200                        }
2201                        if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2202                                tasklet_schedule(&sc->rxtq);
2203                        if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2204                                        | AR5K_INT_TXERR | AR5K_INT_TXEOL))
2205                                tasklet_schedule(&sc->txtq);
2206                        if (status & AR5K_INT_BMISS) {
2207                                /* TODO */
2208                        }
2209                        if (status & AR5K_INT_MIB) {
2210                                sc->stats.mib_intr++;
2211                                ath5k_hw_update_mib_counters(ah);
2212                                ath5k_ani_mib_intr(ah);
2213                        }
2214                        if (status & AR5K_INT_GPIO)
2215                                tasklet_schedule(&sc->rf_kill.toggleq);
2216
2217                }
2218
2219                if (ath5k_get_bus_type(ah) == ATH_AHB)
2220                        break;
2221
2222        } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2223
2224        if (unlikely(!counter))
2225                ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2226
2227        ath5k_intr_calibration_poll(ah);
2228
2229        return IRQ_HANDLED;
2230}
2231
2232/*
2233 * Periodically recalibrate the PHY to account
2234 * for temperature/environment changes.
2235 */
2236static void
2237ath5k_tasklet_calibrate(unsigned long data)
2238{
2239        struct ath5k_softc *sc = (void *)data;
2240        struct ath5k_hw *ah = sc->ah;
2241
2242        /* Only full calibration for now */
2243        ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2244
2245        ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2246                ieee80211_frequency_to_channel(sc->curchan->center_freq),
2247                sc->curchan->hw_value);
2248
2249        if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2250                /*
2251                 * Rfgain is out of bounds, reset the chip
2252                 * to load new gain values.
2253                 */
2254                ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2255                ieee80211_queue_work(sc->hw, &sc->reset_work);
2256        }
2257        if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2258                ATH5K_ERR(sc, "calibration of channel %u failed\n",
2259                        ieee80211_frequency_to_channel(
2260                                sc->curchan->center_freq));
2261
2262        /* Noise floor calibration interrupts rx/tx path while I/Q calibration
2263         * doesn't.
2264         * TODO: We should stop TX here, so that it doesn't interfere.
2265         * Note that stopping the queues is not enough to stop TX! */
2266        if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2267                ah->ah_cal_next_nf = jiffies +
2268                        msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2269                ath5k_hw_update_noise_floor(ah);
2270        }
2271
2272        ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2273}
2274
2275
2276static void
2277ath5k_tasklet_ani(unsigned long data)
2278{
2279        struct ath5k_softc *sc = (void *)data;
2280        struct ath5k_hw *ah = sc->ah;
2281
2282        ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2283        ath5k_ani_calibration(ah);
2284        ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2285}
2286
2287
2288static void
2289ath5k_tx_complete_poll_work(struct work_struct *work)
2290{
2291        struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2292                        tx_complete_work.work);
2293        struct ath5k_txq *txq;
2294        int i;
2295        bool needreset = false;
2296
2297        mutex_lock(&sc->lock);
2298
2299        for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
2300                if (sc->txqs[i].setup) {
2301                        txq = &sc->txqs[i];
2302                        spin_lock_bh(&txq->lock);
2303                        if (txq->txq_len > 1) {
2304                                if (txq->txq_poll_mark) {
2305                                        ATH5K_DBG(sc, ATH5K_DEBUG_XMIT,
2306                                                  "TX queue stuck %d\n",
2307                                                  txq->qnum);
2308                                        needreset = true;
2309                                        txq->txq_stuck++;
2310                                        spin_unlock_bh(&txq->lock);
2311                                        break;
2312                                } else {
2313                                        txq->txq_poll_mark = true;
2314                                }
2315                        }
2316                        spin_unlock_bh(&txq->lock);
2317                }
2318        }
2319
2320        if (needreset) {
2321                ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2322                          "TX queues stuck, resetting\n");
2323                ath5k_reset(sc, NULL, true);
2324        }
2325
2326        mutex_unlock(&sc->lock);
2327
2328        ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2329                msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2330}
2331
2332
2333/*************************\
2334* Initialization routines *
2335\*************************/
2336
2337int
2338ath5k_init_softc(struct ath5k_softc *sc, const struct ath_bus_ops *bus_ops)
2339{
2340        struct ieee80211_hw *hw = sc->hw;
2341        struct ath_common *common;
2342        int ret;
2343        int csz;
2344
2345        /* Initialize driver private data */
2346        SET_IEEE80211_DEV(hw, sc->dev);
2347        hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2348                        IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2349                        IEEE80211_HW_SIGNAL_DBM |
2350                        IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2351
2352        hw->wiphy->interface_modes =
2353                BIT(NL80211_IFTYPE_AP) |
2354                BIT(NL80211_IFTYPE_STATION) |
2355                BIT(NL80211_IFTYPE_ADHOC) |
2356                BIT(NL80211_IFTYPE_MESH_POINT);
2357
2358        /* both antennas can be configured as RX or TX */
2359        hw->wiphy->available_antennas_tx = 0x3;
2360        hw->wiphy->available_antennas_rx = 0x3;
2361
2362        hw->extra_tx_headroom = 2;
2363        hw->channel_change_time = 5000;
2364
2365        /*
2366         * Mark the device as detached to avoid processing
2367         * interrupts until setup is complete.
2368         */
2369        __set_bit(ATH_STAT_INVALID, sc->status);
2370
2371        sc->opmode = NL80211_IFTYPE_STATION;
2372        sc->bintval = 1000;
2373        mutex_init(&sc->lock);
2374        spin_lock_init(&sc->rxbuflock);
2375        spin_lock_init(&sc->txbuflock);
2376        spin_lock_init(&sc->block);
2377
2378
2379        /* Setup interrupt handler */
2380        ret = request_irq(sc->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
2381        if (ret) {
2382                ATH5K_ERR(sc, "request_irq failed\n");
2383                goto err;
2384        }
2385
2386        /* If we passed the test, malloc an ath5k_hw struct */
2387        sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
2388        if (!sc->ah) {
2389                ret = -ENOMEM;
2390                ATH5K_ERR(sc, "out of memory\n");
2391                goto err_irq;
2392        }
2393
2394        sc->ah->ah_sc = sc;
2395        sc->ah->ah_iobase = sc->iobase;
2396        common = ath5k_hw_common(sc->ah);
2397        common->ops = &ath5k_common_ops;
2398        common->bus_ops = bus_ops;
2399        common->ah = sc->ah;
2400        common->hw = hw;
2401        common->priv = sc;
2402
2403        /*
2404         * Cache line size is used to size and align various
2405         * structures used to communicate with the hardware.
2406         */
2407        ath5k_read_cachesize(common, &csz);
2408        common->cachelsz = csz << 2; /* convert to bytes */
2409
2410        spin_lock_init(&common->cc_lock);
2411
2412        /* Initialize device */
2413        ret = ath5k_hw_init(sc);
2414        if (ret)
2415                goto err_free_ah;
2416
2417        /* set up multi-rate retry capabilities */
2418        if (sc->ah->ah_version == AR5K_AR5212) {
2419                hw->max_rates = 4;
2420                hw->max_rate_tries = 11;
2421        }
2422
2423        hw->vif_data_size = sizeof(struct ath5k_vif);
2424
2425        /* Finish private driver data initialization */
2426        ret = ath5k_init(hw);
2427        if (ret)
2428                goto err_ah;
2429
2430        ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2431                        ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
2432                                        sc->ah->ah_mac_srev,
2433                                        sc->ah->ah_phy_revision);
2434
2435        if (!sc->ah->ah_single_chip) {
2436                /* Single chip radio (!RF5111) */
2437                if (sc->ah->ah_radio_5ghz_revision &&
2438                        !sc->ah->ah_radio_2ghz_revision) {
2439                        /* No 5GHz support -> report 2GHz radio */
2440                        if (!test_bit(AR5K_MODE_11A,
2441                                sc->ah->ah_capabilities.cap_mode)) {
2442                                ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
2443                                        ath5k_chip_name(AR5K_VERSION_RAD,
2444                                                sc->ah->ah_radio_5ghz_revision),
2445                                                sc->ah->ah_radio_5ghz_revision);
2446                        /* No 2GHz support (5110 and some
2447                         * 5Ghz only cards) -> report 5Ghz radio */
2448                        } else if (!test_bit(AR5K_MODE_11B,
2449                                sc->ah->ah_capabilities.cap_mode)) {
2450                                ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
2451                                        ath5k_chip_name(AR5K_VERSION_RAD,
2452                                                sc->ah->ah_radio_5ghz_revision),
2453                                                sc->ah->ah_radio_5ghz_revision);
2454                        /* Multiband radio */
2455                        } else {
2456                                ATH5K_INFO(sc, "RF%s multiband radio found"
2457                                        " (0x%x)\n",
2458                                        ath5k_chip_name(AR5K_VERSION_RAD,
2459                                                sc->ah->ah_radio_5ghz_revision),
2460                                                sc->ah->ah_radio_5ghz_revision);
2461                        }
2462                }
2463                /* Multi chip radio (RF5111 - RF2111) ->
2464                 * report both 2GHz/5GHz radios */
2465                else if (sc->ah->ah_radio_5ghz_revision &&
2466                                sc->ah->ah_radio_2ghz_revision){
2467                        ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
2468                                ath5k_chip_name(AR5K_VERSION_RAD,
2469                                        sc->ah->ah_radio_5ghz_revision),
2470                                        sc->ah->ah_radio_5ghz_revision);
2471                        ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
2472                                ath5k_chip_name(AR5K_VERSION_RAD,
2473                                        sc->ah->ah_radio_2ghz_revision),
2474                                        sc->ah->ah_radio_2ghz_revision);
2475                }
2476        }
2477
2478        ath5k_debug_init_device(sc);
2479
2480        /* ready to process interrupts */
2481        __clear_bit(ATH_STAT_INVALID, sc->status);
2482
2483        return 0;
2484err_ah:
2485        ath5k_hw_deinit(sc->ah);
2486err_free_ah:
2487        kfree(sc->ah);
2488err_irq:
2489        free_irq(sc->irq, sc);
2490err:
2491        return ret;
2492}
2493
2494static int
2495ath5k_stop_locked(struct ath5k_softc *sc)
2496{
2497        struct ath5k_hw *ah = sc->ah;
2498
2499        ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2500                        test_bit(ATH_STAT_INVALID, sc->status));
2501
2502        /*
2503         * Shutdown the hardware and driver:
2504         *    stop output from above
2505         *    disable interrupts
2506         *    turn off timers
2507         *    turn off the radio
2508         *    clear transmit machinery
2509         *    clear receive machinery
2510         *    drain and release tx queues
2511         *    reclaim beacon resources
2512         *    power down hardware
2513         *
2514         * Note that some of this work is not possible if the
2515         * hardware is gone (invalid).
2516         */
2517        ieee80211_stop_queues(sc->hw);
2518
2519        if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2520                ath5k_led_off(sc);
2521                ath5k_hw_set_imr(ah, 0);
2522                synchronize_irq(sc->irq);
2523                ath5k_rx_stop(sc);
2524                ath5k_hw_dma_stop(ah);
2525                ath5k_drain_tx_buffs(sc);
2526                ath5k_hw_phy_disable(ah);
2527        }
2528
2529        return 0;
2530}
2531
2532int
2533ath5k_init_hw(struct ath5k_softc *sc)
2534{
2535        struct ath5k_hw *ah = sc->ah;
2536        struct ath_common *common = ath5k_hw_common(ah);
2537        int ret, i;
2538
2539        mutex_lock(&sc->lock);
2540
2541        ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2542
2543        /*
2544         * Stop anything previously setup.  This is safe
2545         * no matter this is the first time through or not.
2546         */
2547        ath5k_stop_locked(sc);
2548
2549        /*
2550         * The basic interface to setting the hardware in a good
2551         * state is ``reset''.  On return the hardware is known to
2552         * be powered up and with interrupts disabled.  This must
2553         * be followed by initialization of the appropriate bits
2554         * and then setup of the interrupt mask.
2555         */
2556        sc->curchan = sc->hw->conf.channel;
2557        sc->curband = &sc->sbands[sc->curchan->band];
2558        sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2559                AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2560                AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
2561
2562        ret = ath5k_reset(sc, NULL, false);
2563        if (ret)
2564                goto done;
2565
2566        ath5k_rfkill_hw_start(ah);
2567
2568        /*
2569         * Reset the key cache since some parts do not reset the
2570         * contents on initial power up or resume from suspend.
2571         */
2572        for (i = 0; i < common->keymax; i++)
2573                ath_hw_keyreset(common, (u16) i);
2574
2575        /* Use higher rates for acks instead of base
2576         * rate */
2577        ah->ah_ack_bitrate_high = true;
2578
2579        for (i = 0; i < ARRAY_SIZE(sc->bslot); i++)
2580                sc->bslot[i] = NULL;
2581
2582        ret = 0;
2583done:
2584        mmiowb();
2585        mutex_unlock(&sc->lock);
2586
2587        ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2588                        msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2589
2590        return ret;
2591}
2592
2593static void stop_tasklets(struct ath5k_softc *sc)
2594{
2595        tasklet_kill(&sc->rxtq);
2596        tasklet_kill(&sc->txtq);
2597        tasklet_kill(&sc->calib);
2598        tasklet_kill(&sc->beacontq);
2599        tasklet_kill(&sc->ani_tasklet);
2600}
2601
2602/*
2603 * Stop the device, grabbing the top-level lock to protect
2604 * against concurrent entry through ath5k_init (which can happen
2605 * if another thread does a system call and the thread doing the
2606 * stop is preempted).
2607 */
2608int
2609ath5k_stop_hw(struct ath5k_softc *sc)
2610{
2611        int ret;
2612
2613        mutex_lock(&sc->lock);
2614        ret = ath5k_stop_locked(sc);
2615        if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2616                /*
2617                 * Don't set the card in full sleep mode!
2618                 *
2619                 * a) When the device is in this state it must be carefully
2620                 * woken up or references to registers in the PCI clock
2621                 * domain may freeze the bus (and system).  This varies
2622                 * by chip and is mostly an issue with newer parts
2623                 * (madwifi sources mentioned srev >= 0x78) that go to
2624                 * sleep more quickly.
2625                 *
2626                 * b) On older chips full sleep results a weird behaviour
2627                 * during wakeup. I tested various cards with srev < 0x78
2628                 * and they don't wake up after module reload, a second
2629                 * module reload is needed to bring the card up again.
2630                 *
2631                 * Until we figure out what's going on don't enable
2632                 * full chip reset on any chip (this is what Legacy HAL
2633                 * and Sam's HAL do anyway). Instead Perform a full reset
2634                 * on the device (same as initial state after attach) and
2635                 * leave it idle (keep MAC/BB on warm reset) */
2636                ret = ath5k_hw_on_hold(sc->ah);
2637
2638                ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2639                                "putting device to sleep\n");
2640        }
2641
2642        mmiowb();
2643        mutex_unlock(&sc->lock);
2644
2645        stop_tasklets(sc);
2646
2647        cancel_delayed_work_sync(&sc->tx_complete_work);
2648
2649        ath5k_rfkill_hw_stop(sc->ah);
2650
2651        return ret;
2652}
2653
2654/*
2655 * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2656 * and change to the given channel.
2657 *
2658 * This should be called with sc->lock.
2659 */
2660static int
2661ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan,
2662                                                        bool skip_pcu)
2663{
2664        struct ath5k_hw *ah = sc->ah;
2665        struct ath_common *common = ath5k_hw_common(ah);
2666        int ret, ani_mode;
2667
2668        ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2669
2670        ath5k_hw_set_imr(ah, 0);
2671        synchronize_irq(sc->irq);
2672        stop_tasklets(sc);
2673
2674        /* Save ani mode and disable ANI durring
2675         * reset. If we don't we might get false
2676         * PHY error interrupts. */
2677        ani_mode = ah->ah_sc->ani_state.ani_mode;
2678        ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2679
2680        /* We are going to empty hw queues
2681         * so we should also free any remaining
2682         * tx buffers */
2683        ath5k_drain_tx_buffs(sc);
2684        if (chan) {
2685                sc->curchan = chan;
2686                sc->curband = &sc->sbands[chan->band];
2687        }
2688        ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, chan != NULL,
2689                                                                skip_pcu);
2690        if (ret) {
2691                ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2692                goto err;
2693        }
2694
2695        ret = ath5k_rx_start(sc);
2696        if (ret) {
2697                ATH5K_ERR(sc, "can't start recv logic\n");
2698                goto err;
2699        }
2700
2701        ath5k_ani_init(ah, ani_mode);
2702
2703        ah->ah_cal_next_full = jiffies;
2704        ah->ah_cal_next_ani = jiffies;
2705        ah->ah_cal_next_nf = jiffies;
2706        ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2707
2708        /* clear survey data and cycle counters */
2709        memset(&sc->survey, 0, sizeof(sc->survey));
2710        spin_lock_bh(&common->cc_lock);
2711        ath_hw_cycle_counters_update(common);
2712        memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2713        memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2714        spin_unlock_bh(&common->cc_lock);
2715
2716        /*
2717         * Change channels and update the h/w rate map if we're switching;
2718         * e.g. 11a to 11b/g.
2719         *
2720         * We may be doing a reset in response to an ioctl that changes the
2721         * channel so update any state that might change as a result.
2722         *
2723         * XXX needed?
2724         */
2725/*      ath5k_chan_change(sc, c); */
2726
2727        ath5k_beacon_config(sc);
2728        /* intrs are enabled by ath5k_beacon_config */
2729
2730        ieee80211_wake_queues(sc->hw);
2731
2732        return 0;
2733err:
2734        return ret;
2735}
2736
2737static void ath5k_reset_work(struct work_struct *work)
2738{
2739        struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2740                reset_work);
2741
2742        mutex_lock(&sc->lock);
2743        ath5k_reset(sc, NULL, true);
2744        mutex_unlock(&sc->lock);
2745}
2746
2747static int
2748ath5k_init(struct ieee80211_hw *hw)
2749{
2750
2751        struct ath5k_softc *sc = hw->priv;
2752        struct ath5k_hw *ah = sc->ah;
2753        struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2754        struct ath5k_txq *txq;
2755        u8 mac[ETH_ALEN] = {};
2756        int ret;
2757
2758
2759        /*
2760         * Check if the MAC has multi-rate retry support.
2761         * We do this by trying to setup a fake extended
2762         * descriptor.  MACs that don't have support will
2763         * return false w/o doing anything.  MACs that do
2764         * support it will return true w/o doing anything.
2765         */
2766        ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
2767
2768        if (ret < 0)
2769                goto err;
2770        if (ret > 0)
2771                __set_bit(ATH_STAT_MRRETRY, sc->status);
2772
2773        /*
2774         * Collect the channel list.  The 802.11 layer
2775         * is resposible for filtering this list based
2776         * on settings like the phy mode and regulatory
2777         * domain restrictions.
2778         */
2779        ret = ath5k_setup_bands(hw);
2780        if (ret) {
2781                ATH5K_ERR(sc, "can't get channels\n");
2782                goto err;
2783        }
2784
2785        /* NB: setup here so ath5k_rate_update is happy */
2786        if (test_bit(AR5K_MODE_11A, ah->ah_modes))
2787                ath5k_setcurmode(sc, AR5K_MODE_11A);
2788        else
2789                ath5k_setcurmode(sc, AR5K_MODE_11B);
2790
2791        /*
2792         * Allocate tx+rx descriptors and populate the lists.
2793         */
2794        ret = ath5k_desc_alloc(sc);
2795        if (ret) {
2796                ATH5K_ERR(sc, "can't allocate descriptors\n");
2797                goto err;
2798        }
2799
2800        /*
2801         * Allocate hardware transmit queues: one queue for
2802         * beacon frames and one data queue for each QoS
2803         * priority.  Note that hw functions handle resetting
2804         * these queues at the needed time.
2805         */
2806        ret = ath5k_beaconq_setup(ah);
2807        if (ret < 0) {
2808                ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
2809                goto err_desc;
2810        }
2811        sc->bhalq = ret;
2812        sc->cabq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_CAB, 0);
2813        if (IS_ERR(sc->cabq)) {
2814                ATH5K_ERR(sc, "can't setup cab queue\n");
2815                ret = PTR_ERR(sc->cabq);
2816                goto err_bhal;
2817        }
2818
2819        /* 5211 and 5212 usually support 10 queues but we better rely on the
2820         * capability information */
2821        if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2822                /* This order matches mac80211's queue priority, so we can
2823                * directly use the mac80211 queue number without any mapping */
2824                txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2825                if (IS_ERR(txq)) {
2826                        ATH5K_ERR(sc, "can't setup xmit queue\n");
2827                        ret = PTR_ERR(txq);
2828                        goto err_queues;
2829                }
2830                txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2831                if (IS_ERR(txq)) {
2832                        ATH5K_ERR(sc, "can't setup xmit queue\n");
2833                        ret = PTR_ERR(txq);
2834                        goto err_queues;
2835                }
2836                txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2837                if (IS_ERR(txq)) {
2838                        ATH5K_ERR(sc, "can't setup xmit queue\n");
2839                        ret = PTR_ERR(txq);
2840                        goto err_queues;
2841                }
2842                txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2843                if (IS_ERR(txq)) {
2844                        ATH5K_ERR(sc, "can't setup xmit queue\n");
2845                        ret = PTR_ERR(txq);
2846                        goto err_queues;
2847                }
2848                hw->queues = 4;
2849        } else {
2850                /* older hardware (5210) can only support one data queue */
2851                txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2852                if (IS_ERR(txq)) {
2853                        ATH5K_ERR(sc, "can't setup xmit queue\n");
2854                        ret = PTR_ERR(txq);
2855                        goto err_queues;
2856                }
2857                hw->queues = 1;
2858        }
2859
2860        tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
2861        tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
2862        tasklet_init(&sc->calib, ath5k_tasklet_calibrate, (unsigned long)sc);
2863        tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
2864        tasklet_init(&sc->ani_tasklet, ath5k_tasklet_ani, (unsigned long)sc);
2865
2866        INIT_WORK(&sc->reset_work, ath5k_reset_work);
2867        INIT_DELAYED_WORK(&sc->tx_complete_work, ath5k_tx_complete_poll_work);
2868
2869        ret = ath5k_eeprom_read_mac(ah, mac);
2870        if (ret) {
2871                ATH5K_ERR(sc, "unable to read address from EEPROM\n");
2872                goto err_queues;
2873        }
2874
2875        SET_IEEE80211_PERM_ADDR(hw, mac);
2876        memcpy(&sc->lladdr, mac, ETH_ALEN);
2877        /* All MAC address bits matter for ACKs */
2878        ath5k_update_bssid_mask_and_opmode(sc, NULL);
2879
2880        regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2881        ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2882        if (ret) {
2883                ATH5K_ERR(sc, "can't initialize regulatory system\n");
2884                goto err_queues;
2885        }
2886
2887        ret = ieee80211_register_hw(hw);
2888        if (ret) {
2889                ATH5K_ERR(sc, "can't register ieee80211 hw\n");
2890                goto err_queues;
2891        }
2892
2893        if (!ath_is_world_regd(regulatory))
2894                regulatory_hint(hw->wiphy, regulatory->alpha2);
2895
2896        ath5k_init_leds(sc);
2897
2898        ath5k_sysfs_register(sc);
2899
2900        return 0;
2901err_queues:
2902        ath5k_txq_release(sc);
2903err_bhal:
2904        ath5k_hw_release_tx_queue(ah, sc->bhalq);
2905err_desc:
2906        ath5k_desc_free(sc);
2907err:
2908        return ret;
2909}
2910
2911void
2912ath5k_deinit_softc(struct ath5k_softc *sc)
2913{
2914        struct ieee80211_hw *hw = sc->hw;
2915
2916        /*
2917         * NB: the order of these is important:
2918         * o call the 802.11 layer before detaching ath5k_hw to
2919         *   ensure callbacks into the driver to delete global
2920         *   key cache entries can be handled
2921         * o reclaim the tx queue data structures after calling
2922         *   the 802.11 layer as we'll get called back to reclaim
2923         *   node state and potentially want to use them
2924         * o to cleanup the tx queues the hal is called, so detach
2925         *   it last
2926         * XXX: ??? detach ath5k_hw ???
2927         * Other than that, it's straightforward...
2928         */
2929        ath5k_debug_finish_device(sc);
2930        ieee80211_unregister_hw(hw);
2931        ath5k_desc_free(sc);
2932        ath5k_txq_release(sc);
2933        ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
2934        ath5k_unregister_leds(sc);
2935
2936        ath5k_sysfs_unregister(sc);
2937        /*
2938         * NB: can't reclaim these until after ieee80211_ifdetach
2939         * returns because we'll get called back to reclaim node
2940         * state and potentially want to use them.
2941         */
2942        ath5k_hw_deinit(sc->ah);
2943        free_irq(sc->irq, sc);
2944}
2945
2946bool
2947ath_any_vif_assoc(struct ath5k_softc *sc)
2948{
2949        struct ath_vif_iter_data iter_data;
2950        iter_data.hw_macaddr = NULL;
2951        iter_data.any_assoc = false;
2952        iter_data.need_set_hw_addr = false;
2953        iter_data.found_active = true;
2954
2955        ieee80211_iterate_active_interfaces_atomic(sc->hw, ath_vif_iter,
2956                                                   &iter_data);
2957        return iter_data.any_assoc;
2958}
2959
2960void
2961set_beacon_filter(struct ieee80211_hw *hw, bool enable)
2962{
2963        struct ath5k_softc *sc = hw->priv;
2964        struct ath5k_hw *ah = sc->ah;
2965        u32 rfilt;
2966        rfilt = ath5k_hw_get_rx_filter(ah);
2967        if (enable)
2968                rfilt |= AR5K_RX_FILTER_BEACON;
2969        else
2970                rfilt &= ~AR5K_RX_FILTER_BEACON;
2971        ath5k_hw_set_rx_filter(ah, rfilt);
2972        sc->filter_flags = rfilt;
2973}
2974