1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24#include <linux/platform_device.h>
25#include <linux/module.h>
26#include <linux/rtc.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/interrupt.h>
30#include <linux/string.h>
31#include <linux/pm.h>
32#include <linux/bitops.h>
33
34#include <mach/hardware.h>
35#include <asm/irq.h>
36
37#ifdef CONFIG_ARCH_PXA
38#include <mach/regs-rtc.h>
39#include <mach/regs-ost.h>
40#endif
41
42#define RTC_DEF_DIVIDER (32768 - 1)
43#define RTC_DEF_TRIM 0
44
45static const unsigned long RTC_FREQ = 1024;
46static unsigned long timer_freq;
47static struct rtc_time rtc_alarm;
48static DEFINE_SPINLOCK(sa1100_rtc_lock);
49
50static inline int rtc_periodic_alarm(struct rtc_time *tm)
51{
52 return (tm->tm_year == -1) ||
53 ((unsigned)tm->tm_mon >= 12) ||
54 ((unsigned)(tm->tm_mday - 1) >= 31) ||
55 ((unsigned)tm->tm_hour > 23) ||
56 ((unsigned)tm->tm_min > 59) ||
57 ((unsigned)tm->tm_sec > 59);
58}
59
60
61
62
63
64static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now,
65 struct rtc_time *alrm)
66{
67 unsigned long next_time;
68 unsigned long now_time;
69
70 next->tm_year = now->tm_year;
71 next->tm_mon = now->tm_mon;
72 next->tm_mday = now->tm_mday;
73 next->tm_hour = alrm->tm_hour;
74 next->tm_min = alrm->tm_min;
75 next->tm_sec = alrm->tm_sec;
76
77 rtc_tm_to_time(now, &now_time);
78 rtc_tm_to_time(next, &next_time);
79
80 if (next_time < now_time) {
81
82 next_time += 60 * 60 * 24;
83 rtc_time_to_tm(next_time, next);
84 }
85}
86
87static int rtc_update_alarm(struct rtc_time *alrm)
88{
89 struct rtc_time alarm_tm, now_tm;
90 unsigned long now, time;
91 int ret;
92
93 do {
94 now = RCNR;
95 rtc_time_to_tm(now, &now_tm);
96 rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
97 ret = rtc_tm_to_time(&alarm_tm, &time);
98 if (ret != 0)
99 break;
100
101 RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
102 RTAR = time;
103 } while (now != RCNR);
104
105 return ret;
106}
107
108static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
109{
110 struct platform_device *pdev = to_platform_device(dev_id);
111 struct rtc_device *rtc = platform_get_drvdata(pdev);
112 unsigned int rtsr;
113 unsigned long events = 0;
114
115 spin_lock(&sa1100_rtc_lock);
116
117 rtsr = RTSR;
118
119 RTSR = 0;
120
121
122 if (rtsr & (RTSR_ALE | RTSR_HZE)) {
123
124
125
126 RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
127 } else {
128
129
130
131
132
133
134
135 RTSR = RTSR_AL | RTSR_HZ;
136 }
137
138
139 if (rtsr & RTSR_AL)
140 rtsr &= ~RTSR_ALE;
141 RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
142
143
144 if (rtsr & RTSR_AL)
145 events |= RTC_AF | RTC_IRQF;
146 if (rtsr & RTSR_HZ)
147 events |= RTC_UF | RTC_IRQF;
148
149 rtc_update_irq(rtc, 1, events);
150
151 if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
152 rtc_update_alarm(&rtc_alarm);
153
154 spin_unlock(&sa1100_rtc_lock);
155
156 return IRQ_HANDLED;
157}
158
159static int sa1100_irq_set_freq(struct device *dev, int freq)
160{
161 if (freq < 1 || freq > timer_freq) {
162 return -EINVAL;
163 } else {
164 struct rtc_device *rtc = (struct rtc_device *)dev;
165
166 rtc->irq_freq = freq;
167
168 return 0;
169 }
170}
171
172static int rtc_timer1_count;
173
174static int sa1100_irq_set_state(struct device *dev, int enabled)
175{
176 spin_lock_irq(&sa1100_rtc_lock);
177 if (enabled) {
178 struct rtc_device *rtc = (struct rtc_device *)dev;
179
180 OSMR1 = timer_freq / rtc->irq_freq + OSCR;
181 OIER |= OIER_E1;
182 rtc_timer1_count = 1;
183 } else {
184 OIER &= ~OIER_E1;
185 }
186 spin_unlock_irq(&sa1100_rtc_lock);
187
188 return 0;
189}
190
191static inline int sa1100_timer1_retrigger(struct rtc_device *rtc)
192{
193 unsigned long diff;
194 unsigned long period = timer_freq / rtc->irq_freq;
195
196 spin_lock_irq(&sa1100_rtc_lock);
197
198 do {
199 OSMR1 += period;
200 diff = OSMR1 - OSCR;
201
202
203 } while (diff > period);
204 OIER |= OIER_E1;
205
206 spin_unlock_irq(&sa1100_rtc_lock);
207
208 return 0;
209}
210
211static irqreturn_t timer1_interrupt(int irq, void *dev_id)
212{
213 struct platform_device *pdev = to_platform_device(dev_id);
214 struct rtc_device *rtc = platform_get_drvdata(pdev);
215
216
217
218
219
220
221
222
223 OSSR = OSSR_M1;
224
225 rtc_update_irq(rtc, rtc_timer1_count, RTC_PF | RTC_IRQF);
226
227 if (rtc_timer1_count == 1)
228 rtc_timer1_count =
229 (rtc->irq_freq * ((1 << 30) / (timer_freq >> 2)));
230
231
232 sa1100_timer1_retrigger(rtc);
233
234 return IRQ_HANDLED;
235}
236
237static int sa1100_rtc_read_callback(struct device *dev, int data)
238{
239 if (data & RTC_PF) {
240 struct rtc_device *rtc = (struct rtc_device *)dev;
241
242
243 unsigned long period = timer_freq / rtc->irq_freq;
244 unsigned long oscr = OSCR;
245 unsigned long osmr1 = OSMR1;
246 unsigned long missed = (oscr - osmr1)/period;
247 data += missed << 8;
248 OSSR = OSSR_M1;
249 OSMR1 = osmr1 + (missed + 1)*period;
250
251
252
253
254 while ((signed long)((osmr1 = OSMR1) - OSCR) <= 8) {
255 data += 0x100;
256 OSSR = OSSR_M1;
257 OSMR1 = osmr1 + period;
258 }
259 }
260 return data;
261}
262
263static int sa1100_rtc_open(struct device *dev)
264{
265 int ret;
266 struct rtc_device *rtc = (struct rtc_device *)dev;
267
268 ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
269 "rtc 1Hz", dev);
270 if (ret) {
271 dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
272 goto fail_ui;
273 }
274 ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
275 "rtc Alrm", dev);
276 if (ret) {
277 dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
278 goto fail_ai;
279 }
280 ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED,
281 "rtc timer", dev);
282 if (ret) {
283 dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1);
284 goto fail_pi;
285 }
286 rtc->max_user_freq = RTC_FREQ;
287 sa1100_irq_set_freq(dev, RTC_FREQ);
288
289 return 0;
290
291 fail_pi:
292 free_irq(IRQ_RTCAlrm, dev);
293 fail_ai:
294 free_irq(IRQ_RTC1Hz, dev);
295 fail_ui:
296 return ret;
297}
298
299static void sa1100_rtc_release(struct device *dev)
300{
301 spin_lock_irq(&sa1100_rtc_lock);
302 RTSR = 0;
303 OIER &= ~OIER_E1;
304 OSSR = OSSR_M1;
305 spin_unlock_irq(&sa1100_rtc_lock);
306
307 free_irq(IRQ_OST1, dev);
308 free_irq(IRQ_RTCAlrm, dev);
309 free_irq(IRQ_RTC1Hz, dev);
310}
311
312
313static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd,
314 unsigned long arg)
315{
316 switch (cmd) {
317 case RTC_UIE_OFF:
318 spin_lock_irq(&sa1100_rtc_lock);
319 RTSR &= ~RTSR_HZE;
320 spin_unlock_irq(&sa1100_rtc_lock);
321 return 0;
322 case RTC_UIE_ON:
323 spin_lock_irq(&sa1100_rtc_lock);
324 RTSR |= RTSR_HZE;
325 spin_unlock_irq(&sa1100_rtc_lock);
326 return 0;
327 }
328 return -ENOIOCTLCMD;
329}
330
331static int sa1100_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
332{
333 spin_lock_irq(&sa1100_rtc_lock);
334 if (enabled)
335 RTSR |= RTSR_ALE;
336 else
337 RTSR &= ~RTSR_ALE;
338 spin_unlock_irq(&sa1100_rtc_lock);
339 return 0;
340}
341
342static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
343{
344 rtc_time_to_tm(RCNR, tm);
345 return 0;
346}
347
348static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
349{
350 unsigned long time;
351 int ret;
352
353 ret = rtc_tm_to_time(tm, &time);
354 if (ret == 0)
355 RCNR = time;
356 return ret;
357}
358
359static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
360{
361 u32 rtsr;
362
363 memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
364 rtsr = RTSR;
365 alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
366 alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
367 return 0;
368}
369
370static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
371{
372 int ret;
373
374 spin_lock_irq(&sa1100_rtc_lock);
375 ret = rtc_update_alarm(&alrm->time);
376 if (ret == 0) {
377 if (alrm->enabled)
378 RTSR |= RTSR_ALE;
379 else
380 RTSR &= ~RTSR_ALE;
381 }
382 spin_unlock_irq(&sa1100_rtc_lock);
383
384 return ret;
385}
386
387static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
388{
389 struct rtc_device *rtc = (struct rtc_device *)dev;
390
391 seq_printf(seq, "trim/divider\t: 0x%08x\n", (u32) RTTR);
392 seq_printf(seq, "update_IRQ\t: %s\n",
393 (RTSR & RTSR_HZE) ? "yes" : "no");
394 seq_printf(seq, "periodic_IRQ\t: %s\n",
395 (OIER & OIER_E1) ? "yes" : "no");
396 seq_printf(seq, "periodic_freq\t: %d\n", rtc->irq_freq);
397 seq_printf(seq, "RTSR\t\t: 0x%08x\n", (u32)RTSR);
398
399 return 0;
400}
401
402static const struct rtc_class_ops sa1100_rtc_ops = {
403 .open = sa1100_rtc_open,
404 .read_callback = sa1100_rtc_read_callback,
405 .release = sa1100_rtc_release,
406 .ioctl = sa1100_rtc_ioctl,
407 .read_time = sa1100_rtc_read_time,
408 .set_time = sa1100_rtc_set_time,
409 .read_alarm = sa1100_rtc_read_alarm,
410 .set_alarm = sa1100_rtc_set_alarm,
411 .proc = sa1100_rtc_proc,
412 .irq_set_freq = sa1100_irq_set_freq,
413 .irq_set_state = sa1100_irq_set_state,
414 .alarm_irq_enable = sa1100_rtc_alarm_irq_enable,
415};
416
417static int sa1100_rtc_probe(struct platform_device *pdev)
418{
419 struct rtc_device *rtc;
420
421 timer_freq = get_clock_tick_rate();
422
423
424
425
426
427
428
429
430 if (RTTR == 0) {
431 RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
432 dev_warn(&pdev->dev, "warning: "
433 "initializing default clock divider/trim value\n");
434
435 RCNR = 0;
436 }
437
438 device_init_wakeup(&pdev->dev, 1);
439
440 rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
441 THIS_MODULE);
442
443 if (IS_ERR(rtc))
444 return PTR_ERR(rtc);
445
446 platform_set_drvdata(pdev, rtc);
447
448
449
450
451 rtc->irq_freq = RTC_FREQ;
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475 RTSR = RTSR_AL | RTSR_HZ;
476
477 return 0;
478}
479
480static int sa1100_rtc_remove(struct platform_device *pdev)
481{
482 struct rtc_device *rtc = platform_get_drvdata(pdev);
483
484 if (rtc)
485 rtc_device_unregister(rtc);
486
487 return 0;
488}
489
490#ifdef CONFIG_PM
491static int sa1100_rtc_suspend(struct device *dev)
492{
493 if (device_may_wakeup(dev))
494 enable_irq_wake(IRQ_RTCAlrm);
495 return 0;
496}
497
498static int sa1100_rtc_resume(struct device *dev)
499{
500 if (device_may_wakeup(dev))
501 disable_irq_wake(IRQ_RTCAlrm);
502 return 0;
503}
504
505static const struct dev_pm_ops sa1100_rtc_pm_ops = {
506 .suspend = sa1100_rtc_suspend,
507 .resume = sa1100_rtc_resume,
508};
509#endif
510
511static struct platform_driver sa1100_rtc_driver = {
512 .probe = sa1100_rtc_probe,
513 .remove = sa1100_rtc_remove,
514 .driver = {
515 .name = "sa1100-rtc",
516#ifdef CONFIG_PM
517 .pm = &sa1100_rtc_pm_ops,
518#endif
519 },
520};
521
522static int __init sa1100_rtc_init(void)
523{
524 return platform_driver_register(&sa1100_rtc_driver);
525}
526
527static void __exit sa1100_rtc_exit(void)
528{
529 platform_driver_unregister(&sa1100_rtc_driver);
530}
531
532module_init(sa1100_rtc_init);
533module_exit(sa1100_rtc_exit);
534
535MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
536MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
537MODULE_LICENSE("GPL");
538MODULE_ALIAS("platform:sa1100-rtc");
539