linux/drivers/net/wireless/rt2x00/rt61pci.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, write to the
  17        Free Software Foundation, Inc.,
  18        59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22        Module: rt61pci
  23        Abstract: rt61pci device specific routines.
  24        Supported chipsets: RT2561, RT2561s, RT2661.
  25 */
  26
  27#include <linux/crc-itu-t.h>
  28#include <linux/delay.h>
  29#include <linux/etherdevice.h>
  30#include <linux/init.h>
  31#include <linux/kernel.h>
  32#include <linux/module.h>
  33#include <linux/slab.h>
  34#include <linux/pci.h>
  35#include <linux/eeprom_93cx6.h>
  36
  37#include "rt2x00.h"
  38#include "rt2x00pci.h"
  39#include "rt61pci.h"
  40
  41/*
  42 * Allow hardware encryption to be disabled.
  43 */
  44static int modparam_nohwcrypt = 0;
  45module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  46MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  47
  48/*
  49 * Register access.
  50 * BBP and RF register require indirect register access,
  51 * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
  52 * These indirect registers work with busy bits,
  53 * and we will try maximal REGISTER_BUSY_COUNT times to access
  54 * the register while taking a REGISTER_BUSY_DELAY us delay
  55 * between each attempt. When the busy bit is still set at that time,
  56 * the access attempt is considered to have failed,
  57 * and we will print an error.
  58 */
  59#define WAIT_FOR_BBP(__dev, __reg) \
  60        rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
  61#define WAIT_FOR_RF(__dev, __reg) \
  62        rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
  63#define WAIT_FOR_MCU(__dev, __reg) \
  64        rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
  65                               H2M_MAILBOX_CSR_OWNER, (__reg))
  66
  67static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  68                              const unsigned int word, const u8 value)
  69{
  70        u32 reg;
  71
  72        mutex_lock(&rt2x00dev->csr_mutex);
  73
  74        /*
  75         * Wait until the BBP becomes available, afterwards we
  76         * can safely write the new data into the register.
  77         */
  78        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  79                reg = 0;
  80                rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
  81                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
  82                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
  83                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
  84
  85                rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
  86        }
  87
  88        mutex_unlock(&rt2x00dev->csr_mutex);
  89}
  90
  91static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  92                             const unsigned int word, u8 *value)
  93{
  94        u32 reg;
  95
  96        mutex_lock(&rt2x00dev->csr_mutex);
  97
  98        /*
  99         * Wait until the BBP becomes available, afterwards we
 100         * can safely write the read request into the register.
 101         * After the data has been written, we wait until hardware
 102         * returns the correct value, if at any time the register
 103         * doesn't become available in time, reg will be 0xffffffff
 104         * which means we return 0xff to the caller.
 105         */
 106        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 107                reg = 0;
 108                rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
 109                rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
 110                rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
 111
 112                rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
 113
 114                WAIT_FOR_BBP(rt2x00dev, &reg);
 115        }
 116
 117        *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
 118
 119        mutex_unlock(&rt2x00dev->csr_mutex);
 120}
 121
 122static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
 123                             const unsigned int word, const u32 value)
 124{
 125        u32 reg;
 126
 127        mutex_lock(&rt2x00dev->csr_mutex);
 128
 129        /*
 130         * Wait until the RF becomes available, afterwards we
 131         * can safely write the new data into the register.
 132         */
 133        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 134                reg = 0;
 135                rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
 136                rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
 137                rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
 138                rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
 139
 140                rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
 141                rt2x00_rf_write(rt2x00dev, word, value);
 142        }
 143
 144        mutex_unlock(&rt2x00dev->csr_mutex);
 145}
 146
 147static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
 148                                const u8 command, const u8 token,
 149                                const u8 arg0, const u8 arg1)
 150{
 151        u32 reg;
 152
 153        mutex_lock(&rt2x00dev->csr_mutex);
 154
 155        /*
 156         * Wait until the MCU becomes available, afterwards we
 157         * can safely write the new data into the register.
 158         */
 159        if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
 160                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
 161                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
 162                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
 163                rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
 164                rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
 165
 166                rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
 167                rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
 168                rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
 169                rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
 170        }
 171
 172        mutex_unlock(&rt2x00dev->csr_mutex);
 173
 174}
 175
 176static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 177{
 178        struct rt2x00_dev *rt2x00dev = eeprom->data;
 179        u32 reg;
 180
 181        rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
 182
 183        eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
 184        eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
 185        eeprom->reg_data_clock =
 186            !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
 187        eeprom->reg_chip_select =
 188            !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
 189}
 190
 191static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 192{
 193        struct rt2x00_dev *rt2x00dev = eeprom->data;
 194        u32 reg = 0;
 195
 196        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
 197        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
 198        rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
 199                           !!eeprom->reg_data_clock);
 200        rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
 201                           !!eeprom->reg_chip_select);
 202
 203        rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
 204}
 205
 206#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 207static const struct rt2x00debug rt61pci_rt2x00debug = {
 208        .owner  = THIS_MODULE,
 209        .csr    = {
 210                .read           = rt2x00pci_register_read,
 211                .write          = rt2x00pci_register_write,
 212                .flags          = RT2X00DEBUGFS_OFFSET,
 213                .word_base      = CSR_REG_BASE,
 214                .word_size      = sizeof(u32),
 215                .word_count     = CSR_REG_SIZE / sizeof(u32),
 216        },
 217        .eeprom = {
 218                .read           = rt2x00_eeprom_read,
 219                .write          = rt2x00_eeprom_write,
 220                .word_base      = EEPROM_BASE,
 221                .word_size      = sizeof(u16),
 222                .word_count     = EEPROM_SIZE / sizeof(u16),
 223        },
 224        .bbp    = {
 225                .read           = rt61pci_bbp_read,
 226                .write          = rt61pci_bbp_write,
 227                .word_base      = BBP_BASE,
 228                .word_size      = sizeof(u8),
 229                .word_count     = BBP_SIZE / sizeof(u8),
 230        },
 231        .rf     = {
 232                .read           = rt2x00_rf_read,
 233                .write          = rt61pci_rf_write,
 234                .word_base      = RF_BASE,
 235                .word_size      = sizeof(u32),
 236                .word_count     = RF_SIZE / sizeof(u32),
 237        },
 238};
 239#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 240
 241static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 242{
 243        u32 reg;
 244
 245        rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
 246        return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
 247}
 248
 249#ifdef CONFIG_RT2X00_LIB_LEDS
 250static void rt61pci_brightness_set(struct led_classdev *led_cdev,
 251                                   enum led_brightness brightness)
 252{
 253        struct rt2x00_led *led =
 254            container_of(led_cdev, struct rt2x00_led, led_dev);
 255        unsigned int enabled = brightness != LED_OFF;
 256        unsigned int a_mode =
 257            (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 258        unsigned int bg_mode =
 259            (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 260
 261        if (led->type == LED_TYPE_RADIO) {
 262                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 263                                   MCU_LEDCS_RADIO_STATUS, enabled);
 264
 265                rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 266                                    (led->rt2x00dev->led_mcu_reg & 0xff),
 267                                    ((led->rt2x00dev->led_mcu_reg >> 8)));
 268        } else if (led->type == LED_TYPE_ASSOC) {
 269                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 270                                   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
 271                rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
 272                                   MCU_LEDCS_LINK_A_STATUS, a_mode);
 273
 274                rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
 275                                    (led->rt2x00dev->led_mcu_reg & 0xff),
 276                                    ((led->rt2x00dev->led_mcu_reg >> 8)));
 277        } else if (led->type == LED_TYPE_QUALITY) {
 278                /*
 279                 * The brightness is divided into 6 levels (0 - 5),
 280                 * this means we need to convert the brightness
 281                 * argument into the matching level within that range.
 282                 */
 283                rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
 284                                    brightness / (LED_FULL / 6), 0);
 285        }
 286}
 287
 288static int rt61pci_blink_set(struct led_classdev *led_cdev,
 289                             unsigned long *delay_on,
 290                             unsigned long *delay_off)
 291{
 292        struct rt2x00_led *led =
 293            container_of(led_cdev, struct rt2x00_led, led_dev);
 294        u32 reg;
 295
 296        rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
 297        rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
 298        rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
 299        rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
 300
 301        return 0;
 302}
 303
 304static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
 305                             struct rt2x00_led *led,
 306                             enum led_type type)
 307{
 308        led->rt2x00dev = rt2x00dev;
 309        led->type = type;
 310        led->led_dev.brightness_set = rt61pci_brightness_set;
 311        led->led_dev.blink_set = rt61pci_blink_set;
 312        led->flags = LED_INITIALIZED;
 313}
 314#endif /* CONFIG_RT2X00_LIB_LEDS */
 315
 316/*
 317 * Configuration handlers.
 318 */
 319static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
 320                                     struct rt2x00lib_crypto *crypto,
 321                                     struct ieee80211_key_conf *key)
 322{
 323        struct hw_key_entry key_entry;
 324        struct rt2x00_field32 field;
 325        u32 mask;
 326        u32 reg;
 327
 328        if (crypto->cmd == SET_KEY) {
 329                /*
 330                 * rt2x00lib can't determine the correct free
 331                 * key_idx for shared keys. We have 1 register
 332                 * with key valid bits. The goal is simple, read
 333                 * the register, if that is full we have no slots
 334                 * left.
 335                 * Note that each BSS is allowed to have up to 4
 336                 * shared keys, so put a mask over the allowed
 337                 * entries.
 338                 */
 339                mask = (0xf << crypto->bssidx);
 340
 341                rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
 342                reg &= mask;
 343
 344                if (reg && reg == mask)
 345                        return -ENOSPC;
 346
 347                key->hw_key_idx += reg ? ffz(reg) : 0;
 348
 349                /*
 350                 * Upload key to hardware
 351                 */
 352                memcpy(key_entry.key, crypto->key,
 353                       sizeof(key_entry.key));
 354                memcpy(key_entry.tx_mic, crypto->tx_mic,
 355                       sizeof(key_entry.tx_mic));
 356                memcpy(key_entry.rx_mic, crypto->rx_mic,
 357                       sizeof(key_entry.rx_mic));
 358
 359                reg = SHARED_KEY_ENTRY(key->hw_key_idx);
 360                rt2x00pci_register_multiwrite(rt2x00dev, reg,
 361                                              &key_entry, sizeof(key_entry));
 362
 363                /*
 364                 * The cipher types are stored over 2 registers.
 365                 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
 366                 * bssidx 1 and 2 keys are stored in SEC_CSR5.
 367                 * Using the correct defines correctly will cause overhead,
 368                 * so just calculate the correct offset.
 369                 */
 370                if (key->hw_key_idx < 8) {
 371                        field.bit_offset = (3 * key->hw_key_idx);
 372                        field.bit_mask = 0x7 << field.bit_offset;
 373
 374                        rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
 375                        rt2x00_set_field32(&reg, field, crypto->cipher);
 376                        rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
 377                } else {
 378                        field.bit_offset = (3 * (key->hw_key_idx - 8));
 379                        field.bit_mask = 0x7 << field.bit_offset;
 380
 381                        rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
 382                        rt2x00_set_field32(&reg, field, crypto->cipher);
 383                        rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
 384                }
 385
 386                /*
 387                 * The driver does not support the IV/EIV generation
 388                 * in hardware. However it doesn't support the IV/EIV
 389                 * inside the ieee80211 frame either, but requires it
 390                 * to be provided separately for the descriptor.
 391                 * rt2x00lib will cut the IV/EIV data out of all frames
 392                 * given to us by mac80211, but we must tell mac80211
 393                 * to generate the IV/EIV data.
 394                 */
 395                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 396        }
 397
 398        /*
 399         * SEC_CSR0 contains only single-bit fields to indicate
 400         * a particular key is valid. Because using the FIELD32()
 401         * defines directly will cause a lot of overhead, we use
 402         * a calculation to determine the correct bit directly.
 403         */
 404        mask = 1 << key->hw_key_idx;
 405
 406        rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
 407        if (crypto->cmd == SET_KEY)
 408                reg |= mask;
 409        else if (crypto->cmd == DISABLE_KEY)
 410                reg &= ~mask;
 411        rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
 412
 413        return 0;
 414}
 415
 416static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
 417                                       struct rt2x00lib_crypto *crypto,
 418                                       struct ieee80211_key_conf *key)
 419{
 420        struct hw_pairwise_ta_entry addr_entry;
 421        struct hw_key_entry key_entry;
 422        u32 mask;
 423        u32 reg;
 424
 425        if (crypto->cmd == SET_KEY) {
 426                /*
 427                 * rt2x00lib can't determine the correct free
 428                 * key_idx for pairwise keys. We have 2 registers
 429                 * with key valid bits. The goal is simple: read
 430                 * the first register. If that is full, move to
 431                 * the next register.
 432                 * When both registers are full, we drop the key.
 433                 * Otherwise, we use the first invalid entry.
 434                 */
 435                rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
 436                if (reg && reg == ~0) {
 437                        key->hw_key_idx = 32;
 438                        rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
 439                        if (reg && reg == ~0)
 440                                return -ENOSPC;
 441                }
 442
 443                key->hw_key_idx += reg ? ffz(reg) : 0;
 444
 445                /*
 446                 * Upload key to hardware
 447                 */
 448                memcpy(key_entry.key, crypto->key,
 449                       sizeof(key_entry.key));
 450                memcpy(key_entry.tx_mic, crypto->tx_mic,
 451                       sizeof(key_entry.tx_mic));
 452                memcpy(key_entry.rx_mic, crypto->rx_mic,
 453                       sizeof(key_entry.rx_mic));
 454
 455                memset(&addr_entry, 0, sizeof(addr_entry));
 456                memcpy(&addr_entry, crypto->address, ETH_ALEN);
 457                addr_entry.cipher = crypto->cipher;
 458
 459                reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
 460                rt2x00pci_register_multiwrite(rt2x00dev, reg,
 461                                              &key_entry, sizeof(key_entry));
 462
 463                reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
 464                rt2x00pci_register_multiwrite(rt2x00dev, reg,
 465                                              &addr_entry, sizeof(addr_entry));
 466
 467                /*
 468                 * Enable pairwise lookup table for given BSS idx.
 469                 * Without this, received frames will not be decrypted
 470                 * by the hardware.
 471                 */
 472                rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
 473                reg |= (1 << crypto->bssidx);
 474                rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
 475
 476                /*
 477                 * The driver does not support the IV/EIV generation
 478                 * in hardware. However it doesn't support the IV/EIV
 479                 * inside the ieee80211 frame either, but requires it
 480                 * to be provided separately for the descriptor.
 481                 * rt2x00lib will cut the IV/EIV data out of all frames
 482                 * given to us by mac80211, but we must tell mac80211
 483                 * to generate the IV/EIV data.
 484                 */
 485                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 486        }
 487
 488        /*
 489         * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
 490         * a particular key is valid. Because using the FIELD32()
 491         * defines directly will cause a lot of overhead, we use
 492         * a calculation to determine the correct bit directly.
 493         */
 494        if (key->hw_key_idx < 32) {
 495                mask = 1 << key->hw_key_idx;
 496
 497                rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
 498                if (crypto->cmd == SET_KEY)
 499                        reg |= mask;
 500                else if (crypto->cmd == DISABLE_KEY)
 501                        reg &= ~mask;
 502                rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
 503        } else {
 504                mask = 1 << (key->hw_key_idx - 32);
 505
 506                rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
 507                if (crypto->cmd == SET_KEY)
 508                        reg |= mask;
 509                else if (crypto->cmd == DISABLE_KEY)
 510                        reg &= ~mask;
 511                rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
 512        }
 513
 514        return 0;
 515}
 516
 517static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
 518                                  const unsigned int filter_flags)
 519{
 520        u32 reg;
 521
 522        /*
 523         * Start configuration steps.
 524         * Note that the version error will always be dropped
 525         * and broadcast frames will always be accepted since
 526         * there is no filter for it at this time.
 527         */
 528        rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
 529        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
 530                           !(filter_flags & FIF_FCSFAIL));
 531        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
 532                           !(filter_flags & FIF_PLCPFAIL));
 533        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
 534                           !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
 535        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
 536                           !(filter_flags & FIF_PROMISC_IN_BSS));
 537        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
 538                           !(filter_flags & FIF_PROMISC_IN_BSS) &&
 539                           !rt2x00dev->intf_ap_count);
 540        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
 541        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
 542                           !(filter_flags & FIF_ALLMULTI));
 543        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
 544        rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
 545                           !(filter_flags & FIF_CONTROL));
 546        rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
 547}
 548
 549static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
 550                                struct rt2x00_intf *intf,
 551                                struct rt2x00intf_conf *conf,
 552                                const unsigned int flags)
 553{
 554        unsigned int beacon_base;
 555        u32 reg;
 556
 557        if (flags & CONFIG_UPDATE_TYPE) {
 558                /*
 559                 * Clear current synchronisation setup.
 560                 * For the Beacon base registers, we only need to clear
 561                 * the first byte since that byte contains the VALID and OWNER
 562                 * bits which (when set to 0) will invalidate the entire beacon.
 563                 */
 564                beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
 565                rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
 566
 567                /*
 568                 * Enable synchronisation.
 569                 */
 570                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
 571                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
 572                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
 573                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
 574                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
 575        }
 576
 577        if (flags & CONFIG_UPDATE_MAC) {
 578                reg = le32_to_cpu(conf->mac[1]);
 579                rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
 580                conf->mac[1] = cpu_to_le32(reg);
 581
 582                rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
 583                                              conf->mac, sizeof(conf->mac));
 584        }
 585
 586        if (flags & CONFIG_UPDATE_BSSID) {
 587                reg = le32_to_cpu(conf->bssid[1]);
 588                rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
 589                conf->bssid[1] = cpu_to_le32(reg);
 590
 591                rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
 592                                              conf->bssid, sizeof(conf->bssid));
 593        }
 594}
 595
 596static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
 597                               struct rt2x00lib_erp *erp,
 598                               u32 changed)
 599{
 600        u32 reg;
 601
 602        rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
 603        rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
 604        rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
 605        rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
 606
 607        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 608                rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
 609                rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
 610                rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
 611                                   !!erp->short_preamble);
 612                rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
 613        }
 614
 615        if (changed & BSS_CHANGED_BASIC_RATES)
 616                rt2x00pci_register_write(rt2x00dev, TXRX_CSR5,
 617                                         erp->basic_rates);
 618
 619        if (changed & BSS_CHANGED_BEACON_INT) {
 620                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
 621                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
 622                                   erp->beacon_int * 16);
 623                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
 624        }
 625
 626        if (changed & BSS_CHANGED_ERP_SLOT) {
 627                rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
 628                rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
 629                rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
 630
 631                rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
 632                rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
 633                rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
 634                rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
 635                rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
 636        }
 637}
 638
 639static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
 640                                      struct antenna_setup *ant)
 641{
 642        u8 r3;
 643        u8 r4;
 644        u8 r77;
 645
 646        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 647        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 648        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 649
 650        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
 651
 652        /*
 653         * Configure the RX antenna.
 654         */
 655        switch (ant->rx) {
 656        case ANTENNA_HW_DIVERSITY:
 657                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 658                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 659                                  (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
 660                break;
 661        case ANTENNA_A:
 662                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 663                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 664                if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 665                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 666                else
 667                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 668                break;
 669        case ANTENNA_B:
 670        default:
 671                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 672                rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
 673                if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
 674                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 675                else
 676                        rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 677                break;
 678        }
 679
 680        rt61pci_bbp_write(rt2x00dev, 77, r77);
 681        rt61pci_bbp_write(rt2x00dev, 3, r3);
 682        rt61pci_bbp_write(rt2x00dev, 4, r4);
 683}
 684
 685static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
 686                                      struct antenna_setup *ant)
 687{
 688        u8 r3;
 689        u8 r4;
 690        u8 r77;
 691
 692        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 693        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 694        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 695
 696        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
 697        rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
 698                          !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
 699
 700        /*
 701         * Configure the RX antenna.
 702         */
 703        switch (ant->rx) {
 704        case ANTENNA_HW_DIVERSITY:
 705                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
 706                break;
 707        case ANTENNA_A:
 708                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 709                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 710                break;
 711        case ANTENNA_B:
 712        default:
 713                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 714                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 715                break;
 716        }
 717
 718        rt61pci_bbp_write(rt2x00dev, 77, r77);
 719        rt61pci_bbp_write(rt2x00dev, 3, r3);
 720        rt61pci_bbp_write(rt2x00dev, 4, r4);
 721}
 722
 723static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
 724                                           const int p1, const int p2)
 725{
 726        u32 reg;
 727
 728        rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
 729
 730        rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
 731        rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
 732
 733        rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
 734        rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
 735
 736        rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
 737}
 738
 739static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
 740                                        struct antenna_setup *ant)
 741{
 742        u8 r3;
 743        u8 r4;
 744        u8 r77;
 745
 746        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 747        rt61pci_bbp_read(rt2x00dev, 4, &r4);
 748        rt61pci_bbp_read(rt2x00dev, 77, &r77);
 749
 750        /*
 751         * Configure the RX antenna.
 752         */
 753        switch (ant->rx) {
 754        case ANTENNA_A:
 755                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 756                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
 757                rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
 758                break;
 759        case ANTENNA_HW_DIVERSITY:
 760                /*
 761                 * FIXME: Antenna selection for the rf 2529 is very confusing
 762                 * in the legacy driver. Just default to antenna B until the
 763                 * legacy code can be properly translated into rt2x00 code.
 764                 */
 765        case ANTENNA_B:
 766        default:
 767                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
 768                rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
 769                rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
 770                break;
 771        }
 772
 773        rt61pci_bbp_write(rt2x00dev, 77, r77);
 774        rt61pci_bbp_write(rt2x00dev, 3, r3);
 775        rt61pci_bbp_write(rt2x00dev, 4, r4);
 776}
 777
 778struct antenna_sel {
 779        u8 word;
 780        /*
 781         * value[0] -> non-LNA
 782         * value[1] -> LNA
 783         */
 784        u8 value[2];
 785};
 786
 787static const struct antenna_sel antenna_sel_a[] = {
 788        { 96,  { 0x58, 0x78 } },
 789        { 104, { 0x38, 0x48 } },
 790        { 75,  { 0xfe, 0x80 } },
 791        { 86,  { 0xfe, 0x80 } },
 792        { 88,  { 0xfe, 0x80 } },
 793        { 35,  { 0x60, 0x60 } },
 794        { 97,  { 0x58, 0x58 } },
 795        { 98,  { 0x58, 0x58 } },
 796};
 797
 798static const struct antenna_sel antenna_sel_bg[] = {
 799        { 96,  { 0x48, 0x68 } },
 800        { 104, { 0x2c, 0x3c } },
 801        { 75,  { 0xfe, 0x80 } },
 802        { 86,  { 0xfe, 0x80 } },
 803        { 88,  { 0xfe, 0x80 } },
 804        { 35,  { 0x50, 0x50 } },
 805        { 97,  { 0x48, 0x48 } },
 806        { 98,  { 0x48, 0x48 } },
 807};
 808
 809static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
 810                               struct antenna_setup *ant)
 811{
 812        const struct antenna_sel *sel;
 813        unsigned int lna;
 814        unsigned int i;
 815        u32 reg;
 816
 817        /*
 818         * We should never come here because rt2x00lib is supposed
 819         * to catch this and send us the correct antenna explicitely.
 820         */
 821        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 822               ant->tx == ANTENNA_SW_DIVERSITY);
 823
 824        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
 825                sel = antenna_sel_a;
 826                lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
 827        } else {
 828                sel = antenna_sel_bg;
 829                lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
 830        }
 831
 832        for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
 833                rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
 834
 835        rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
 836
 837        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
 838                           rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
 839        rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
 840                           rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
 841
 842        rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
 843
 844        if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
 845                rt61pci_config_antenna_5x(rt2x00dev, ant);
 846        else if (rt2x00_rf(rt2x00dev, RF2527))
 847                rt61pci_config_antenna_2x(rt2x00dev, ant);
 848        else if (rt2x00_rf(rt2x00dev, RF2529)) {
 849                if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
 850                        rt61pci_config_antenna_2x(rt2x00dev, ant);
 851                else
 852                        rt61pci_config_antenna_2529(rt2x00dev, ant);
 853        }
 854}
 855
 856static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
 857                                    struct rt2x00lib_conf *libconf)
 858{
 859        u16 eeprom;
 860        short lna_gain = 0;
 861
 862        if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
 863                if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
 864                        lna_gain += 14;
 865
 866                rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
 867                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
 868        } else {
 869                if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
 870                        lna_gain += 14;
 871
 872                rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
 873                lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
 874        }
 875
 876        rt2x00dev->lna_gain = lna_gain;
 877}
 878
 879static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
 880                                   struct rf_channel *rf, const int txpower)
 881{
 882        u8 r3;
 883        u8 r94;
 884        u8 smart;
 885
 886        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 887        rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
 888
 889        smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
 890
 891        rt61pci_bbp_read(rt2x00dev, 3, &r3);
 892        rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
 893        rt61pci_bbp_write(rt2x00dev, 3, r3);
 894
 895        r94 = 6;
 896        if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
 897                r94 += txpower - MAX_TXPOWER;
 898        else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
 899                r94 += txpower;
 900        rt61pci_bbp_write(rt2x00dev, 94, r94);
 901
 902        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 903        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 904        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 905        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 906
 907        udelay(200);
 908
 909        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 910        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 911        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
 912        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 913
 914        udelay(200);
 915
 916        rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
 917        rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
 918        rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
 919        rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
 920
 921        msleep(1);
 922}
 923
 924static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 925                                   const int txpower)
 926{
 927        struct rf_channel rf;
 928
 929        rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
 930        rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
 931        rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
 932        rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
 933
 934        rt61pci_config_channel(rt2x00dev, &rf, txpower);
 935}
 936
 937static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 938                                    struct rt2x00lib_conf *libconf)
 939{
 940        u32 reg;
 941
 942        rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
 943        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
 944        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
 945        rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
 946        rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
 947                           libconf->conf->long_frame_max_tx_count);
 948        rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
 949                           libconf->conf->short_frame_max_tx_count);
 950        rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
 951}
 952
 953static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
 954                                struct rt2x00lib_conf *libconf)
 955{
 956        enum dev_state state =
 957            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 958                STATE_SLEEP : STATE_AWAKE;
 959        u32 reg;
 960
 961        if (state == STATE_SLEEP) {
 962                rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
 963                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
 964                                   rt2x00dev->beacon_int - 10);
 965                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
 966                                   libconf->conf->listen_interval - 1);
 967                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
 968
 969                /* We must first disable autowake before it can be enabled */
 970                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 971                rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 972
 973                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
 974                rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 975
 976                rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
 977                rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
 978                rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
 979
 980                rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
 981        } else {
 982                rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
 983                rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
 984                rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
 985                rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
 986                rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
 987                rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
 988
 989                rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
 990                rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
 991                rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
 992
 993                rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
 994        }
 995}
 996
 997static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
 998                           struct rt2x00lib_conf *libconf,
 999                           const unsigned int flags)
1000{
1001        /* Always recalculate LNA gain before changing configuration */
1002        rt61pci_config_lna_gain(rt2x00dev, libconf);
1003
1004        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
1005                rt61pci_config_channel(rt2x00dev, &libconf->rf,
1006                                       libconf->conf->power_level);
1007        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1008            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1009                rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1010        if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1011                rt61pci_config_retry_limit(rt2x00dev, libconf);
1012        if (flags & IEEE80211_CONF_CHANGE_PS)
1013                rt61pci_config_ps(rt2x00dev, libconf);
1014}
1015
1016/*
1017 * Link tuning
1018 */
1019static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1020                               struct link_qual *qual)
1021{
1022        u32 reg;
1023
1024        /*
1025         * Update FCS error count from register.
1026         */
1027        rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1028        qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1029
1030        /*
1031         * Update False CCA count from register.
1032         */
1033        rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1034        qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1035}
1036
1037static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1038                                   struct link_qual *qual, u8 vgc_level)
1039{
1040        if (qual->vgc_level != vgc_level) {
1041                rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1042                qual->vgc_level = vgc_level;
1043                qual->vgc_level_reg = vgc_level;
1044        }
1045}
1046
1047static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1048                                struct link_qual *qual)
1049{
1050        rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1051}
1052
1053static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1054                               struct link_qual *qual, const u32 count)
1055{
1056        u8 up_bound;
1057        u8 low_bound;
1058
1059        /*
1060         * Determine r17 bounds.
1061         */
1062        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1063                low_bound = 0x28;
1064                up_bound = 0x48;
1065                if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1066                        low_bound += 0x10;
1067                        up_bound += 0x10;
1068                }
1069        } else {
1070                low_bound = 0x20;
1071                up_bound = 0x40;
1072                if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1073                        low_bound += 0x10;
1074                        up_bound += 0x10;
1075                }
1076        }
1077
1078        /*
1079         * If we are not associated, we should go straight to the
1080         * dynamic CCA tuning.
1081         */
1082        if (!rt2x00dev->intf_associated)
1083                goto dynamic_cca_tune;
1084
1085        /*
1086         * Special big-R17 for very short distance
1087         */
1088        if (qual->rssi >= -35) {
1089                rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1090                return;
1091        }
1092
1093        /*
1094         * Special big-R17 for short distance
1095         */
1096        if (qual->rssi >= -58) {
1097                rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1098                return;
1099        }
1100
1101        /*
1102         * Special big-R17 for middle-short distance
1103         */
1104        if (qual->rssi >= -66) {
1105                rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1106                return;
1107        }
1108
1109        /*
1110         * Special mid-R17 for middle distance
1111         */
1112        if (qual->rssi >= -74) {
1113                rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1114                return;
1115        }
1116
1117        /*
1118         * Special case: Change up_bound based on the rssi.
1119         * Lower up_bound when rssi is weaker then -74 dBm.
1120         */
1121        up_bound -= 2 * (-74 - qual->rssi);
1122        if (low_bound > up_bound)
1123                up_bound = low_bound;
1124
1125        if (qual->vgc_level > up_bound) {
1126                rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1127                return;
1128        }
1129
1130dynamic_cca_tune:
1131
1132        /*
1133         * r17 does not yet exceed upper limit, continue and base
1134         * the r17 tuning on the false CCA count.
1135         */
1136        if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1137                rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1138        else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1139                rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1140}
1141
1142/*
1143 * Queue handlers.
1144 */
1145static void rt61pci_start_queue(struct data_queue *queue)
1146{
1147        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1148        u32 reg;
1149
1150        switch (queue->qid) {
1151        case QID_RX:
1152                rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1153                rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1154                rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1155                break;
1156        case QID_BEACON:
1157                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1158                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1159                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1160                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1161                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1162                break;
1163        default:
1164                break;
1165        }
1166}
1167
1168static void rt61pci_kick_queue(struct data_queue *queue)
1169{
1170        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1171        u32 reg;
1172
1173        switch (queue->qid) {
1174        case QID_AC_VO:
1175                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1176                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1177                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1178                break;
1179        case QID_AC_VI:
1180                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1181                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1182                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1183                break;
1184        case QID_AC_BE:
1185                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1186                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1187                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1188                break;
1189        case QID_AC_BK:
1190                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1191                rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1192                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1193                break;
1194        default:
1195                break;
1196        }
1197}
1198
1199static void rt61pci_stop_queue(struct data_queue *queue)
1200{
1201        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1202        u32 reg;
1203
1204        switch (queue->qid) {
1205        case QID_AC_VO:
1206                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1207                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1208                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1209                break;
1210        case QID_AC_VI:
1211                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1212                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1213                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1214                break;
1215        case QID_AC_BE:
1216                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1217                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1218                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1219                break;
1220        case QID_AC_BK:
1221                rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1222                rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1223                rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1224                break;
1225        case QID_RX:
1226                rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1227                rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1228                rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1229                break;
1230        case QID_BEACON:
1231                rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1232                rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1233                rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1234                rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1235                rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1236                break;
1237        default:
1238                break;
1239        }
1240}
1241
1242/*
1243 * Firmware functions
1244 */
1245static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1246{
1247        u16 chip;
1248        char *fw_name;
1249
1250        pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1251        switch (chip) {
1252        case RT2561_PCI_ID:
1253                fw_name = FIRMWARE_RT2561;
1254                break;
1255        case RT2561s_PCI_ID:
1256                fw_name = FIRMWARE_RT2561s;
1257                break;
1258        case RT2661_PCI_ID:
1259                fw_name = FIRMWARE_RT2661;
1260                break;
1261        default:
1262                fw_name = NULL;
1263                break;
1264        }
1265
1266        return fw_name;
1267}
1268
1269static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1270                                  const u8 *data, const size_t len)
1271{
1272        u16 fw_crc;
1273        u16 crc;
1274
1275        /*
1276         * Only support 8kb firmware files.
1277         */
1278        if (len != 8192)
1279                return FW_BAD_LENGTH;
1280
1281        /*
1282         * The last 2 bytes in the firmware array are the crc checksum itself.
1283         * This means that we should never pass those 2 bytes to the crc
1284         * algorithm.
1285         */
1286        fw_crc = (data[len - 2] << 8 | data[len - 1]);
1287
1288        /*
1289         * Use the crc itu-t algorithm.
1290         */
1291        crc = crc_itu_t(0, data, len - 2);
1292        crc = crc_itu_t_byte(crc, 0);
1293        crc = crc_itu_t_byte(crc, 0);
1294
1295        return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1296}
1297
1298static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1299                                 const u8 *data, const size_t len)
1300{
1301        int i;
1302        u32 reg;
1303
1304        /*
1305         * Wait for stable hardware.
1306         */
1307        for (i = 0; i < 100; i++) {
1308                rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1309                if (reg)
1310                        break;
1311                msleep(1);
1312        }
1313
1314        if (!reg) {
1315                ERROR(rt2x00dev, "Unstable hardware.\n");
1316                return -EBUSY;
1317        }
1318
1319        /*
1320         * Prepare MCU and mailbox for firmware loading.
1321         */
1322        reg = 0;
1323        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1324        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1325        rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1326        rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1327        rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1328
1329        /*
1330         * Write firmware to device.
1331         */
1332        reg = 0;
1333        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1334        rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1335        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1336
1337        rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1338                                      data, len);
1339
1340        rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1341        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1342
1343        rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1344        rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1345
1346        for (i = 0; i < 100; i++) {
1347                rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1348                if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1349                        break;
1350                msleep(1);
1351        }
1352
1353        if (i == 100) {
1354                ERROR(rt2x00dev, "MCU Control register not ready.\n");
1355                return -EBUSY;
1356        }
1357
1358        /*
1359         * Hardware needs another millisecond before it is ready.
1360         */
1361        msleep(1);
1362
1363        /*
1364         * Reset MAC and BBP registers.
1365         */
1366        reg = 0;
1367        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1368        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1369        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1370
1371        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1372        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1373        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1374        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1375
1376        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1377        rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1378        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1379
1380        return 0;
1381}
1382
1383/*
1384 * Initialization functions.
1385 */
1386static bool rt61pci_get_entry_state(struct queue_entry *entry)
1387{
1388        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1389        u32 word;
1390
1391        if (entry->queue->qid == QID_RX) {
1392                rt2x00_desc_read(entry_priv->desc, 0, &word);
1393
1394                return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1395        } else {
1396                rt2x00_desc_read(entry_priv->desc, 0, &word);
1397
1398                return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1399                        rt2x00_get_field32(word, TXD_W0_VALID));
1400        }
1401}
1402
1403static void rt61pci_clear_entry(struct queue_entry *entry)
1404{
1405        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1406        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1407        u32 word;
1408
1409        if (entry->queue->qid == QID_RX) {
1410                rt2x00_desc_read(entry_priv->desc, 5, &word);
1411                rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1412                                   skbdesc->skb_dma);
1413                rt2x00_desc_write(entry_priv->desc, 5, word);
1414
1415                rt2x00_desc_read(entry_priv->desc, 0, &word);
1416                rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1417                rt2x00_desc_write(entry_priv->desc, 0, word);
1418        } else {
1419                rt2x00_desc_read(entry_priv->desc, 0, &word);
1420                rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1421                rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1422                rt2x00_desc_write(entry_priv->desc, 0, word);
1423        }
1424}
1425
1426static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1427{
1428        struct queue_entry_priv_pci *entry_priv;
1429        u32 reg;
1430
1431        /*
1432         * Initialize registers.
1433         */
1434        rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1435        rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1436                           rt2x00dev->tx[0].limit);
1437        rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1438                           rt2x00dev->tx[1].limit);
1439        rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1440                           rt2x00dev->tx[2].limit);
1441        rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1442                           rt2x00dev->tx[3].limit);
1443        rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1444
1445        rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1446        rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1447                           rt2x00dev->tx[0].desc_size / 4);
1448        rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1449
1450        entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1451        rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1452        rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1453                           entry_priv->desc_dma);
1454        rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1455
1456        entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1457        rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1458        rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1459                           entry_priv->desc_dma);
1460        rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1461
1462        entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1463        rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1464        rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1465                           entry_priv->desc_dma);
1466        rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1467
1468        entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1469        rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1470        rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1471                           entry_priv->desc_dma);
1472        rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1473
1474        rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1475        rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1476        rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1477                           rt2x00dev->rx->desc_size / 4);
1478        rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1479        rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1480
1481        entry_priv = rt2x00dev->rx->entries[0].priv_data;
1482        rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1483        rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1484                           entry_priv->desc_dma);
1485        rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1486
1487        rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1488        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1489        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1490        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1491        rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1492        rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1493
1494        rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1495        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1496        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1497        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1498        rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1499        rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1500
1501        rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1502        rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1503        rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1504
1505        return 0;
1506}
1507
1508static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1509{
1510        u32 reg;
1511
1512        rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1513        rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1514        rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1515        rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1516        rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1517
1518        rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1519        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1520        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1521        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1522        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1523        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1524        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1525        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1526        rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1527        rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1528
1529        /*
1530         * CCK TXD BBP registers
1531         */
1532        rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1533        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1534        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1535        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1536        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1537        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1538        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1539        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1540        rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1541        rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1542
1543        /*
1544         * OFDM TXD BBP registers
1545         */
1546        rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1547        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1548        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1549        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1550        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1551        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1552        rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1553        rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1554
1555        rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1556        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1557        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1558        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1559        rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1560        rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1561
1562        rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1563        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1564        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1565        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1566        rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1567        rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1568
1569        rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1570        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1571        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1572        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1573        rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1574        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1575        rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1576        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1577
1578        rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1579
1580        rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1581
1582        rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1583        rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1584        rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1585
1586        rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1587
1588        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1589                return -EBUSY;
1590
1591        rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1592
1593        /*
1594         * Invalidate all Shared Keys (SEC_CSR0),
1595         * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1596         */
1597        rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1598        rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1599        rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1600
1601        rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1602        rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1603        rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1604        rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1605
1606        rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1607
1608        rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1609
1610        rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1611
1612        /*
1613         * Clear all beacons
1614         * For the Beacon base registers we only need to clear
1615         * the first byte since that byte contains the VALID and OWNER
1616         * bits which (when set to 0) will invalidate the entire beacon.
1617         */
1618        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1619        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1620        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1621        rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1622
1623        /*
1624         * We must clear the error counters.
1625         * These registers are cleared on read,
1626         * so we may pass a useless variable to store the value.
1627         */
1628        rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1629        rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1630        rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1631
1632        /*
1633         * Reset MAC and BBP registers.
1634         */
1635        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1636        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1637        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1638        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1639
1640        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1641        rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1642        rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1643        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1644
1645        rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1646        rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1647        rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1648
1649        return 0;
1650}
1651
1652static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1653{
1654        unsigned int i;
1655        u8 value;
1656
1657        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1658                rt61pci_bbp_read(rt2x00dev, 0, &value);
1659                if ((value != 0xff) && (value != 0x00))
1660                        return 0;
1661                udelay(REGISTER_BUSY_DELAY);
1662        }
1663
1664        ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1665        return -EACCES;
1666}
1667
1668static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1669{
1670        unsigned int i;
1671        u16 eeprom;
1672        u8 reg_id;
1673        u8 value;
1674
1675        if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1676                return -EACCES;
1677
1678        rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1679        rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1680        rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1681        rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1682        rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1683        rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1684        rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1685        rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1686        rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1687        rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1688        rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1689        rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1690        rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1691        rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1692        rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1693        rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1694        rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1695        rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1696        rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1697        rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1698        rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1699        rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1700        rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1701        rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1702
1703        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1704                rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1705
1706                if (eeprom != 0xffff && eeprom != 0x0000) {
1707                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1708                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1709                        rt61pci_bbp_write(rt2x00dev, reg_id, value);
1710                }
1711        }
1712
1713        return 0;
1714}
1715
1716/*
1717 * Device state switch handlers.
1718 */
1719static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1720                               enum dev_state state)
1721{
1722        int mask = (state == STATE_RADIO_IRQ_OFF) ||
1723                   (state == STATE_RADIO_IRQ_OFF_ISR);
1724        u32 reg;
1725
1726        /*
1727         * When interrupts are being enabled, the interrupt registers
1728         * should clear the register to assure a clean state.
1729         */
1730        if (state == STATE_RADIO_IRQ_ON) {
1731                rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1732                rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1733
1734                rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1735                rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1736        }
1737
1738        /*
1739         * Only toggle the interrupts bits we are going to use.
1740         * Non-checked interrupt bits are disabled by default.
1741         */
1742        rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1743        rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1744        rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1745        rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1746        rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1747        rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1748        rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1749
1750        rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1751        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1752        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1753        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1754        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1755        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1756        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1757        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1758        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1759        rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1760        rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1761}
1762
1763static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1764{
1765        u32 reg;
1766
1767        /*
1768         * Initialize all registers.
1769         */
1770        if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1771                     rt61pci_init_registers(rt2x00dev) ||
1772                     rt61pci_init_bbp(rt2x00dev)))
1773                return -EIO;
1774
1775        /*
1776         * Enable RX.
1777         */
1778        rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1779        rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1780        rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1781
1782        return 0;
1783}
1784
1785static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1786{
1787        /*
1788         * Disable power
1789         */
1790        rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1791}
1792
1793static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1794{
1795        u32 reg, reg2;
1796        unsigned int i;
1797        char put_to_sleep;
1798
1799        put_to_sleep = (state != STATE_AWAKE);
1800
1801        rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1802        rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1803        rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1804        rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1805
1806        /*
1807         * Device is not guaranteed to be in the requested state yet.
1808         * We must wait until the register indicates that the
1809         * device has entered the correct state.
1810         */
1811        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1812                rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg2);
1813                state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1814                if (state == !put_to_sleep)
1815                        return 0;
1816                rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1817                msleep(10);
1818        }
1819
1820        return -EBUSY;
1821}
1822
1823static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1824                                    enum dev_state state)
1825{
1826        int retval = 0;
1827
1828        switch (state) {
1829        case STATE_RADIO_ON:
1830                retval = rt61pci_enable_radio(rt2x00dev);
1831                break;
1832        case STATE_RADIO_OFF:
1833                rt61pci_disable_radio(rt2x00dev);
1834                break;
1835        case STATE_RADIO_IRQ_ON:
1836        case STATE_RADIO_IRQ_ON_ISR:
1837        case STATE_RADIO_IRQ_OFF:
1838        case STATE_RADIO_IRQ_OFF_ISR:
1839                rt61pci_toggle_irq(rt2x00dev, state);
1840                break;
1841        case STATE_DEEP_SLEEP:
1842        case STATE_SLEEP:
1843        case STATE_STANDBY:
1844        case STATE_AWAKE:
1845                retval = rt61pci_set_state(rt2x00dev, state);
1846                break;
1847        default:
1848                retval = -ENOTSUPP;
1849                break;
1850        }
1851
1852        if (unlikely(retval))
1853                ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1854                      state, retval);
1855
1856        return retval;
1857}
1858
1859/*
1860 * TX descriptor initialization
1861 */
1862static void rt61pci_write_tx_desc(struct queue_entry *entry,
1863                                  struct txentry_desc *txdesc)
1864{
1865        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1866        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1867        __le32 *txd = entry_priv->desc;
1868        u32 word;
1869
1870        /*
1871         * Start writing the descriptor words.
1872         */
1873        rt2x00_desc_read(txd, 1, &word);
1874        rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1875        rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1876        rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1877        rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1878        rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1879        rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1880                           test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1881        rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1882        rt2x00_desc_write(txd, 1, word);
1883
1884        rt2x00_desc_read(txd, 2, &word);
1885        rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1886        rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1887        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1888        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1889        rt2x00_desc_write(txd, 2, word);
1890
1891        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1892                _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1893                _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1894        }
1895
1896        rt2x00_desc_read(txd, 5, &word);
1897        rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1898        rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1899                           skbdesc->entry->entry_idx);
1900        rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1901                           TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1902        rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1903        rt2x00_desc_write(txd, 5, word);
1904
1905        if (entry->queue->qid != QID_BEACON) {
1906                rt2x00_desc_read(txd, 6, &word);
1907                rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1908                                   skbdesc->skb_dma);
1909                rt2x00_desc_write(txd, 6, word);
1910
1911                rt2x00_desc_read(txd, 11, &word);
1912                rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1913                                   txdesc->length);
1914                rt2x00_desc_write(txd, 11, word);
1915        }
1916
1917        /*
1918         * Writing TXD word 0 must the last to prevent a race condition with
1919         * the device, whereby the device may take hold of the TXD before we
1920         * finished updating it.
1921         */
1922        rt2x00_desc_read(txd, 0, &word);
1923        rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1924        rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1925        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1926                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1927        rt2x00_set_field32(&word, TXD_W0_ACK,
1928                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1929        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1930                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1931        rt2x00_set_field32(&word, TXD_W0_OFDM,
1932                           (txdesc->rate_mode == RATE_MODE_OFDM));
1933        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1934        rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1935                           test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1936        rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1937                           test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1938        rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1939                           test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1940        rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1941        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1942        rt2x00_set_field32(&word, TXD_W0_BURST,
1943                           test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1944        rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1945        rt2x00_desc_write(txd, 0, word);
1946
1947        /*
1948         * Register descriptor details in skb frame descriptor.
1949         */
1950        skbdesc->desc = txd;
1951        skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1952                            TXD_DESC_SIZE;
1953}
1954
1955/*
1956 * TX data initialization
1957 */
1958static void rt61pci_write_beacon(struct queue_entry *entry,
1959                                 struct txentry_desc *txdesc)
1960{
1961        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1962        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1963        unsigned int beacon_base;
1964        unsigned int padding_len;
1965        u32 reg;
1966
1967        /*
1968         * Disable beaconing while we are reloading the beacon data,
1969         * otherwise we might be sending out invalid data.
1970         */
1971        rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1972        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1973        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1974
1975        /*
1976         * Write the TX descriptor for the beacon.
1977         */
1978        rt61pci_write_tx_desc(entry, txdesc);
1979
1980        /*
1981         * Dump beacon to userspace through debugfs.
1982         */
1983        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1984
1985        /*
1986         * Write entire beacon with descriptor and padding to register.
1987         */
1988        padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1989        skb_pad(entry->skb, padding_len);
1990        beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1991        rt2x00pci_register_multiwrite(rt2x00dev, beacon_base,
1992                                      entry_priv->desc, TXINFO_SIZE);
1993        rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
1994                                      entry->skb->data,
1995                                      entry->skb->len + padding_len);
1996
1997        /*
1998         * Enable beaconing again.
1999         *
2000         * For Wi-Fi faily generated beacons between participating
2001         * stations. Set TBTT phase adaptive adjustment step to 8us.
2002         */
2003        rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2004
2005        rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
2006        rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
2007        rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2008        rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
2009
2010        /*
2011         * Clean up beacon skb.
2012         */
2013        dev_kfree_skb_any(entry->skb);
2014        entry->skb = NULL;
2015}
2016
2017/*
2018 * RX control handlers
2019 */
2020static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2021{
2022        u8 offset = rt2x00dev->lna_gain;
2023        u8 lna;
2024
2025        lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2026        switch (lna) {
2027        case 3:
2028                offset += 90;
2029                break;
2030        case 2:
2031                offset += 74;
2032                break;
2033        case 1:
2034                offset += 64;
2035                break;
2036        default:
2037                return 0;
2038        }
2039
2040        if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2041                if (lna == 3 || lna == 2)
2042                        offset += 10;
2043        }
2044
2045        return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2046}
2047
2048static void rt61pci_fill_rxdone(struct queue_entry *entry,
2049                                struct rxdone_entry_desc *rxdesc)
2050{
2051        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2052        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
2053        u32 word0;
2054        u32 word1;
2055
2056        rt2x00_desc_read(entry_priv->desc, 0, &word0);
2057        rt2x00_desc_read(entry_priv->desc, 1, &word1);
2058
2059        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2060                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2061
2062        rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2063        rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2064
2065        if (rxdesc->cipher != CIPHER_NONE) {
2066                _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2067                _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2068                rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2069
2070                _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2071                rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2072
2073                /*
2074                 * Hardware has stripped IV/EIV data from 802.11 frame during
2075                 * decryption. It has provided the data separately but rt2x00lib
2076                 * should decide if it should be reinserted.
2077                 */
2078                rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2079
2080                /*
2081                 * FIXME: Legacy driver indicates that the frame does
2082                 * contain the Michael Mic. Unfortunately, in rt2x00
2083                 * the MIC seems to be missing completely...
2084                 */
2085                rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2086
2087                if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2088                        rxdesc->flags |= RX_FLAG_DECRYPTED;
2089                else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2090                        rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2091        }
2092
2093        /*
2094         * Obtain the status about this packet.
2095         * When frame was received with an OFDM bitrate,
2096         * the signal is the PLCP value. If it was received with
2097         * a CCK bitrate the signal is the rate in 100kbit/s.
2098         */
2099        rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2100        rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2101        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2102
2103        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2104                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2105        else
2106                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2107        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2108                rxdesc->dev_flags |= RXDONE_MY_BSS;
2109}
2110
2111/*
2112 * Interrupt functions.
2113 */
2114static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2115{
2116        struct data_queue *queue;
2117        struct queue_entry *entry;
2118        struct queue_entry *entry_done;
2119        struct queue_entry_priv_pci *entry_priv;
2120        struct txdone_entry_desc txdesc;
2121        u32 word;
2122        u32 reg;
2123        int type;
2124        int index;
2125        int i;
2126
2127        /*
2128         * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2129         * at most X times and also stop processing once the TX_STA_FIFO_VALID
2130         * flag is not set anymore.
2131         *
2132         * The legacy drivers use X=TX_RING_SIZE but state in a comment
2133         * that the TX_STA_FIFO stack has a size of 16. We stick to our
2134         * tx ring size for now.
2135         */
2136        for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
2137                rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2138                if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2139                        break;
2140
2141                /*
2142                 * Skip this entry when it contains an invalid
2143                 * queue identication number.
2144                 */
2145                type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2146                queue = rt2x00queue_get_queue(rt2x00dev, type);
2147                if (unlikely(!queue))
2148                        continue;
2149
2150                /*
2151                 * Skip this entry when it contains an invalid
2152                 * index number.
2153                 */
2154                index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2155                if (unlikely(index >= queue->limit))
2156                        continue;
2157
2158                entry = &queue->entries[index];
2159                entry_priv = entry->priv_data;
2160                rt2x00_desc_read(entry_priv->desc, 0, &word);
2161
2162                if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2163                    !rt2x00_get_field32(word, TXD_W0_VALID))
2164                        return;
2165
2166                entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2167                while (entry != entry_done) {
2168                        /* Catch up.
2169                         * Just report any entries we missed as failed.
2170                         */
2171                        WARNING(rt2x00dev,
2172                                "TX status report missed for entry %d\n",
2173                                entry_done->entry_idx);
2174
2175                        rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2176                        entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2177                }
2178
2179                /*
2180                 * Obtain the status about this packet.
2181                 */
2182                txdesc.flags = 0;
2183                switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2184                case 0: /* Success, maybe with retry */
2185                        __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2186                        break;
2187                case 6: /* Failure, excessive retries */
2188                        __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2189                        /* Don't break, this is a failed frame! */
2190                default: /* Failure */
2191                        __set_bit(TXDONE_FAILURE, &txdesc.flags);
2192                }
2193                txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2194
2195                /*
2196                 * the frame was retried at least once
2197                 * -> hw used fallback rates
2198                 */
2199                if (txdesc.retry)
2200                        __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2201
2202                rt2x00lib_txdone(entry, &txdesc);
2203        }
2204}
2205
2206static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2207{
2208        struct ieee80211_conf conf = { .flags = 0 };
2209        struct rt2x00lib_conf libconf = { .conf = &conf };
2210
2211        rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2212}
2213
2214static irqreturn_t rt61pci_interrupt_thread(int irq, void *dev_instance)
2215{
2216        struct rt2x00_dev *rt2x00dev = dev_instance;
2217        u32 reg = rt2x00dev->irqvalue[0];
2218        u32 reg_mcu = rt2x00dev->irqvalue[1];
2219
2220        /*
2221         * Handle interrupts, walk through all bits
2222         * and run the tasks, the bits are checked in order of
2223         * priority.
2224         */
2225
2226        /*
2227         * 1 - Rx ring done interrupt.
2228         */
2229        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2230                rt2x00pci_rxdone(rt2x00dev);
2231
2232        /*
2233         * 2 - Tx ring done interrupt.
2234         */
2235        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2236                rt61pci_txdone(rt2x00dev);
2237
2238        /*
2239         * 3 - Handle MCU command done.
2240         */
2241        if (reg_mcu)
2242                rt2x00pci_register_write(rt2x00dev,
2243                                         M2H_CMD_DONE_CSR, 0xffffffff);
2244
2245        /*
2246         * 4 - MCU Autowakeup interrupt.
2247         */
2248        if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2249                rt61pci_wakeup(rt2x00dev);
2250
2251        /*
2252         * 5 - Beacon done interrupt.
2253         */
2254        if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2255                rt2x00lib_beacondone(rt2x00dev);
2256
2257        /* Enable interrupts again. */
2258        rt2x00dev->ops->lib->set_device_state(rt2x00dev,
2259                                              STATE_RADIO_IRQ_ON_ISR);
2260        return IRQ_HANDLED;
2261}
2262
2263
2264static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2265{
2266        struct rt2x00_dev *rt2x00dev = dev_instance;
2267        u32 reg_mcu;
2268        u32 reg;
2269
2270        /*
2271         * Get the interrupt sources & saved to local variable.
2272         * Write register value back to clear pending interrupts.
2273         */
2274        rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2275        rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2276
2277        rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2278        rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2279
2280        if (!reg && !reg_mcu)
2281                return IRQ_NONE;
2282
2283        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2284                return IRQ_HANDLED;
2285
2286        /* Store irqvalues for use in the interrupt thread. */
2287        rt2x00dev->irqvalue[0] = reg;
2288        rt2x00dev->irqvalue[1] = reg_mcu;
2289
2290        /* Disable interrupts, will be enabled again in the interrupt thread. */
2291        rt2x00dev->ops->lib->set_device_state(rt2x00dev,
2292                                              STATE_RADIO_IRQ_OFF_ISR);
2293        return IRQ_WAKE_THREAD;
2294}
2295
2296/*
2297 * Device probe functions.
2298 */
2299static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2300{
2301        struct eeprom_93cx6 eeprom;
2302        u32 reg;
2303        u16 word;
2304        u8 *mac;
2305        s8 value;
2306
2307        rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2308
2309        eeprom.data = rt2x00dev;
2310        eeprom.register_read = rt61pci_eepromregister_read;
2311        eeprom.register_write = rt61pci_eepromregister_write;
2312        eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2313            PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2314        eeprom.reg_data_in = 0;
2315        eeprom.reg_data_out = 0;
2316        eeprom.reg_data_clock = 0;
2317        eeprom.reg_chip_select = 0;
2318
2319        eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2320                               EEPROM_SIZE / sizeof(u16));
2321
2322        /*
2323         * Start validation of the data that has been read.
2324         */
2325        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2326        if (!is_valid_ether_addr(mac)) {
2327                random_ether_addr(mac);
2328                EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2329        }
2330
2331        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2332        if (word == 0xffff) {
2333                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2334                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2335                                   ANTENNA_B);
2336                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2337                                   ANTENNA_B);
2338                rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2339                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2340                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2341                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2342                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2343                EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2344        }
2345
2346        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2347        if (word == 0xffff) {
2348                rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2349                rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2350                rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2351                rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2352                rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2353                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2354                rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2355                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2356                EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2357        }
2358
2359        rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2360        if (word == 0xffff) {
2361                rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2362                                   LED_MODE_DEFAULT);
2363                rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2364                EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2365        }
2366
2367        rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2368        if (word == 0xffff) {
2369                rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2370                rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2371                rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2372                EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2373        }
2374
2375        rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2376        if (word == 0xffff) {
2377                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2378                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2379                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2380                EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2381        } else {
2382                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2383                if (value < -10 || value > 10)
2384                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2385                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2386                if (value < -10 || value > 10)
2387                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2388                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2389        }
2390
2391        rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2392        if (word == 0xffff) {
2393                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2394                rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2395                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2396                EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2397        } else {
2398                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2399                if (value < -10 || value > 10)
2400                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2401                value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2402                if (value < -10 || value > 10)
2403                        rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2404                rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2405        }
2406
2407        return 0;
2408}
2409
2410static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2411{
2412        u32 reg;
2413        u16 value;
2414        u16 eeprom;
2415
2416        /*
2417         * Read EEPROM word for configuration.
2418         */
2419        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2420
2421        /*
2422         * Identify RF chipset.
2423         */
2424        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2425        rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2426        rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2427                        value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2428
2429        if (!rt2x00_rf(rt2x00dev, RF5225) &&
2430            !rt2x00_rf(rt2x00dev, RF5325) &&
2431            !rt2x00_rf(rt2x00dev, RF2527) &&
2432            !rt2x00_rf(rt2x00dev, RF2529)) {
2433                ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2434                return -ENODEV;
2435        }
2436
2437        /*
2438         * Determine number of antennas.
2439         */
2440        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2441                __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2442
2443        /*
2444         * Identify default antenna configuration.
2445         */
2446        rt2x00dev->default_ant.tx =
2447            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2448        rt2x00dev->default_ant.rx =
2449            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2450
2451        /*
2452         * Read the Frame type.
2453         */
2454        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2455                __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2456
2457        /*
2458         * Detect if this device has a hardware controlled radio.
2459         */
2460        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2461                __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2462
2463        /*
2464         * Read frequency offset and RF programming sequence.
2465         */
2466        rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2467        if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2468                __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2469
2470        rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2471
2472        /*
2473         * Read external LNA informations.
2474         */
2475        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2476
2477        if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2478                __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2479        if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2480                __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2481
2482        /*
2483         * When working with a RF2529 chip without double antenna,
2484         * the antenna settings should be gathered from the NIC
2485         * eeprom word.
2486         */
2487        if (rt2x00_rf(rt2x00dev, RF2529) &&
2488            !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2489                rt2x00dev->default_ant.rx =
2490                    ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2491                rt2x00dev->default_ant.tx =
2492                    ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2493
2494                if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2495                        rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2496                if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2497                        rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2498        }
2499
2500        /*
2501         * Store led settings, for correct led behaviour.
2502         * If the eeprom value is invalid,
2503         * switch to default led mode.
2504         */
2505#ifdef CONFIG_RT2X00_LIB_LEDS
2506        rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2507        value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2508
2509        rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2510        rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2511        if (value == LED_MODE_SIGNAL_STRENGTH)
2512                rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2513                                 LED_TYPE_QUALITY);
2514
2515        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2516        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2517                           rt2x00_get_field16(eeprom,
2518                                              EEPROM_LED_POLARITY_GPIO_0));
2519        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2520                           rt2x00_get_field16(eeprom,
2521                                              EEPROM_LED_POLARITY_GPIO_1));
2522        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2523                           rt2x00_get_field16(eeprom,
2524                                              EEPROM_LED_POLARITY_GPIO_2));
2525        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2526                           rt2x00_get_field16(eeprom,
2527                                              EEPROM_LED_POLARITY_GPIO_3));
2528        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2529                           rt2x00_get_field16(eeprom,
2530                                              EEPROM_LED_POLARITY_GPIO_4));
2531        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2532                           rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2533        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2534                           rt2x00_get_field16(eeprom,
2535                                              EEPROM_LED_POLARITY_RDY_G));
2536        rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2537                           rt2x00_get_field16(eeprom,
2538                                              EEPROM_LED_POLARITY_RDY_A));
2539#endif /* CONFIG_RT2X00_LIB_LEDS */
2540
2541        return 0;
2542}
2543
2544/*
2545 * RF value list for RF5225 & RF5325
2546 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2547 */
2548static const struct rf_channel rf_vals_noseq[] = {
2549        { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2550        { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2551        { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2552        { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2553        { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2554        { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2555        { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2556        { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2557        { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2558        { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2559        { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2560        { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2561        { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2562        { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2563
2564        /* 802.11 UNI / HyperLan 2 */
2565        { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2566        { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2567        { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2568        { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2569        { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2570        { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2571        { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2572        { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2573
2574        /* 802.11 HyperLan 2 */
2575        { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2576        { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2577        { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2578        { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2579        { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2580        { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2581        { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2582        { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2583        { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2584        { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2585
2586        /* 802.11 UNII */
2587        { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2588        { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2589        { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2590        { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2591        { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2592        { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2593
2594        /* MMAC(Japan)J52 ch 34,38,42,46 */
2595        { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2596        { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2597        { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2598        { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2599};
2600
2601/*
2602 * RF value list for RF5225 & RF5325
2603 * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2604 */
2605static const struct rf_channel rf_vals_seq[] = {
2606        { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2607        { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2608        { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2609        { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2610        { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2611        { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2612        { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2613        { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2614        { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2615        { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2616        { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2617        { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2618        { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2619        { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2620
2621        /* 802.11 UNI / HyperLan 2 */
2622        { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2623        { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2624        { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2625        { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2626        { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2627        { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2628        { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2629        { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2630
2631        /* 802.11 HyperLan 2 */
2632        { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2633        { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2634        { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2635        { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2636        { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2637        { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2638        { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2639        { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2640        { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2641        { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2642
2643        /* 802.11 UNII */
2644        { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2645        { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2646        { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2647        { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2648        { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2649        { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2650
2651        /* MMAC(Japan)J52 ch 34,38,42,46 */
2652        { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2653        { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2654        { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2655        { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2656};
2657
2658static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2659{
2660        struct hw_mode_spec *spec = &rt2x00dev->spec;
2661        struct channel_info *info;
2662        char *tx_power;
2663        unsigned int i;
2664
2665        /*
2666         * Disable powersaving as default.
2667         */
2668        rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2669
2670        /*
2671         * Initialize all hw fields.
2672         */
2673        rt2x00dev->hw->flags =
2674            IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2675            IEEE80211_HW_SIGNAL_DBM |
2676            IEEE80211_HW_SUPPORTS_PS |
2677            IEEE80211_HW_PS_NULLFUNC_STACK;
2678
2679        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2680        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2681                                rt2x00_eeprom_addr(rt2x00dev,
2682                                                   EEPROM_MAC_ADDR_0));
2683
2684        /*
2685         * As rt61 has a global fallback table we cannot specify
2686         * more then one tx rate per frame but since the hw will
2687         * try several rates (based on the fallback table) we should
2688         * initialize max_report_rates to the maximum number of rates
2689         * we are going to try. Otherwise mac80211 will truncate our
2690         * reported tx rates and the rc algortihm will end up with
2691         * incorrect data.
2692         */
2693        rt2x00dev->hw->max_rates = 1;
2694        rt2x00dev->hw->max_report_rates = 7;
2695        rt2x00dev->hw->max_rate_tries = 1;
2696
2697        /*
2698         * Initialize hw_mode information.
2699         */
2700        spec->supported_bands = SUPPORT_BAND_2GHZ;
2701        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2702
2703        if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2704                spec->num_channels = 14;
2705                spec->channels = rf_vals_noseq;
2706        } else {
2707                spec->num_channels = 14;
2708                spec->channels = rf_vals_seq;
2709        }
2710
2711        if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2712                spec->supported_bands |= SUPPORT_BAND_5GHZ;
2713                spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2714        }
2715
2716        /*
2717         * Create channel information array
2718         */
2719        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2720        if (!info)
2721                return -ENOMEM;
2722
2723        spec->channels_info = info;
2724
2725        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2726        for (i = 0; i < 14; i++) {
2727                info[i].max_power = MAX_TXPOWER;
2728                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2729        }
2730
2731        if (spec->num_channels > 14) {
2732                tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2733                for (i = 14; i < spec->num_channels; i++) {
2734                        info[i].max_power = MAX_TXPOWER;
2735                        info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2736                }
2737        }
2738
2739        return 0;
2740}
2741
2742static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2743{
2744        int retval;
2745
2746        /*
2747         * Disable power saving.
2748         */
2749        rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2750
2751        /*
2752         * Allocate eeprom data.
2753         */
2754        retval = rt61pci_validate_eeprom(rt2x00dev);
2755        if (retval)
2756                return retval;
2757
2758        retval = rt61pci_init_eeprom(rt2x00dev);
2759        if (retval)
2760                return retval;
2761
2762        /*
2763         * Initialize hw specifications.
2764         */
2765        retval = rt61pci_probe_hw_mode(rt2x00dev);
2766        if (retval)
2767                return retval;
2768
2769        /*
2770         * This device has multiple filters for control frames,
2771         * but has no a separate filter for PS Poll frames.
2772         */
2773        __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
2774
2775        /*
2776         * This device requires firmware and DMA mapped skbs.
2777         */
2778        __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2779        __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2780        if (!modparam_nohwcrypt)
2781                __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2782        __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
2783
2784        /*
2785         * Set the rssi offset.
2786         */
2787        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2788
2789        return 0;
2790}
2791
2792/*
2793 * IEEE80211 stack callback functions.
2794 */
2795static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2796                           const struct ieee80211_tx_queue_params *params)
2797{
2798        struct rt2x00_dev *rt2x00dev = hw->priv;
2799        struct data_queue *queue;
2800        struct rt2x00_field32 field;
2801        int retval;
2802        u32 reg;
2803        u32 offset;
2804
2805        /*
2806         * First pass the configuration through rt2x00lib, that will
2807         * update the queue settings and validate the input. After that
2808         * we are free to update the registers based on the value
2809         * in the queue parameter.
2810         */
2811        retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2812        if (retval)
2813                return retval;
2814
2815        /*
2816         * We only need to perform additional register initialization
2817         * for WMM queues.
2818         */
2819        if (queue_idx >= 4)
2820                return 0;
2821
2822        queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2823
2824        /* Update WMM TXOP register */
2825        offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2826        field.bit_offset = (queue_idx & 1) * 16;
2827        field.bit_mask = 0xffff << field.bit_offset;
2828
2829        rt2x00pci_register_read(rt2x00dev, offset, &reg);
2830        rt2x00_set_field32(&reg, field, queue->txop);
2831        rt2x00pci_register_write(rt2x00dev, offset, reg);
2832
2833        /* Update WMM registers */
2834        field.bit_offset = queue_idx * 4;
2835        field.bit_mask = 0xf << field.bit_offset;
2836
2837        rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2838        rt2x00_set_field32(&reg, field, queue->aifs);
2839        rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2840
2841        rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2842        rt2x00_set_field32(&reg, field, queue->cw_min);
2843        rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2844
2845        rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2846        rt2x00_set_field32(&reg, field, queue->cw_max);
2847        rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2848
2849        return 0;
2850}
2851
2852static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2853{
2854        struct rt2x00_dev *rt2x00dev = hw->priv;
2855        u64 tsf;
2856        u32 reg;
2857
2858        rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2859        tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2860        rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2861        tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2862
2863        return tsf;
2864}
2865
2866static const struct ieee80211_ops rt61pci_mac80211_ops = {
2867        .tx                     = rt2x00mac_tx,
2868        .start                  = rt2x00mac_start,
2869        .stop                   = rt2x00mac_stop,
2870        .add_interface          = rt2x00mac_add_interface,
2871        .remove_interface       = rt2x00mac_remove_interface,
2872        .config                 = rt2x00mac_config,
2873        .configure_filter       = rt2x00mac_configure_filter,
2874        .set_key                = rt2x00mac_set_key,
2875        .sw_scan_start          = rt2x00mac_sw_scan_start,
2876        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2877        .get_stats              = rt2x00mac_get_stats,
2878        .bss_info_changed       = rt2x00mac_bss_info_changed,
2879        .conf_tx                = rt61pci_conf_tx,
2880        .get_tsf                = rt61pci_get_tsf,
2881        .rfkill_poll            = rt2x00mac_rfkill_poll,
2882        .flush                  = rt2x00mac_flush,
2883};
2884
2885static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2886        .irq_handler            = rt61pci_interrupt,
2887        .irq_handler_thread     = rt61pci_interrupt_thread,
2888        .probe_hw               = rt61pci_probe_hw,
2889        .get_firmware_name      = rt61pci_get_firmware_name,
2890        .check_firmware         = rt61pci_check_firmware,
2891        .load_firmware          = rt61pci_load_firmware,
2892        .initialize             = rt2x00pci_initialize,
2893        .uninitialize           = rt2x00pci_uninitialize,
2894        .get_entry_state        = rt61pci_get_entry_state,
2895        .clear_entry            = rt61pci_clear_entry,
2896        .set_device_state       = rt61pci_set_device_state,
2897        .rfkill_poll            = rt61pci_rfkill_poll,
2898        .link_stats             = rt61pci_link_stats,
2899        .reset_tuner            = rt61pci_reset_tuner,
2900        .link_tuner             = rt61pci_link_tuner,
2901        .start_queue            = rt61pci_start_queue,
2902        .kick_queue             = rt61pci_kick_queue,
2903        .stop_queue             = rt61pci_stop_queue,
2904        .write_tx_desc          = rt61pci_write_tx_desc,
2905        .write_beacon           = rt61pci_write_beacon,
2906        .fill_rxdone            = rt61pci_fill_rxdone,
2907        .config_shared_key      = rt61pci_config_shared_key,
2908        .config_pairwise_key    = rt61pci_config_pairwise_key,
2909        .config_filter          = rt61pci_config_filter,
2910        .config_intf            = rt61pci_config_intf,
2911        .config_erp             = rt61pci_config_erp,
2912        .config_ant             = rt61pci_config_ant,
2913        .config                 = rt61pci_config,
2914};
2915
2916static const struct data_queue_desc rt61pci_queue_rx = {
2917        .entry_num              = 32,
2918        .data_size              = DATA_FRAME_SIZE,
2919        .desc_size              = RXD_DESC_SIZE,
2920        .priv_size              = sizeof(struct queue_entry_priv_pci),
2921};
2922
2923static const struct data_queue_desc rt61pci_queue_tx = {
2924        .entry_num              = 32,
2925        .data_size              = DATA_FRAME_SIZE,
2926        .desc_size              = TXD_DESC_SIZE,
2927        .priv_size              = sizeof(struct queue_entry_priv_pci),
2928};
2929
2930static const struct data_queue_desc rt61pci_queue_bcn = {
2931        .entry_num              = 4,
2932        .data_size              = 0, /* No DMA required for beacons */
2933        .desc_size              = TXINFO_SIZE,
2934        .priv_size              = sizeof(struct queue_entry_priv_pci),
2935};
2936
2937static const struct rt2x00_ops rt61pci_ops = {
2938        .name                   = KBUILD_MODNAME,
2939        .max_sta_intf           = 1,
2940        .max_ap_intf            = 4,
2941        .eeprom_size            = EEPROM_SIZE,
2942        .rf_size                = RF_SIZE,
2943        .tx_queues              = NUM_TX_QUEUES,
2944        .extra_tx_headroom      = 0,
2945        .rx                     = &rt61pci_queue_rx,
2946        .tx                     = &rt61pci_queue_tx,
2947        .bcn                    = &rt61pci_queue_bcn,
2948        .lib                    = &rt61pci_rt2x00_ops,
2949        .hw                     = &rt61pci_mac80211_ops,
2950#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2951        .debugfs                = &rt61pci_rt2x00debug,
2952#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2953};
2954
2955/*
2956 * RT61pci module information.
2957 */
2958static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = {
2959        /* RT2561s */
2960        { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2961        /* RT2561 v2 */
2962        { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2963        /* RT2661 */
2964        { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2965        { 0, }
2966};
2967
2968MODULE_AUTHOR(DRV_PROJECT);
2969MODULE_VERSION(DRV_VERSION);
2970MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2971MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2972                        "PCI & PCMCIA chipset based cards");
2973MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2974MODULE_FIRMWARE(FIRMWARE_RT2561);
2975MODULE_FIRMWARE(FIRMWARE_RT2561s);
2976MODULE_FIRMWARE(FIRMWARE_RT2661);
2977MODULE_LICENSE("GPL");
2978
2979static struct pci_driver rt61pci_driver = {
2980        .name           = KBUILD_MODNAME,
2981        .id_table       = rt61pci_device_table,
2982        .probe          = rt2x00pci_probe,
2983        .remove         = __devexit_p(rt2x00pci_remove),
2984        .suspend        = rt2x00pci_suspend,
2985        .resume         = rt2x00pci_resume,
2986};
2987
2988static int __init rt61pci_init(void)
2989{
2990        return pci_register_driver(&rt61pci_driver);
2991}
2992
2993static void __exit rt61pci_exit(void)
2994{
2995        pci_unregister_driver(&rt61pci_driver);
2996}
2997
2998module_init(rt61pci_init);
2999module_exit(rt61pci_exit);
3000