linux/drivers/net/wireless/rt2x00/rt2500pci.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, write to the
  17        Free Software Foundation, Inc.,
  18        59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22        Module: rt2500pci
  23        Abstract: rt2500pci device specific routines.
  24        Supported chipsets: RT2560.
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/etherdevice.h>
  29#include <linux/init.h>
  30#include <linux/kernel.h>
  31#include <linux/module.h>
  32#include <linux/pci.h>
  33#include <linux/eeprom_93cx6.h>
  34#include <linux/slab.h>
  35
  36#include "rt2x00.h"
  37#include "rt2x00pci.h"
  38#include "rt2500pci.h"
  39
  40/*
  41 * Register access.
  42 * All access to the CSR registers will go through the methods
  43 * rt2x00pci_register_read and rt2x00pci_register_write.
  44 * BBP and RF register require indirect register access,
  45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  46 * These indirect registers work with busy bits,
  47 * and we will try maximal REGISTER_BUSY_COUNT times to access
  48 * the register while taking a REGISTER_BUSY_DELAY us delay
  49 * between each attampt. When the busy bit is still set at that time,
  50 * the access attempt is considered to have failed,
  51 * and we will print an error.
  52 */
  53#define WAIT_FOR_BBP(__dev, __reg) \
  54        rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  55#define WAIT_FOR_RF(__dev, __reg) \
  56        rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  57
  58static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  59                                const unsigned int word, const u8 value)
  60{
  61        u32 reg;
  62
  63        mutex_lock(&rt2x00dev->csr_mutex);
  64
  65        /*
  66         * Wait until the BBP becomes available, afterwards we
  67         * can safely write the new data into the register.
  68         */
  69        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  70                reg = 0;
  71                rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  72                rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  73                rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  74                rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  75
  76                rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  77        }
  78
  79        mutex_unlock(&rt2x00dev->csr_mutex);
  80}
  81
  82static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  83                               const unsigned int word, u8 *value)
  84{
  85        u32 reg;
  86
  87        mutex_lock(&rt2x00dev->csr_mutex);
  88
  89        /*
  90         * Wait until the BBP becomes available, afterwards we
  91         * can safely write the read request into the register.
  92         * After the data has been written, we wait until hardware
  93         * returns the correct value, if at any time the register
  94         * doesn't become available in time, reg will be 0xffffffff
  95         * which means we return 0xff to the caller.
  96         */
  97        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  98                reg = 0;
  99                rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
 100                rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
 101                rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
 102
 103                rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
 104
 105                WAIT_FOR_BBP(rt2x00dev, &reg);
 106        }
 107
 108        *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
 109
 110        mutex_unlock(&rt2x00dev->csr_mutex);
 111}
 112
 113static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
 114                               const unsigned int word, const u32 value)
 115{
 116        u32 reg;
 117
 118        mutex_lock(&rt2x00dev->csr_mutex);
 119
 120        /*
 121         * Wait until the RF becomes available, afterwards we
 122         * can safely write the new data into the register.
 123         */
 124        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 125                reg = 0;
 126                rt2x00_set_field32(&reg, RFCSR_VALUE, value);
 127                rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
 128                rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
 129                rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
 130
 131                rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
 132                rt2x00_rf_write(rt2x00dev, word, value);
 133        }
 134
 135        mutex_unlock(&rt2x00dev->csr_mutex);
 136}
 137
 138static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 139{
 140        struct rt2x00_dev *rt2x00dev = eeprom->data;
 141        u32 reg;
 142
 143        rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
 144
 145        eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
 146        eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
 147        eeprom->reg_data_clock =
 148            !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
 149        eeprom->reg_chip_select =
 150            !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
 151}
 152
 153static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 154{
 155        struct rt2x00_dev *rt2x00dev = eeprom->data;
 156        u32 reg = 0;
 157
 158        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
 159        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
 160        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
 161                           !!eeprom->reg_data_clock);
 162        rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
 163                           !!eeprom->reg_chip_select);
 164
 165        rt2x00pci_register_write(rt2x00dev, CSR21, reg);
 166}
 167
 168#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 169static const struct rt2x00debug rt2500pci_rt2x00debug = {
 170        .owner  = THIS_MODULE,
 171        .csr    = {
 172                .read           = rt2x00pci_register_read,
 173                .write          = rt2x00pci_register_write,
 174                .flags          = RT2X00DEBUGFS_OFFSET,
 175                .word_base      = CSR_REG_BASE,
 176                .word_size      = sizeof(u32),
 177                .word_count     = CSR_REG_SIZE / sizeof(u32),
 178        },
 179        .eeprom = {
 180                .read           = rt2x00_eeprom_read,
 181                .write          = rt2x00_eeprom_write,
 182                .word_base      = EEPROM_BASE,
 183                .word_size      = sizeof(u16),
 184                .word_count     = EEPROM_SIZE / sizeof(u16),
 185        },
 186        .bbp    = {
 187                .read           = rt2500pci_bbp_read,
 188                .write          = rt2500pci_bbp_write,
 189                .word_base      = BBP_BASE,
 190                .word_size      = sizeof(u8),
 191                .word_count     = BBP_SIZE / sizeof(u8),
 192        },
 193        .rf     = {
 194                .read           = rt2x00_rf_read,
 195                .write          = rt2500pci_rf_write,
 196                .word_base      = RF_BASE,
 197                .word_size      = sizeof(u32),
 198                .word_count     = RF_SIZE / sizeof(u32),
 199        },
 200};
 201#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 202
 203static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 204{
 205        u32 reg;
 206
 207        rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
 208        return rt2x00_get_field32(reg, GPIOCSR_BIT0);
 209}
 210
 211#ifdef CONFIG_RT2X00_LIB_LEDS
 212static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
 213                                     enum led_brightness brightness)
 214{
 215        struct rt2x00_led *led =
 216            container_of(led_cdev, struct rt2x00_led, led_dev);
 217        unsigned int enabled = brightness != LED_OFF;
 218        u32 reg;
 219
 220        rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
 221
 222        if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 223                rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
 224        else if (led->type == LED_TYPE_ACTIVITY)
 225                rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
 226
 227        rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
 228}
 229
 230static int rt2500pci_blink_set(struct led_classdev *led_cdev,
 231                               unsigned long *delay_on,
 232                               unsigned long *delay_off)
 233{
 234        struct rt2x00_led *led =
 235            container_of(led_cdev, struct rt2x00_led, led_dev);
 236        u32 reg;
 237
 238        rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
 239        rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
 240        rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
 241        rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
 242
 243        return 0;
 244}
 245
 246static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
 247                               struct rt2x00_led *led,
 248                               enum led_type type)
 249{
 250        led->rt2x00dev = rt2x00dev;
 251        led->type = type;
 252        led->led_dev.brightness_set = rt2500pci_brightness_set;
 253        led->led_dev.blink_set = rt2500pci_blink_set;
 254        led->flags = LED_INITIALIZED;
 255}
 256#endif /* CONFIG_RT2X00_LIB_LEDS */
 257
 258/*
 259 * Configuration handlers.
 260 */
 261static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
 262                                    const unsigned int filter_flags)
 263{
 264        u32 reg;
 265
 266        /*
 267         * Start configuration steps.
 268         * Note that the version error will always be dropped
 269         * and broadcast frames will always be accepted since
 270         * there is no filter for it at this time.
 271         */
 272        rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 273        rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
 274                           !(filter_flags & FIF_FCSFAIL));
 275        rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
 276                           !(filter_flags & FIF_PLCPFAIL));
 277        rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
 278                           !(filter_flags & FIF_CONTROL));
 279        rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
 280                           !(filter_flags & FIF_PROMISC_IN_BSS));
 281        rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
 282                           !(filter_flags & FIF_PROMISC_IN_BSS) &&
 283                           !rt2x00dev->intf_ap_count);
 284        rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
 285        rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
 286                           !(filter_flags & FIF_ALLMULTI));
 287        rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
 288        rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 289}
 290
 291static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
 292                                  struct rt2x00_intf *intf,
 293                                  struct rt2x00intf_conf *conf,
 294                                  const unsigned int flags)
 295{
 296        struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
 297        unsigned int bcn_preload;
 298        u32 reg;
 299
 300        if (flags & CONFIG_UPDATE_TYPE) {
 301                /*
 302                 * Enable beacon config
 303                 */
 304                bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 305                rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
 306                rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
 307                rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
 308                rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
 309
 310                /*
 311                 * Enable synchronisation.
 312                 */
 313                rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 314                rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
 315                rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
 316                rt2x00_set_field32(&reg, CSR14_TBCN, 1);
 317                rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 318        }
 319
 320        if (flags & CONFIG_UPDATE_MAC)
 321                rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
 322                                              conf->mac, sizeof(conf->mac));
 323
 324        if (flags & CONFIG_UPDATE_BSSID)
 325                rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
 326                                              conf->bssid, sizeof(conf->bssid));
 327}
 328
 329static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
 330                                 struct rt2x00lib_erp *erp,
 331                                 u32 changed)
 332{
 333        int preamble_mask;
 334        u32 reg;
 335
 336        /*
 337         * When short preamble is enabled, we should set bit 0x08
 338         */
 339        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 340                preamble_mask = erp->short_preamble << 3;
 341
 342                rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
 343                rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
 344                rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
 345                rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
 346                rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
 347                rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
 348
 349                rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
 350                rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
 351                rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
 352                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 353                                   GET_DURATION(ACK_SIZE, 10));
 354                rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
 355
 356                rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
 357                rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
 358                rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
 359                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 360                                   GET_DURATION(ACK_SIZE, 20));
 361                rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
 362
 363                rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
 364                rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
 365                rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
 366                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 367                                   GET_DURATION(ACK_SIZE, 55));
 368                rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
 369
 370                rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
 371                rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
 372                rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
 373                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 374                                   GET_DURATION(ACK_SIZE, 110));
 375                rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
 376        }
 377
 378        if (changed & BSS_CHANGED_BASIC_RATES)
 379                rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
 380
 381        if (changed & BSS_CHANGED_ERP_SLOT) {
 382                rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 383                rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
 384                rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 385
 386                rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
 387                rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
 388                rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
 389                rt2x00pci_register_write(rt2x00dev, CSR18, reg);
 390
 391                rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
 392                rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
 393                rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
 394                rt2x00pci_register_write(rt2x00dev, CSR19, reg);
 395        }
 396
 397        if (changed & BSS_CHANGED_BEACON_INT) {
 398                rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
 399                rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
 400                                   erp->beacon_int * 16);
 401                rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
 402                                   erp->beacon_int * 16);
 403                rt2x00pci_register_write(rt2x00dev, CSR12, reg);
 404        }
 405
 406}
 407
 408static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
 409                                 struct antenna_setup *ant)
 410{
 411        u32 reg;
 412        u8 r14;
 413        u8 r2;
 414
 415        /*
 416         * We should never come here because rt2x00lib is supposed
 417         * to catch this and send us the correct antenna explicitely.
 418         */
 419        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 420               ant->tx == ANTENNA_SW_DIVERSITY);
 421
 422        rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
 423        rt2500pci_bbp_read(rt2x00dev, 14, &r14);
 424        rt2500pci_bbp_read(rt2x00dev, 2, &r2);
 425
 426        /*
 427         * Configure the TX antenna.
 428         */
 429        switch (ant->tx) {
 430        case ANTENNA_A:
 431                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 432                rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
 433                rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
 434                break;
 435        case ANTENNA_B:
 436        default:
 437                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 438                rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
 439                rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
 440                break;
 441        }
 442
 443        /*
 444         * Configure the RX antenna.
 445         */
 446        switch (ant->rx) {
 447        case ANTENNA_A:
 448                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 449                break;
 450        case ANTENNA_B:
 451        default:
 452                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 453                break;
 454        }
 455
 456        /*
 457         * RT2525E and RT5222 need to flip TX I/Q
 458         */
 459        if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 460                rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 461                rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
 462                rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
 463
 464                /*
 465                 * RT2525E does not need RX I/Q Flip.
 466                 */
 467                if (rt2x00_rf(rt2x00dev, RF2525E))
 468                        rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 469        } else {
 470                rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
 471                rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
 472        }
 473
 474        rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
 475        rt2500pci_bbp_write(rt2x00dev, 14, r14);
 476        rt2500pci_bbp_write(rt2x00dev, 2, r2);
 477}
 478
 479static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
 480                                     struct rf_channel *rf, const int txpower)
 481{
 482        u8 r70;
 483
 484        /*
 485         * Set TXpower.
 486         */
 487        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 488
 489        /*
 490         * Switch on tuning bits.
 491         * For RT2523 devices we do not need to update the R1 register.
 492         */
 493        if (!rt2x00_rf(rt2x00dev, RF2523))
 494                rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
 495        rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
 496
 497        /*
 498         * For RT2525 we should first set the channel to half band higher.
 499         */
 500        if (rt2x00_rf(rt2x00dev, RF2525)) {
 501                static const u32 vals[] = {
 502                        0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
 503                        0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
 504                        0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
 505                        0x00080d2e, 0x00080d3a
 506                };
 507
 508                rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 509                rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 510                rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 511                if (rf->rf4)
 512                        rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 513        }
 514
 515        rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 516        rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
 517        rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 518        if (rf->rf4)
 519                rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 520
 521        /*
 522         * Channel 14 requires the Japan filter bit to be set.
 523         */
 524        r70 = 0x46;
 525        rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
 526        rt2500pci_bbp_write(rt2x00dev, 70, r70);
 527
 528        msleep(1);
 529
 530        /*
 531         * Switch off tuning bits.
 532         * For RT2523 devices we do not need to update the R1 register.
 533         */
 534        if (!rt2x00_rf(rt2x00dev, RF2523)) {
 535                rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
 536                rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 537        }
 538
 539        rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
 540        rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 541
 542        /*
 543         * Clear false CRC during channel switch.
 544         */
 545        rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
 546}
 547
 548static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 549                                     const int txpower)
 550{
 551        u32 rf3;
 552
 553        rt2x00_rf_read(rt2x00dev, 3, &rf3);
 554        rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 555        rt2500pci_rf_write(rt2x00dev, 3, rf3);
 556}
 557
 558static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 559                                         struct rt2x00lib_conf *libconf)
 560{
 561        u32 reg;
 562
 563        rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 564        rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
 565                           libconf->conf->long_frame_max_tx_count);
 566        rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
 567                           libconf->conf->short_frame_max_tx_count);
 568        rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 569}
 570
 571static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
 572                                struct rt2x00lib_conf *libconf)
 573{
 574        enum dev_state state =
 575            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 576                STATE_SLEEP : STATE_AWAKE;
 577        u32 reg;
 578
 579        if (state == STATE_SLEEP) {
 580                rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
 581                rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
 582                                   (rt2x00dev->beacon_int - 20) * 16);
 583                rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
 584                                   libconf->conf->listen_interval - 1);
 585
 586                /* We must first disable autowake before it can be enabled */
 587                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 588                rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 589
 590                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
 591                rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 592        } else {
 593                rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
 594                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 595                rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 596        }
 597
 598        rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 599}
 600
 601static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
 602                             struct rt2x00lib_conf *libconf,
 603                             const unsigned int flags)
 604{
 605        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 606                rt2500pci_config_channel(rt2x00dev, &libconf->rf,
 607                                         libconf->conf->power_level);
 608        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 609            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 610                rt2500pci_config_txpower(rt2x00dev,
 611                                         libconf->conf->power_level);
 612        if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 613                rt2500pci_config_retry_limit(rt2x00dev, libconf);
 614        if (flags & IEEE80211_CONF_CHANGE_PS)
 615                rt2500pci_config_ps(rt2x00dev, libconf);
 616}
 617
 618/*
 619 * Link tuning
 620 */
 621static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
 622                                 struct link_qual *qual)
 623{
 624        u32 reg;
 625
 626        /*
 627         * Update FCS error count from register.
 628         */
 629        rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
 630        qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
 631
 632        /*
 633         * Update False CCA count from register.
 634         */
 635        rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
 636        qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
 637}
 638
 639static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
 640                                     struct link_qual *qual, u8 vgc_level)
 641{
 642        if (qual->vgc_level_reg != vgc_level) {
 643                rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
 644                qual->vgc_level = vgc_level;
 645                qual->vgc_level_reg = vgc_level;
 646        }
 647}
 648
 649static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
 650                                  struct link_qual *qual)
 651{
 652        rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
 653}
 654
 655static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
 656                                 struct link_qual *qual, const u32 count)
 657{
 658        /*
 659         * To prevent collisions with MAC ASIC on chipsets
 660         * up to version C the link tuning should halt after 20
 661         * seconds while being associated.
 662         */
 663        if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
 664            rt2x00dev->intf_associated && count > 20)
 665                return;
 666
 667        /*
 668         * Chipset versions C and lower should directly continue
 669         * to the dynamic CCA tuning. Chipset version D and higher
 670         * should go straight to dynamic CCA tuning when they
 671         * are not associated.
 672         */
 673        if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
 674            !rt2x00dev->intf_associated)
 675                goto dynamic_cca_tune;
 676
 677        /*
 678         * A too low RSSI will cause too much false CCA which will
 679         * then corrupt the R17 tuning. To remidy this the tuning should
 680         * be stopped (While making sure the R17 value will not exceed limits)
 681         */
 682        if (qual->rssi < -80 && count > 20) {
 683                if (qual->vgc_level_reg >= 0x41)
 684                        rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 685                return;
 686        }
 687
 688        /*
 689         * Special big-R17 for short distance
 690         */
 691        if (qual->rssi >= -58) {
 692                rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
 693                return;
 694        }
 695
 696        /*
 697         * Special mid-R17 for middle distance
 698         */
 699        if (qual->rssi >= -74) {
 700                rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
 701                return;
 702        }
 703
 704        /*
 705         * Leave short or middle distance condition, restore r17
 706         * to the dynamic tuning range.
 707         */
 708        if (qual->vgc_level_reg >= 0x41) {
 709                rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 710                return;
 711        }
 712
 713dynamic_cca_tune:
 714
 715        /*
 716         * R17 is inside the dynamic tuning range,
 717         * start tuning the link based on the false cca counter.
 718         */
 719        if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
 720                rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
 721        else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
 722                rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
 723}
 724
 725/*
 726 * Queue handlers.
 727 */
 728static void rt2500pci_start_queue(struct data_queue *queue)
 729{
 730        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 731        u32 reg;
 732
 733        switch (queue->qid) {
 734        case QID_RX:
 735                rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 736                rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
 737                rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 738                break;
 739        case QID_BEACON:
 740                rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 741                rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
 742                rt2x00_set_field32(&reg, CSR14_TBCN, 1);
 743                rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
 744                rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 745                break;
 746        default:
 747                break;
 748        }
 749}
 750
 751static void rt2500pci_kick_queue(struct data_queue *queue)
 752{
 753        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 754        u32 reg;
 755
 756        switch (queue->qid) {
 757        case QID_AC_VO:
 758                rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 759                rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
 760                rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 761                break;
 762        case QID_AC_VI:
 763                rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 764                rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
 765                rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 766                break;
 767        case QID_ATIM:
 768                rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 769                rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
 770                rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 771                break;
 772        default:
 773                break;
 774        }
 775}
 776
 777static void rt2500pci_stop_queue(struct data_queue *queue)
 778{
 779        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 780        u32 reg;
 781
 782        switch (queue->qid) {
 783        case QID_AC_VO:
 784        case QID_AC_VI:
 785        case QID_ATIM:
 786                rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 787                rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
 788                rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 789                break;
 790        case QID_RX:
 791                rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 792                rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
 793                rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 794                break;
 795        case QID_BEACON:
 796                rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 797                rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 798                rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 799                rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 800                rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 801                break;
 802        default:
 803                break;
 804        }
 805}
 806
 807/*
 808 * Initialization functions.
 809 */
 810static bool rt2500pci_get_entry_state(struct queue_entry *entry)
 811{
 812        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
 813        u32 word;
 814
 815        if (entry->queue->qid == QID_RX) {
 816                rt2x00_desc_read(entry_priv->desc, 0, &word);
 817
 818                return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
 819        } else {
 820                rt2x00_desc_read(entry_priv->desc, 0, &word);
 821
 822                return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 823                        rt2x00_get_field32(word, TXD_W0_VALID));
 824        }
 825}
 826
 827static void rt2500pci_clear_entry(struct queue_entry *entry)
 828{
 829        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
 830        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 831        u32 word;
 832
 833        if (entry->queue->qid == QID_RX) {
 834                rt2x00_desc_read(entry_priv->desc, 1, &word);
 835                rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
 836                rt2x00_desc_write(entry_priv->desc, 1, word);
 837
 838                rt2x00_desc_read(entry_priv->desc, 0, &word);
 839                rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
 840                rt2x00_desc_write(entry_priv->desc, 0, word);
 841        } else {
 842                rt2x00_desc_read(entry_priv->desc, 0, &word);
 843                rt2x00_set_field32(&word, TXD_W0_VALID, 0);
 844                rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
 845                rt2x00_desc_write(entry_priv->desc, 0, word);
 846        }
 847}
 848
 849static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
 850{
 851        struct queue_entry_priv_pci *entry_priv;
 852        u32 reg;
 853
 854        /*
 855         * Initialize registers.
 856         */
 857        rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
 858        rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
 859        rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
 860        rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
 861        rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
 862        rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
 863
 864        entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 865        rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
 866        rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
 867                           entry_priv->desc_dma);
 868        rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
 869
 870        entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 871        rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
 872        rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
 873                           entry_priv->desc_dma);
 874        rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
 875
 876        entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
 877        rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
 878        rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
 879                           entry_priv->desc_dma);
 880        rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
 881
 882        entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
 883        rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
 884        rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
 885                           entry_priv->desc_dma);
 886        rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
 887
 888        rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
 889        rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
 890        rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
 891        rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
 892
 893        entry_priv = rt2x00dev->rx->entries[0].priv_data;
 894        rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
 895        rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
 896                           entry_priv->desc_dma);
 897        rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
 898
 899        return 0;
 900}
 901
 902static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
 903{
 904        u32 reg;
 905
 906        rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
 907        rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
 908        rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
 909        rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
 910
 911        rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
 912        rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
 913        rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
 914        rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
 915        rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
 916
 917        rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
 918        rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
 919                           rt2x00dev->rx->data_size / 128);
 920        rt2x00pci_register_write(rt2x00dev, CSR9, reg);
 921
 922        /*
 923         * Always use CWmin and CWmax set in descriptor.
 924         */
 925        rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 926        rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
 927        rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 928
 929        rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 930        rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 931        rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
 932        rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 933        rt2x00_set_field32(&reg, CSR14_TCFP, 0);
 934        rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
 935        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 936        rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
 937        rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
 938        rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 939
 940        rt2x00pci_register_write(rt2x00dev, CNT3, 0);
 941
 942        rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
 943        rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
 944        rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
 945        rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
 946        rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
 947        rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
 948        rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
 949        rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
 950        rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
 951        rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
 952
 953        rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
 954        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
 955        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
 956        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
 957        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
 958        rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
 959
 960        rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
 961        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
 962        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
 963        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
 964        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
 965        rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
 966
 967        rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
 968        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
 969        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
 970        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
 971        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
 972        rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
 973
 974        rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
 975        rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
 976        rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
 977        rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
 978        rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
 979        rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
 980        rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
 981        rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
 982        rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
 983        rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
 984
 985        rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
 986        rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
 987        rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
 988        rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
 989        rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
 990        rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
 991        rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
 992        rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
 993        rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
 994
 995        rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
 996
 997        rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
 998        rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
 999
1000        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1001                return -EBUSY;
1002
1003        rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
1004        rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
1005
1006        rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
1007        rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1008        rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
1009
1010        rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
1011        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1012        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1013        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1014        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1015        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1016        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1017        rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
1018
1019        rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1020
1021        rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1022
1023        rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1024        rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1025        rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1026        rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1027        rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1028
1029        rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1030        rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1031        rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1032        rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1033
1034        /*
1035         * We must clear the FCS and FIFO error count.
1036         * These registers are cleared on read,
1037         * so we may pass a useless variable to store the value.
1038         */
1039        rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
1040        rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
1041
1042        return 0;
1043}
1044
1045static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1046{
1047        unsigned int i;
1048        u8 value;
1049
1050        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1051                rt2500pci_bbp_read(rt2x00dev, 0, &value);
1052                if ((value != 0xff) && (value != 0x00))
1053                        return 0;
1054                udelay(REGISTER_BUSY_DELAY);
1055        }
1056
1057        ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1058        return -EACCES;
1059}
1060
1061static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1062{
1063        unsigned int i;
1064        u16 eeprom;
1065        u8 reg_id;
1066        u8 value;
1067
1068        if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1069                return -EACCES;
1070
1071        rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1072        rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1073        rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1074        rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1075        rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1076        rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1077        rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1078        rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1079        rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1080        rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1081        rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1082        rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1083        rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1084        rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1085        rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1086        rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1087        rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1088        rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1089        rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1090        rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1091        rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1092        rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1093        rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1094        rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1095        rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1096        rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1097        rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1098        rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1099        rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1100        rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1101
1102        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1103                rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1104
1105                if (eeprom != 0xffff && eeprom != 0x0000) {
1106                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1107                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1108                        rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1109                }
1110        }
1111
1112        return 0;
1113}
1114
1115/*
1116 * Device state switch handlers.
1117 */
1118static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1119                                 enum dev_state state)
1120{
1121        int mask = (state == STATE_RADIO_IRQ_OFF) ||
1122                   (state == STATE_RADIO_IRQ_OFF_ISR);
1123        u32 reg;
1124
1125        /*
1126         * When interrupts are being enabled, the interrupt registers
1127         * should clear the register to assure a clean state.
1128         */
1129        if (state == STATE_RADIO_IRQ_ON) {
1130                rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1131                rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1132        }
1133
1134        /*
1135         * Only toggle the interrupts bits we are going to use.
1136         * Non-checked interrupt bits are disabled by default.
1137         */
1138        rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1139        rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1140        rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1141        rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1142        rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1143        rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1144        rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1145}
1146
1147static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1148{
1149        /*
1150         * Initialize all registers.
1151         */
1152        if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1153                     rt2500pci_init_registers(rt2x00dev) ||
1154                     rt2500pci_init_bbp(rt2x00dev)))
1155                return -EIO;
1156
1157        return 0;
1158}
1159
1160static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1161{
1162        /*
1163         * Disable power
1164         */
1165        rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1166}
1167
1168static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1169                               enum dev_state state)
1170{
1171        u32 reg, reg2;
1172        unsigned int i;
1173        char put_to_sleep;
1174        char bbp_state;
1175        char rf_state;
1176
1177        put_to_sleep = (state != STATE_AWAKE);
1178
1179        rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1180        rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1181        rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1182        rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1183        rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1184        rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1185
1186        /*
1187         * Device is not guaranteed to be in the requested state yet.
1188         * We must wait until the register indicates that the
1189         * device has entered the correct state.
1190         */
1191        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1192                rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1193                bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1194                rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1195                if (bbp_state == state && rf_state == state)
1196                        return 0;
1197                rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1198                msleep(10);
1199        }
1200
1201        return -EBUSY;
1202}
1203
1204static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1205                                      enum dev_state state)
1206{
1207        int retval = 0;
1208
1209        switch (state) {
1210        case STATE_RADIO_ON:
1211                retval = rt2500pci_enable_radio(rt2x00dev);
1212                break;
1213        case STATE_RADIO_OFF:
1214                rt2500pci_disable_radio(rt2x00dev);
1215                break;
1216        case STATE_RADIO_IRQ_ON:
1217        case STATE_RADIO_IRQ_ON_ISR:
1218        case STATE_RADIO_IRQ_OFF:
1219        case STATE_RADIO_IRQ_OFF_ISR:
1220                rt2500pci_toggle_irq(rt2x00dev, state);
1221                break;
1222        case STATE_DEEP_SLEEP:
1223        case STATE_SLEEP:
1224        case STATE_STANDBY:
1225        case STATE_AWAKE:
1226                retval = rt2500pci_set_state(rt2x00dev, state);
1227                break;
1228        default:
1229                retval = -ENOTSUPP;
1230                break;
1231        }
1232
1233        if (unlikely(retval))
1234                ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1235                      state, retval);
1236
1237        return retval;
1238}
1239
1240/*
1241 * TX descriptor initialization
1242 */
1243static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1244                                    struct txentry_desc *txdesc)
1245{
1246        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1247        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1248        __le32 *txd = entry_priv->desc;
1249        u32 word;
1250
1251        /*
1252         * Start writing the descriptor words.
1253         */
1254        rt2x00_desc_read(txd, 1, &word);
1255        rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1256        rt2x00_desc_write(txd, 1, word);
1257
1258        rt2x00_desc_read(txd, 2, &word);
1259        rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1260        rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1261        rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1262        rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1263        rt2x00_desc_write(txd, 2, word);
1264
1265        rt2x00_desc_read(txd, 3, &word);
1266        rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1267        rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1268        rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1269        rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1270        rt2x00_desc_write(txd, 3, word);
1271
1272        rt2x00_desc_read(txd, 10, &word);
1273        rt2x00_set_field32(&word, TXD_W10_RTS,
1274                           test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1275        rt2x00_desc_write(txd, 10, word);
1276
1277        /*
1278         * Writing TXD word 0 must the last to prevent a race condition with
1279         * the device, whereby the device may take hold of the TXD before we
1280         * finished updating it.
1281         */
1282        rt2x00_desc_read(txd, 0, &word);
1283        rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1284        rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1285        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1286                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1287        rt2x00_set_field32(&word, TXD_W0_ACK,
1288                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1289        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1290                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1291        rt2x00_set_field32(&word, TXD_W0_OFDM,
1292                           (txdesc->rate_mode == RATE_MODE_OFDM));
1293        rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1294        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1295        rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1296                           test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1297        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1298        rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1299        rt2x00_desc_write(txd, 0, word);
1300
1301        /*
1302         * Register descriptor details in skb frame descriptor.
1303         */
1304        skbdesc->desc = txd;
1305        skbdesc->desc_len = TXD_DESC_SIZE;
1306}
1307
1308/*
1309 * TX data initialization
1310 */
1311static void rt2500pci_write_beacon(struct queue_entry *entry,
1312                                   struct txentry_desc *txdesc)
1313{
1314        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1315        u32 reg;
1316
1317        /*
1318         * Disable beaconing while we are reloading the beacon data,
1319         * otherwise we might be sending out invalid data.
1320         */
1321        rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1322        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1323        rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1324
1325        rt2x00queue_map_txskb(entry);
1326
1327        /*
1328         * Write the TX descriptor for the beacon.
1329         */
1330        rt2500pci_write_tx_desc(entry, txdesc);
1331
1332        /*
1333         * Dump beacon to userspace through debugfs.
1334         */
1335        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1336
1337        /*
1338         * Enable beaconing again.
1339         */
1340        rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1341        rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1342        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1343        rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1344}
1345
1346/*
1347 * RX control handlers
1348 */
1349static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1350                                  struct rxdone_entry_desc *rxdesc)
1351{
1352        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1353        u32 word0;
1354        u32 word2;
1355
1356        rt2x00_desc_read(entry_priv->desc, 0, &word0);
1357        rt2x00_desc_read(entry_priv->desc, 2, &word2);
1358
1359        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1360                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1361        if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1362                rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1363
1364        /*
1365         * Obtain the status about this packet.
1366         * When frame was received with an OFDM bitrate,
1367         * the signal is the PLCP value. If it was received with
1368         * a CCK bitrate the signal is the rate in 100kbit/s.
1369         */
1370        rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1371        rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1372            entry->queue->rt2x00dev->rssi_offset;
1373        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1374
1375        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1376                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1377        else
1378                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1379        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1380                rxdesc->dev_flags |= RXDONE_MY_BSS;
1381}
1382
1383/*
1384 * Interrupt functions.
1385 */
1386static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1387                             const enum data_queue_qid queue_idx)
1388{
1389        struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1390        struct queue_entry_priv_pci *entry_priv;
1391        struct queue_entry *entry;
1392        struct txdone_entry_desc txdesc;
1393        u32 word;
1394
1395        while (!rt2x00queue_empty(queue)) {
1396                entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1397                entry_priv = entry->priv_data;
1398                rt2x00_desc_read(entry_priv->desc, 0, &word);
1399
1400                if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1401                    !rt2x00_get_field32(word, TXD_W0_VALID))
1402                        break;
1403
1404                /*
1405                 * Obtain the status about this packet.
1406                 */
1407                txdesc.flags = 0;
1408                switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1409                case 0: /* Success */
1410                case 1: /* Success with retry */
1411                        __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1412                        break;
1413                case 2: /* Failure, excessive retries */
1414                        __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1415                        /* Don't break, this is a failed frame! */
1416                default: /* Failure */
1417                        __set_bit(TXDONE_FAILURE, &txdesc.flags);
1418                }
1419                txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1420
1421                rt2x00lib_txdone(entry, &txdesc);
1422        }
1423}
1424
1425static irqreturn_t rt2500pci_interrupt_thread(int irq, void *dev_instance)
1426{
1427        struct rt2x00_dev *rt2x00dev = dev_instance;
1428        u32 reg = rt2x00dev->irqvalue[0];
1429
1430        /*
1431         * Handle interrupts, walk through all bits
1432         * and run the tasks, the bits are checked in order of
1433         * priority.
1434         */
1435
1436        /*
1437         * 1 - Beacon timer expired interrupt.
1438         */
1439        if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1440                rt2x00lib_beacondone(rt2x00dev);
1441
1442        /*
1443         * 2 - Rx ring done interrupt.
1444         */
1445        if (rt2x00_get_field32(reg, CSR7_RXDONE))
1446                rt2x00pci_rxdone(rt2x00dev);
1447
1448        /*
1449         * 3 - Atim ring transmit done interrupt.
1450         */
1451        if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1452                rt2500pci_txdone(rt2x00dev, QID_ATIM);
1453
1454        /*
1455         * 4 - Priority ring transmit done interrupt.
1456         */
1457        if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1458                rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1459
1460        /*
1461         * 5 - Tx ring transmit done interrupt.
1462         */
1463        if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1464                rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1465
1466        /* Enable interrupts again. */
1467        rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1468                                              STATE_RADIO_IRQ_ON_ISR);
1469
1470        return IRQ_HANDLED;
1471}
1472
1473static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1474{
1475        struct rt2x00_dev *rt2x00dev = dev_instance;
1476        u32 reg;
1477
1478        /*
1479         * Get the interrupt sources & saved to local variable.
1480         * Write register value back to clear pending interrupts.
1481         */
1482        rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1483        rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1484
1485        if (!reg)
1486                return IRQ_NONE;
1487
1488        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1489                return IRQ_HANDLED;
1490
1491        /* Store irqvalues for use in the interrupt thread. */
1492        rt2x00dev->irqvalue[0] = reg;
1493
1494        /* Disable interrupts, will be enabled again in the interrupt thread. */
1495        rt2x00dev->ops->lib->set_device_state(rt2x00dev,
1496                                              STATE_RADIO_IRQ_OFF_ISR);
1497
1498        return IRQ_WAKE_THREAD;
1499}
1500
1501/*
1502 * Device probe functions.
1503 */
1504static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1505{
1506        struct eeprom_93cx6 eeprom;
1507        u32 reg;
1508        u16 word;
1509        u8 *mac;
1510
1511        rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1512
1513        eeprom.data = rt2x00dev;
1514        eeprom.register_read = rt2500pci_eepromregister_read;
1515        eeprom.register_write = rt2500pci_eepromregister_write;
1516        eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1517            PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1518        eeprom.reg_data_in = 0;
1519        eeprom.reg_data_out = 0;
1520        eeprom.reg_data_clock = 0;
1521        eeprom.reg_chip_select = 0;
1522
1523        eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1524                               EEPROM_SIZE / sizeof(u16));
1525
1526        /*
1527         * Start validation of the data that has been read.
1528         */
1529        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1530        if (!is_valid_ether_addr(mac)) {
1531                random_ether_addr(mac);
1532                EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1533        }
1534
1535        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1536        if (word == 0xffff) {
1537                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1538                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1539                                   ANTENNA_SW_DIVERSITY);
1540                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1541                                   ANTENNA_SW_DIVERSITY);
1542                rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1543                                   LED_MODE_DEFAULT);
1544                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1545                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1546                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1547                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1548                EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1549        }
1550
1551        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1552        if (word == 0xffff) {
1553                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1554                rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1555                rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1556                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1557                EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1558        }
1559
1560        rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1561        if (word == 0xffff) {
1562                rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1563                                   DEFAULT_RSSI_OFFSET);
1564                rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1565                EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1566        }
1567
1568        return 0;
1569}
1570
1571static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1572{
1573        u32 reg;
1574        u16 value;
1575        u16 eeprom;
1576
1577        /*
1578         * Read EEPROM word for configuration.
1579         */
1580        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1581
1582        /*
1583         * Identify RF chipset.
1584         */
1585        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1586        rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1587        rt2x00_set_chip(rt2x00dev, RT2560, value,
1588                        rt2x00_get_field32(reg, CSR0_REVISION));
1589
1590        if (!rt2x00_rf(rt2x00dev, RF2522) &&
1591            !rt2x00_rf(rt2x00dev, RF2523) &&
1592            !rt2x00_rf(rt2x00dev, RF2524) &&
1593            !rt2x00_rf(rt2x00dev, RF2525) &&
1594            !rt2x00_rf(rt2x00dev, RF2525E) &&
1595            !rt2x00_rf(rt2x00dev, RF5222)) {
1596                ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1597                return -ENODEV;
1598        }
1599
1600        /*
1601         * Identify default antenna configuration.
1602         */
1603        rt2x00dev->default_ant.tx =
1604            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1605        rt2x00dev->default_ant.rx =
1606            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1607
1608        /*
1609         * Store led mode, for correct led behaviour.
1610         */
1611#ifdef CONFIG_RT2X00_LIB_LEDS
1612        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1613
1614        rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1615        if (value == LED_MODE_TXRX_ACTIVITY ||
1616            value == LED_MODE_DEFAULT ||
1617            value == LED_MODE_ASUS)
1618                rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1619                                   LED_TYPE_ACTIVITY);
1620#endif /* CONFIG_RT2X00_LIB_LEDS */
1621
1622        /*
1623         * Detect if this device has an hardware controlled radio.
1624         */
1625        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1626                __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1627
1628        /*
1629         * Check if the BBP tuning should be enabled.
1630         */
1631        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1632        if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1633                __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1634
1635        /*
1636         * Read the RSSI <-> dBm offset information.
1637         */
1638        rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1639        rt2x00dev->rssi_offset =
1640            rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1641
1642        return 0;
1643}
1644
1645/*
1646 * RF value list for RF2522
1647 * Supports: 2.4 GHz
1648 */
1649static const struct rf_channel rf_vals_bg_2522[] = {
1650        { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1651        { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1652        { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1653        { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1654        { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1655        { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1656        { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1657        { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1658        { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1659        { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1660        { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1661        { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1662        { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1663        { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1664};
1665
1666/*
1667 * RF value list for RF2523
1668 * Supports: 2.4 GHz
1669 */
1670static const struct rf_channel rf_vals_bg_2523[] = {
1671        { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1672        { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1673        { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1674        { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1675        { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1676        { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1677        { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1678        { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1679        { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1680        { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1681        { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1682        { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1683        { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1684        { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1685};
1686
1687/*
1688 * RF value list for RF2524
1689 * Supports: 2.4 GHz
1690 */
1691static const struct rf_channel rf_vals_bg_2524[] = {
1692        { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1693        { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1694        { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1695        { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1696        { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1697        { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1698        { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1699        { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1700        { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1701        { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1702        { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1703        { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1704        { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1705        { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1706};
1707
1708/*
1709 * RF value list for RF2525
1710 * Supports: 2.4 GHz
1711 */
1712static const struct rf_channel rf_vals_bg_2525[] = {
1713        { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1714        { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1715        { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1716        { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1717        { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1718        { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1719        { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1720        { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1721        { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1722        { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1723        { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1724        { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1725        { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1726        { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1727};
1728
1729/*
1730 * RF value list for RF2525e
1731 * Supports: 2.4 GHz
1732 */
1733static const struct rf_channel rf_vals_bg_2525e[] = {
1734        { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1735        { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1736        { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1737        { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1738        { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1739        { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1740        { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1741        { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1742        { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1743        { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1744        { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1745        { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1746        { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1747        { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1748};
1749
1750/*
1751 * RF value list for RF5222
1752 * Supports: 2.4 GHz & 5.2 GHz
1753 */
1754static const struct rf_channel rf_vals_5222[] = {
1755        { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1756        { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1757        { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1758        { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1759        { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1760        { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1761        { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1762        { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1763        { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1764        { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1765        { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1766        { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1767        { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1768        { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1769
1770        /* 802.11 UNI / HyperLan 2 */
1771        { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1772        { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1773        { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1774        { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1775        { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1776        { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1777        { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1778        { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1779
1780        /* 802.11 HyperLan 2 */
1781        { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1782        { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1783        { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1784        { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1785        { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1786        { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1787        { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1788        { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1789        { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1790        { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1791
1792        /* 802.11 UNII */
1793        { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1794        { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1795        { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1796        { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1797        { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1798};
1799
1800static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1801{
1802        struct hw_mode_spec *spec = &rt2x00dev->spec;
1803        struct channel_info *info;
1804        char *tx_power;
1805        unsigned int i;
1806
1807        /*
1808         * Initialize all hw fields.
1809         */
1810        rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1811                               IEEE80211_HW_SIGNAL_DBM |
1812                               IEEE80211_HW_SUPPORTS_PS |
1813                               IEEE80211_HW_PS_NULLFUNC_STACK;
1814
1815        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1816        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1817                                rt2x00_eeprom_addr(rt2x00dev,
1818                                                   EEPROM_MAC_ADDR_0));
1819
1820        /*
1821         * Initialize hw_mode information.
1822         */
1823        spec->supported_bands = SUPPORT_BAND_2GHZ;
1824        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1825
1826        if (rt2x00_rf(rt2x00dev, RF2522)) {
1827                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1828                spec->channels = rf_vals_bg_2522;
1829        } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1830                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1831                spec->channels = rf_vals_bg_2523;
1832        } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1833                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1834                spec->channels = rf_vals_bg_2524;
1835        } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1836                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1837                spec->channels = rf_vals_bg_2525;
1838        } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1839                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1840                spec->channels = rf_vals_bg_2525e;
1841        } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1842                spec->supported_bands |= SUPPORT_BAND_5GHZ;
1843                spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1844                spec->channels = rf_vals_5222;
1845        }
1846
1847        /*
1848         * Create channel information array
1849         */
1850        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1851        if (!info)
1852                return -ENOMEM;
1853
1854        spec->channels_info = info;
1855
1856        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1857        for (i = 0; i < 14; i++) {
1858                info[i].max_power = MAX_TXPOWER;
1859                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1860        }
1861
1862        if (spec->num_channels > 14) {
1863                for (i = 14; i < spec->num_channels; i++) {
1864                        info[i].max_power = MAX_TXPOWER;
1865                        info[i].default_power1 = DEFAULT_TXPOWER;
1866                }
1867        }
1868
1869        return 0;
1870}
1871
1872static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1873{
1874        int retval;
1875
1876        /*
1877         * Allocate eeprom data.
1878         */
1879        retval = rt2500pci_validate_eeprom(rt2x00dev);
1880        if (retval)
1881                return retval;
1882
1883        retval = rt2500pci_init_eeprom(rt2x00dev);
1884        if (retval)
1885                return retval;
1886
1887        /*
1888         * Initialize hw specifications.
1889         */
1890        retval = rt2500pci_probe_hw_mode(rt2x00dev);
1891        if (retval)
1892                return retval;
1893
1894        /*
1895         * This device requires the atim queue and DMA-mapped skbs.
1896         */
1897        __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1898        __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1899
1900        /*
1901         * Set the rssi offset.
1902         */
1903        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1904
1905        return 0;
1906}
1907
1908/*
1909 * IEEE80211 stack callback functions.
1910 */
1911static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1912{
1913        struct rt2x00_dev *rt2x00dev = hw->priv;
1914        u64 tsf;
1915        u32 reg;
1916
1917        rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1918        tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1919        rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1920        tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1921
1922        return tsf;
1923}
1924
1925static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1926{
1927        struct rt2x00_dev *rt2x00dev = hw->priv;
1928        u32 reg;
1929
1930        rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1931        return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1932}
1933
1934static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1935        .tx                     = rt2x00mac_tx,
1936        .start                  = rt2x00mac_start,
1937        .stop                   = rt2x00mac_stop,
1938        .add_interface          = rt2x00mac_add_interface,
1939        .remove_interface       = rt2x00mac_remove_interface,
1940        .config                 = rt2x00mac_config,
1941        .configure_filter       = rt2x00mac_configure_filter,
1942        .sw_scan_start          = rt2x00mac_sw_scan_start,
1943        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1944        .get_stats              = rt2x00mac_get_stats,
1945        .bss_info_changed       = rt2x00mac_bss_info_changed,
1946        .conf_tx                = rt2x00mac_conf_tx,
1947        .get_tsf                = rt2500pci_get_tsf,
1948        .tx_last_beacon         = rt2500pci_tx_last_beacon,
1949        .rfkill_poll            = rt2x00mac_rfkill_poll,
1950        .flush                  = rt2x00mac_flush,
1951};
1952
1953static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1954        .irq_handler            = rt2500pci_interrupt,
1955        .irq_handler_thread     = rt2500pci_interrupt_thread,
1956        .probe_hw               = rt2500pci_probe_hw,
1957        .initialize             = rt2x00pci_initialize,
1958        .uninitialize           = rt2x00pci_uninitialize,
1959        .get_entry_state        = rt2500pci_get_entry_state,
1960        .clear_entry            = rt2500pci_clear_entry,
1961        .set_device_state       = rt2500pci_set_device_state,
1962        .rfkill_poll            = rt2500pci_rfkill_poll,
1963        .link_stats             = rt2500pci_link_stats,
1964        .reset_tuner            = rt2500pci_reset_tuner,
1965        .link_tuner             = rt2500pci_link_tuner,
1966        .start_queue            = rt2500pci_start_queue,
1967        .kick_queue             = rt2500pci_kick_queue,
1968        .stop_queue             = rt2500pci_stop_queue,
1969        .write_tx_desc          = rt2500pci_write_tx_desc,
1970        .write_beacon           = rt2500pci_write_beacon,
1971        .fill_rxdone            = rt2500pci_fill_rxdone,
1972        .config_filter          = rt2500pci_config_filter,
1973        .config_intf            = rt2500pci_config_intf,
1974        .config_erp             = rt2500pci_config_erp,
1975        .config_ant             = rt2500pci_config_ant,
1976        .config                 = rt2500pci_config,
1977};
1978
1979static const struct data_queue_desc rt2500pci_queue_rx = {
1980        .entry_num              = 32,
1981        .data_size              = DATA_FRAME_SIZE,
1982        .desc_size              = RXD_DESC_SIZE,
1983        .priv_size              = sizeof(struct queue_entry_priv_pci),
1984};
1985
1986static const struct data_queue_desc rt2500pci_queue_tx = {
1987        .entry_num              = 32,
1988        .data_size              = DATA_FRAME_SIZE,
1989        .desc_size              = TXD_DESC_SIZE,
1990        .priv_size              = sizeof(struct queue_entry_priv_pci),
1991};
1992
1993static const struct data_queue_desc rt2500pci_queue_bcn = {
1994        .entry_num              = 1,
1995        .data_size              = MGMT_FRAME_SIZE,
1996        .desc_size              = TXD_DESC_SIZE,
1997        .priv_size              = sizeof(struct queue_entry_priv_pci),
1998};
1999
2000static const struct data_queue_desc rt2500pci_queue_atim = {
2001        .entry_num              = 8,
2002        .data_size              = DATA_FRAME_SIZE,
2003        .desc_size              = TXD_DESC_SIZE,
2004        .priv_size              = sizeof(struct queue_entry_priv_pci),
2005};
2006
2007static const struct rt2x00_ops rt2500pci_ops = {
2008        .name                   = KBUILD_MODNAME,
2009        .max_sta_intf           = 1,
2010        .max_ap_intf            = 1,
2011        .eeprom_size            = EEPROM_SIZE,
2012        .rf_size                = RF_SIZE,
2013        .tx_queues              = NUM_TX_QUEUES,
2014        .extra_tx_headroom      = 0,
2015        .rx                     = &rt2500pci_queue_rx,
2016        .tx                     = &rt2500pci_queue_tx,
2017        .bcn                    = &rt2500pci_queue_bcn,
2018        .atim                   = &rt2500pci_queue_atim,
2019        .lib                    = &rt2500pci_rt2x00_ops,
2020        .hw                     = &rt2500pci_mac80211_ops,
2021#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2022        .debugfs                = &rt2500pci_rt2x00debug,
2023#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2024};
2025
2026/*
2027 * RT2500pci module information.
2028 */
2029static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
2030        { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
2031        { 0, }
2032};
2033
2034MODULE_AUTHOR(DRV_PROJECT);
2035MODULE_VERSION(DRV_VERSION);
2036MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2037MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2038MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2039MODULE_LICENSE("GPL");
2040
2041static struct pci_driver rt2500pci_driver = {
2042        .name           = KBUILD_MODNAME,
2043        .id_table       = rt2500pci_device_table,
2044        .probe          = rt2x00pci_probe,
2045        .remove         = __devexit_p(rt2x00pci_remove),
2046        .suspend        = rt2x00pci_suspend,
2047        .resume         = rt2x00pci_resume,
2048};
2049
2050static int __init rt2500pci_init(void)
2051{
2052        return pci_register_driver(&rt2500pci_driver);
2053}
2054
2055static void __exit rt2500pci_exit(void)
2056{
2057        pci_unregister_driver(&rt2500pci_driver);
2058}
2059
2060module_init(rt2500pci_init);
2061module_exit(rt2500pci_exit);
2062