linux/drivers/net/wireless/ath/ath9k/hw.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2008-2010 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
  19#include <asm/unaligned.h>
  20
  21#include "hw.h"
  22#include "hw-ops.h"
  23#include "rc.h"
  24#include "ar9003_mac.h"
  25
  26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  27
  28MODULE_AUTHOR("Atheros Communications");
  29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  31MODULE_LICENSE("Dual BSD/GPL");
  32
  33static int __init ath9k_init(void)
  34{
  35        return 0;
  36}
  37module_init(ath9k_init);
  38
  39static void __exit ath9k_exit(void)
  40{
  41        return;
  42}
  43module_exit(ath9k_exit);
  44
  45/* Private hardware callbacks */
  46
  47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  48{
  49        ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  50}
  51
  52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  53{
  54        ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  55}
  56
  57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  58                                        struct ath9k_channel *chan)
  59{
  60        return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  61}
  62
  63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  64{
  65        if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  66                return;
  67
  68        ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  69}
  70
  71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  72{
  73        /* You will not have this callback if using the old ANI */
  74        if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  75                return;
  76
  77        ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  78}
  79
  80/********************/
  81/* Helper Functions */
  82/********************/
  83
  84static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  85{
  86        struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  87        struct ath_common *common = ath9k_hw_common(ah);
  88        unsigned int clockrate;
  89
  90        if (!ah->curchan) /* should really check for CCK instead */
  91                clockrate = ATH9K_CLOCK_RATE_CCK;
  92        else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  93                clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  94        else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  95                clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  96        else
  97                clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  98
  99        if (conf_is_ht40(conf))
 100                clockrate *= 2;
 101
 102        common->clockrate = clockrate;
 103}
 104
 105static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
 106{
 107        struct ath_common *common = ath9k_hw_common(ah);
 108
 109        return usecs * common->clockrate;
 110}
 111
 112bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
 113{
 114        int i;
 115
 116        BUG_ON(timeout < AH_TIME_QUANTUM);
 117
 118        for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
 119                if ((REG_READ(ah, reg) & mask) == val)
 120                        return true;
 121
 122                udelay(AH_TIME_QUANTUM);
 123        }
 124
 125        ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
 126                "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
 127                timeout, reg, REG_READ(ah, reg), mask, val);
 128
 129        return false;
 130}
 131EXPORT_SYMBOL(ath9k_hw_wait);
 132
 133u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 134{
 135        u32 retval;
 136        int i;
 137
 138        for (i = 0, retval = 0; i < n; i++) {
 139                retval = (retval << 1) | (val & 1);
 140                val >>= 1;
 141        }
 142        return retval;
 143}
 144
 145bool ath9k_get_channel_edges(struct ath_hw *ah,
 146                             u16 flags, u16 *low,
 147                             u16 *high)
 148{
 149        struct ath9k_hw_capabilities *pCap = &ah->caps;
 150
 151        if (flags & CHANNEL_5GHZ) {
 152                *low = pCap->low_5ghz_chan;
 153                *high = pCap->high_5ghz_chan;
 154                return true;
 155        }
 156        if ((flags & CHANNEL_2GHZ)) {
 157                *low = pCap->low_2ghz_chan;
 158                *high = pCap->high_2ghz_chan;
 159                return true;
 160        }
 161        return false;
 162}
 163
 164u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 165                           u8 phy, int kbps,
 166                           u32 frameLen, u16 rateix,
 167                           bool shortPreamble)
 168{
 169        u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 170
 171        if (kbps == 0)
 172                return 0;
 173
 174        switch (phy) {
 175        case WLAN_RC_PHY_CCK:
 176                phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 177                if (shortPreamble)
 178                        phyTime >>= 1;
 179                numBits = frameLen << 3;
 180                txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 181                break;
 182        case WLAN_RC_PHY_OFDM:
 183                if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 184                        bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 185                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 186                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 187                        txTime = OFDM_SIFS_TIME_QUARTER
 188                                + OFDM_PREAMBLE_TIME_QUARTER
 189                                + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 190                } else if (ah->curchan &&
 191                           IS_CHAN_HALF_RATE(ah->curchan)) {
 192                        bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
 193                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 194                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 195                        txTime = OFDM_SIFS_TIME_HALF +
 196                                OFDM_PREAMBLE_TIME_HALF
 197                                + (numSymbols * OFDM_SYMBOL_TIME_HALF);
 198                } else {
 199                        bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 200                        numBits = OFDM_PLCP_BITS + (frameLen << 3);
 201                        numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 202                        txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 203                                + (numSymbols * OFDM_SYMBOL_TIME);
 204                }
 205                break;
 206        default:
 207                ath_err(ath9k_hw_common(ah),
 208                        "Unknown phy %u (rate ix %u)\n", phy, rateix);
 209                txTime = 0;
 210                break;
 211        }
 212
 213        return txTime;
 214}
 215EXPORT_SYMBOL(ath9k_hw_computetxtime);
 216
 217void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 218                                  struct ath9k_channel *chan,
 219                                  struct chan_centers *centers)
 220{
 221        int8_t extoff;
 222
 223        if (!IS_CHAN_HT40(chan)) {
 224                centers->ctl_center = centers->ext_center =
 225                        centers->synth_center = chan->channel;
 226                return;
 227        }
 228
 229        if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
 230            (chan->chanmode == CHANNEL_G_HT40PLUS)) {
 231                centers->synth_center =
 232                        chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 233                extoff = 1;
 234        } else {
 235                centers->synth_center =
 236                        chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 237                extoff = -1;
 238        }
 239
 240        centers->ctl_center =
 241                centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 242        /* 25 MHz spacing is supported by hw but not on upper layers */
 243        centers->ext_center =
 244                centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 245}
 246
 247/******************/
 248/* Chip Revisions */
 249/******************/
 250
 251static void ath9k_hw_read_revisions(struct ath_hw *ah)
 252{
 253        u32 val;
 254
 255        val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
 256
 257        if (val == 0xFF) {
 258                val = REG_READ(ah, AR_SREV);
 259                ah->hw_version.macVersion =
 260                        (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 261                ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 262                ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 263        } else {
 264                if (!AR_SREV_9100(ah))
 265                        ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 266
 267                ah->hw_version.macRev = val & AR_SREV_REVISION;
 268
 269                if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 270                        ah->is_pciexpress = true;
 271        }
 272}
 273
 274/************************************/
 275/* HW Attach, Detach, Init Routines */
 276/************************************/
 277
 278static void ath9k_hw_disablepcie(struct ath_hw *ah)
 279{
 280        if (!AR_SREV_5416(ah))
 281                return;
 282
 283        REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 284        REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 285        REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 286        REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 287        REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 288        REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 289        REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 290        REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 291        REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 292
 293        REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 294}
 295
 296/* This should work for all families including legacy */
 297static bool ath9k_hw_chip_test(struct ath_hw *ah)
 298{
 299        struct ath_common *common = ath9k_hw_common(ah);
 300        u32 regAddr[2] = { AR_STA_ID0 };
 301        u32 regHold[2];
 302        static const u32 patternData[4] = {
 303                0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 304        };
 305        int i, j, loop_max;
 306
 307        if (!AR_SREV_9300_20_OR_LATER(ah)) {
 308                loop_max = 2;
 309                regAddr[1] = AR_PHY_BASE + (8 << 2);
 310        } else
 311                loop_max = 1;
 312
 313        for (i = 0; i < loop_max; i++) {
 314                u32 addr = regAddr[i];
 315                u32 wrData, rdData;
 316
 317                regHold[i] = REG_READ(ah, addr);
 318                for (j = 0; j < 0x100; j++) {
 319                        wrData = (j << 16) | j;
 320                        REG_WRITE(ah, addr, wrData);
 321                        rdData = REG_READ(ah, addr);
 322                        if (rdData != wrData) {
 323                                ath_err(common,
 324                                        "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 325                                        addr, wrData, rdData);
 326                                return false;
 327                        }
 328                }
 329                for (j = 0; j < 4; j++) {
 330                        wrData = patternData[j];
 331                        REG_WRITE(ah, addr, wrData);
 332                        rdData = REG_READ(ah, addr);
 333                        if (wrData != rdData) {
 334                                ath_err(common,
 335                                        "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 336                                        addr, wrData, rdData);
 337                                return false;
 338                        }
 339                }
 340                REG_WRITE(ah, regAddr[i], regHold[i]);
 341        }
 342        udelay(100);
 343
 344        return true;
 345}
 346
 347static void ath9k_hw_init_config(struct ath_hw *ah)
 348{
 349        int i;
 350
 351        ah->config.dma_beacon_response_time = 2;
 352        ah->config.sw_beacon_response_time = 10;
 353        ah->config.additional_swba_backoff = 0;
 354        ah->config.ack_6mb = 0x0;
 355        ah->config.cwm_ignore_extcca = 0;
 356        ah->config.pcie_powersave_enable = 0;
 357        ah->config.pcie_clock_req = 0;
 358        ah->config.pcie_waen = 0;
 359        ah->config.analog_shiftreg = 1;
 360        ah->config.enable_ani = true;
 361
 362        for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
 363                ah->config.spurchans[i][0] = AR_NO_SPUR;
 364                ah->config.spurchans[i][1] = AR_NO_SPUR;
 365        }
 366
 367        if (ah->hw_version.devid != AR2427_DEVID_PCIE)
 368                ah->config.ht_enable = 1;
 369        else
 370                ah->config.ht_enable = 0;
 371
 372        /* PAPRD needs some more work to be enabled */
 373        ah->config.paprd_disable = 1;
 374
 375        ah->config.rx_intr_mitigation = true;
 376        ah->config.pcieSerDesWrite = true;
 377
 378        /*
 379         * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 380         * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 381         * This means we use it for all AR5416 devices, and the few
 382         * minor PCI AR9280 devices out there.
 383         *
 384         * Serialization is required because these devices do not handle
 385         * well the case of two concurrent reads/writes due to the latency
 386         * involved. During one read/write another read/write can be issued
 387         * on another CPU while the previous read/write may still be working
 388         * on our hardware, if we hit this case the hardware poops in a loop.
 389         * We prevent this by serializing reads and writes.
 390         *
 391         * This issue is not present on PCI-Express devices or pre-AR5416
 392         * devices (legacy, 802.11abg).
 393         */
 394        if (num_possible_cpus() > 1)
 395                ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 396}
 397
 398static void ath9k_hw_init_defaults(struct ath_hw *ah)
 399{
 400        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 401
 402        regulatory->country_code = CTRY_DEFAULT;
 403        regulatory->power_limit = MAX_RATE_POWER;
 404        regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
 405
 406        ah->hw_version.magic = AR5416_MAGIC;
 407        ah->hw_version.subvendorid = 0;
 408
 409        ah->atim_window = 0;
 410        ah->sta_id1_defaults =
 411                AR_STA_ID1_CRPT_MIC_ENABLE |
 412                AR_STA_ID1_MCAST_KSRCH;
 413        ah->enable_32kHz_clock = DONT_USE_32KHZ;
 414        ah->slottime = 20;
 415        ah->globaltxtimeout = (u32) -1;
 416        ah->power_mode = ATH9K_PM_UNDEFINED;
 417}
 418
 419static int ath9k_hw_init_macaddr(struct ath_hw *ah)
 420{
 421        struct ath_common *common = ath9k_hw_common(ah);
 422        u32 sum;
 423        int i;
 424        u16 eeval;
 425        static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 426
 427        sum = 0;
 428        for (i = 0; i < 3; i++) {
 429                eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 430                sum += eeval;
 431                common->macaddr[2 * i] = eeval >> 8;
 432                common->macaddr[2 * i + 1] = eeval & 0xff;
 433        }
 434        if (sum == 0 || sum == 0xffff * 3)
 435                return -EADDRNOTAVAIL;
 436
 437        return 0;
 438}
 439
 440static int ath9k_hw_post_init(struct ath_hw *ah)
 441{
 442        struct ath_common *common = ath9k_hw_common(ah);
 443        int ecode;
 444
 445        if (common->bus_ops->ath_bus_type != ATH_USB) {
 446                if (!ath9k_hw_chip_test(ah))
 447                        return -ENODEV;
 448        }
 449
 450        if (!AR_SREV_9300_20_OR_LATER(ah)) {
 451                ecode = ar9002_hw_rf_claim(ah);
 452                if (ecode != 0)
 453                        return ecode;
 454        }
 455
 456        ecode = ath9k_hw_eeprom_init(ah);
 457        if (ecode != 0)
 458                return ecode;
 459
 460        ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
 461                "Eeprom VER: %d, REV: %d\n",
 462                ah->eep_ops->get_eeprom_ver(ah),
 463                ah->eep_ops->get_eeprom_rev(ah));
 464
 465        ecode = ath9k_hw_rf_alloc_ext_banks(ah);
 466        if (ecode) {
 467                ath_err(ath9k_hw_common(ah),
 468                        "Failed allocating banks for external radio\n");
 469                ath9k_hw_rf_free_ext_banks(ah);
 470                return ecode;
 471        }
 472
 473        if (!AR_SREV_9100(ah)) {
 474                ath9k_hw_ani_setup(ah);
 475                ath9k_hw_ani_init(ah);
 476        }
 477
 478        return 0;
 479}
 480
 481static void ath9k_hw_attach_ops(struct ath_hw *ah)
 482{
 483        if (AR_SREV_9300_20_OR_LATER(ah))
 484                ar9003_hw_attach_ops(ah);
 485        else
 486                ar9002_hw_attach_ops(ah);
 487}
 488
 489/* Called for all hardware families */
 490static int __ath9k_hw_init(struct ath_hw *ah)
 491{
 492        struct ath_common *common = ath9k_hw_common(ah);
 493        int r = 0;
 494
 495        if (ah->hw_version.devid == AR5416_AR9100_DEVID)
 496                ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 497
 498        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 499                ath_err(common, "Couldn't reset chip\n");
 500                return -EIO;
 501        }
 502
 503        ath9k_hw_init_defaults(ah);
 504        ath9k_hw_init_config(ah);
 505
 506        ath9k_hw_attach_ops(ah);
 507
 508        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 509                ath_err(common, "Couldn't wakeup chip\n");
 510                return -EIO;
 511        }
 512
 513        if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 514                if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 515                    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
 516                     !ah->is_pciexpress)) {
 517                        ah->config.serialize_regmode =
 518                                SER_REG_MODE_ON;
 519                } else {
 520                        ah->config.serialize_regmode =
 521                                SER_REG_MODE_OFF;
 522                }
 523        }
 524
 525        ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
 526                ah->config.serialize_regmode);
 527
 528        if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 529                ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 530        else
 531                ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 532
 533        switch (ah->hw_version.macVersion) {
 534        case AR_SREV_VERSION_5416_PCI:
 535        case AR_SREV_VERSION_5416_PCIE:
 536        case AR_SREV_VERSION_9160:
 537        case AR_SREV_VERSION_9100:
 538        case AR_SREV_VERSION_9280:
 539        case AR_SREV_VERSION_9285:
 540        case AR_SREV_VERSION_9287:
 541        case AR_SREV_VERSION_9271:
 542        case AR_SREV_VERSION_9300:
 543        case AR_SREV_VERSION_9485:
 544                break;
 545        default:
 546                ath_err(common,
 547                        "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 548                        ah->hw_version.macVersion, ah->hw_version.macRev);
 549                return -EOPNOTSUPP;
 550        }
 551
 552        if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
 553                ah->is_pciexpress = false;
 554
 555        ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 556        ath9k_hw_init_cal_settings(ah);
 557
 558        ah->ani_function = ATH9K_ANI_ALL;
 559        if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
 560                ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
 561        if (!AR_SREV_9300_20_OR_LATER(ah))
 562                ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 563
 564        ath9k_hw_init_mode_regs(ah);
 565
 566        /*
 567         * Read back AR_WA into a permanent copy and set bits 14 and 17.
 568         * We need to do this to avoid RMW of this register. We cannot
 569         * read the reg when chip is asleep.
 570         */
 571        ah->WARegVal = REG_READ(ah, AR_WA);
 572        ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 573                         AR_WA_ASPM_TIMER_BASED_DISABLE);
 574
 575        if (ah->is_pciexpress)
 576                ath9k_hw_configpcipowersave(ah, 0, 0);
 577        else
 578                ath9k_hw_disablepcie(ah);
 579
 580        if (!AR_SREV_9300_20_OR_LATER(ah))
 581                ar9002_hw_cck_chan14_spread(ah);
 582
 583        r = ath9k_hw_post_init(ah);
 584        if (r)
 585                return r;
 586
 587        ath9k_hw_init_mode_gain_regs(ah);
 588        r = ath9k_hw_fill_cap_info(ah);
 589        if (r)
 590                return r;
 591
 592        r = ath9k_hw_init_macaddr(ah);
 593        if (r) {
 594                ath_err(common, "Failed to initialize MAC address\n");
 595                return r;
 596        }
 597
 598        if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 599                ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 600        else
 601                ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 602
 603        ah->bb_watchdog_timeout_ms = 25;
 604
 605        common->state = ATH_HW_INITIALIZED;
 606
 607        return 0;
 608}
 609
 610int ath9k_hw_init(struct ath_hw *ah)
 611{
 612        int ret;
 613        struct ath_common *common = ath9k_hw_common(ah);
 614
 615        /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
 616        switch (ah->hw_version.devid) {
 617        case AR5416_DEVID_PCI:
 618        case AR5416_DEVID_PCIE:
 619        case AR5416_AR9100_DEVID:
 620        case AR9160_DEVID_PCI:
 621        case AR9280_DEVID_PCI:
 622        case AR9280_DEVID_PCIE:
 623        case AR9285_DEVID_PCIE:
 624        case AR9287_DEVID_PCI:
 625        case AR9287_DEVID_PCIE:
 626        case AR2427_DEVID_PCIE:
 627        case AR9300_DEVID_PCIE:
 628        case AR9300_DEVID_AR9485_PCIE:
 629                break;
 630        default:
 631                if (common->bus_ops->ath_bus_type == ATH_USB)
 632                        break;
 633                ath_err(common, "Hardware device ID 0x%04x not supported\n",
 634                        ah->hw_version.devid);
 635                return -EOPNOTSUPP;
 636        }
 637
 638        ret = __ath9k_hw_init(ah);
 639        if (ret) {
 640                ath_err(common,
 641                        "Unable to initialize hardware; initialization status: %d\n",
 642                        ret);
 643                return ret;
 644        }
 645
 646        return 0;
 647}
 648EXPORT_SYMBOL(ath9k_hw_init);
 649
 650static void ath9k_hw_init_qos(struct ath_hw *ah)
 651{
 652        ENABLE_REGWRITE_BUFFER(ah);
 653
 654        REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 655        REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 656
 657        REG_WRITE(ah, AR_QOS_NO_ACK,
 658                  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 659                  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 660                  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 661
 662        REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 663        REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 664        REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 665        REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 666        REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 667
 668        REGWRITE_BUFFER_FLUSH(ah);
 669}
 670
 671static void ath9k_hw_init_pll(struct ath_hw *ah,
 672                              struct ath9k_channel *chan)
 673{
 674        u32 pll;
 675
 676        if (AR_SREV_9485(ah))
 677                REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
 678
 679        pll = ath9k_hw_compute_pll_control(ah, chan);
 680
 681        REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 682
 683        /* Switch the core clock for ar9271 to 117Mhz */
 684        if (AR_SREV_9271(ah)) {
 685                udelay(500);
 686                REG_WRITE(ah, 0x50040, 0x304);
 687        }
 688
 689        udelay(RTC_PLL_SETTLE_DELAY);
 690
 691        REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 692}
 693
 694static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 695                                          enum nl80211_iftype opmode)
 696{
 697        u32 imr_reg = AR_IMR_TXERR |
 698                AR_IMR_TXURN |
 699                AR_IMR_RXERR |
 700                AR_IMR_RXORN |
 701                AR_IMR_BCNMISC;
 702
 703        if (AR_SREV_9300_20_OR_LATER(ah)) {
 704                imr_reg |= AR_IMR_RXOK_HP;
 705                if (ah->config.rx_intr_mitigation)
 706                        imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 707                else
 708                        imr_reg |= AR_IMR_RXOK_LP;
 709
 710        } else {
 711                if (ah->config.rx_intr_mitigation)
 712                        imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 713                else
 714                        imr_reg |= AR_IMR_RXOK;
 715        }
 716
 717        if (ah->config.tx_intr_mitigation)
 718                imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 719        else
 720                imr_reg |= AR_IMR_TXOK;
 721
 722        if (opmode == NL80211_IFTYPE_AP)
 723                imr_reg |= AR_IMR_MIB;
 724
 725        ENABLE_REGWRITE_BUFFER(ah);
 726
 727        REG_WRITE(ah, AR_IMR, imr_reg);
 728        ah->imrs2_reg |= AR_IMR_S2_GTT;
 729        REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 730
 731        if (!AR_SREV_9100(ah)) {
 732                REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 733                REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
 734                REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 735        }
 736
 737        REGWRITE_BUFFER_FLUSH(ah);
 738
 739        if (AR_SREV_9300_20_OR_LATER(ah)) {
 740                REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
 741                REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
 742                REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
 743                REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
 744        }
 745}
 746
 747static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
 748{
 749        u32 val = ath9k_hw_mac_to_clks(ah, us);
 750        val = min(val, (u32) 0xFFFF);
 751        REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
 752}
 753
 754static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
 755{
 756        u32 val = ath9k_hw_mac_to_clks(ah, us);
 757        val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
 758        REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
 759}
 760
 761static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
 762{
 763        u32 val = ath9k_hw_mac_to_clks(ah, us);
 764        val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
 765        REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
 766}
 767
 768static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
 769{
 770        if (tu > 0xFFFF) {
 771                ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
 772                        "bad global tx timeout %u\n", tu);
 773                ah->globaltxtimeout = (u32) -1;
 774                return false;
 775        } else {
 776                REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
 777                ah->globaltxtimeout = tu;
 778                return true;
 779        }
 780}
 781
 782void ath9k_hw_init_global_settings(struct ath_hw *ah)
 783{
 784        struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
 785        int acktimeout;
 786        int slottime;
 787        int sifstime;
 788
 789        ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
 790                ah->misc_mode);
 791
 792        if (ah->misc_mode != 0)
 793                REG_WRITE(ah, AR_PCU_MISC,
 794                          REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
 795
 796        if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
 797                sifstime = 16;
 798        else
 799                sifstime = 10;
 800
 801        /* As defined by IEEE 802.11-2007 17.3.8.6 */
 802        slottime = ah->slottime + 3 * ah->coverage_class;
 803        acktimeout = slottime + sifstime;
 804
 805        /*
 806         * Workaround for early ACK timeouts, add an offset to match the
 807         * initval's 64us ack timeout value.
 808         * This was initially only meant to work around an issue with delayed
 809         * BA frames in some implementations, but it has been found to fix ACK
 810         * timeout issues in other cases as well.
 811         */
 812        if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
 813                acktimeout += 64 - sifstime - ah->slottime;
 814
 815        ath9k_hw_setslottime(ah, ah->slottime);
 816        ath9k_hw_set_ack_timeout(ah, acktimeout);
 817        ath9k_hw_set_cts_timeout(ah, acktimeout);
 818        if (ah->globaltxtimeout != (u32) -1)
 819                ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
 820}
 821EXPORT_SYMBOL(ath9k_hw_init_global_settings);
 822
 823void ath9k_hw_deinit(struct ath_hw *ah)
 824{
 825        struct ath_common *common = ath9k_hw_common(ah);
 826
 827        if (common->state < ATH_HW_INITIALIZED)
 828                goto free_hw;
 829
 830        ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
 831
 832free_hw:
 833        ath9k_hw_rf_free_ext_banks(ah);
 834}
 835EXPORT_SYMBOL(ath9k_hw_deinit);
 836
 837/*******/
 838/* INI */
 839/*******/
 840
 841u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
 842{
 843        u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
 844
 845        if (IS_CHAN_B(chan))
 846                ctl |= CTL_11B;
 847        else if (IS_CHAN_G(chan))
 848                ctl |= CTL_11G;
 849        else
 850                ctl |= CTL_11A;
 851
 852        return ctl;
 853}
 854
 855/****************************************/
 856/* Reset and Channel Switching Routines */
 857/****************************************/
 858
 859static inline void ath9k_hw_set_dma(struct ath_hw *ah)
 860{
 861        struct ath_common *common = ath9k_hw_common(ah);
 862        u32 regval;
 863
 864        ENABLE_REGWRITE_BUFFER(ah);
 865
 866        /*
 867         * set AHB_MODE not to do cacheline prefetches
 868        */
 869        if (!AR_SREV_9300_20_OR_LATER(ah)) {
 870                regval = REG_READ(ah, AR_AHB_MODE);
 871                REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
 872        }
 873
 874        /*
 875         * let mac dma reads be in 128 byte chunks
 876         */
 877        regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
 878        REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
 879
 880        REGWRITE_BUFFER_FLUSH(ah);
 881
 882        /*
 883         * Restore TX Trigger Level to its pre-reset value.
 884         * The initial value depends on whether aggregation is enabled, and is
 885         * adjusted whenever underruns are detected.
 886         */
 887        if (!AR_SREV_9300_20_OR_LATER(ah))
 888                REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
 889
 890        ENABLE_REGWRITE_BUFFER(ah);
 891
 892        /*
 893         * let mac dma writes be in 128 byte chunks
 894         */
 895        regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
 896        REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
 897
 898        /*
 899         * Setup receive FIFO threshold to hold off TX activities
 900         */
 901        REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
 902
 903        if (AR_SREV_9300_20_OR_LATER(ah)) {
 904                REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
 905                REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
 906
 907                ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
 908                        ah->caps.rx_status_len);
 909        }
 910
 911        /*
 912         * reduce the number of usable entries in PCU TXBUF to avoid
 913         * wrap around issues.
 914         */
 915        if (AR_SREV_9285(ah)) {
 916                /* For AR9285 the number of Fifos are reduced to half.
 917                 * So set the usable tx buf size also to half to
 918                 * avoid data/delimiter underruns
 919                 */
 920                REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
 921                          AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
 922        } else if (!AR_SREV_9271(ah)) {
 923                REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
 924                          AR_PCU_TXBUF_CTRL_USABLE_SIZE);
 925        }
 926
 927        REGWRITE_BUFFER_FLUSH(ah);
 928
 929        if (AR_SREV_9300_20_OR_LATER(ah))
 930                ath9k_hw_reset_txstatus_ring(ah);
 931}
 932
 933static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
 934{
 935        u32 val;
 936
 937        val = REG_READ(ah, AR_STA_ID1);
 938        val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
 939        switch (opmode) {
 940        case NL80211_IFTYPE_AP:
 941                REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
 942                          | AR_STA_ID1_KSRCH_MODE);
 943                REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
 944                break;
 945        case NL80211_IFTYPE_ADHOC:
 946        case NL80211_IFTYPE_MESH_POINT:
 947                REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
 948                          | AR_STA_ID1_KSRCH_MODE);
 949                REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
 950                break;
 951        case NL80211_IFTYPE_STATION:
 952                REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
 953                break;
 954        default:
 955                if (ah->is_monitoring)
 956                        REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
 957                break;
 958        }
 959}
 960
 961void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
 962                                   u32 *coef_mantissa, u32 *coef_exponent)
 963{
 964        u32 coef_exp, coef_man;
 965
 966        for (coef_exp = 31; coef_exp > 0; coef_exp--)
 967                if ((coef_scaled >> coef_exp) & 0x1)
 968                        break;
 969
 970        coef_exp = 14 - (coef_exp - COEF_SCALE_S);
 971
 972        coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
 973
 974        *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
 975        *coef_exponent = coef_exp - 16;
 976}
 977
 978static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
 979{
 980        u32 rst_flags;
 981        u32 tmpReg;
 982
 983        if (AR_SREV_9100(ah)) {
 984                u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
 985                val &= ~AR_RTC_DERIVED_CLK_PERIOD;
 986                val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
 987                REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
 988                (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
 989        }
 990
 991        ENABLE_REGWRITE_BUFFER(ah);
 992
 993        if (AR_SREV_9300_20_OR_LATER(ah)) {
 994                REG_WRITE(ah, AR_WA, ah->WARegVal);
 995                udelay(10);
 996        }
 997
 998        REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
 999                  AR_RTC_FORCE_WAKE_ON_INT);
1000
1001        if (AR_SREV_9100(ah)) {
1002                rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1003                        AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1004        } else {
1005                tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1006                if (tmpReg &
1007                    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1008                     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1009                        u32 val;
1010                        REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1011
1012                        val = AR_RC_HOSTIF;
1013                        if (!AR_SREV_9300_20_OR_LATER(ah))
1014                                val |= AR_RC_AHB;
1015                        REG_WRITE(ah, AR_RC, val);
1016
1017                } else if (!AR_SREV_9300_20_OR_LATER(ah))
1018                        REG_WRITE(ah, AR_RC, AR_RC_AHB);
1019
1020                rst_flags = AR_RTC_RC_MAC_WARM;
1021                if (type == ATH9K_RESET_COLD)
1022                        rst_flags |= AR_RTC_RC_MAC_COLD;
1023        }
1024
1025        REG_WRITE(ah, AR_RTC_RC, rst_flags);
1026
1027        REGWRITE_BUFFER_FLUSH(ah);
1028
1029        udelay(50);
1030
1031        REG_WRITE(ah, AR_RTC_RC, 0);
1032        if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1033                ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1034                        "RTC stuck in MAC reset\n");
1035                return false;
1036        }
1037
1038        if (!AR_SREV_9100(ah))
1039                REG_WRITE(ah, AR_RC, 0);
1040
1041        if (AR_SREV_9100(ah))
1042                udelay(50);
1043
1044        return true;
1045}
1046
1047static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1048{
1049        ENABLE_REGWRITE_BUFFER(ah);
1050
1051        if (AR_SREV_9300_20_OR_LATER(ah)) {
1052                REG_WRITE(ah, AR_WA, ah->WARegVal);
1053                udelay(10);
1054        }
1055
1056        REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1057                  AR_RTC_FORCE_WAKE_ON_INT);
1058
1059        if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1060                REG_WRITE(ah, AR_RC, AR_RC_AHB);
1061
1062        REG_WRITE(ah, AR_RTC_RESET, 0);
1063        udelay(2);
1064
1065        REGWRITE_BUFFER_FLUSH(ah);
1066
1067        if (!AR_SREV_9300_20_OR_LATER(ah))
1068                udelay(2);
1069
1070        if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1071                REG_WRITE(ah, AR_RC, 0);
1072
1073        REG_WRITE(ah, AR_RTC_RESET, 1);
1074
1075        if (!ath9k_hw_wait(ah,
1076                           AR_RTC_STATUS,
1077                           AR_RTC_STATUS_M,
1078                           AR_RTC_STATUS_ON,
1079                           AH_WAIT_TIMEOUT)) {
1080                ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1081                        "RTC not waking up\n");
1082                return false;
1083        }
1084
1085        ath9k_hw_read_revisions(ah);
1086
1087        return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1088}
1089
1090static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1091{
1092        if (AR_SREV_9300_20_OR_LATER(ah)) {
1093                REG_WRITE(ah, AR_WA, ah->WARegVal);
1094                udelay(10);
1095        }
1096
1097        REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1098                  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1099
1100        switch (type) {
1101        case ATH9K_RESET_POWER_ON:
1102                return ath9k_hw_set_reset_power_on(ah);
1103        case ATH9K_RESET_WARM:
1104        case ATH9K_RESET_COLD:
1105                return ath9k_hw_set_reset(ah, type);
1106        default:
1107                return false;
1108        }
1109}
1110
1111static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1112                                struct ath9k_channel *chan)
1113{
1114        if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1115                if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1116                        return false;
1117        } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1118                return false;
1119
1120        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1121                return false;
1122
1123        ah->chip_fullsleep = false;
1124        ath9k_hw_init_pll(ah, chan);
1125        ath9k_hw_set_rfmode(ah, chan);
1126
1127        return true;
1128}
1129
1130static bool ath9k_hw_channel_change(struct ath_hw *ah,
1131                                    struct ath9k_channel *chan)
1132{
1133        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1134        struct ath_common *common = ath9k_hw_common(ah);
1135        struct ieee80211_channel *channel = chan->chan;
1136        u32 qnum;
1137        int r;
1138
1139        for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1140                if (ath9k_hw_numtxpending(ah, qnum)) {
1141                        ath_dbg(common, ATH_DBG_QUEUE,
1142                                "Transmit frames pending on queue %d\n", qnum);
1143                        return false;
1144                }
1145        }
1146
1147        if (!ath9k_hw_rfbus_req(ah)) {
1148                ath_err(common, "Could not kill baseband RX\n");
1149                return false;
1150        }
1151
1152        ath9k_hw_set_channel_regs(ah, chan);
1153
1154        r = ath9k_hw_rf_set_freq(ah, chan);
1155        if (r) {
1156                ath_err(common, "Failed to set channel\n");
1157                return false;
1158        }
1159        ath9k_hw_set_clockrate(ah);
1160
1161        ah->eep_ops->set_txpower(ah, chan,
1162                             ath9k_regd_get_ctl(regulatory, chan),
1163                             channel->max_antenna_gain * 2,
1164                             channel->max_power * 2,
1165                             min((u32) MAX_RATE_POWER,
1166                             (u32) regulatory->power_limit), false);
1167
1168        ath9k_hw_rfbus_done(ah);
1169
1170        if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1171                ath9k_hw_set_delta_slope(ah, chan);
1172
1173        ath9k_hw_spur_mitigate_freq(ah, chan);
1174
1175        return true;
1176}
1177
1178bool ath9k_hw_check_alive(struct ath_hw *ah)
1179{
1180        int count = 50;
1181        u32 reg;
1182
1183        if (AR_SREV_9285_12_OR_LATER(ah))
1184                return true;
1185
1186        do {
1187                reg = REG_READ(ah, AR_OBS_BUS_1);
1188
1189                if ((reg & 0x7E7FFFEF) == 0x00702400)
1190                        continue;
1191
1192                switch (reg & 0x7E000B00) {
1193                case 0x1E000000:
1194                case 0x52000B00:
1195                case 0x18000B00:
1196                        continue;
1197                default:
1198                        return true;
1199                }
1200        } while (count-- > 0);
1201
1202        return false;
1203}
1204EXPORT_SYMBOL(ath9k_hw_check_alive);
1205
1206int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1207                   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1208{
1209        struct ath_common *common = ath9k_hw_common(ah);
1210        u32 saveLedState;
1211        struct ath9k_channel *curchan = ah->curchan;
1212        u32 saveDefAntenna;
1213        u32 macStaId1;
1214        u64 tsf = 0;
1215        int i, r;
1216
1217        ah->txchainmask = common->tx_chainmask;
1218        ah->rxchainmask = common->rx_chainmask;
1219
1220        if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
1221                ath9k_hw_abortpcurecv(ah);
1222                if (!ath9k_hw_stopdmarecv(ah)) {
1223                        ath_dbg(common, ATH_DBG_XMIT,
1224                                "Failed to stop receive dma\n");
1225                        bChannelChange = false;
1226                }
1227        }
1228
1229        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1230                return -EIO;
1231
1232        if (curchan && !ah->chip_fullsleep)
1233                ath9k_hw_getnf(ah, curchan);
1234
1235        ah->caldata = caldata;
1236        if (caldata &&
1237            (chan->channel != caldata->channel ||
1238             (chan->channelFlags & ~CHANNEL_CW_INT) !=
1239             (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1240                /* Operating channel changed, reset channel calibration data */
1241                memset(caldata, 0, sizeof(*caldata));
1242                ath9k_init_nfcal_hist_buffer(ah, chan);
1243        }
1244
1245        if (bChannelChange &&
1246            (ah->chip_fullsleep != true) &&
1247            (ah->curchan != NULL) &&
1248            (chan->channel != ah->curchan->channel) &&
1249            ((chan->channelFlags & CHANNEL_ALL) ==
1250             (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1251            (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1252
1253                if (ath9k_hw_channel_change(ah, chan)) {
1254                        ath9k_hw_loadnf(ah, ah->curchan);
1255                        ath9k_hw_start_nfcal(ah, true);
1256                        if (AR_SREV_9271(ah))
1257                                ar9002_hw_load_ani_reg(ah, chan);
1258                        return 0;
1259                }
1260        }
1261
1262        saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1263        if (saveDefAntenna == 0)
1264                saveDefAntenna = 1;
1265
1266        macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1267
1268        /* For chips on which RTC reset is done, save TSF before it gets cleared */
1269        if (AR_SREV_9100(ah) ||
1270            (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1271                tsf = ath9k_hw_gettsf64(ah);
1272
1273        saveLedState = REG_READ(ah, AR_CFG_LED) &
1274                (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1275                 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1276
1277        ath9k_hw_mark_phy_inactive(ah);
1278
1279        ah->paprd_table_write_done = false;
1280
1281        /* Only required on the first reset */
1282        if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1283                REG_WRITE(ah,
1284                          AR9271_RESET_POWER_DOWN_CONTROL,
1285                          AR9271_RADIO_RF_RST);
1286                udelay(50);
1287        }
1288
1289        if (!ath9k_hw_chip_reset(ah, chan)) {
1290                ath_err(common, "Chip reset failed\n");
1291                return -EINVAL;
1292        }
1293
1294        /* Only required on the first reset */
1295        if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1296                ah->htc_reset_init = false;
1297                REG_WRITE(ah,
1298                          AR9271_RESET_POWER_DOWN_CONTROL,
1299                          AR9271_GATE_MAC_CTL);
1300                udelay(50);
1301        }
1302
1303        /* Restore TSF */
1304        if (tsf)
1305                ath9k_hw_settsf64(ah, tsf);
1306
1307        if (AR_SREV_9280_20_OR_LATER(ah))
1308                REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1309
1310        if (!AR_SREV_9300_20_OR_LATER(ah))
1311                ar9002_hw_enable_async_fifo(ah);
1312
1313        r = ath9k_hw_process_ini(ah, chan);
1314        if (r)
1315                return r;
1316
1317        /*
1318         * Some AR91xx SoC devices frequently fail to accept TSF writes
1319         * right after the chip reset. When that happens, write a new
1320         * value after the initvals have been applied, with an offset
1321         * based on measured time difference
1322         */
1323        if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1324                tsf += 1500;
1325                ath9k_hw_settsf64(ah, tsf);
1326        }
1327
1328        /* Setup MFP options for CCMP */
1329        if (AR_SREV_9280_20_OR_LATER(ah)) {
1330                /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1331                 * frames when constructing CCMP AAD. */
1332                REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1333                              0xc7ff);
1334                ah->sw_mgmt_crypto = false;
1335        } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1336                /* Disable hardware crypto for management frames */
1337                REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1338                            AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1339                REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1340                            AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1341                ah->sw_mgmt_crypto = true;
1342        } else
1343                ah->sw_mgmt_crypto = true;
1344
1345        if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1346                ath9k_hw_set_delta_slope(ah, chan);
1347
1348        ath9k_hw_spur_mitigate_freq(ah, chan);
1349        ah->eep_ops->set_board_values(ah, chan);
1350
1351        ath9k_hw_set_operating_mode(ah, ah->opmode);
1352
1353        ENABLE_REGWRITE_BUFFER(ah);
1354
1355        REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1356        REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1357                  | macStaId1
1358                  | AR_STA_ID1_RTS_USE_DEF
1359                  | (ah->config.
1360                     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1361                  | ah->sta_id1_defaults);
1362        ath_hw_setbssidmask(common);
1363        REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1364        ath9k_hw_write_associd(ah);
1365        REG_WRITE(ah, AR_ISR, ~0);
1366        REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1367
1368        REGWRITE_BUFFER_FLUSH(ah);
1369
1370        r = ath9k_hw_rf_set_freq(ah, chan);
1371        if (r)
1372                return r;
1373
1374        ath9k_hw_set_clockrate(ah);
1375
1376        ENABLE_REGWRITE_BUFFER(ah);
1377
1378        for (i = 0; i < AR_NUM_DCU; i++)
1379                REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1380
1381        REGWRITE_BUFFER_FLUSH(ah);
1382
1383        ah->intr_txqs = 0;
1384        for (i = 0; i < ah->caps.total_queues; i++)
1385                ath9k_hw_resettxqueue(ah, i);
1386
1387        ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1388        ath9k_hw_ani_cache_ini_regs(ah);
1389        ath9k_hw_init_qos(ah);
1390
1391        if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1392                ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1393
1394        ath9k_hw_init_global_settings(ah);
1395
1396        if (!AR_SREV_9300_20_OR_LATER(ah)) {
1397                ar9002_hw_update_async_fifo(ah);
1398                ar9002_hw_enable_wep_aggregation(ah);
1399        }
1400
1401        REG_WRITE(ah, AR_STA_ID1,
1402                  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1403
1404        ath9k_hw_set_dma(ah);
1405
1406        REG_WRITE(ah, AR_OBS, 8);
1407
1408        if (ah->config.rx_intr_mitigation) {
1409                REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1410                REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1411        }
1412
1413        if (ah->config.tx_intr_mitigation) {
1414                REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1415                REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1416        }
1417
1418        ath9k_hw_init_bb(ah, chan);
1419
1420        if (!ath9k_hw_init_cal(ah, chan))
1421                return -EIO;
1422
1423        ENABLE_REGWRITE_BUFFER(ah);
1424
1425        ath9k_hw_restore_chainmask(ah);
1426        REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1427
1428        REGWRITE_BUFFER_FLUSH(ah);
1429
1430        /*
1431         * For big endian systems turn on swapping for descriptors
1432         */
1433        if (AR_SREV_9100(ah)) {
1434                u32 mask;
1435                mask = REG_READ(ah, AR_CFG);
1436                if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1437                        ath_dbg(common, ATH_DBG_RESET,
1438                                "CFG Byte Swap Set 0x%x\n", mask);
1439                } else {
1440                        mask =
1441                                INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1442                        REG_WRITE(ah, AR_CFG, mask);
1443                        ath_dbg(common, ATH_DBG_RESET,
1444                                "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1445                }
1446        } else {
1447                if (common->bus_ops->ath_bus_type == ATH_USB) {
1448                        /* Configure AR9271 target WLAN */
1449                        if (AR_SREV_9271(ah))
1450                                REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1451                        else
1452                                REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1453                }
1454#ifdef __BIG_ENDIAN
1455                else
1456                        REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1457#endif
1458        }
1459
1460        if (ah->btcoex_hw.enabled)
1461                ath9k_hw_btcoex_enable(ah);
1462
1463        if (AR_SREV_9300_20_OR_LATER(ah))
1464                ar9003_hw_bb_watchdog_config(ah);
1465
1466        return 0;
1467}
1468EXPORT_SYMBOL(ath9k_hw_reset);
1469
1470/******************************/
1471/* Power Management (Chipset) */
1472/******************************/
1473
1474/*
1475 * Notify Power Mgt is disabled in self-generated frames.
1476 * If requested, force chip to sleep.
1477 */
1478static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1479{
1480        REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1481        if (setChip) {
1482                /*
1483                 * Clear the RTC force wake bit to allow the
1484                 * mac to go to sleep.
1485                 */
1486                REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1487                            AR_RTC_FORCE_WAKE_EN);
1488                if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1489                        REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1490
1491                /* Shutdown chip. Active low */
1492                if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1493                        REG_CLR_BIT(ah, (AR_RTC_RESET),
1494                                    AR_RTC_RESET_EN);
1495        }
1496
1497        /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1498        if (AR_SREV_9300_20_OR_LATER(ah))
1499                REG_WRITE(ah, AR_WA,
1500                          ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1501}
1502
1503/*
1504 * Notify Power Management is enabled in self-generating
1505 * frames. If request, set power mode of chip to
1506 * auto/normal.  Duration in units of 128us (1/8 TU).
1507 */
1508static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1509{
1510        REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1511        if (setChip) {
1512                struct ath9k_hw_capabilities *pCap = &ah->caps;
1513
1514                if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1515                        /* Set WakeOnInterrupt bit; clear ForceWake bit */
1516                        REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1517                                  AR_RTC_FORCE_WAKE_ON_INT);
1518                } else {
1519                        /*
1520                         * Clear the RTC force wake bit to allow the
1521                         * mac to go to sleep.
1522                         */
1523                        REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1524                                    AR_RTC_FORCE_WAKE_EN);
1525                }
1526        }
1527
1528        /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1529        if (AR_SREV_9300_20_OR_LATER(ah))
1530                REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1531}
1532
1533static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1534{
1535        u32 val;
1536        int i;
1537
1538        /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1539        if (AR_SREV_9300_20_OR_LATER(ah)) {
1540                REG_WRITE(ah, AR_WA, ah->WARegVal);
1541                udelay(10);
1542        }
1543
1544        if (setChip) {
1545                if ((REG_READ(ah, AR_RTC_STATUS) &
1546                     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1547                        if (ath9k_hw_set_reset_reg(ah,
1548                                           ATH9K_RESET_POWER_ON) != true) {
1549                                return false;
1550                        }
1551                        if (!AR_SREV_9300_20_OR_LATER(ah))
1552                                ath9k_hw_init_pll(ah, NULL);
1553                }
1554                if (AR_SREV_9100(ah))
1555                        REG_SET_BIT(ah, AR_RTC_RESET,
1556                                    AR_RTC_RESET_EN);
1557
1558                REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1559                            AR_RTC_FORCE_WAKE_EN);
1560                udelay(50);
1561
1562                for (i = POWER_UP_TIME / 50; i > 0; i--) {
1563                        val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1564                        if (val == AR_RTC_STATUS_ON)
1565                                break;
1566                        udelay(50);
1567                        REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1568                                    AR_RTC_FORCE_WAKE_EN);
1569                }
1570                if (i == 0) {
1571                        ath_err(ath9k_hw_common(ah),
1572                                "Failed to wakeup in %uus\n",
1573                                POWER_UP_TIME / 20);
1574                        return false;
1575                }
1576        }
1577
1578        REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1579
1580        return true;
1581}
1582
1583bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1584{
1585        struct ath_common *common = ath9k_hw_common(ah);
1586        int status = true, setChip = true;
1587        static const char *modes[] = {
1588                "AWAKE",
1589                "FULL-SLEEP",
1590                "NETWORK SLEEP",
1591                "UNDEFINED"
1592        };
1593
1594        if (ah->power_mode == mode)
1595                return status;
1596
1597        ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1598                modes[ah->power_mode], modes[mode]);
1599
1600        switch (mode) {
1601        case ATH9K_PM_AWAKE:
1602                status = ath9k_hw_set_power_awake(ah, setChip);
1603                break;
1604        case ATH9K_PM_FULL_SLEEP:
1605                ath9k_set_power_sleep(ah, setChip);
1606                ah->chip_fullsleep = true;
1607                break;
1608        case ATH9K_PM_NETWORK_SLEEP:
1609                ath9k_set_power_network_sleep(ah, setChip);
1610                break;
1611        default:
1612                ath_err(common, "Unknown power mode %u\n", mode);
1613                return false;
1614        }
1615        ah->power_mode = mode;
1616
1617        /*
1618         * XXX: If this warning never comes up after a while then
1619         * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1620         * ath9k_hw_setpower() return type void.
1621         */
1622
1623        if (!(ah->ah_flags & AH_UNPLUGGED))
1624                ATH_DBG_WARN_ON_ONCE(!status);
1625
1626        return status;
1627}
1628EXPORT_SYMBOL(ath9k_hw_setpower);
1629
1630/*******************/
1631/* Beacon Handling */
1632/*******************/
1633
1634void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1635{
1636        int flags = 0;
1637
1638        ENABLE_REGWRITE_BUFFER(ah);
1639
1640        switch (ah->opmode) {
1641        case NL80211_IFTYPE_ADHOC:
1642        case NL80211_IFTYPE_MESH_POINT:
1643                REG_SET_BIT(ah, AR_TXCFG,
1644                            AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1645                REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1646                          TU_TO_USEC(next_beacon +
1647                                     (ah->atim_window ? ah->
1648                                      atim_window : 1)));
1649                flags |= AR_NDP_TIMER_EN;
1650        case NL80211_IFTYPE_AP:
1651                REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1652                REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1653                          TU_TO_USEC(next_beacon -
1654                                     ah->config.
1655                                     dma_beacon_response_time));
1656                REG_WRITE(ah, AR_NEXT_SWBA,
1657                          TU_TO_USEC(next_beacon -
1658                                     ah->config.
1659                                     sw_beacon_response_time));
1660                flags |=
1661                        AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1662                break;
1663        default:
1664                ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1665                        "%s: unsupported opmode: %d\n",
1666                        __func__, ah->opmode);
1667                return;
1668                break;
1669        }
1670
1671        REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1672        REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1673        REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1674        REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1675
1676        REGWRITE_BUFFER_FLUSH(ah);
1677
1678        beacon_period &= ~ATH9K_BEACON_ENA;
1679        if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1680                ath9k_hw_reset_tsf(ah);
1681        }
1682
1683        REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1684}
1685EXPORT_SYMBOL(ath9k_hw_beaconinit);
1686
1687void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1688                                    const struct ath9k_beacon_state *bs)
1689{
1690        u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1691        struct ath9k_hw_capabilities *pCap = &ah->caps;
1692        struct ath_common *common = ath9k_hw_common(ah);
1693
1694        ENABLE_REGWRITE_BUFFER(ah);
1695
1696        REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1697
1698        REG_WRITE(ah, AR_BEACON_PERIOD,
1699                  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1700        REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1701                  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1702
1703        REGWRITE_BUFFER_FLUSH(ah);
1704
1705        REG_RMW_FIELD(ah, AR_RSSI_THR,
1706                      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1707
1708        beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1709
1710        if (bs->bs_sleepduration > beaconintval)
1711                beaconintval = bs->bs_sleepduration;
1712
1713        dtimperiod = bs->bs_dtimperiod;
1714        if (bs->bs_sleepduration > dtimperiod)
1715                dtimperiod = bs->bs_sleepduration;
1716
1717        if (beaconintval == dtimperiod)
1718                nextTbtt = bs->bs_nextdtim;
1719        else
1720                nextTbtt = bs->bs_nexttbtt;
1721
1722        ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1723        ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1724        ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1725        ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1726
1727        ENABLE_REGWRITE_BUFFER(ah);
1728
1729        REG_WRITE(ah, AR_NEXT_DTIM,
1730                  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1731        REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1732
1733        REG_WRITE(ah, AR_SLEEP1,
1734                  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1735                  | AR_SLEEP1_ASSUME_DTIM);
1736
1737        if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1738                beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1739        else
1740                beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1741
1742        REG_WRITE(ah, AR_SLEEP2,
1743                  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1744
1745        REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1746        REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1747
1748        REGWRITE_BUFFER_FLUSH(ah);
1749
1750        REG_SET_BIT(ah, AR_TIMER_MODE,
1751                    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1752                    AR_DTIM_TIMER_EN);
1753
1754        /* TSF Out of Range Threshold */
1755        REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1756}
1757EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1758
1759/*******************/
1760/* HW Capabilities */
1761/*******************/
1762
1763int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1764{
1765        struct ath9k_hw_capabilities *pCap = &ah->caps;
1766        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1767        struct ath_common *common = ath9k_hw_common(ah);
1768        struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1769
1770        u16 capField = 0, eeval;
1771        u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1772
1773        eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1774        regulatory->current_rd = eeval;
1775
1776        eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1777        if (AR_SREV_9285_12_OR_LATER(ah))
1778                eeval |= AR9285_RDEXT_DEFAULT;
1779        regulatory->current_rd_ext = eeval;
1780
1781        capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1782
1783        if (ah->opmode != NL80211_IFTYPE_AP &&
1784            ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1785                if (regulatory->current_rd == 0x64 ||
1786                    regulatory->current_rd == 0x65)
1787                        regulatory->current_rd += 5;
1788                else if (regulatory->current_rd == 0x41)
1789                        regulatory->current_rd = 0x43;
1790                ath_dbg(common, ATH_DBG_REGULATORY,
1791                        "regdomain mapped to 0x%x\n", regulatory->current_rd);
1792        }
1793
1794        eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1795        if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1796                ath_err(common,
1797                        "no band has been marked as supported in EEPROM\n");
1798                return -EINVAL;
1799        }
1800
1801        if (eeval & AR5416_OPFLAGS_11A)
1802                pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1803
1804        if (eeval & AR5416_OPFLAGS_11G)
1805                pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1806
1807        pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1808        /*
1809         * For AR9271 we will temporarilly uses the rx chainmax as read from
1810         * the EEPROM.
1811         */
1812        if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1813            !(eeval & AR5416_OPFLAGS_11A) &&
1814            !(AR_SREV_9271(ah)))
1815                /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1816                pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1817        else
1818                /* Use rx_chainmask from EEPROM. */
1819                pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1820
1821        ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1822
1823        /* enable key search for every frame in an aggregate */
1824        if (AR_SREV_9300_20_OR_LATER(ah))
1825                ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1826
1827        pCap->low_2ghz_chan = 2312;
1828        pCap->high_2ghz_chan = 2732;
1829
1830        pCap->low_5ghz_chan = 4920;
1831        pCap->high_5ghz_chan = 6100;
1832
1833        common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1834
1835        if (ah->config.ht_enable)
1836                pCap->hw_caps |= ATH9K_HW_CAP_HT;
1837        else
1838                pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1839
1840        if (capField & AR_EEPROM_EEPCAP_MAXQCU)
1841                pCap->total_queues =
1842                        MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
1843        else
1844                pCap->total_queues = ATH9K_NUM_TX_QUEUES;
1845
1846        if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
1847                pCap->keycache_size =
1848                        1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
1849        else
1850                pCap->keycache_size = AR_KEYTABLE_SIZE;
1851
1852        if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
1853                pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
1854        else
1855                pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
1856
1857        if (AR_SREV_9271(ah))
1858                pCap->num_gpio_pins = AR9271_NUM_GPIO;
1859        else if (AR_DEVID_7010(ah))
1860                pCap->num_gpio_pins = AR7010_NUM_GPIO;
1861        else if (AR_SREV_9285_12_OR_LATER(ah))
1862                pCap->num_gpio_pins = AR9285_NUM_GPIO;
1863        else if (AR_SREV_9280_20_OR_LATER(ah))
1864                pCap->num_gpio_pins = AR928X_NUM_GPIO;
1865        else
1866                pCap->num_gpio_pins = AR_NUM_GPIO;
1867
1868        if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1869                pCap->hw_caps |= ATH9K_HW_CAP_CST;
1870                pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1871        } else {
1872                pCap->rts_aggr_limit = (8 * 1024);
1873        }
1874
1875        pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
1876
1877#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1878        ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1879        if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1880                ah->rfkill_gpio =
1881                        MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1882                ah->rfkill_polarity =
1883                        MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1884
1885                pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1886        }
1887#endif
1888        if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1889                pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1890        else
1891                pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1892
1893        if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1894                pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1895        else
1896                pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1897
1898        if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
1899                pCap->reg_cap =
1900                        AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1901                        AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
1902                        AR_EEPROM_EEREGCAP_EN_KK_U2 |
1903                        AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
1904        } else {
1905                pCap->reg_cap =
1906                        AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1907                        AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
1908        }
1909
1910        /* Advertise midband for AR5416 with FCC midband set in eeprom */
1911        if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
1912            AR_SREV_5416(ah))
1913                pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
1914
1915        if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
1916                btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1917                btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1918
1919                if (AR_SREV_9285(ah)) {
1920                        btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1921                        btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1922                } else {
1923                        btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1924                }
1925        } else {
1926                btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1927        }
1928
1929        if (AR_SREV_9300_20_OR_LATER(ah)) {
1930                pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1931                if (!AR_SREV_9485(ah))
1932                        pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1933
1934                pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1935                pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1936                pCap->rx_status_len = sizeof(struct ar9003_rxs);
1937                pCap->tx_desc_len = sizeof(struct ar9003_txc);
1938                pCap->txs_len = sizeof(struct ar9003_txs);
1939                if (!ah->config.paprd_disable &&
1940                    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1941                        pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1942        } else {
1943                pCap->tx_desc_len = sizeof(struct ath_desc);
1944                if (AR_SREV_9280_20(ah) &&
1945                    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1946                      AR5416_EEP_MINOR_VER_16) ||
1947                     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1948                        pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1949        }
1950
1951        if (AR_SREV_9300_20_OR_LATER(ah))
1952                pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1953
1954        if (AR_SREV_9300_20_OR_LATER(ah))
1955                ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
1956
1957        if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1958                pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1959
1960        if (AR_SREV_9285(ah))
1961                if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1962                        ant_div_ctl1 =
1963                                ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
1964                        if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
1965                                pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
1966                }
1967        if (AR_SREV_9300_20_OR_LATER(ah)) {
1968                if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
1969                        pCap->hw_caps |= ATH9K_HW_CAP_APM;
1970        }
1971
1972
1973
1974        if (AR_SREV_9485_10(ah)) {
1975                pCap->pcie_lcr_extsync_en = true;
1976                pCap->pcie_lcr_offset = 0x80;
1977        }
1978
1979        tx_chainmask = pCap->tx_chainmask;
1980        rx_chainmask = pCap->rx_chainmask;
1981        while (tx_chainmask || rx_chainmask) {
1982                if (tx_chainmask & BIT(0))
1983                        pCap->max_txchains++;
1984                if (rx_chainmask & BIT(0))
1985                        pCap->max_rxchains++;
1986
1987                tx_chainmask >>= 1;
1988                rx_chainmask >>= 1;
1989        }
1990
1991        return 0;
1992}
1993
1994/****************************/
1995/* GPIO / RFKILL / Antennae */
1996/****************************/
1997
1998static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
1999                                         u32 gpio, u32 type)
2000{
2001        int addr;
2002        u32 gpio_shift, tmp;
2003
2004        if (gpio > 11)
2005                addr = AR_GPIO_OUTPUT_MUX3;
2006        else if (gpio > 5)
2007                addr = AR_GPIO_OUTPUT_MUX2;
2008        else
2009                addr = AR_GPIO_OUTPUT_MUX1;
2010
2011        gpio_shift = (gpio % 6) * 5;
2012
2013        if (AR_SREV_9280_20_OR_LATER(ah)
2014            || (addr != AR_GPIO_OUTPUT_MUX1)) {
2015                REG_RMW(ah, addr, (type << gpio_shift),
2016                        (0x1f << gpio_shift));
2017        } else {
2018                tmp = REG_READ(ah, addr);
2019                tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2020                tmp &= ~(0x1f << gpio_shift);
2021                tmp |= (type << gpio_shift);
2022                REG_WRITE(ah, addr, tmp);
2023        }
2024}
2025
2026void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2027{
2028        u32 gpio_shift;
2029
2030        BUG_ON(gpio >= ah->caps.num_gpio_pins);
2031
2032        if (AR_DEVID_7010(ah)) {
2033                gpio_shift = gpio;
2034                REG_RMW(ah, AR7010_GPIO_OE,
2035                        (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2036                        (AR7010_GPIO_OE_MASK << gpio_shift));
2037                return;
2038        }
2039
2040        gpio_shift = gpio << 1;
2041        REG_RMW(ah,
2042                AR_GPIO_OE_OUT,
2043                (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2044                (AR_GPIO_OE_OUT_DRV << gpio_shift));
2045}
2046EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2047
2048u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2049{
2050#define MS_REG_READ(x, y) \
2051        (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2052
2053        if (gpio >= ah->caps.num_gpio_pins)
2054                return 0xffffffff;
2055
2056        if (AR_DEVID_7010(ah)) {
2057                u32 val;
2058                val = REG_READ(ah, AR7010_GPIO_IN);
2059                return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2060        } else if (AR_SREV_9300_20_OR_LATER(ah))
2061                return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2062                        AR_GPIO_BIT(gpio)) != 0;
2063        else if (AR_SREV_9271(ah))
2064                return MS_REG_READ(AR9271, gpio) != 0;
2065        else if (AR_SREV_9287_11_OR_LATER(ah))
2066                return MS_REG_READ(AR9287, gpio) != 0;
2067        else if (AR_SREV_9285_12_OR_LATER(ah))
2068                return MS_REG_READ(AR9285, gpio) != 0;
2069        else if (AR_SREV_9280_20_OR_LATER(ah))
2070                return MS_REG_READ(AR928X, gpio) != 0;
2071        else
2072                return MS_REG_READ(AR, gpio) != 0;
2073}
2074EXPORT_SYMBOL(ath9k_hw_gpio_get);
2075
2076void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2077                         u32 ah_signal_type)
2078{
2079        u32 gpio_shift;
2080
2081        if (AR_DEVID_7010(ah)) {
2082                gpio_shift = gpio;
2083                REG_RMW(ah, AR7010_GPIO_OE,
2084                        (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2085                        (AR7010_GPIO_OE_MASK << gpio_shift));
2086                return;
2087        }
2088
2089        ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2090        gpio_shift = 2 * gpio;
2091        REG_RMW(ah,
2092                AR_GPIO_OE_OUT,
2093                (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2094                (AR_GPIO_OE_OUT_DRV << gpio_shift));
2095}
2096EXPORT_SYMBOL(ath9k_hw_cfg_output);
2097
2098void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2099{
2100        if (AR_DEVID_7010(ah)) {
2101                val = val ? 0 : 1;
2102                REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2103                        AR_GPIO_BIT(gpio));
2104                return;
2105        }
2106
2107        if (AR_SREV_9271(ah))
2108                val = ~val;
2109
2110        REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2111                AR_GPIO_BIT(gpio));
2112}
2113EXPORT_SYMBOL(ath9k_hw_set_gpio);
2114
2115u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2116{
2117        return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2118}
2119EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2120
2121void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2122{
2123        REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2124}
2125EXPORT_SYMBOL(ath9k_hw_setantenna);
2126
2127/*********************/
2128/* General Operation */
2129/*********************/
2130
2131u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2132{
2133        u32 bits = REG_READ(ah, AR_RX_FILTER);
2134        u32 phybits = REG_READ(ah, AR_PHY_ERR);
2135
2136        if (phybits & AR_PHY_ERR_RADAR)
2137                bits |= ATH9K_RX_FILTER_PHYRADAR;
2138        if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2139                bits |= ATH9K_RX_FILTER_PHYERR;
2140
2141        return bits;
2142}
2143EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2144
2145void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2146{
2147        u32 phybits;
2148
2149        ENABLE_REGWRITE_BUFFER(ah);
2150
2151        REG_WRITE(ah, AR_RX_FILTER, bits);
2152
2153        phybits = 0;
2154        if (bits & ATH9K_RX_FILTER_PHYRADAR)
2155                phybits |= AR_PHY_ERR_RADAR;
2156        if (bits & ATH9K_RX_FILTER_PHYERR)
2157                phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2158        REG_WRITE(ah, AR_PHY_ERR, phybits);
2159
2160        if (phybits)
2161                REG_WRITE(ah, AR_RXCFG,
2162                          REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2163        else
2164                REG_WRITE(ah, AR_RXCFG,
2165                          REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2166
2167        REGWRITE_BUFFER_FLUSH(ah);
2168}
2169EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2170
2171bool ath9k_hw_phy_disable(struct ath_hw *ah)
2172{
2173        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2174                return false;
2175
2176        ath9k_hw_init_pll(ah, NULL);
2177        return true;
2178}
2179EXPORT_SYMBOL(ath9k_hw_phy_disable);
2180
2181bool ath9k_hw_disable(struct ath_hw *ah)
2182{
2183        if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2184                return false;
2185
2186        if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2187                return false;
2188
2189        ath9k_hw_init_pll(ah, NULL);
2190        return true;
2191}
2192EXPORT_SYMBOL(ath9k_hw_disable);
2193
2194void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2195{
2196        struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2197        struct ath9k_channel *chan = ah->curchan;
2198        struct ieee80211_channel *channel = chan->chan;
2199
2200        regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2201
2202        ah->eep_ops->set_txpower(ah, chan,
2203                                 ath9k_regd_get_ctl(regulatory, chan),
2204                                 channel->max_antenna_gain * 2,
2205                                 channel->max_power * 2,
2206                                 min((u32) MAX_RATE_POWER,
2207                                 (u32) regulatory->power_limit), test);
2208}
2209EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2210
2211void ath9k_hw_setopmode(struct ath_hw *ah)
2212{
2213        ath9k_hw_set_operating_mode(ah, ah->opmode);
2214}
2215EXPORT_SYMBOL(ath9k_hw_setopmode);
2216
2217void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2218{
2219        REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2220        REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2221}
2222EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2223
2224void ath9k_hw_write_associd(struct ath_hw *ah)
2225{
2226        struct ath_common *common = ath9k_hw_common(ah);
2227
2228        REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2229        REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2230                  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2231}
2232EXPORT_SYMBOL(ath9k_hw_write_associd);
2233
2234#define ATH9K_MAX_TSF_READ 10
2235
2236u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2237{
2238        u32 tsf_lower, tsf_upper1, tsf_upper2;
2239        int i;
2240
2241        tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2242        for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2243                tsf_lower = REG_READ(ah, AR_TSF_L32);
2244                tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2245                if (tsf_upper2 == tsf_upper1)
2246                        break;
2247                tsf_upper1 = tsf_upper2;
2248        }
2249
2250        WARN_ON( i == ATH9K_MAX_TSF_READ );
2251
2252        return (((u64)tsf_upper1 << 32) | tsf_lower);
2253}
2254EXPORT_SYMBOL(ath9k_hw_gettsf64);
2255
2256void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2257{
2258        REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2259        REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2260}
2261EXPORT_SYMBOL(ath9k_hw_settsf64);
2262
2263void ath9k_hw_reset_tsf(struct ath_hw *ah)
2264{
2265        if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2266                           AH_TSF_WRITE_TIMEOUT))
2267                ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2268                        "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2269
2270        REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2271}
2272EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2273
2274void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2275{
2276        if (setting)
2277                ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2278        else
2279                ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2280}
2281EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2282
2283void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2284{
2285        struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2286        u32 macmode;
2287
2288        if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2289                macmode = AR_2040_JOINED_RX_CLEAR;
2290        else
2291                macmode = 0;
2292
2293        REG_WRITE(ah, AR_2040_MODE, macmode);
2294}
2295
2296/* HW Generic timers configuration */
2297
2298static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2299{
2300        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2301        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2302        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2303        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2304        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2305        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2306        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2307        {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2308        {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2309        {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2310                                AR_NDP2_TIMER_MODE, 0x0002},
2311        {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2312                                AR_NDP2_TIMER_MODE, 0x0004},
2313        {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2314                                AR_NDP2_TIMER_MODE, 0x0008},
2315        {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2316                                AR_NDP2_TIMER_MODE, 0x0010},
2317        {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2318                                AR_NDP2_TIMER_MODE, 0x0020},
2319        {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2320                                AR_NDP2_TIMER_MODE, 0x0040},
2321        {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2322                                AR_NDP2_TIMER_MODE, 0x0080}
2323};
2324
2325/* HW generic timer primitives */
2326
2327/* compute and clear index of rightmost 1 */
2328static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2329{
2330        u32 b;
2331
2332        b = *mask;
2333        b &= (0-b);
2334        *mask &= ~b;
2335        b *= debruijn32;
2336        b >>= 27;
2337
2338        return timer_table->gen_timer_index[b];
2339}
2340
2341static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2342{
2343        return REG_READ(ah, AR_TSF_L32);
2344}
2345
2346struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2347                                          void (*trigger)(void *),
2348                                          void (*overflow)(void *),
2349                                          void *arg,
2350                                          u8 timer_index)
2351{
2352        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2353        struct ath_gen_timer *timer;
2354
2355        timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2356
2357        if (timer == NULL) {
2358                ath_err(ath9k_hw_common(ah),
2359                        "Failed to allocate memory for hw timer[%d]\n",
2360                        timer_index);
2361                return NULL;
2362        }
2363
2364        /* allocate a hardware generic timer slot */
2365        timer_table->timers[timer_index] = timer;
2366        timer->index = timer_index;
2367        timer->trigger = trigger;
2368        timer->overflow = overflow;
2369        timer->arg = arg;
2370
2371        return timer;
2372}
2373EXPORT_SYMBOL(ath_gen_timer_alloc);
2374
2375void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2376                              struct ath_gen_timer *timer,
2377                              u32 timer_next,
2378                              u32 timer_period)
2379{
2380        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2381        u32 tsf;
2382
2383        BUG_ON(!timer_period);
2384
2385        set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2386
2387        tsf = ath9k_hw_gettsf32(ah);
2388
2389        ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2390                "current tsf %x period %x timer_next %x\n",
2391                tsf, timer_period, timer_next);
2392
2393        /*
2394         * Pull timer_next forward if the current TSF already passed it
2395         * because of software latency
2396         */
2397        if (timer_next < tsf)
2398                timer_next = tsf + timer_period;
2399
2400        /*
2401         * Program generic timer registers
2402         */
2403        REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2404                 timer_next);
2405        REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2406                  timer_period);
2407        REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2408                    gen_tmr_configuration[timer->index].mode_mask);
2409
2410        /* Enable both trigger and thresh interrupt masks */
2411        REG_SET_BIT(ah, AR_IMR_S5,
2412                (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2413                SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2414}
2415EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2416
2417void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2418{
2419        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2420
2421        if ((timer->index < AR_FIRST_NDP_TIMER) ||
2422                (timer->index >= ATH_MAX_GEN_TIMER)) {
2423                return;
2424        }
2425
2426        /* Clear generic timer enable bits. */
2427        REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2428                        gen_tmr_configuration[timer->index].mode_mask);
2429
2430        /* Disable both trigger and thresh interrupt masks */
2431        REG_CLR_BIT(ah, AR_IMR_S5,
2432                (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2433                SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2434
2435        clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2436}
2437EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2438
2439void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2440{
2441        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2442
2443        /* free the hardware generic timer slot */
2444        timer_table->timers[timer->index] = NULL;
2445        kfree(timer);
2446}
2447EXPORT_SYMBOL(ath_gen_timer_free);
2448
2449/*
2450 * Generic Timer Interrupts handling
2451 */
2452void ath_gen_timer_isr(struct ath_hw *ah)
2453{
2454        struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2455        struct ath_gen_timer *timer;
2456        struct ath_common *common = ath9k_hw_common(ah);
2457        u32 trigger_mask, thresh_mask, index;
2458
2459        /* get hardware generic timer interrupt status */
2460        trigger_mask = ah->intr_gen_timer_trigger;
2461        thresh_mask = ah->intr_gen_timer_thresh;
2462        trigger_mask &= timer_table->timer_mask.val;
2463        thresh_mask &= timer_table->timer_mask.val;
2464
2465        trigger_mask &= ~thresh_mask;
2466
2467        while (thresh_mask) {
2468                index = rightmost_index(timer_table, &thresh_mask);
2469                timer = timer_table->timers[index];
2470                BUG_ON(!timer);
2471                ath_dbg(common, ATH_DBG_HWTIMER,
2472                        "TSF overflow for Gen timer %d\n", index);
2473                timer->overflow(timer->arg);
2474        }
2475
2476        while (trigger_mask) {
2477                index = rightmost_index(timer_table, &trigger_mask);
2478                timer = timer_table->timers[index];
2479                BUG_ON(!timer);
2480                ath_dbg(common, ATH_DBG_HWTIMER,
2481                        "Gen timer[%d] trigger\n", index);
2482                timer->trigger(timer->arg);
2483        }
2484}
2485EXPORT_SYMBOL(ath_gen_timer_isr);
2486
2487/********/
2488/* HTC  */
2489/********/
2490
2491void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2492{
2493        ah->htc_reset_init = true;
2494}
2495EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2496
2497static struct {
2498        u32 version;
2499        const char * name;
2500} ath_mac_bb_names[] = {
2501        /* Devices with external radios */
2502        { AR_SREV_VERSION_5416_PCI,     "5416" },
2503        { AR_SREV_VERSION_5416_PCIE,    "5418" },
2504        { AR_SREV_VERSION_9100,         "9100" },
2505        { AR_SREV_VERSION_9160,         "9160" },
2506        /* Single-chip solutions */
2507        { AR_SREV_VERSION_9280,         "9280" },
2508        { AR_SREV_VERSION_9285,         "9285" },
2509        { AR_SREV_VERSION_9287,         "9287" },
2510        { AR_SREV_VERSION_9271,         "9271" },
2511        { AR_SREV_VERSION_9300,         "9300" },
2512};
2513
2514/* For devices with external radios */
2515static struct {
2516        u16 version;
2517        const char * name;
2518} ath_rf_names[] = {
2519        { 0,                            "5133" },
2520        { AR_RAD5133_SREV_MAJOR,        "5133" },
2521        { AR_RAD5122_SREV_MAJOR,        "5122" },
2522        { AR_RAD2133_SREV_MAJOR,        "2133" },
2523        { AR_RAD2122_SREV_MAJOR,        "2122" }
2524};
2525
2526/*
2527 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2528 */
2529static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2530{
2531        int i;
2532
2533        for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2534                if (ath_mac_bb_names[i].version == mac_bb_version) {
2535                        return ath_mac_bb_names[i].name;
2536                }
2537        }
2538
2539        return "????";
2540}
2541
2542/*
2543 * Return the RF name. "????" is returned if the RF is unknown.
2544 * Used for devices with external radios.
2545 */
2546static const char *ath9k_hw_rf_name(u16 rf_version)
2547{
2548        int i;
2549
2550        for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2551                if (ath_rf_names[i].version == rf_version) {
2552                        return ath_rf_names[i].name;
2553                }
2554        }
2555
2556        return "????";
2557}
2558
2559void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2560{
2561        int used;
2562
2563        /* chipsets >= AR9280 are single-chip */
2564        if (AR_SREV_9280_20_OR_LATER(ah)) {
2565                used = snprintf(hw_name, len,
2566                               "Atheros AR%s Rev:%x",
2567                               ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2568                               ah->hw_version.macRev);
2569        }
2570        else {
2571                used = snprintf(hw_name, len,
2572                               "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2573                               ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2574                               ah->hw_version.macRev,
2575                               ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2576                                                AR_RADIO_SREV_MAJOR)),
2577                               ah->hw_version.phyRev);
2578        }
2579
2580        hw_name[used] = '\0';
2581}
2582EXPORT_SYMBOL(ath9k_hw_name);
2583