linux/drivers/scsi/advansys.c
<<
>>
Prefs
   1#define DRV_NAME "advansys"
   2#define ASC_VERSION "3.4"       /* AdvanSys Driver Version */
   3
   4/*
   5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
   6 *
   7 * Copyright (c) 1995-2000 Advanced System Products, Inc.
   8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
   9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
  10 * All Rights Reserved.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 */
  17
  18/*
  19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
  20 * changed its name to ConnectCom Solutions, Inc.
  21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/string.h>
  26#include <linux/kernel.h>
  27#include <linux/types.h>
  28#include <linux/ioport.h>
  29#include <linux/interrupt.h>
  30#include <linux/delay.h>
  31#include <linux/slab.h>
  32#include <linux/mm.h>
  33#include <linux/proc_fs.h>
  34#include <linux/init.h>
  35#include <linux/blkdev.h>
  36#include <linux/isa.h>
  37#include <linux/eisa.h>
  38#include <linux/pci.h>
  39#include <linux/spinlock.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/firmware.h>
  42
  43#include <asm/io.h>
  44#include <asm/system.h>
  45#include <asm/dma.h>
  46
  47#include <scsi/scsi_cmnd.h>
  48#include <scsi/scsi_device.h>
  49#include <scsi/scsi_tcq.h>
  50#include <scsi/scsi.h>
  51#include <scsi/scsi_host.h>
  52
  53/* FIXME:
  54 *
  55 *  1. Although all of the necessary command mapping places have the
  56 *     appropriate dma_map.. APIs, the driver still processes its internal
  57 *     queue using bus_to_virt() and virt_to_bus() which are illegal under
  58 *     the API.  The entire queue processing structure will need to be
  59 *     altered to fix this.
  60 *  2. Need to add memory mapping workaround. Test the memory mapping.
  61 *     If it doesn't work revert to I/O port access. Can a test be done
  62 *     safely?
  63 *  3. Handle an interrupt not working. Keep an interrupt counter in
  64 *     the interrupt handler. In the timeout function if the interrupt
  65 *     has not occurred then print a message and run in polled mode.
  66 *  4. Need to add support for target mode commands, cf. CAM XPT.
  67 *  5. check DMA mapping functions for failure
  68 *  6. Use scsi_transport_spi
  69 *  7. advansys_info is not safe against multiple simultaneous callers
  70 *  8. Add module_param to override ISA/VLB ioport array
  71 */
  72#warning this driver is still not properly converted to the DMA API
  73
  74/* Enable driver /proc statistics. */
  75#define ADVANSYS_STATS
  76
  77/* Enable driver tracing. */
  78#undef ADVANSYS_DEBUG
  79
  80/*
  81 * Portable Data Types
  82 *
  83 * Any instance where a 32-bit long or pointer type is assumed
  84 * for precision or HW defined structures, the following define
  85 * types must be used. In Linux the char, short, and int types
  86 * are all consistent at 8, 16, and 32 bits respectively. Pointers
  87 * and long types are 64 bits on Alpha and UltraSPARC.
  88 */
  89#define ASC_PADDR __u32         /* Physical/Bus address data type. */
  90#define ASC_VADDR __u32         /* Virtual address data type. */
  91#define ASC_DCNT  __u32         /* Unsigned Data count type. */
  92#define ASC_SDCNT __s32         /* Signed Data count type. */
  93
  94typedef unsigned char uchar;
  95
  96#ifndef TRUE
  97#define TRUE     (1)
  98#endif
  99#ifndef FALSE
 100#define FALSE    (0)
 101#endif
 102
 103#define ERR      (-1)
 104#define UW_ERR   (uint)(0xFFFF)
 105#define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
 106
 107#define PCI_VENDOR_ID_ASP               0x10cd
 108#define PCI_DEVICE_ID_ASP_1200A         0x1100
 109#define PCI_DEVICE_ID_ASP_ABP940        0x1200
 110#define PCI_DEVICE_ID_ASP_ABP940U       0x1300
 111#define PCI_DEVICE_ID_ASP_ABP940UW      0x2300
 112#define PCI_DEVICE_ID_38C0800_REV1      0x2500
 113#define PCI_DEVICE_ID_38C1600_REV1      0x2700
 114
 115/*
 116 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
 117 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
 118 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
 119 * SRB structure.
 120 */
 121#define CC_VERY_LONG_SG_LIST 0
 122#define ASC_SRB2SCSIQ(srb_ptr)  (srb_ptr)
 123
 124#define PortAddr                 unsigned int   /* port address size  */
 125#define inp(port)                inb(port)
 126#define outp(port, byte)         outb((byte), (port))
 127
 128#define inpw(port)               inw(port)
 129#define outpw(port, word)        outw((word), (port))
 130
 131#define ASC_MAX_SG_QUEUE    7
 132#define ASC_MAX_SG_LIST     255
 133
 134#define ASC_CS_TYPE  unsigned short
 135
 136#define ASC_IS_ISA          (0x0001)
 137#define ASC_IS_ISAPNP       (0x0081)
 138#define ASC_IS_EISA         (0x0002)
 139#define ASC_IS_PCI          (0x0004)
 140#define ASC_IS_PCI_ULTRA    (0x0104)
 141#define ASC_IS_PCMCIA       (0x0008)
 142#define ASC_IS_MCA          (0x0020)
 143#define ASC_IS_VL           (0x0040)
 144#define ASC_IS_WIDESCSI_16  (0x0100)
 145#define ASC_IS_WIDESCSI_32  (0x0200)
 146#define ASC_IS_BIG_ENDIAN   (0x8000)
 147
 148#define ASC_CHIP_MIN_VER_VL      (0x01)
 149#define ASC_CHIP_MAX_VER_VL      (0x07)
 150#define ASC_CHIP_MIN_VER_PCI     (0x09)
 151#define ASC_CHIP_MAX_VER_PCI     (0x0F)
 152#define ASC_CHIP_VER_PCI_BIT     (0x08)
 153#define ASC_CHIP_MIN_VER_ISA     (0x11)
 154#define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
 155#define ASC_CHIP_MAX_VER_ISA     (0x27)
 156#define ASC_CHIP_VER_ISA_BIT     (0x30)
 157#define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
 158#define ASC_CHIP_VER_ASYN_BUG    (0x21)
 159#define ASC_CHIP_VER_PCI             0x08
 160#define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
 161#define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
 162#define ASC_CHIP_MIN_VER_EISA (0x41)
 163#define ASC_CHIP_MAX_VER_EISA (0x47)
 164#define ASC_CHIP_VER_EISA_BIT (0x40)
 165#define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
 166#define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
 167#define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
 168#define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
 169
 170#define ASC_SCSI_ID_BITS  3
 171#define ASC_SCSI_TIX_TYPE     uchar
 172#define ASC_ALL_DEVICE_BIT_SET  0xFF
 173#define ASC_SCSI_BIT_ID_TYPE  uchar
 174#define ASC_MAX_TID       7
 175#define ASC_MAX_LUN       7
 176#define ASC_SCSI_WIDTH_BIT_SET  0xFF
 177#define ASC_MAX_SENSE_LEN   32
 178#define ASC_MIN_SENSE_LEN   14
 179#define ASC_SCSI_RESET_HOLD_TIME_US  60
 180
 181/*
 182 * Narrow boards only support 12-byte commands, while wide boards
 183 * extend to 16-byte commands.
 184 */
 185#define ASC_MAX_CDB_LEN     12
 186#define ADV_MAX_CDB_LEN     16
 187
 188#define MS_SDTR_LEN    0x03
 189#define MS_WDTR_LEN    0x02
 190
 191#define ASC_SG_LIST_PER_Q   7
 192#define QS_FREE        0x00
 193#define QS_READY       0x01
 194#define QS_DISC1       0x02
 195#define QS_DISC2       0x04
 196#define QS_BUSY        0x08
 197#define QS_ABORTED     0x40
 198#define QS_DONE        0x80
 199#define QC_NO_CALLBACK   0x01
 200#define QC_SG_SWAP_QUEUE 0x02
 201#define QC_SG_HEAD       0x04
 202#define QC_DATA_IN       0x08
 203#define QC_DATA_OUT      0x10
 204#define QC_URGENT        0x20
 205#define QC_MSG_OUT       0x40
 206#define QC_REQ_SENSE     0x80
 207#define QCSG_SG_XFER_LIST  0x02
 208#define QCSG_SG_XFER_MORE  0x04
 209#define QCSG_SG_XFER_END   0x08
 210#define QD_IN_PROGRESS       0x00
 211#define QD_NO_ERROR          0x01
 212#define QD_ABORTED_BY_HOST   0x02
 213#define QD_WITH_ERROR        0x04
 214#define QD_INVALID_REQUEST   0x80
 215#define QD_INVALID_HOST_NUM  0x81
 216#define QD_INVALID_DEVICE    0x82
 217#define QD_ERR_INTERNAL      0xFF
 218#define QHSTA_NO_ERROR               0x00
 219#define QHSTA_M_SEL_TIMEOUT          0x11
 220#define QHSTA_M_DATA_OVER_RUN        0x12
 221#define QHSTA_M_DATA_UNDER_RUN       0x12
 222#define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
 223#define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
 224#define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
 225#define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
 226#define QHSTA_D_HOST_ABORT_FAILED       0x23
 227#define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
 228#define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
 229#define QHSTA_D_ASPI_NO_BUF_POOL        0x26
 230#define QHSTA_M_WTM_TIMEOUT         0x41
 231#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
 232#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
 233#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
 234#define QHSTA_M_TARGET_STATUS_BUSY  0x45
 235#define QHSTA_M_BAD_TAG_CODE        0x46
 236#define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
 237#define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
 238#define QHSTA_D_LRAM_CMP_ERROR        0x81
 239#define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
 240#define ASC_FLAG_SCSIQ_REQ        0x01
 241#define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
 242#define ASC_FLAG_BIOS_ASYNC_IO    0x04
 243#define ASC_FLAG_SRB_LINEAR_ADDR  0x08
 244#define ASC_FLAG_WIN16            0x10
 245#define ASC_FLAG_WIN32            0x20
 246#define ASC_FLAG_ISA_OVER_16MB    0x40
 247#define ASC_FLAG_DOS_VM_CALLBACK  0x80
 248#define ASC_TAG_FLAG_EXTRA_BYTES               0x10
 249#define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
 250#define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
 251#define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
 252#define ASC_SCSIQ_CPY_BEG              4
 253#define ASC_SCSIQ_SGHD_CPY_BEG         2
 254#define ASC_SCSIQ_B_FWD                0
 255#define ASC_SCSIQ_B_BWD                1
 256#define ASC_SCSIQ_B_STATUS             2
 257#define ASC_SCSIQ_B_QNO                3
 258#define ASC_SCSIQ_B_CNTL               4
 259#define ASC_SCSIQ_B_SG_QUEUE_CNT       5
 260#define ASC_SCSIQ_D_DATA_ADDR          8
 261#define ASC_SCSIQ_D_DATA_CNT          12
 262#define ASC_SCSIQ_B_SENSE_LEN         20
 263#define ASC_SCSIQ_DONE_INFO_BEG       22
 264#define ASC_SCSIQ_D_SRBPTR            22
 265#define ASC_SCSIQ_B_TARGET_IX         26
 266#define ASC_SCSIQ_B_CDB_LEN           28
 267#define ASC_SCSIQ_B_TAG_CODE          29
 268#define ASC_SCSIQ_W_VM_ID             30
 269#define ASC_SCSIQ_DONE_STATUS         32
 270#define ASC_SCSIQ_HOST_STATUS         33
 271#define ASC_SCSIQ_SCSI_STATUS         34
 272#define ASC_SCSIQ_CDB_BEG             36
 273#define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
 274#define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
 275#define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
 276#define ASC_SCSIQ_B_SG_WK_QP          49
 277#define ASC_SCSIQ_B_SG_WK_IX          50
 278#define ASC_SCSIQ_W_ALT_DC1           52
 279#define ASC_SCSIQ_B_LIST_CNT          6
 280#define ASC_SCSIQ_B_CUR_LIST_CNT      7
 281#define ASC_SGQ_B_SG_CNTL             4
 282#define ASC_SGQ_B_SG_HEAD_QP          5
 283#define ASC_SGQ_B_SG_LIST_CNT         6
 284#define ASC_SGQ_B_SG_CUR_LIST_CNT     7
 285#define ASC_SGQ_LIST_BEG              8
 286#define ASC_DEF_SCSI1_QNG    4
 287#define ASC_MAX_SCSI1_QNG    4
 288#define ASC_DEF_SCSI2_QNG    16
 289#define ASC_MAX_SCSI2_QNG    32
 290#define ASC_TAG_CODE_MASK    0x23
 291#define ASC_STOP_REQ_RISC_STOP      0x01
 292#define ASC_STOP_ACK_RISC_STOP      0x03
 293#define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
 294#define ASC_STOP_CLEAN_UP_DISC_Q    0x20
 295#define ASC_STOP_HOST_REQ_RISC_HALT 0x40
 296#define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
 297#define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
 298#define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
 299#define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
 300#define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
 301#define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
 302#define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
 303
 304typedef struct asc_scsiq_1 {
 305        uchar status;
 306        uchar q_no;
 307        uchar cntl;
 308        uchar sg_queue_cnt;
 309        uchar target_id;
 310        uchar target_lun;
 311        ASC_PADDR data_addr;
 312        ASC_DCNT data_cnt;
 313        ASC_PADDR sense_addr;
 314        uchar sense_len;
 315        uchar extra_bytes;
 316} ASC_SCSIQ_1;
 317
 318typedef struct asc_scsiq_2 {
 319        ASC_VADDR srb_ptr;
 320        uchar target_ix;
 321        uchar flag;
 322        uchar cdb_len;
 323        uchar tag_code;
 324        ushort vm_id;
 325} ASC_SCSIQ_2;
 326
 327typedef struct asc_scsiq_3 {
 328        uchar done_stat;
 329        uchar host_stat;
 330        uchar scsi_stat;
 331        uchar scsi_msg;
 332} ASC_SCSIQ_3;
 333
 334typedef struct asc_scsiq_4 {
 335        uchar cdb[ASC_MAX_CDB_LEN];
 336        uchar y_first_sg_list_qp;
 337        uchar y_working_sg_qp;
 338        uchar y_working_sg_ix;
 339        uchar y_res;
 340        ushort x_req_count;
 341        ushort x_reconnect_rtn;
 342        ASC_PADDR x_saved_data_addr;
 343        ASC_DCNT x_saved_data_cnt;
 344} ASC_SCSIQ_4;
 345
 346typedef struct asc_q_done_info {
 347        ASC_SCSIQ_2 d2;
 348        ASC_SCSIQ_3 d3;
 349        uchar q_status;
 350        uchar q_no;
 351        uchar cntl;
 352        uchar sense_len;
 353        uchar extra_bytes;
 354        uchar res;
 355        ASC_DCNT remain_bytes;
 356} ASC_QDONE_INFO;
 357
 358typedef struct asc_sg_list {
 359        ASC_PADDR addr;
 360        ASC_DCNT bytes;
 361} ASC_SG_LIST;
 362
 363typedef struct asc_sg_head {
 364        ushort entry_cnt;
 365        ushort queue_cnt;
 366        ushort entry_to_copy;
 367        ushort res;
 368        ASC_SG_LIST sg_list[0];
 369} ASC_SG_HEAD;
 370
 371typedef struct asc_scsi_q {
 372        ASC_SCSIQ_1 q1;
 373        ASC_SCSIQ_2 q2;
 374        uchar *cdbptr;
 375        ASC_SG_HEAD *sg_head;
 376        ushort remain_sg_entry_cnt;
 377        ushort next_sg_index;
 378} ASC_SCSI_Q;
 379
 380typedef struct asc_scsi_req_q {
 381        ASC_SCSIQ_1 r1;
 382        ASC_SCSIQ_2 r2;
 383        uchar *cdbptr;
 384        ASC_SG_HEAD *sg_head;
 385        uchar *sense_ptr;
 386        ASC_SCSIQ_3 r3;
 387        uchar cdb[ASC_MAX_CDB_LEN];
 388        uchar sense[ASC_MIN_SENSE_LEN];
 389} ASC_SCSI_REQ_Q;
 390
 391typedef struct asc_scsi_bios_req_q {
 392        ASC_SCSIQ_1 r1;
 393        ASC_SCSIQ_2 r2;
 394        uchar *cdbptr;
 395        ASC_SG_HEAD *sg_head;
 396        uchar *sense_ptr;
 397        ASC_SCSIQ_3 r3;
 398        uchar cdb[ASC_MAX_CDB_LEN];
 399        uchar sense[ASC_MIN_SENSE_LEN];
 400} ASC_SCSI_BIOS_REQ_Q;
 401
 402typedef struct asc_risc_q {
 403        uchar fwd;
 404        uchar bwd;
 405        ASC_SCSIQ_1 i1;
 406        ASC_SCSIQ_2 i2;
 407        ASC_SCSIQ_3 i3;
 408        ASC_SCSIQ_4 i4;
 409} ASC_RISC_Q;
 410
 411typedef struct asc_sg_list_q {
 412        uchar seq_no;
 413        uchar q_no;
 414        uchar cntl;
 415        uchar sg_head_qp;
 416        uchar sg_list_cnt;
 417        uchar sg_cur_list_cnt;
 418} ASC_SG_LIST_Q;
 419
 420typedef struct asc_risc_sg_list_q {
 421        uchar fwd;
 422        uchar bwd;
 423        ASC_SG_LIST_Q sg;
 424        ASC_SG_LIST sg_list[7];
 425} ASC_RISC_SG_LIST_Q;
 426
 427#define ASCQ_ERR_Q_STATUS             0x0D
 428#define ASCQ_ERR_CUR_QNG              0x17
 429#define ASCQ_ERR_SG_Q_LINKS           0x18
 430#define ASCQ_ERR_ISR_RE_ENTRY         0x1A
 431#define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
 432#define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
 433
 434/*
 435 * Warning code values are set in ASC_DVC_VAR  'warn_code'.
 436 */
 437#define ASC_WARN_NO_ERROR             0x0000
 438#define ASC_WARN_IO_PORT_ROTATE       0x0001
 439#define ASC_WARN_EEPROM_CHKSUM        0x0002
 440#define ASC_WARN_IRQ_MODIFIED         0x0004
 441#define ASC_WARN_AUTO_CONFIG          0x0008
 442#define ASC_WARN_CMD_QNG_CONFLICT     0x0010
 443#define ASC_WARN_EEPROM_RECOVER       0x0020
 444#define ASC_WARN_CFG_MSW_RECOVER      0x0040
 445
 446/*
 447 * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
 448 */
 449#define ASC_IERR_NO_CARRIER             0x0001  /* No more carrier memory */
 450#define ASC_IERR_MCODE_CHKSUM           0x0002  /* micro code check sum error */
 451#define ASC_IERR_SET_PC_ADDR            0x0004
 452#define ASC_IERR_START_STOP_CHIP        0x0008  /* start/stop chip failed */
 453#define ASC_IERR_ILLEGAL_CONNECTION     0x0010  /* Illegal cable connection */
 454#define ASC_IERR_SINGLE_END_DEVICE      0x0020  /* SE device on DIFF bus */
 455#define ASC_IERR_REVERSED_CABLE         0x0040  /* Narrow flat cable reversed */
 456#define ASC_IERR_SET_SCSI_ID            0x0080  /* set SCSI ID failed */
 457#define ASC_IERR_HVD_DEVICE             0x0100  /* HVD device on LVD port */
 458#define ASC_IERR_BAD_SIGNATURE          0x0200  /* signature not found */
 459#define ASC_IERR_NO_BUS_TYPE            0x0400
 460#define ASC_IERR_BIST_PRE_TEST          0x0800  /* BIST pre-test error */
 461#define ASC_IERR_BIST_RAM_TEST          0x1000  /* BIST RAM test error */
 462#define ASC_IERR_BAD_CHIPTYPE           0x2000  /* Invalid chip_type setting */
 463
 464#define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
 465#define ASC_MIN_TAG_Q_PER_DVC   (0x04)
 466#define ASC_MIN_FREE_Q        (0x02)
 467#define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
 468#define ASC_MAX_TOTAL_QNG 240
 469#define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
 470#define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
 471#define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
 472#define ASC_MAX_INRAM_TAG_QNG   16
 473#define ASC_IOADR_GAP   0x10
 474#define ASC_SYN_MAX_OFFSET         0x0F
 475#define ASC_DEF_SDTR_OFFSET        0x0F
 476#define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
 477#define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
 478
 479/* The narrow chip only supports a limited selection of transfer rates.
 480 * These are encoded in the range 0..7 or 0..15 depending whether the chip
 481 * is Ultra-capable or not.  These tables let us convert from one to the other.
 482 */
 483static const unsigned char asc_syn_xfer_period[8] = {
 484        25, 30, 35, 40, 50, 60, 70, 85
 485};
 486
 487static const unsigned char asc_syn_ultra_xfer_period[16] = {
 488        12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
 489};
 490
 491typedef struct ext_msg {
 492        uchar msg_type;
 493        uchar msg_len;
 494        uchar msg_req;
 495        union {
 496                struct {
 497                        uchar sdtr_xfer_period;
 498                        uchar sdtr_req_ack_offset;
 499                } sdtr;
 500                struct {
 501                        uchar wdtr_width;
 502                } wdtr;
 503                struct {
 504                        uchar mdp_b3;
 505                        uchar mdp_b2;
 506                        uchar mdp_b1;
 507                        uchar mdp_b0;
 508                } mdp;
 509        } u_ext_msg;
 510        uchar res;
 511} EXT_MSG;
 512
 513#define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
 514#define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
 515#define wdtr_width      u_ext_msg.wdtr.wdtr_width
 516#define mdp_b3          u_ext_msg.mdp_b3
 517#define mdp_b2          u_ext_msg.mdp_b2
 518#define mdp_b1          u_ext_msg.mdp_b1
 519#define mdp_b0          u_ext_msg.mdp_b0
 520
 521typedef struct asc_dvc_cfg {
 522        ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
 523        ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
 524        ASC_SCSI_BIT_ID_TYPE disc_enable;
 525        ASC_SCSI_BIT_ID_TYPE sdtr_enable;
 526        uchar chip_scsi_id;
 527        uchar isa_dma_speed;
 528        uchar isa_dma_channel;
 529        uchar chip_version;
 530        ushort mcode_date;
 531        ushort mcode_version;
 532        uchar max_tag_qng[ASC_MAX_TID + 1];
 533        uchar sdtr_period_offset[ASC_MAX_TID + 1];
 534        uchar adapter_info[6];
 535} ASC_DVC_CFG;
 536
 537#define ASC_DEF_DVC_CNTL       0xFFFF
 538#define ASC_DEF_CHIP_SCSI_ID   7
 539#define ASC_DEF_ISA_DMA_SPEED  4
 540#define ASC_INIT_STATE_BEG_GET_CFG   0x0001
 541#define ASC_INIT_STATE_END_GET_CFG   0x0002
 542#define ASC_INIT_STATE_BEG_SET_CFG   0x0004
 543#define ASC_INIT_STATE_END_SET_CFG   0x0008
 544#define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
 545#define ASC_INIT_STATE_END_LOAD_MC   0x0020
 546#define ASC_INIT_STATE_BEG_INQUIRY   0x0040
 547#define ASC_INIT_STATE_END_INQUIRY   0x0080
 548#define ASC_INIT_RESET_SCSI_DONE     0x0100
 549#define ASC_INIT_STATE_WITHOUT_EEP   0x8000
 550#define ASC_BUG_FIX_IF_NOT_DWB       0x0001
 551#define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
 552#define ASC_MIN_TAGGED_CMD  7
 553#define ASC_MAX_SCSI_RESET_WAIT      30
 554#define ASC_OVERRUN_BSIZE               64
 555
 556struct asc_dvc_var;             /* Forward Declaration. */
 557
 558typedef struct asc_dvc_var {
 559        PortAddr iop_base;
 560        ushort err_code;
 561        ushort dvc_cntl;
 562        ushort bug_fix_cntl;
 563        ushort bus_type;
 564        ASC_SCSI_BIT_ID_TYPE init_sdtr;
 565        ASC_SCSI_BIT_ID_TYPE sdtr_done;
 566        ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
 567        ASC_SCSI_BIT_ID_TYPE unit_not_ready;
 568        ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
 569        ASC_SCSI_BIT_ID_TYPE start_motor;
 570        uchar *overrun_buf;
 571        dma_addr_t overrun_dma;
 572        uchar scsi_reset_wait;
 573        uchar chip_no;
 574        char is_in_int;
 575        uchar max_total_qng;
 576        uchar cur_total_qng;
 577        uchar in_critical_cnt;
 578        uchar last_q_shortage;
 579        ushort init_state;
 580        uchar cur_dvc_qng[ASC_MAX_TID + 1];
 581        uchar max_dvc_qng[ASC_MAX_TID + 1];
 582        ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
 583        ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
 584        const uchar *sdtr_period_tbl;
 585        ASC_DVC_CFG *cfg;
 586        ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
 587        char redo_scam;
 588        ushort res2;
 589        uchar dos_int13_table[ASC_MAX_TID + 1];
 590        ASC_DCNT max_dma_count;
 591        ASC_SCSI_BIT_ID_TYPE no_scam;
 592        ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
 593        uchar min_sdtr_index;
 594        uchar max_sdtr_index;
 595        struct asc_board *drv_ptr;
 596        int ptr_map_count;
 597        void **ptr_map;
 598        ASC_DCNT uc_break;
 599} ASC_DVC_VAR;
 600
 601typedef struct asc_dvc_inq_info {
 602        uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
 603} ASC_DVC_INQ_INFO;
 604
 605typedef struct asc_cap_info {
 606        ASC_DCNT lba;
 607        ASC_DCNT blk_size;
 608} ASC_CAP_INFO;
 609
 610typedef struct asc_cap_info_array {
 611        ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
 612} ASC_CAP_INFO_ARRAY;
 613
 614#define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
 615#define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
 616#define ASC_CNTL_INITIATOR         (ushort)0x0001
 617#define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
 618#define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
 619#define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
 620#define ASC_CNTL_NO_SCAM           (ushort)0x0010
 621#define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
 622#define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
 623#define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
 624#define ASC_CNTL_RESET_SCSI        (ushort)0x0200
 625#define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
 626#define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
 627#define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
 628#define ASC_CNTL_BURST_MODE        (ushort)0x2000
 629#define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
 630#define ASC_EEP_DVC_CFG_BEG_VL    2
 631#define ASC_EEP_MAX_DVC_ADDR_VL   15
 632#define ASC_EEP_DVC_CFG_BEG      32
 633#define ASC_EEP_MAX_DVC_ADDR     45
 634#define ASC_EEP_MAX_RETRY        20
 635
 636/*
 637 * These macros keep the chip SCSI id and ISA DMA speed
 638 * bitfields in board order. C bitfields aren't portable
 639 * between big and little-endian platforms so they are
 640 * not used.
 641 */
 642
 643#define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
 644#define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
 645#define ASC_EEP_SET_CHIP_ID(cfg, sid) \
 646   ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
 647#define ASC_EEP_SET_DMA_SPD(cfg, spd) \
 648   ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
 649
 650typedef struct asceep_config {
 651        ushort cfg_lsw;
 652        ushort cfg_msw;
 653        uchar init_sdtr;
 654        uchar disc_enable;
 655        uchar use_cmd_qng;
 656        uchar start_motor;
 657        uchar max_total_qng;
 658        uchar max_tag_qng;
 659        uchar bios_scan;
 660        uchar power_up_wait;
 661        uchar no_scam;
 662        uchar id_speed;         /* low order 4 bits is chip scsi id */
 663        /* high order 4 bits is isa dma speed */
 664        uchar dos_int13_table[ASC_MAX_TID + 1];
 665        uchar adapter_info[6];
 666        ushort cntl;
 667        ushort chksum;
 668} ASCEEP_CONFIG;
 669
 670#define ASC_EEP_CMD_READ          0x80
 671#define ASC_EEP_CMD_WRITE         0x40
 672#define ASC_EEP_CMD_WRITE_ABLE    0x30
 673#define ASC_EEP_CMD_WRITE_DISABLE 0x00
 674#define ASCV_MSGOUT_BEG         0x0000
 675#define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
 676#define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
 677#define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
 678#define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
 679#define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
 680#define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
 681#define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
 682#define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
 683#define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
 684#define ASCV_BREAK_ADDR           (ushort)0x0028
 685#define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
 686#define ASCV_BREAK_CONTROL        (ushort)0x002C
 687#define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
 688
 689#define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
 690#define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
 691#define ASCV_MCODE_SIZE_W     (ushort)0x0034
 692#define ASCV_STOP_CODE_B      (ushort)0x0036
 693#define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
 694#define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
 695#define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
 696#define ASCV_HALTCODE_W       (ushort)0x0040
 697#define ASCV_CHKSUM_W         (ushort)0x0042
 698#define ASCV_MC_DATE_W        (ushort)0x0044
 699#define ASCV_MC_VER_W         (ushort)0x0046
 700#define ASCV_NEXTRDY_B        (ushort)0x0048
 701#define ASCV_DONENEXT_B       (ushort)0x0049
 702#define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
 703#define ASCV_SCSIBUSY_B       (ushort)0x004B
 704#define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
 705#define ASCV_CURCDB_B         (ushort)0x004D
 706#define ASCV_RCLUN_B          (ushort)0x004E
 707#define ASCV_BUSY_QHEAD_B     (ushort)0x004F
 708#define ASCV_DISC1_QHEAD_B    (ushort)0x0050
 709#define ASCV_DISC_ENABLE_B    (ushort)0x0052
 710#define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
 711#define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
 712#define ASCV_MCODE_CNTL_B     (ushort)0x0056
 713#define ASCV_NULL_TARGET_B    (ushort)0x0057
 714#define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
 715#define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
 716#define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
 717#define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
 718#define ASCV_HOST_FLAG_B      (ushort)0x005D
 719#define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
 720#define ASCV_VER_SERIAL_B     (ushort)0x0065
 721#define ASCV_HALTCODE_SAVED_W (ushort)0x0066
 722#define ASCV_WTM_FLAG_B       (ushort)0x0068
 723#define ASCV_RISC_FLAG_B      (ushort)0x006A
 724#define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
 725#define ASC_HOST_FLAG_IN_ISR        0x01
 726#define ASC_HOST_FLAG_ACK_INT       0x02
 727#define ASC_RISC_FLAG_GEN_INT      0x01
 728#define ASC_RISC_FLAG_REQ_SG_LIST  0x02
 729#define IOP_CTRL         (0x0F)
 730#define IOP_STATUS       (0x0E)
 731#define IOP_INT_ACK      IOP_STATUS
 732#define IOP_REG_IFC      (0x0D)
 733#define IOP_SYN_OFFSET    (0x0B)
 734#define IOP_EXTRA_CONTROL (0x0D)
 735#define IOP_REG_PC        (0x0C)
 736#define IOP_RAM_ADDR      (0x0A)
 737#define IOP_RAM_DATA      (0x08)
 738#define IOP_EEP_DATA      (0x06)
 739#define IOP_EEP_CMD       (0x07)
 740#define IOP_VERSION       (0x03)
 741#define IOP_CONFIG_HIGH   (0x04)
 742#define IOP_CONFIG_LOW    (0x02)
 743#define IOP_SIG_BYTE      (0x01)
 744#define IOP_SIG_WORD      (0x00)
 745#define IOP_REG_DC1      (0x0E)
 746#define IOP_REG_DC0      (0x0C)
 747#define IOP_REG_SB       (0x0B)
 748#define IOP_REG_DA1      (0x0A)
 749#define IOP_REG_DA0      (0x08)
 750#define IOP_REG_SC       (0x09)
 751#define IOP_DMA_SPEED    (0x07)
 752#define IOP_REG_FLAG     (0x07)
 753#define IOP_FIFO_H       (0x06)
 754#define IOP_FIFO_L       (0x04)
 755#define IOP_REG_ID       (0x05)
 756#define IOP_REG_QP       (0x03)
 757#define IOP_REG_IH       (0x02)
 758#define IOP_REG_IX       (0x01)
 759#define IOP_REG_AX       (0x00)
 760#define IFC_REG_LOCK      (0x00)
 761#define IFC_REG_UNLOCK    (0x09)
 762#define IFC_WR_EN_FILTER  (0x10)
 763#define IFC_RD_NO_EEPROM  (0x10)
 764#define IFC_SLEW_RATE     (0x20)
 765#define IFC_ACT_NEG       (0x40)
 766#define IFC_INP_FILTER    (0x80)
 767#define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
 768#define SC_SEL   (uchar)(0x80)
 769#define SC_BSY   (uchar)(0x40)
 770#define SC_ACK   (uchar)(0x20)
 771#define SC_REQ   (uchar)(0x10)
 772#define SC_ATN   (uchar)(0x08)
 773#define SC_IO    (uchar)(0x04)
 774#define SC_CD    (uchar)(0x02)
 775#define SC_MSG   (uchar)(0x01)
 776#define SEC_SCSI_CTL         (uchar)(0x80)
 777#define SEC_ACTIVE_NEGATE    (uchar)(0x40)
 778#define SEC_SLEW_RATE        (uchar)(0x20)
 779#define SEC_ENABLE_FILTER    (uchar)(0x10)
 780#define ASC_HALT_EXTMSG_IN     (ushort)0x8000
 781#define ASC_HALT_CHK_CONDITION (ushort)0x8100
 782#define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
 783#define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
 784#define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
 785#define ASC_HALT_SDTR_REJECTED (ushort)0x4000
 786#define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
 787#define ASC_MAX_QNO        0xF8
 788#define ASC_DATA_SEC_BEG   (ushort)0x0080
 789#define ASC_DATA_SEC_END   (ushort)0x0080
 790#define ASC_CODE_SEC_BEG   (ushort)0x0080
 791#define ASC_CODE_SEC_END   (ushort)0x0080
 792#define ASC_QADR_BEG       (0x4000)
 793#define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
 794#define ASC_QADR_END       (ushort)0x7FFF
 795#define ASC_QLAST_ADR      (ushort)0x7FC0
 796#define ASC_QBLK_SIZE      0x40
 797#define ASC_BIOS_DATA_QBEG 0xF8
 798#define ASC_MIN_ACTIVE_QNO 0x01
 799#define ASC_QLINK_END      0xFF
 800#define ASC_EEPROM_WORDS   0x10
 801#define ASC_MAX_MGS_LEN    0x10
 802#define ASC_BIOS_ADDR_DEF  0xDC00
 803#define ASC_BIOS_SIZE      0x3800
 804#define ASC_BIOS_RAM_OFF   0x3800
 805#define ASC_BIOS_RAM_SIZE  0x800
 806#define ASC_BIOS_MIN_ADDR  0xC000
 807#define ASC_BIOS_MAX_ADDR  0xEC00
 808#define ASC_BIOS_BANK_SIZE 0x0400
 809#define ASC_MCODE_START_ADDR  0x0080
 810#define ASC_CFG0_HOST_INT_ON    0x0020
 811#define ASC_CFG0_BIOS_ON        0x0040
 812#define ASC_CFG0_VERA_BURST_ON  0x0080
 813#define ASC_CFG0_SCSI_PARITY_ON 0x0800
 814#define ASC_CFG1_SCSI_TARGET_ON 0x0080
 815#define ASC_CFG1_LRAM_8BITS_ON  0x0800
 816#define ASC_CFG_MSW_CLR_MASK    0x3080
 817#define CSW_TEST1             (ASC_CS_TYPE)0x8000
 818#define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
 819#define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
 820#define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
 821#define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
 822#define CSW_TEST2             (ASC_CS_TYPE)0x0400
 823#define CSW_TEST3             (ASC_CS_TYPE)0x0200
 824#define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
 825#define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
 826#define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
 827#define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
 828#define CSW_HALTED            (ASC_CS_TYPE)0x0010
 829#define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
 830#define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
 831#define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
 832#define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
 833#define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
 834#define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
 835#define CIW_TEST1        (ASC_CS_TYPE)0x0200
 836#define CIW_TEST2        (ASC_CS_TYPE)0x0400
 837#define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
 838#define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
 839#define CC_CHIP_RESET   (uchar)0x80
 840#define CC_SCSI_RESET   (uchar)0x40
 841#define CC_HALT         (uchar)0x20
 842#define CC_SINGLE_STEP  (uchar)0x10
 843#define CC_DMA_ABLE     (uchar)0x08
 844#define CC_TEST         (uchar)0x04
 845#define CC_BANK_ONE     (uchar)0x02
 846#define CC_DIAG         (uchar)0x01
 847#define ASC_1000_ID0W      0x04C1
 848#define ASC_1000_ID0W_FIX  0x00C1
 849#define ASC_1000_ID1B      0x25
 850#define ASC_EISA_REV_IOP_MASK  (0x0C83)
 851#define ASC_EISA_CFG_IOP_MASK  (0x0C86)
 852#define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
 853#define INS_HALTINT        (ushort)0x6281
 854#define INS_HALT           (ushort)0x6280
 855#define INS_SINT           (ushort)0x6200
 856#define INS_RFLAG_WTM      (ushort)0x7380
 857#define ASC_MC_SAVE_CODE_WSIZE  0x500
 858#define ASC_MC_SAVE_DATA_WSIZE  0x40
 859
 860typedef struct asc_mc_saved {
 861        ushort data[ASC_MC_SAVE_DATA_WSIZE];
 862        ushort code[ASC_MC_SAVE_CODE_WSIZE];
 863} ASC_MC_SAVED;
 864
 865#define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
 866#define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
 867#define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
 868#define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
 869#define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
 870#define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
 871#define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
 872#define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
 873#define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
 874#define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
 875#define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
 876#define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
 877#define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
 878#define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
 879#define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
 880#define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
 881#define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
 882#define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
 883#define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
 884#define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
 885#define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
 886#define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
 887#define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
 888#define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
 889#define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
 890#define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
 891#define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
 892#define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
 893#define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
 894#define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
 895#define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
 896#define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
 897#define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
 898#define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
 899#define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
 900#define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
 901#define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
 902#define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
 903#define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
 904#define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
 905#define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
 906#define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
 907#define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
 908#define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
 909#define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
 910#define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
 911#define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
 912#define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
 913#define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
 914#define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
 915#define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
 916#define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
 917#define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
 918#define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
 919#define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
 920#define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
 921#define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
 922#define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
 923#define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
 924#define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
 925#define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
 926#define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
 927#define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
 928#define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
 929#define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
 930#define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
 931#define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
 932
 933/*
 934 * Portable Data Types
 935 *
 936 * Any instance where a 32-bit long or pointer type is assumed
 937 * for precision or HW defined structures, the following define
 938 * types must be used. In Linux the char, short, and int types
 939 * are all consistent at 8, 16, and 32 bits respectively. Pointers
 940 * and long types are 64 bits on Alpha and UltraSPARC.
 941 */
 942#define ADV_PADDR __u32         /* Physical address data type. */
 943#define ADV_VADDR __u32         /* Virtual address data type. */
 944#define ADV_DCNT  __u32         /* Unsigned Data count type. */
 945#define ADV_SDCNT __s32         /* Signed Data count type. */
 946
 947/*
 948 * These macros are used to convert a virtual address to a
 949 * 32-bit value. This currently can be used on Linux Alpha
 950 * which uses 64-bit virtual address but a 32-bit bus address.
 951 * This is likely to break in the future, but doing this now
 952 * will give us time to change the HW and FW to handle 64-bit
 953 * addresses.
 954 */
 955#define ADV_VADDR_TO_U32   virt_to_bus
 956#define ADV_U32_TO_VADDR   bus_to_virt
 957
 958#define AdvPortAddr  void __iomem *     /* Virtual memory address size */
 959
 960/*
 961 * Define Adv Library required memory access macros.
 962 */
 963#define ADV_MEM_READB(addr) readb(addr)
 964#define ADV_MEM_READW(addr) readw(addr)
 965#define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
 966#define ADV_MEM_WRITEW(addr, word) writew(word, addr)
 967#define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
 968
 969#define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
 970
 971/*
 972 * Define total number of simultaneous maximum element scatter-gather
 973 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
 974 * maximum number of outstanding commands per wide host adapter. Each
 975 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
 976 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
 977 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
 978 * structures or 255 scatter-gather elements.
 979 */
 980#define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
 981
 982/*
 983 * Define maximum number of scatter-gather elements per request.
 984 */
 985#define ADV_MAX_SG_LIST         255
 986#define NO_OF_SG_PER_BLOCK              15
 987
 988#define ADV_EEP_DVC_CFG_BEGIN           (0x00)
 989#define ADV_EEP_DVC_CFG_END             (0x15)
 990#define ADV_EEP_DVC_CTL_BEGIN           (0x16)  /* location of OEM name */
 991#define ADV_EEP_MAX_WORD_ADDR           (0x1E)
 992
 993#define ADV_EEP_DELAY_MS                100
 994
 995#define ADV_EEPROM_BIG_ENDIAN          0x8000   /* EEPROM Bit 15 */
 996#define ADV_EEPROM_BIOS_ENABLE         0x4000   /* EEPROM Bit 14 */
 997/*
 998 * For the ASC3550 Bit 13 is Termination Polarity control bit.
 999 * For later ICs Bit 13 controls whether the CIS (Card Information
1000 * Service Section) is loaded from EEPROM.
1001 */
1002#define ADV_EEPROM_TERM_POL            0x2000   /* EEPROM Bit 13 */
1003#define ADV_EEPROM_CIS_LD              0x2000   /* EEPROM Bit 13 */
1004/*
1005 * ASC38C1600 Bit 11
1006 *
1007 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1008 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1009 * Function 0 will specify INT B.
1010 *
1011 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1012 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1013 * Function 1 will specify INT A.
1014 */
1015#define ADV_EEPROM_INTAB               0x0800   /* EEPROM Bit 11 */
1016
1017typedef struct adveep_3550_config {
1018        /* Word Offset, Description */
1019
1020        ushort cfg_lsw;         /* 00 power up initialization */
1021        /*  bit 13 set - Term Polarity Control */
1022        /*  bit 14 set - BIOS Enable */
1023        /*  bit 15 set - Big Endian Mode */
1024        ushort cfg_msw;         /* 01 unused      */
1025        ushort disc_enable;     /* 02 disconnect enable */
1026        ushort wdtr_able;       /* 03 Wide DTR able */
1027        ushort sdtr_able;       /* 04 Synchronous DTR able */
1028        ushort start_motor;     /* 05 send start up motor */
1029        ushort tagqng_able;     /* 06 tag queuing able */
1030        ushort bios_scan;       /* 07 BIOS device control */
1031        ushort scam_tolerant;   /* 08 no scam */
1032
1033        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1034        uchar bios_boot_delay;  /*    power up wait */
1035
1036        uchar scsi_reset_delay; /* 10 reset delay */
1037        uchar bios_id_lun;      /*    first boot device scsi id & lun */
1038        /*    high nibble is lun */
1039        /*    low nibble is scsi id */
1040
1041        uchar termination;      /* 11 0 - automatic */
1042        /*    1 - low off / high off */
1043        /*    2 - low off / high on */
1044        /*    3 - low on  / high on */
1045        /*    There is no low on  / high off */
1046
1047        uchar reserved1;        /*    reserved byte (not used) */
1048
1049        ushort bios_ctrl;       /* 12 BIOS control bits */
1050        /*  bit 0  BIOS don't act as initiator. */
1051        /*  bit 1  BIOS > 1 GB support */
1052        /*  bit 2  BIOS > 2 Disk Support */
1053        /*  bit 3  BIOS don't support removables */
1054        /*  bit 4  BIOS support bootable CD */
1055        /*  bit 5  BIOS scan enabled */
1056        /*  bit 6  BIOS support multiple LUNs */
1057        /*  bit 7  BIOS display of message */
1058        /*  bit 8  SCAM disabled */
1059        /*  bit 9  Reset SCSI bus during init. */
1060        /*  bit 10 */
1061        /*  bit 11 No verbose initialization. */
1062        /*  bit 12 SCSI parity enabled */
1063        /*  bit 13 */
1064        /*  bit 14 */
1065        /*  bit 15 */
1066        ushort ultra_able;      /* 13 ULTRA speed able */
1067        ushort reserved2;       /* 14 reserved */
1068        uchar max_host_qng;     /* 15 maximum host queuing */
1069        uchar max_dvc_qng;      /*    maximum per device queuing */
1070        ushort dvc_cntl;        /* 16 control bit for driver */
1071        ushort bug_fix;         /* 17 control bit for bug fix */
1072        ushort serial_number_word1;     /* 18 Board serial number word 1 */
1073        ushort serial_number_word2;     /* 19 Board serial number word 2 */
1074        ushort serial_number_word3;     /* 20 Board serial number word 3 */
1075        ushort check_sum;       /* 21 EEP check sum */
1076        uchar oem_name[16];     /* 22 OEM name */
1077        ushort dvc_err_code;    /* 30 last device driver error code */
1078        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1079        ushort adv_err_addr;    /* 32 last uc error address */
1080        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1081        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1082        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1083        ushort num_of_err;      /* 36 number of error */
1084} ADVEEP_3550_CONFIG;
1085
1086typedef struct adveep_38C0800_config {
1087        /* Word Offset, Description */
1088
1089        ushort cfg_lsw;         /* 00 power up initialization */
1090        /*  bit 13 set - Load CIS */
1091        /*  bit 14 set - BIOS Enable */
1092        /*  bit 15 set - Big Endian Mode */
1093        ushort cfg_msw;         /* 01 unused      */
1094        ushort disc_enable;     /* 02 disconnect enable */
1095        ushort wdtr_able;       /* 03 Wide DTR able */
1096        ushort sdtr_speed1;     /* 04 SDTR Speed TID 0-3 */
1097        ushort start_motor;     /* 05 send start up motor */
1098        ushort tagqng_able;     /* 06 tag queuing able */
1099        ushort bios_scan;       /* 07 BIOS device control */
1100        ushort scam_tolerant;   /* 08 no scam */
1101
1102        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1103        uchar bios_boot_delay;  /*    power up wait */
1104
1105        uchar scsi_reset_delay; /* 10 reset delay */
1106        uchar bios_id_lun;      /*    first boot device scsi id & lun */
1107        /*    high nibble is lun */
1108        /*    low nibble is scsi id */
1109
1110        uchar termination_se;   /* 11 0 - automatic */
1111        /*    1 - low off / high off */
1112        /*    2 - low off / high on */
1113        /*    3 - low on  / high on */
1114        /*    There is no low on  / high off */
1115
1116        uchar termination_lvd;  /* 11 0 - automatic */
1117        /*    1 - low off / high off */
1118        /*    2 - low off / high on */
1119        /*    3 - low on  / high on */
1120        /*    There is no low on  / high off */
1121
1122        ushort bios_ctrl;       /* 12 BIOS control bits */
1123        /*  bit 0  BIOS don't act as initiator. */
1124        /*  bit 1  BIOS > 1 GB support */
1125        /*  bit 2  BIOS > 2 Disk Support */
1126        /*  bit 3  BIOS don't support removables */
1127        /*  bit 4  BIOS support bootable CD */
1128        /*  bit 5  BIOS scan enabled */
1129        /*  bit 6  BIOS support multiple LUNs */
1130        /*  bit 7  BIOS display of message */
1131        /*  bit 8  SCAM disabled */
1132        /*  bit 9  Reset SCSI bus during init. */
1133        /*  bit 10 */
1134        /*  bit 11 No verbose initialization. */
1135        /*  bit 12 SCSI parity enabled */
1136        /*  bit 13 */
1137        /*  bit 14 */
1138        /*  bit 15 */
1139        ushort sdtr_speed2;     /* 13 SDTR speed TID 4-7 */
1140        ushort sdtr_speed3;     /* 14 SDTR speed TID 8-11 */
1141        uchar max_host_qng;     /* 15 maximum host queueing */
1142        uchar max_dvc_qng;      /*    maximum per device queuing */
1143        ushort dvc_cntl;        /* 16 control bit for driver */
1144        ushort sdtr_speed4;     /* 17 SDTR speed 4 TID 12-15 */
1145        ushort serial_number_word1;     /* 18 Board serial number word 1 */
1146        ushort serial_number_word2;     /* 19 Board serial number word 2 */
1147        ushort serial_number_word3;     /* 20 Board serial number word 3 */
1148        ushort check_sum;       /* 21 EEP check sum */
1149        uchar oem_name[16];     /* 22 OEM name */
1150        ushort dvc_err_code;    /* 30 last device driver error code */
1151        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1152        ushort adv_err_addr;    /* 32 last uc error address */
1153        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1154        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1155        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1156        ushort reserved36;      /* 36 reserved */
1157        ushort reserved37;      /* 37 reserved */
1158        ushort reserved38;      /* 38 reserved */
1159        ushort reserved39;      /* 39 reserved */
1160        ushort reserved40;      /* 40 reserved */
1161        ushort reserved41;      /* 41 reserved */
1162        ushort reserved42;      /* 42 reserved */
1163        ushort reserved43;      /* 43 reserved */
1164        ushort reserved44;      /* 44 reserved */
1165        ushort reserved45;      /* 45 reserved */
1166        ushort reserved46;      /* 46 reserved */
1167        ushort reserved47;      /* 47 reserved */
1168        ushort reserved48;      /* 48 reserved */
1169        ushort reserved49;      /* 49 reserved */
1170        ushort reserved50;      /* 50 reserved */
1171        ushort reserved51;      /* 51 reserved */
1172        ushort reserved52;      /* 52 reserved */
1173        ushort reserved53;      /* 53 reserved */
1174        ushort reserved54;      /* 54 reserved */
1175        ushort reserved55;      /* 55 reserved */
1176        ushort cisptr_lsw;      /* 56 CIS PTR LSW */
1177        ushort cisprt_msw;      /* 57 CIS PTR MSW */
1178        ushort subsysvid;       /* 58 SubSystem Vendor ID */
1179        ushort subsysid;        /* 59 SubSystem ID */
1180        ushort reserved60;      /* 60 reserved */
1181        ushort reserved61;      /* 61 reserved */
1182        ushort reserved62;      /* 62 reserved */
1183        ushort reserved63;      /* 63 reserved */
1184} ADVEEP_38C0800_CONFIG;
1185
1186typedef struct adveep_38C1600_config {
1187        /* Word Offset, Description */
1188
1189        ushort cfg_lsw;         /* 00 power up initialization */
1190        /*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1191        /*       clear - Func. 0 INTA, Func. 1 INTB */
1192        /*  bit 13 set - Load CIS */
1193        /*  bit 14 set - BIOS Enable */
1194        /*  bit 15 set - Big Endian Mode */
1195        ushort cfg_msw;         /* 01 unused */
1196        ushort disc_enable;     /* 02 disconnect enable */
1197        ushort wdtr_able;       /* 03 Wide DTR able */
1198        ushort sdtr_speed1;     /* 04 SDTR Speed TID 0-3 */
1199        ushort start_motor;     /* 05 send start up motor */
1200        ushort tagqng_able;     /* 06 tag queuing able */
1201        ushort bios_scan;       /* 07 BIOS device control */
1202        ushort scam_tolerant;   /* 08 no scam */
1203
1204        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1205        uchar bios_boot_delay;  /*    power up wait */
1206
1207        uchar scsi_reset_delay; /* 10 reset delay */
1208        uchar bios_id_lun;      /*    first boot device scsi id & lun */
1209        /*    high nibble is lun */
1210        /*    low nibble is scsi id */
1211
1212        uchar termination_se;   /* 11 0 - automatic */
1213        /*    1 - low off / high off */
1214        /*    2 - low off / high on */
1215        /*    3 - low on  / high on */
1216        /*    There is no low on  / high off */
1217
1218        uchar termination_lvd;  /* 11 0 - automatic */
1219        /*    1 - low off / high off */
1220        /*    2 - low off / high on */
1221        /*    3 - low on  / high on */
1222        /*    There is no low on  / high off */
1223
1224        ushort bios_ctrl;       /* 12 BIOS control bits */
1225        /*  bit 0  BIOS don't act as initiator. */
1226        /*  bit 1  BIOS > 1 GB support */
1227        /*  bit 2  BIOS > 2 Disk Support */
1228        /*  bit 3  BIOS don't support removables */
1229        /*  bit 4  BIOS support bootable CD */
1230        /*  bit 5  BIOS scan enabled */
1231        /*  bit 6  BIOS support multiple LUNs */
1232        /*  bit 7  BIOS display of message */
1233        /*  bit 8  SCAM disabled */
1234        /*  bit 9  Reset SCSI bus during init. */
1235        /*  bit 10 Basic Integrity Checking disabled */
1236        /*  bit 11 No verbose initialization. */
1237        /*  bit 12 SCSI parity enabled */
1238        /*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1239        /*  bit 14 */
1240        /*  bit 15 */
1241        ushort sdtr_speed2;     /* 13 SDTR speed TID 4-7 */
1242        ushort sdtr_speed3;     /* 14 SDTR speed TID 8-11 */
1243        uchar max_host_qng;     /* 15 maximum host queueing */
1244        uchar max_dvc_qng;      /*    maximum per device queuing */
1245        ushort dvc_cntl;        /* 16 control bit for driver */
1246        ushort sdtr_speed4;     /* 17 SDTR speed 4 TID 12-15 */
1247        ushort serial_number_word1;     /* 18 Board serial number word 1 */
1248        ushort serial_number_word2;     /* 19 Board serial number word 2 */
1249        ushort serial_number_word3;     /* 20 Board serial number word 3 */
1250        ushort check_sum;       /* 21 EEP check sum */
1251        uchar oem_name[16];     /* 22 OEM name */
1252        ushort dvc_err_code;    /* 30 last device driver error code */
1253        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1254        ushort adv_err_addr;    /* 32 last uc error address */
1255        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1256        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1257        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1258        ushort reserved36;      /* 36 reserved */
1259        ushort reserved37;      /* 37 reserved */
1260        ushort reserved38;      /* 38 reserved */
1261        ushort reserved39;      /* 39 reserved */
1262        ushort reserved40;      /* 40 reserved */
1263        ushort reserved41;      /* 41 reserved */
1264        ushort reserved42;      /* 42 reserved */
1265        ushort reserved43;      /* 43 reserved */
1266        ushort reserved44;      /* 44 reserved */
1267        ushort reserved45;      /* 45 reserved */
1268        ushort reserved46;      /* 46 reserved */
1269        ushort reserved47;      /* 47 reserved */
1270        ushort reserved48;      /* 48 reserved */
1271        ushort reserved49;      /* 49 reserved */
1272        ushort reserved50;      /* 50 reserved */
1273        ushort reserved51;      /* 51 reserved */
1274        ushort reserved52;      /* 52 reserved */
1275        ushort reserved53;      /* 53 reserved */
1276        ushort reserved54;      /* 54 reserved */
1277        ushort reserved55;      /* 55 reserved */
1278        ushort cisptr_lsw;      /* 56 CIS PTR LSW */
1279        ushort cisprt_msw;      /* 57 CIS PTR MSW */
1280        ushort subsysvid;       /* 58 SubSystem Vendor ID */
1281        ushort subsysid;        /* 59 SubSystem ID */
1282        ushort reserved60;      /* 60 reserved */
1283        ushort reserved61;      /* 61 reserved */
1284        ushort reserved62;      /* 62 reserved */
1285        ushort reserved63;      /* 63 reserved */
1286} ADVEEP_38C1600_CONFIG;
1287
1288/*
1289 * EEPROM Commands
1290 */
1291#define ASC_EEP_CMD_DONE             0x0200
1292
1293/* bios_ctrl */
1294#define BIOS_CTRL_BIOS               0x0001
1295#define BIOS_CTRL_EXTENDED_XLAT      0x0002
1296#define BIOS_CTRL_GT_2_DISK          0x0004
1297#define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1298#define BIOS_CTRL_BOOTABLE_CD        0x0010
1299#define BIOS_CTRL_MULTIPLE_LUN       0x0040
1300#define BIOS_CTRL_DISPLAY_MSG        0x0080
1301#define BIOS_CTRL_NO_SCAM            0x0100
1302#define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1303#define BIOS_CTRL_INIT_VERBOSE       0x0800
1304#define BIOS_CTRL_SCSI_PARITY        0x1000
1305#define BIOS_CTRL_AIPP_DIS           0x2000
1306
1307#define ADV_3550_MEMSIZE   0x2000       /* 8 KB Internal Memory */
1308
1309#define ADV_38C0800_MEMSIZE  0x4000     /* 16 KB Internal Memory */
1310
1311/*
1312 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1313 * a special 16K Adv Library and Microcode version. After the issue is
1314 * resolved, should restore 32K support.
1315 *
1316 * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1317 */
1318#define ADV_38C1600_MEMSIZE  0x4000     /* 16 KB Internal Memory */
1319
1320/*
1321 * Byte I/O register address from base of 'iop_base'.
1322 */
1323#define IOPB_INTR_STATUS_REG    0x00
1324#define IOPB_CHIP_ID_1          0x01
1325#define IOPB_INTR_ENABLES       0x02
1326#define IOPB_CHIP_TYPE_REV      0x03
1327#define IOPB_RES_ADDR_4         0x04
1328#define IOPB_RES_ADDR_5         0x05
1329#define IOPB_RAM_DATA           0x06
1330#define IOPB_RES_ADDR_7         0x07
1331#define IOPB_FLAG_REG           0x08
1332#define IOPB_RES_ADDR_9         0x09
1333#define IOPB_RISC_CSR           0x0A
1334#define IOPB_RES_ADDR_B         0x0B
1335#define IOPB_RES_ADDR_C         0x0C
1336#define IOPB_RES_ADDR_D         0x0D
1337#define IOPB_SOFT_OVER_WR       0x0E
1338#define IOPB_RES_ADDR_F         0x0F
1339#define IOPB_MEM_CFG            0x10
1340#define IOPB_RES_ADDR_11        0x11
1341#define IOPB_GPIO_DATA          0x12
1342#define IOPB_RES_ADDR_13        0x13
1343#define IOPB_FLASH_PAGE         0x14
1344#define IOPB_RES_ADDR_15        0x15
1345#define IOPB_GPIO_CNTL          0x16
1346#define IOPB_RES_ADDR_17        0x17
1347#define IOPB_FLASH_DATA         0x18
1348#define IOPB_RES_ADDR_19        0x19
1349#define IOPB_RES_ADDR_1A        0x1A
1350#define IOPB_RES_ADDR_1B        0x1B
1351#define IOPB_RES_ADDR_1C        0x1C
1352#define IOPB_RES_ADDR_1D        0x1D
1353#define IOPB_RES_ADDR_1E        0x1E
1354#define IOPB_RES_ADDR_1F        0x1F
1355#define IOPB_DMA_CFG0           0x20
1356#define IOPB_DMA_CFG1           0x21
1357#define IOPB_TICKLE             0x22
1358#define IOPB_DMA_REG_WR         0x23
1359#define IOPB_SDMA_STATUS        0x24
1360#define IOPB_SCSI_BYTE_CNT      0x25
1361#define IOPB_HOST_BYTE_CNT      0x26
1362#define IOPB_BYTE_LEFT_TO_XFER  0x27
1363#define IOPB_BYTE_TO_XFER_0     0x28
1364#define IOPB_BYTE_TO_XFER_1     0x29
1365#define IOPB_BYTE_TO_XFER_2     0x2A
1366#define IOPB_BYTE_TO_XFER_3     0x2B
1367#define IOPB_ACC_GRP            0x2C
1368#define IOPB_RES_ADDR_2D        0x2D
1369#define IOPB_DEV_ID             0x2E
1370#define IOPB_RES_ADDR_2F        0x2F
1371#define IOPB_SCSI_DATA          0x30
1372#define IOPB_RES_ADDR_31        0x31
1373#define IOPB_RES_ADDR_32        0x32
1374#define IOPB_SCSI_DATA_HSHK     0x33
1375#define IOPB_SCSI_CTRL          0x34
1376#define IOPB_RES_ADDR_35        0x35
1377#define IOPB_RES_ADDR_36        0x36
1378#define IOPB_RES_ADDR_37        0x37
1379#define IOPB_RAM_BIST           0x38
1380#define IOPB_PLL_TEST           0x39
1381#define IOPB_PCI_INT_CFG        0x3A
1382#define IOPB_RES_ADDR_3B        0x3B
1383#define IOPB_RFIFO_CNT          0x3C
1384#define IOPB_RES_ADDR_3D        0x3D
1385#define IOPB_RES_ADDR_3E        0x3E
1386#define IOPB_RES_ADDR_3F        0x3F
1387
1388/*
1389 * Word I/O register address from base of 'iop_base'.
1390 */
1391#define IOPW_CHIP_ID_0          0x00    /* CID0  */
1392#define IOPW_CTRL_REG           0x02    /* CC    */
1393#define IOPW_RAM_ADDR           0x04    /* LA    */
1394#define IOPW_RAM_DATA           0x06    /* LD    */
1395#define IOPW_RES_ADDR_08        0x08
1396#define IOPW_RISC_CSR           0x0A    /* CSR   */
1397#define IOPW_SCSI_CFG0          0x0C    /* CFG0  */
1398#define IOPW_SCSI_CFG1          0x0E    /* CFG1  */
1399#define IOPW_RES_ADDR_10        0x10
1400#define IOPW_SEL_MASK           0x12    /* SM    */
1401#define IOPW_RES_ADDR_14        0x14
1402#define IOPW_FLASH_ADDR         0x16    /* FA    */
1403#define IOPW_RES_ADDR_18        0x18
1404#define IOPW_EE_CMD             0x1A    /* EC    */
1405#define IOPW_EE_DATA            0x1C    /* ED    */
1406#define IOPW_SFIFO_CNT          0x1E    /* SFC   */
1407#define IOPW_RES_ADDR_20        0x20
1408#define IOPW_Q_BASE             0x22    /* QB    */
1409#define IOPW_QP                 0x24    /* QP    */
1410#define IOPW_IX                 0x26    /* IX    */
1411#define IOPW_SP                 0x28    /* SP    */
1412#define IOPW_PC                 0x2A    /* PC    */
1413#define IOPW_RES_ADDR_2C        0x2C
1414#define IOPW_RES_ADDR_2E        0x2E
1415#define IOPW_SCSI_DATA          0x30    /* SD    */
1416#define IOPW_SCSI_DATA_HSHK     0x32    /* SDH   */
1417#define IOPW_SCSI_CTRL          0x34    /* SC    */
1418#define IOPW_HSHK_CFG           0x36    /* HCFG  */
1419#define IOPW_SXFR_STATUS        0x36    /* SXS   */
1420#define IOPW_SXFR_CNTL          0x38    /* SXL   */
1421#define IOPW_SXFR_CNTH          0x3A    /* SXH   */
1422#define IOPW_RES_ADDR_3C        0x3C
1423#define IOPW_RFIFO_DATA         0x3E    /* RFD   */
1424
1425/*
1426 * Doubleword I/O register address from base of 'iop_base'.
1427 */
1428#define IOPDW_RES_ADDR_0         0x00
1429#define IOPDW_RAM_DATA           0x04
1430#define IOPDW_RES_ADDR_8         0x08
1431#define IOPDW_RES_ADDR_C         0x0C
1432#define IOPDW_RES_ADDR_10        0x10
1433#define IOPDW_COMMA              0x14
1434#define IOPDW_COMMB              0x18
1435#define IOPDW_RES_ADDR_1C        0x1C
1436#define IOPDW_SDMA_ADDR0         0x20
1437#define IOPDW_SDMA_ADDR1         0x24
1438#define IOPDW_SDMA_COUNT         0x28
1439#define IOPDW_SDMA_ERROR         0x2C
1440#define IOPDW_RDMA_ADDR0         0x30
1441#define IOPDW_RDMA_ADDR1         0x34
1442#define IOPDW_RDMA_COUNT         0x38
1443#define IOPDW_RDMA_ERROR         0x3C
1444
1445#define ADV_CHIP_ID_BYTE         0x25
1446#define ADV_CHIP_ID_WORD         0x04C1
1447
1448#define ADV_INTR_ENABLE_HOST_INTR                   0x01
1449#define ADV_INTR_ENABLE_SEL_INTR                    0x02
1450#define ADV_INTR_ENABLE_DPR_INTR                    0x04
1451#define ADV_INTR_ENABLE_RTA_INTR                    0x08
1452#define ADV_INTR_ENABLE_RMA_INTR                    0x10
1453#define ADV_INTR_ENABLE_RST_INTR                    0x20
1454#define ADV_INTR_ENABLE_DPE_INTR                    0x40
1455#define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1456
1457#define ADV_INTR_STATUS_INTRA            0x01
1458#define ADV_INTR_STATUS_INTRB            0x02
1459#define ADV_INTR_STATUS_INTRC            0x04
1460
1461#define ADV_RISC_CSR_STOP           (0x0000)
1462#define ADV_RISC_TEST_COND          (0x2000)
1463#define ADV_RISC_CSR_RUN            (0x4000)
1464#define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1465
1466#define ADV_CTRL_REG_HOST_INTR      0x0100
1467#define ADV_CTRL_REG_SEL_INTR       0x0200
1468#define ADV_CTRL_REG_DPR_INTR       0x0400
1469#define ADV_CTRL_REG_RTA_INTR       0x0800
1470#define ADV_CTRL_REG_RMA_INTR       0x1000
1471#define ADV_CTRL_REG_RES_BIT14      0x2000
1472#define ADV_CTRL_REG_DPE_INTR       0x4000
1473#define ADV_CTRL_REG_POWER_DONE     0x8000
1474#define ADV_CTRL_REG_ANY_INTR       0xFF00
1475
1476#define ADV_CTRL_REG_CMD_RESET             0x00C6
1477#define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1478#define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1479#define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1480#define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1481
1482#define ADV_TICKLE_NOP                      0x00
1483#define ADV_TICKLE_A                        0x01
1484#define ADV_TICKLE_B                        0x02
1485#define ADV_TICKLE_C                        0x03
1486
1487#define AdvIsIntPending(port) \
1488    (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1489
1490/*
1491 * SCSI_CFG0 Register bit definitions
1492 */
1493#define TIMER_MODEAB    0xC000  /* Watchdog, Second, and Select. Timer Ctrl. */
1494#define PARITY_EN       0x2000  /* Enable SCSI Parity Error detection */
1495#define EVEN_PARITY     0x1000  /* Select Even Parity */
1496#define WD_LONG         0x0800  /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1497#define QUEUE_128       0x0400  /* Queue Size, 1: 128 byte, 0: 64 byte */
1498#define PRIM_MODE       0x0100  /* Primitive SCSI mode */
1499#define SCAM_EN         0x0080  /* Enable SCAM selection */
1500#define SEL_TMO_LONG    0x0040  /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1501#define CFRM_ID         0x0020  /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1502#define OUR_ID_EN       0x0010  /* Enable OUR_ID bits */
1503#define OUR_ID          0x000F  /* SCSI ID */
1504
1505/*
1506 * SCSI_CFG1 Register bit definitions
1507 */
1508#define BIG_ENDIAN      0x8000  /* Enable Big Endian Mode MIO:15, EEP:15 */
1509#define TERM_POL        0x2000  /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1510#define SLEW_RATE       0x1000  /* SCSI output buffer slew rate */
1511#define FILTER_SEL      0x0C00  /* Filter Period Selection */
1512#define  FLTR_DISABLE    0x0000 /* Input Filtering Disabled */
1513#define  FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1514#define  FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1515#define ACTIVE_DBL      0x0200  /* Disable Active Negation */
1516#define DIFF_MODE       0x0100  /* SCSI differential Mode (Read-Only) */
1517#define DIFF_SENSE      0x0080  /* 1: No SE cables, 0: SE cable (Read-Only) */
1518#define TERM_CTL_SEL    0x0040  /* Enable TERM_CTL_H and TERM_CTL_L */
1519#define TERM_CTL        0x0030  /* External SCSI Termination Bits */
1520#define  TERM_CTL_H      0x0020 /* Enable External SCSI Upper Termination */
1521#define  TERM_CTL_L      0x0010 /* Enable External SCSI Lower Termination */
1522#define CABLE_DETECT    0x000F  /* External SCSI Cable Connection Status */
1523
1524/*
1525 * Addendum for ASC-38C0800 Chip
1526 *
1527 * The ASC-38C1600 Chip uses the same definitions except that the
1528 * bus mode override bits [12:10] have been moved to byte register
1529 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1530 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1531 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1532 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1533 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1534 */
1535#define DIS_TERM_DRV    0x4000  /* 1: Read c_det[3:0], 0: cannot read */
1536#define HVD_LVD_SE      0x1C00  /* Device Detect Bits */
1537#define  HVD             0x1000 /* HVD Device Detect */
1538#define  LVD             0x0800 /* LVD Device Detect */
1539#define  SE              0x0400 /* SE Device Detect */
1540#define TERM_LVD        0x00C0  /* LVD Termination Bits */
1541#define  TERM_LVD_HI     0x0080 /* Enable LVD Upper Termination */
1542#define  TERM_LVD_LO     0x0040 /* Enable LVD Lower Termination */
1543#define TERM_SE         0x0030  /* SE Termination Bits */
1544#define  TERM_SE_HI      0x0020 /* Enable SE Upper Termination */
1545#define  TERM_SE_LO      0x0010 /* Enable SE Lower Termination */
1546#define C_DET_LVD       0x000C  /* LVD Cable Detect Bits */
1547#define  C_DET3          0x0008 /* Cable Detect for LVD External Wide */
1548#define  C_DET2          0x0004 /* Cable Detect for LVD Internal Wide */
1549#define C_DET_SE        0x0003  /* SE Cable Detect Bits */
1550#define  C_DET1          0x0002 /* Cable Detect for SE Internal Wide */
1551#define  C_DET0          0x0001 /* Cable Detect for SE Internal Narrow */
1552
1553#define CABLE_ILLEGAL_A 0x7
1554    /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1555
1556#define CABLE_ILLEGAL_B 0xB
1557    /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1558
1559/*
1560 * MEM_CFG Register bit definitions
1561 */
1562#define BIOS_EN         0x40    /* BIOS Enable MIO:14,EEP:14 */
1563#define FAST_EE_CLK     0x20    /* Diagnostic Bit */
1564#define RAM_SZ          0x1C    /* Specify size of RAM to RISC */
1565#define  RAM_SZ_2KB      0x00   /* 2 KB */
1566#define  RAM_SZ_4KB      0x04   /* 4 KB */
1567#define  RAM_SZ_8KB      0x08   /* 8 KB */
1568#define  RAM_SZ_16KB     0x0C   /* 16 KB */
1569#define  RAM_SZ_32KB     0x10   /* 32 KB */
1570#define  RAM_SZ_64KB     0x14   /* 64 KB */
1571
1572/*
1573 * DMA_CFG0 Register bit definitions
1574 *
1575 * This register is only accessible to the host.
1576 */
1577#define BC_THRESH_ENB   0x80    /* PCI DMA Start Conditions */
1578#define FIFO_THRESH     0x70    /* PCI DMA FIFO Threshold */
1579#define  FIFO_THRESH_16B  0x00  /* 16 bytes */
1580#define  FIFO_THRESH_32B  0x20  /* 32 bytes */
1581#define  FIFO_THRESH_48B  0x30  /* 48 bytes */
1582#define  FIFO_THRESH_64B  0x40  /* 64 bytes */
1583#define  FIFO_THRESH_80B  0x50  /* 80 bytes (default) */
1584#define  FIFO_THRESH_96B  0x60  /* 96 bytes */
1585#define  FIFO_THRESH_112B 0x70  /* 112 bytes */
1586#define START_CTL       0x0C    /* DMA start conditions */
1587#define  START_CTL_TH    0x00   /* Wait threshold level (default) */
1588#define  START_CTL_ID    0x04   /* Wait SDMA/SBUS idle */
1589#define  START_CTL_THID  0x08   /* Wait threshold and SDMA/SBUS idle */
1590#define  START_CTL_EMFU  0x0C   /* Wait SDMA FIFO empty/full */
1591#define READ_CMD        0x03    /* Memory Read Method */
1592#define  READ_CMD_MR     0x00   /* Memory Read */
1593#define  READ_CMD_MRL    0x02   /* Memory Read Long */
1594#define  READ_CMD_MRM    0x03   /* Memory Read Multiple (default) */
1595
1596/*
1597 * ASC-38C0800 RAM BIST Register bit definitions
1598 */
1599#define RAM_TEST_MODE         0x80
1600#define PRE_TEST_MODE         0x40
1601#define NORMAL_MODE           0x00
1602#define RAM_TEST_DONE         0x10
1603#define RAM_TEST_STATUS       0x0F
1604#define  RAM_TEST_HOST_ERROR   0x08
1605#define  RAM_TEST_INTRAM_ERROR 0x04
1606#define  RAM_TEST_RISC_ERROR   0x02
1607#define  RAM_TEST_SCSI_ERROR   0x01
1608#define  RAM_TEST_SUCCESS      0x00
1609#define PRE_TEST_VALUE        0x05
1610#define NORMAL_VALUE          0x00
1611
1612/*
1613 * ASC38C1600 Definitions
1614 *
1615 * IOPB_PCI_INT_CFG Bit Field Definitions
1616 */
1617
1618#define INTAB_LD        0x80    /* Value loaded from EEPROM Bit 11. */
1619
1620/*
1621 * Bit 1 can be set to change the interrupt for the Function to operate in
1622 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1623 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1624 * mode, otherwise the operating mode is undefined.
1625 */
1626#define TOTEMPOLE       0x02
1627
1628/*
1629 * Bit 0 can be used to change the Int Pin for the Function. The value is
1630 * 0 by default for both Functions with Function 0 using INT A and Function
1631 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1632 * INT A is used.
1633 *
1634 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1635 * value specified in the PCI Configuration Space.
1636 */
1637#define INTAB           0x01
1638
1639/*
1640 * Adv Library Status Definitions
1641 */
1642#define ADV_TRUE        1
1643#define ADV_FALSE       0
1644#define ADV_SUCCESS     1
1645#define ADV_BUSY        0
1646#define ADV_ERROR       (-1)
1647
1648/*
1649 * ADV_DVC_VAR 'warn_code' values
1650 */
1651#define ASC_WARN_BUSRESET_ERROR         0x0001  /* SCSI Bus Reset error */
1652#define ASC_WARN_EEPROM_CHKSUM          0x0002  /* EEP check sum error */
1653#define ASC_WARN_EEPROM_TERMINATION     0x0004  /* EEP termination bad field */
1654#define ASC_WARN_ERROR                  0xFFFF  /* ADV_ERROR return */
1655
1656#define ADV_MAX_TID                     15      /* max. target identifier */
1657#define ADV_MAX_LUN                     7       /* max. logical unit number */
1658
1659/*
1660 * Fixed locations of microcode operating variables.
1661 */
1662#define ASC_MC_CODE_BEGIN_ADDR          0x0028  /* microcode start address */
1663#define ASC_MC_CODE_END_ADDR            0x002A  /* microcode end address */
1664#define ASC_MC_CODE_CHK_SUM             0x002C  /* microcode code checksum */
1665#define ASC_MC_VERSION_DATE             0x0038  /* microcode version */
1666#define ASC_MC_VERSION_NUM              0x003A  /* microcode number */
1667#define ASC_MC_BIOSMEM                  0x0040  /* BIOS RISC Memory Start */
1668#define ASC_MC_BIOSLEN                  0x0050  /* BIOS RISC Memory Length */
1669#define ASC_MC_BIOS_SIGNATURE           0x0058  /* BIOS Signature 0x55AA */
1670#define ASC_MC_BIOS_VERSION             0x005A  /* BIOS Version (2 bytes) */
1671#define ASC_MC_SDTR_SPEED1              0x0090  /* SDTR Speed for TID 0-3 */
1672#define ASC_MC_SDTR_SPEED2              0x0092  /* SDTR Speed for TID 4-7 */
1673#define ASC_MC_SDTR_SPEED3              0x0094  /* SDTR Speed for TID 8-11 */
1674#define ASC_MC_SDTR_SPEED4              0x0096  /* SDTR Speed for TID 12-15 */
1675#define ASC_MC_CHIP_TYPE                0x009A
1676#define ASC_MC_INTRB_CODE               0x009B
1677#define ASC_MC_WDTR_ABLE                0x009C
1678#define ASC_MC_SDTR_ABLE                0x009E
1679#define ASC_MC_TAGQNG_ABLE              0x00A0
1680#define ASC_MC_DISC_ENABLE              0x00A2
1681#define ASC_MC_IDLE_CMD_STATUS          0x00A4
1682#define ASC_MC_IDLE_CMD                 0x00A6
1683#define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1684#define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1685#define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1686#define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1687#define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1688#define ASC_MC_SDTR_DONE                0x00B6
1689#define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1690#define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1691#define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1692#define ASC_MC_CONTROL_FLAG             0x0122  /* Microcode control flag. */
1693#define ASC_MC_WDTR_DONE                0x0124
1694#define ASC_MC_CAM_MODE_MASK            0x015E  /* CAM mode TID bitmask. */
1695#define ASC_MC_ICQ                      0x0160
1696#define ASC_MC_IRQ                      0x0164
1697#define ASC_MC_PPR_ABLE                 0x017A
1698
1699/*
1700 * BIOS LRAM variable absolute offsets.
1701 */
1702#define BIOS_CODESEG    0x54
1703#define BIOS_CODELEN    0x56
1704#define BIOS_SIGNATURE  0x58
1705#define BIOS_VERSION    0x5A
1706
1707/*
1708 * Microcode Control Flags
1709 *
1710 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1711 * and handled by the microcode.
1712 */
1713#define CONTROL_FLAG_IGNORE_PERR        0x0001  /* Ignore DMA Parity Errors */
1714#define CONTROL_FLAG_ENABLE_AIPP        0x0002  /* Enabled AIPP checking. */
1715
1716/*
1717 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1718 */
1719#define HSHK_CFG_WIDE_XFR       0x8000
1720#define HSHK_CFG_RATE           0x0F00
1721#define HSHK_CFG_OFFSET         0x001F
1722
1723#define ASC_DEF_MAX_HOST_QNG    0xFD    /* Max. number of host commands (253) */
1724#define ASC_DEF_MIN_HOST_QNG    0x10    /* Min. number of host commands (16) */
1725#define ASC_DEF_MAX_DVC_QNG     0x3F    /* Max. number commands per device (63) */
1726#define ASC_DEF_MIN_DVC_QNG     0x04    /* Min. number commands per device (4) */
1727
1728#define ASC_QC_DATA_CHECK  0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1729#define ASC_QC_DATA_OUT    0x02 /* Data out DMA transfer. */
1730#define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1731#define ASC_QC_NO_OVERRUN  0x08 /* Don't report overrun. */
1732#define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1733
1734#define ASC_QSC_NO_DISC     0x01        /* Don't allow disconnect for request. */
1735#define ASC_QSC_NO_TAGMSG   0x02        /* Don't allow tag queuing for request. */
1736#define ASC_QSC_NO_SYNC     0x04        /* Don't use Synch. transfer on request. */
1737#define ASC_QSC_NO_WIDE     0x08        /* Don't use Wide transfer on request. */
1738#define ASC_QSC_REDO_DTR    0x10        /* Renegotiate WDTR/SDTR before request. */
1739/*
1740 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1741 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1742 */
1743#define ASC_QSC_HEAD_TAG    0x40        /* Use Head Tag Message (0x21). */
1744#define ASC_QSC_ORDERED_TAG 0x80        /* Use Ordered Tag Message (0x22). */
1745
1746/*
1747 * All fields here are accessed by the board microcode and need to be
1748 * little-endian.
1749 */
1750typedef struct adv_carr_t {
1751        ADV_VADDR carr_va;      /* Carrier Virtual Address */
1752        ADV_PADDR carr_pa;      /* Carrier Physical Address */
1753        ADV_VADDR areq_vpa;     /* ASC_SCSI_REQ_Q Virtual or Physical Address */
1754        /*
1755         * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1756         *
1757         * next_vpa [3:1]             Reserved Bits
1758         * next_vpa [0]               Done Flag set in Response Queue.
1759         */
1760        ADV_VADDR next_vpa;
1761} ADV_CARR_T;
1762
1763/*
1764 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1765 */
1766#define ASC_NEXT_VPA_MASK       0xFFFFFFF0
1767
1768#define ASC_RQ_DONE             0x00000001
1769#define ASC_RQ_GOOD             0x00000002
1770#define ASC_CQ_STOPPER          0x00000000
1771
1772#define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1773
1774#define ADV_CARRIER_NUM_PAGE_CROSSING \
1775    (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1776
1777#define ADV_CARRIER_BUFSIZE \
1778    ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1779
1780/*
1781 * ASC_SCSI_REQ_Q 'a_flag' definitions
1782 *
1783 * The Adv Library should limit use to the lower nibble (4 bits) of
1784 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1785 */
1786#define ADV_POLL_REQUEST                0x01    /* poll for request completion */
1787#define ADV_SCSIQ_DONE                  0x02    /* request done */
1788#define ADV_DONT_RETRY                  0x08    /* don't do retry */
1789
1790#define ADV_CHIP_ASC3550          0x01  /* Ultra-Wide IC */
1791#define ADV_CHIP_ASC38C0800       0x02  /* Ultra2-Wide/LVD IC */
1792#define ADV_CHIP_ASC38C1600       0x03  /* Ultra3-Wide/LVD2 IC */
1793
1794/*
1795 * Adapter temporary configuration structure
1796 *
1797 * This structure can be discarded after initialization. Don't add
1798 * fields here needed after initialization.
1799 *
1800 * Field naming convention:
1801 *
1802 *  *_enable indicates the field enables or disables a feature. The
1803 *  value of the field is never reset.
1804 */
1805typedef struct adv_dvc_cfg {
1806        ushort disc_enable;     /* enable disconnection */
1807        uchar chip_version;     /* chip version */
1808        uchar termination;      /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1809        ushort control_flag;    /* Microcode Control Flag */
1810        ushort mcode_date;      /* Microcode date */
1811        ushort mcode_version;   /* Microcode version */
1812        ushort serial1;         /* EEPROM serial number word 1 */
1813        ushort serial2;         /* EEPROM serial number word 2 */
1814        ushort serial3;         /* EEPROM serial number word 3 */
1815} ADV_DVC_CFG;
1816
1817struct adv_dvc_var;
1818struct adv_scsi_req_q;
1819
1820typedef struct asc_sg_block {
1821        uchar reserved1;
1822        uchar reserved2;
1823        uchar reserved3;
1824        uchar sg_cnt;           /* Valid entries in block. */
1825        ADV_PADDR sg_ptr;       /* Pointer to next sg block. */
1826        struct {
1827                ADV_PADDR sg_addr;      /* SG element address. */
1828                ADV_DCNT sg_count;      /* SG element count. */
1829        } sg_list[NO_OF_SG_PER_BLOCK];
1830} ADV_SG_BLOCK;
1831
1832/*
1833 * ADV_SCSI_REQ_Q - microcode request structure
1834 *
1835 * All fields in this structure up to byte 60 are used by the microcode.
1836 * The microcode makes assumptions about the size and ordering of fields
1837 * in this structure. Do not change the structure definition here without
1838 * coordinating the change with the microcode.
1839 *
1840 * All fields accessed by microcode must be maintained in little_endian
1841 * order.
1842 */
1843typedef struct adv_scsi_req_q {
1844        uchar cntl;             /* Ucode flags and state (ASC_MC_QC_*). */
1845        uchar target_cmd;
1846        uchar target_id;        /* Device target identifier. */
1847        uchar target_lun;       /* Device target logical unit number. */
1848        ADV_PADDR data_addr;    /* Data buffer physical address. */
1849        ADV_DCNT data_cnt;      /* Data count. Ucode sets to residual. */
1850        ADV_PADDR sense_addr;
1851        ADV_PADDR carr_pa;
1852        uchar mflag;
1853        uchar sense_len;
1854        uchar cdb_len;          /* SCSI CDB length. Must <= 16 bytes. */
1855        uchar scsi_cntl;
1856        uchar done_status;      /* Completion status. */
1857        uchar scsi_status;      /* SCSI status byte. */
1858        uchar host_status;      /* Ucode host status. */
1859        uchar sg_working_ix;
1860        uchar cdb[12];          /* SCSI CDB bytes 0-11. */
1861        ADV_PADDR sg_real_addr; /* SG list physical address. */
1862        ADV_PADDR scsiq_rptr;
1863        uchar cdb16[4];         /* SCSI CDB bytes 12-15. */
1864        ADV_VADDR scsiq_ptr;
1865        ADV_VADDR carr_va;
1866        /*
1867         * End of microcode structure - 60 bytes. The rest of the structure
1868         * is used by the Adv Library and ignored by the microcode.
1869         */
1870        ADV_VADDR srb_ptr;
1871        ADV_SG_BLOCK *sg_list_ptr;      /* SG list virtual address. */
1872        char *vdata_addr;       /* Data buffer virtual address. */
1873        uchar a_flag;
1874        uchar pad[2];           /* Pad out to a word boundary. */
1875} ADV_SCSI_REQ_Q;
1876
1877/*
1878 * The following two structures are used to process Wide Board requests.
1879 *
1880 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1881 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1882 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1883 * Mid-Level SCSI request structure.
1884 *
1885 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1886 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1887 * up to 255 scatter-gather elements may be used per request or
1888 * ADV_SCSI_REQ_Q.
1889 *
1890 * Both structures must be 32 byte aligned.
1891 */
1892typedef struct adv_sgblk {
1893        ADV_SG_BLOCK sg_block;  /* Sgblock structure. */
1894        uchar align[32];        /* Sgblock structure padding. */
1895        struct adv_sgblk *next_sgblkp;  /* Next scatter-gather structure. */
1896} adv_sgblk_t;
1897
1898typedef struct adv_req {
1899        ADV_SCSI_REQ_Q scsi_req_q;      /* Adv Library request structure. */
1900        uchar align[32];        /* Request structure padding. */
1901        struct scsi_cmnd *cmndp;        /* Mid-Level SCSI command pointer. */
1902        adv_sgblk_t *sgblkp;    /* Adv Library scatter-gather pointer. */
1903        struct adv_req *next_reqp;      /* Next Request Structure. */
1904} adv_req_t;
1905
1906/*
1907 * Adapter operation variable structure.
1908 *
1909 * One structure is required per host adapter.
1910 *
1911 * Field naming convention:
1912 *
1913 *  *_able indicates both whether a feature should be enabled or disabled
1914 *  and whether a device isi capable of the feature. At initialization
1915 *  this field may be set, but later if a device is found to be incapable
1916 *  of the feature, the field is cleared.
1917 */
1918typedef struct adv_dvc_var {
1919        AdvPortAddr iop_base;   /* I/O port address */
1920        ushort err_code;        /* fatal error code */
1921        ushort bios_ctrl;       /* BIOS control word, EEPROM word 12 */
1922        ushort wdtr_able;       /* try WDTR for a device */
1923        ushort sdtr_able;       /* try SDTR for a device */
1924        ushort ultra_able;      /* try SDTR Ultra speed for a device */
1925        ushort sdtr_speed1;     /* EEPROM SDTR Speed for TID 0-3   */
1926        ushort sdtr_speed2;     /* EEPROM SDTR Speed for TID 4-7   */
1927        ushort sdtr_speed3;     /* EEPROM SDTR Speed for TID 8-11  */
1928        ushort sdtr_speed4;     /* EEPROM SDTR Speed for TID 12-15 */
1929        ushort tagqng_able;     /* try tagged queuing with a device */
1930        ushort ppr_able;        /* PPR message capable per TID bitmask. */
1931        uchar max_dvc_qng;      /* maximum number of tagged commands per device */
1932        ushort start_motor;     /* start motor command allowed */
1933        uchar scsi_reset_wait;  /* delay in seconds after scsi bus reset */
1934        uchar chip_no;          /* should be assigned by caller */
1935        uchar max_host_qng;     /* maximum number of Q'ed command allowed */
1936        ushort no_scam;         /* scam_tolerant of EEPROM */
1937        struct asc_board *drv_ptr;      /* driver pointer to private structure */
1938        uchar chip_scsi_id;     /* chip SCSI target ID */
1939        uchar chip_type;
1940        uchar bist_err_code;
1941        ADV_CARR_T *carrier_buf;
1942        ADV_CARR_T *carr_freelist;      /* Carrier free list. */
1943        ADV_CARR_T *icq_sp;     /* Initiator command queue stopper pointer. */
1944        ADV_CARR_T *irq_sp;     /* Initiator response queue stopper pointer. */
1945        ushort carr_pending_cnt;        /* Count of pending carriers. */
1946        struct adv_req *orig_reqp;      /* adv_req_t memory block. */
1947        /*
1948         * Note: The following fields will not be used after initialization. The
1949         * driver may discard the buffer after initialization is done.
1950         */
1951        ADV_DVC_CFG *cfg;       /* temporary configuration structure  */
1952} ADV_DVC_VAR;
1953
1954/*
1955 * Microcode idle loop commands
1956 */
1957#define IDLE_CMD_COMPLETED           0
1958#define IDLE_CMD_STOP_CHIP           0x0001
1959#define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1960#define IDLE_CMD_SEND_INT            0x0004
1961#define IDLE_CMD_ABORT               0x0008
1962#define IDLE_CMD_DEVICE_RESET        0x0010
1963#define IDLE_CMD_SCSI_RESET_START    0x0020     /* Assert SCSI Bus Reset */
1964#define IDLE_CMD_SCSI_RESET_END      0x0040     /* Deassert SCSI Bus Reset */
1965#define IDLE_CMD_SCSIREQ             0x0080
1966
1967#define IDLE_CMD_STATUS_SUCCESS      0x0001
1968#define IDLE_CMD_STATUS_FAILURE      0x0002
1969
1970/*
1971 * AdvSendIdleCmd() flag definitions.
1972 */
1973#define ADV_NOWAIT     0x01
1974
1975/*
1976 * Wait loop time out values.
1977 */
1978#define SCSI_WAIT_100_MSEC           100UL      /* 100 milliseconds */
1979#define SCSI_US_PER_MSEC             1000       /* microseconds per millisecond */
1980#define SCSI_MAX_RETRY               10 /* retry count */
1981
1982#define ADV_ASYNC_RDMA_FAILURE          0x01    /* Fatal RDMA failure. */
1983#define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02    /* Detected SCSI Bus Reset. */
1984#define ADV_ASYNC_CARRIER_READY_FAILURE 0x03    /* Carrier Ready failure. */
1985#define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04    /* RDMAed-in data invalid. */
1986
1987#define ADV_HOST_SCSI_BUS_RESET      0x80       /* Host Initiated SCSI Bus Reset. */
1988
1989/* Read byte from a register. */
1990#define AdvReadByteRegister(iop_base, reg_off) \
1991     (ADV_MEM_READB((iop_base) + (reg_off)))
1992
1993/* Write byte to a register. */
1994#define AdvWriteByteRegister(iop_base, reg_off, byte) \
1995     (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1996
1997/* Read word (2 bytes) from a register. */
1998#define AdvReadWordRegister(iop_base, reg_off) \
1999     (ADV_MEM_READW((iop_base) + (reg_off)))
2000
2001/* Write word (2 bytes) to a register. */
2002#define AdvWriteWordRegister(iop_base, reg_off, word) \
2003     (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2004
2005/* Write dword (4 bytes) to a register. */
2006#define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2007     (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2008
2009/* Read byte from LRAM. */
2010#define AdvReadByteLram(iop_base, addr, byte) \
2011do { \
2012    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2013    (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2014} while (0)
2015
2016/* Write byte to LRAM. */
2017#define AdvWriteByteLram(iop_base, addr, byte) \
2018    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2019     ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2020
2021/* Read word (2 bytes) from LRAM. */
2022#define AdvReadWordLram(iop_base, addr, word) \
2023do { \
2024    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2025    (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2026} while (0)
2027
2028/* Write word (2 bytes) to LRAM. */
2029#define AdvWriteWordLram(iop_base, addr, word) \
2030    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2031     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2032
2033/* Write little-endian double word (4 bytes) to LRAM */
2034/* Because of unspecified C language ordering don't use auto-increment. */
2035#define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2036    ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2037      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2038                     cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2039     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2040      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2041                     cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2042
2043/* Read word (2 bytes) from LRAM assuming that the address is already set. */
2044#define AdvReadWordAutoIncLram(iop_base) \
2045     (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2046
2047/* Write word (2 bytes) to LRAM assuming that the address is already set. */
2048#define AdvWriteWordAutoIncLram(iop_base, word) \
2049     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2050
2051/*
2052 * Define macro to check for Condor signature.
2053 *
2054 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2055 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2056 */
2057#define AdvFindSignature(iop_base) \
2058    (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2059    ADV_CHIP_ID_BYTE) && \
2060     (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2061    ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
2062
2063/*
2064 * Define macro to Return the version number of the chip at 'iop_base'.
2065 *
2066 * The second parameter 'bus_type' is currently unused.
2067 */
2068#define AdvGetChipVersion(iop_base, bus_type) \
2069    AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2070
2071/*
2072 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2073 * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2074 *
2075 * If the request has not yet been sent to the device it will simply be
2076 * aborted from RISC memory. If the request is disconnected it will be
2077 * aborted on reselection by sending an Abort Message to the target ID.
2078 *
2079 * Return value:
2080 *      ADV_TRUE(1) - Queue was successfully aborted.
2081 *      ADV_FALSE(0) - Queue was not found on the active queue list.
2082 */
2083#define AdvAbortQueue(asc_dvc, scsiq) \
2084        AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2085                       (ADV_DCNT) (scsiq))
2086
2087/*
2088 * Send a Bus Device Reset Message to the specified target ID.
2089 *
2090 * All outstanding commands will be purged if sending the
2091 * Bus Device Reset Message is successful.
2092 *
2093 * Return Value:
2094 *      ADV_TRUE(1) - All requests on the target are purged.
2095 *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2096 *                     are not purged.
2097 */
2098#define AdvResetDevice(asc_dvc, target_id) \
2099        AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2100                    (ADV_DCNT) (target_id))
2101
2102/*
2103 * SCSI Wide Type definition.
2104 */
2105#define ADV_SCSI_BIT_ID_TYPE   ushort
2106
2107/*
2108 * AdvInitScsiTarget() 'cntl_flag' options.
2109 */
2110#define ADV_SCAN_LUN           0x01
2111#define ADV_CAPINFO_NOLUN      0x02
2112
2113/*
2114 * Convert target id to target id bit mask.
2115 */
2116#define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2117
2118/*
2119 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2120 */
2121
2122#define QD_NO_STATUS         0x00       /* Request not completed yet. */
2123#define QD_NO_ERROR          0x01
2124#define QD_ABORTED_BY_HOST   0x02
2125#define QD_WITH_ERROR        0x04
2126
2127#define QHSTA_NO_ERROR              0x00
2128#define QHSTA_M_SEL_TIMEOUT         0x11
2129#define QHSTA_M_DATA_OVER_RUN       0x12
2130#define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2131#define QHSTA_M_QUEUE_ABORTED       0x15
2132#define QHSTA_M_SXFR_SDMA_ERR       0x16        /* SXFR_STATUS SCSI DMA Error */
2133#define QHSTA_M_SXFR_SXFR_PERR      0x17        /* SXFR_STATUS SCSI Bus Parity Error */
2134#define QHSTA_M_RDMA_PERR           0x18        /* RISC PCI DMA parity error */
2135#define QHSTA_M_SXFR_OFF_UFLW       0x19        /* SXFR_STATUS Offset Underflow */
2136#define QHSTA_M_SXFR_OFF_OFLW       0x20        /* SXFR_STATUS Offset Overflow */
2137#define QHSTA_M_SXFR_WD_TMO         0x21        /* SXFR_STATUS Watchdog Timeout */
2138#define QHSTA_M_SXFR_DESELECTED     0x22        /* SXFR_STATUS Deselected */
2139/* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2140#define QHSTA_M_SXFR_XFR_OFLW       0x12        /* SXFR_STATUS Transfer Overflow */
2141#define QHSTA_M_SXFR_XFR_PH_ERR     0x24        /* SXFR_STATUS Transfer Phase Error */
2142#define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25        /* SXFR_STATUS Unknown Error */
2143#define QHSTA_M_SCSI_BUS_RESET      0x30        /* Request aborted from SBR */
2144#define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31       /* Request aborted from unsol. SBR */
2145#define QHSTA_M_BUS_DEVICE_RESET    0x32        /* Request aborted from BDR */
2146#define QHSTA_M_DIRECTION_ERR       0x35        /* Data Phase mismatch */
2147#define QHSTA_M_DIRECTION_ERR_HUNG  0x36        /* Data Phase mismatch and bus hang */
2148#define QHSTA_M_WTM_TIMEOUT         0x41
2149#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2150#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2151#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2152#define QHSTA_M_INVALID_DEVICE      0x45        /* Bad target ID */
2153#define QHSTA_M_FROZEN_TIDQ         0x46        /* TID Queue frozen. */
2154#define QHSTA_M_SGBACKUP_ERROR      0x47        /* Scatter-Gather backup error */
2155
2156/* Return the address that is aligned at the next doubleword >= to 'addr'. */
2157#define ADV_8BALIGN(addr)      (((ulong) (addr) + 0x7) & ~0x7)
2158#define ADV_16BALIGN(addr)     (((ulong) (addr) + 0xF) & ~0xF)
2159#define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2160
2161/*
2162 * Total contiguous memory needed for driver SG blocks.
2163 *
2164 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2165 * number of scatter-gather elements the driver supports in a
2166 * single request.
2167 */
2168
2169#define ADV_SG_LIST_MAX_BYTE_SIZE \
2170         (sizeof(ADV_SG_BLOCK) * \
2171          ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2172
2173/* struct asc_board flags */
2174#define ASC_IS_WIDE_BOARD       0x04    /* AdvanSys Wide Board */
2175
2176#define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2177
2178#define NO_ISA_DMA              0xff    /* No ISA DMA Channel Used */
2179
2180#define ASC_INFO_SIZE           128     /* advansys_info() line size */
2181
2182#ifdef CONFIG_PROC_FS
2183/* /proc/scsi/advansys/[0...] related definitions */
2184#define ASC_PRTBUF_SIZE         2048
2185#define ASC_PRTLINE_SIZE        160
2186
2187#define ASC_PRT_NEXT() \
2188    if (cp) { \
2189        totlen += len; \
2190        leftlen -= len; \
2191        if (leftlen == 0) { \
2192            return totlen; \
2193        } \
2194        cp += len; \
2195    }
2196#endif /* CONFIG_PROC_FS */
2197
2198/* Asc Library return codes */
2199#define ASC_TRUE        1
2200#define ASC_FALSE       0
2201#define ASC_NOERROR     1
2202#define ASC_BUSY        0
2203#define ASC_ERROR       (-1)
2204
2205/* struct scsi_cmnd function return codes */
2206#define STATUS_BYTE(byte)   (byte)
2207#define MSG_BYTE(byte)      ((byte) << 8)
2208#define HOST_BYTE(byte)     ((byte) << 16)
2209#define DRIVER_BYTE(byte)   ((byte) << 24)
2210
2211#define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2212#ifndef ADVANSYS_STATS
2213#define ASC_STATS_ADD(shost, counter, count)
2214#else /* ADVANSYS_STATS */
2215#define ASC_STATS_ADD(shost, counter, count) \
2216        (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2217#endif /* ADVANSYS_STATS */
2218
2219/* If the result wraps when calculating tenths, return 0. */
2220#define ASC_TENTHS(num, den) \
2221    (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2222    0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2223
2224/*
2225 * Display a message to the console.
2226 */
2227#define ASC_PRINT(s) \
2228    { \
2229        printk("advansys: "); \
2230        printk(s); \
2231    }
2232
2233#define ASC_PRINT1(s, a1) \
2234    { \
2235        printk("advansys: "); \
2236        printk((s), (a1)); \
2237    }
2238
2239#define ASC_PRINT2(s, a1, a2) \
2240    { \
2241        printk("advansys: "); \
2242        printk((s), (a1), (a2)); \
2243    }
2244
2245#define ASC_PRINT3(s, a1, a2, a3) \
2246    { \
2247        printk("advansys: "); \
2248        printk((s), (a1), (a2), (a3)); \
2249    }
2250
2251#define ASC_PRINT4(s, a1, a2, a3, a4) \
2252    { \
2253        printk("advansys: "); \
2254        printk((s), (a1), (a2), (a3), (a4)); \
2255    }
2256
2257#ifndef ADVANSYS_DEBUG
2258
2259#define ASC_DBG(lvl, s...)
2260#define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2261#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2262#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2263#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2264#define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2265#define ASC_DBG_PRT_HEX(lvl, name, start, length)
2266#define ASC_DBG_PRT_CDB(lvl, cdb, len)
2267#define ASC_DBG_PRT_SENSE(lvl, sense, len)
2268#define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2269
2270#else /* ADVANSYS_DEBUG */
2271
2272/*
2273 * Debugging Message Levels:
2274 * 0: Errors Only
2275 * 1: High-Level Tracing
2276 * 2-N: Verbose Tracing
2277 */
2278
2279#define ASC_DBG(lvl, format, arg...) {                                  \
2280        if (asc_dbglvl >= (lvl))                                        \
2281                printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,          \
2282                        __func__ , ## arg);                             \
2283}
2284
2285#define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2286    { \
2287        if (asc_dbglvl >= (lvl)) { \
2288            asc_prt_scsi_host(s); \
2289        } \
2290    }
2291
2292#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2293    { \
2294        if (asc_dbglvl >= (lvl)) { \
2295            asc_prt_asc_scsi_q(scsiqp); \
2296        } \
2297    }
2298
2299#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2300    { \
2301        if (asc_dbglvl >= (lvl)) { \
2302            asc_prt_asc_qdone_info(qdone); \
2303        } \
2304    }
2305
2306#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2307    { \
2308        if (asc_dbglvl >= (lvl)) { \
2309            asc_prt_adv_scsi_req_q(scsiqp); \
2310        } \
2311    }
2312
2313#define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2314    { \
2315        if (asc_dbglvl >= (lvl)) { \
2316            asc_prt_hex((name), (start), (length)); \
2317        } \
2318    }
2319
2320#define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2321        ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2322
2323#define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2324        ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2325
2326#define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2327        ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2328#endif /* ADVANSYS_DEBUG */
2329
2330#ifdef ADVANSYS_STATS
2331
2332/* Per board statistics structure */
2333struct asc_stats {
2334        /* Driver Entrypoint Statistics */
2335        ADV_DCNT queuecommand;  /* # calls to advansys_queuecommand() */
2336        ADV_DCNT reset;         /* # calls to advansys_eh_bus_reset() */
2337        ADV_DCNT biosparam;     /* # calls to advansys_biosparam() */
2338        ADV_DCNT interrupt;     /* # advansys_interrupt() calls */
2339        ADV_DCNT callback;      /* # calls to asc/adv_isr_callback() */
2340        ADV_DCNT done;          /* # calls to request's scsi_done function */
2341        ADV_DCNT build_error;   /* # asc/adv_build_req() ASC_ERROR returns. */
2342        ADV_DCNT adv_build_noreq;       /* # adv_build_req() adv_req_t alloc. fail. */
2343        ADV_DCNT adv_build_nosg;        /* # adv_build_req() adv_sgblk_t alloc. fail. */
2344        /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2345        ADV_DCNT exe_noerror;   /* # ASC_NOERROR returns. */
2346        ADV_DCNT exe_busy;      /* # ASC_BUSY returns. */
2347        ADV_DCNT exe_error;     /* # ASC_ERROR returns. */
2348        ADV_DCNT exe_unknown;   /* # unknown returns. */
2349        /* Data Transfer Statistics */
2350        ADV_DCNT xfer_cnt;      /* # I/O requests received */
2351        ADV_DCNT xfer_elem;     /* # scatter-gather elements */
2352        ADV_DCNT xfer_sect;     /* # 512-byte blocks */
2353};
2354#endif /* ADVANSYS_STATS */
2355
2356/*
2357 * Structure allocated for each board.
2358 *
2359 * This structure is allocated by scsi_host_alloc() at the end
2360 * of the 'Scsi_Host' structure starting at the 'hostdata'
2361 * field. It is guaranteed to be allocated from DMA-able memory.
2362 */
2363struct asc_board {
2364        struct device *dev;
2365        uint flags;             /* Board flags */
2366        unsigned int irq;
2367        union {
2368                ASC_DVC_VAR asc_dvc_var;        /* Narrow board */
2369                ADV_DVC_VAR adv_dvc_var;        /* Wide board */
2370        } dvc_var;
2371        union {
2372                ASC_DVC_CFG asc_dvc_cfg;        /* Narrow board */
2373                ADV_DVC_CFG adv_dvc_cfg;        /* Wide board */
2374        } dvc_cfg;
2375        ushort asc_n_io_port;   /* Number I/O ports. */
2376        ADV_SCSI_BIT_ID_TYPE init_tidmask;      /* Target init./valid mask */
2377        ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2378        ADV_SCSI_BIT_ID_TYPE queue_full;        /* Queue full mask */
2379        ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2380        union {
2381                ASCEEP_CONFIG asc_eep;  /* Narrow EEPROM config. */
2382                ADVEEP_3550_CONFIG adv_3550_eep;        /* 3550 EEPROM config. */
2383                ADVEEP_38C0800_CONFIG adv_38C0800_eep;  /* 38C0800 EEPROM config. */
2384                ADVEEP_38C1600_CONFIG adv_38C1600_eep;  /* 38C1600 EEPROM config. */
2385        } eep_config;
2386        ulong last_reset;       /* Saved last reset time */
2387        /* /proc/scsi/advansys/[0...] */
2388        char *prtbuf;           /* /proc print buffer */
2389#ifdef ADVANSYS_STATS
2390        struct asc_stats asc_stats;     /* Board statistics */
2391#endif                          /* ADVANSYS_STATS */
2392        /*
2393         * The following fields are used only for Narrow Boards.
2394         */
2395        uchar sdtr_data[ASC_MAX_TID + 1];       /* SDTR information */
2396        /*
2397         * The following fields are used only for Wide Boards.
2398         */
2399        void __iomem *ioremap_addr;     /* I/O Memory remap address. */
2400        ushort ioport;          /* I/O Port address. */
2401        adv_req_t *adv_reqp;    /* Request structures. */
2402        adv_sgblk_t *adv_sgblkp;        /* Scatter-gather structures. */
2403        ushort bios_signature;  /* BIOS Signature. */
2404        ushort bios_version;    /* BIOS Version. */
2405        ushort bios_codeseg;    /* BIOS Code Segment. */
2406        ushort bios_codelen;    /* BIOS Code Segment Length. */
2407};
2408
2409#define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2410                                                        dvc_var.asc_dvc_var)
2411#define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2412                                                        dvc_var.adv_dvc_var)
2413#define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2414
2415#ifdef ADVANSYS_DEBUG
2416static int asc_dbglvl = 3;
2417
2418/*
2419 * asc_prt_asc_dvc_var()
2420 */
2421static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2422{
2423        printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2424
2425        printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2426               "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2427
2428        printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2429                (unsigned)h->init_sdtr);
2430
2431        printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2432               "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2433               (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2434               (unsigned)h->chip_no);
2435
2436        printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2437               "%u,\n", (unsigned)h->queue_full_or_busy,
2438               (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2439
2440        printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2441               "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2442               (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2443               (unsigned)h->in_critical_cnt);
2444
2445        printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2446               "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2447               (unsigned)h->init_state, (unsigned)h->no_scam,
2448               (unsigned)h->pci_fix_asyn_xfer);
2449
2450        printk(" cfg 0x%lx\n", (ulong)h->cfg);
2451}
2452
2453/*
2454 * asc_prt_asc_dvc_cfg()
2455 */
2456static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2457{
2458        printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2459
2460        printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2461               h->can_tagged_qng, h->cmd_qng_enabled);
2462        printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2463               h->disc_enable, h->sdtr_enable);
2464
2465        printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2466                "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2467                h->isa_dma_channel, h->chip_version);
2468
2469        printk(" mcode_date 0x%x, mcode_version %d\n",
2470                h->mcode_date, h->mcode_version);
2471}
2472
2473/*
2474 * asc_prt_adv_dvc_var()
2475 *
2476 * Display an ADV_DVC_VAR structure.
2477 */
2478static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2479{
2480        printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2481
2482        printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2483               (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2484
2485        printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2486               (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2487
2488        printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2489               (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2490
2491        printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2492               (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2493               (ulong)h->carr_freelist);
2494
2495        printk("  icq_sp 0x%lx, irq_sp 0x%lx\n",
2496               (ulong)h->icq_sp, (ulong)h->irq_sp);
2497
2498        printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2499               (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2500
2501        printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2502               (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2503}
2504
2505/*
2506 * asc_prt_adv_dvc_cfg()
2507 *
2508 * Display an ADV_DVC_CFG structure.
2509 */
2510static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2511{
2512        printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2513
2514        printk("  disc_enable 0x%x, termination 0x%x\n",
2515               h->disc_enable, h->termination);
2516
2517        printk("  chip_version 0x%x, mcode_date 0x%x\n",
2518               h->chip_version, h->mcode_date);
2519
2520        printk("  mcode_version 0x%x, control_flag 0x%x\n",
2521               h->mcode_version, h->control_flag);
2522}
2523
2524/*
2525 * asc_prt_scsi_host()
2526 */
2527static void asc_prt_scsi_host(struct Scsi_Host *s)
2528{
2529        struct asc_board *boardp = shost_priv(s);
2530
2531        printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2532        printk(" host_busy %u, host_no %d, last_reset %d,\n",
2533               s->host_busy, s->host_no, (unsigned)s->last_reset);
2534
2535        printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2536               (ulong)s->base, (ulong)s->io_port, boardp->irq);
2537
2538        printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2539               s->dma_channel, s->this_id, s->can_queue);
2540
2541        printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2542               s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2543
2544        if (ASC_NARROW_BOARD(boardp)) {
2545                asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2546                asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2547        } else {
2548                asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2549                asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2550        }
2551}
2552
2553/*
2554 * asc_prt_hex()
2555 *
2556 * Print hexadecimal output in 4 byte groupings 32 bytes
2557 * or 8 double-words per line.
2558 */
2559static void asc_prt_hex(char *f, uchar *s, int l)
2560{
2561        int i;
2562        int j;
2563        int k;
2564        int m;
2565
2566        printk("%s: (%d bytes)\n", f, l);
2567
2568        for (i = 0; i < l; i += 32) {
2569
2570                /* Display a maximum of 8 double-words per line. */
2571                if ((k = (l - i) / 4) >= 8) {
2572                        k = 8;
2573                        m = 0;
2574                } else {
2575                        m = (l - i) % 4;
2576                }
2577
2578                for (j = 0; j < k; j++) {
2579                        printk(" %2.2X%2.2X%2.2X%2.2X",
2580                               (unsigned)s[i + (j * 4)],
2581                               (unsigned)s[i + (j * 4) + 1],
2582                               (unsigned)s[i + (j * 4) + 2],
2583                               (unsigned)s[i + (j * 4) + 3]);
2584                }
2585
2586                switch (m) {
2587                case 0:
2588                default:
2589                        break;
2590                case 1:
2591                        printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2592                        break;
2593                case 2:
2594                        printk(" %2.2X%2.2X",
2595                               (unsigned)s[i + (j * 4)],
2596                               (unsigned)s[i + (j * 4) + 1]);
2597                        break;
2598                case 3:
2599                        printk(" %2.2X%2.2X%2.2X",
2600                               (unsigned)s[i + (j * 4) + 1],
2601                               (unsigned)s[i + (j * 4) + 2],
2602                               (unsigned)s[i + (j * 4) + 3]);
2603                        break;
2604                }
2605
2606                printk("\n");
2607        }
2608}
2609
2610/*
2611 * asc_prt_asc_scsi_q()
2612 */
2613static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2614{
2615        ASC_SG_HEAD *sgp;
2616        int i;
2617
2618        printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2619
2620        printk
2621            (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2622             q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2623             q->q2.tag_code);
2624
2625        printk
2626            (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2627             (ulong)le32_to_cpu(q->q1.data_addr),
2628             (ulong)le32_to_cpu(q->q1.data_cnt),
2629             (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2630
2631        printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2632               (ulong)q->cdbptr, q->q2.cdb_len,
2633               (ulong)q->sg_head, q->q1.sg_queue_cnt);
2634
2635        if (q->sg_head) {
2636                sgp = q->sg_head;
2637                printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2638                printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2639                       sgp->queue_cnt);
2640                for (i = 0; i < sgp->entry_cnt; i++) {
2641                        printk(" [%u]: addr 0x%lx, bytes %lu\n",
2642                               i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2643                               (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2644                }
2645
2646        }
2647}
2648
2649/*
2650 * asc_prt_asc_qdone_info()
2651 */
2652static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2653{
2654        printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2655        printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2656               (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2657               q->d2.tag_code);
2658        printk
2659            (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2660             q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2661}
2662
2663/*
2664 * asc_prt_adv_sgblock()
2665 *
2666 * Display an ADV_SG_BLOCK structure.
2667 */
2668static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2669{
2670        int i;
2671
2672        printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2673               (ulong)b, sgblockno);
2674        printk("  sg_cnt %u, sg_ptr 0x%lx\n",
2675               b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2676        BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2677        if (b->sg_ptr != 0)
2678                BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2679        for (i = 0; i < b->sg_cnt; i++) {
2680                printk("  [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2681                       i, (ulong)b->sg_list[i].sg_addr,
2682                       (ulong)b->sg_list[i].sg_count);
2683        }
2684}
2685
2686/*
2687 * asc_prt_adv_scsi_req_q()
2688 *
2689 * Display an ADV_SCSI_REQ_Q structure.
2690 */
2691static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2692{
2693        int sg_blk_cnt;
2694        struct asc_sg_block *sg_ptr;
2695
2696        printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2697
2698        printk("  target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2699               q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2700
2701        printk("  cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2702               q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
2703
2704        printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2705               (ulong)le32_to_cpu(q->data_cnt),
2706               (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2707
2708        printk
2709            ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2710             q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2711
2712        printk("  sg_working_ix 0x%x, target_cmd %u\n",
2713               q->sg_working_ix, q->target_cmd);
2714
2715        printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2716               (ulong)le32_to_cpu(q->scsiq_rptr),
2717               (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2718
2719        /* Display the request's ADV_SG_BLOCK structures. */
2720        if (q->sg_list_ptr != NULL) {
2721                sg_blk_cnt = 0;
2722                while (1) {
2723                        /*
2724                         * 'sg_ptr' is a physical address. Convert it to a virtual
2725                         * address by indexing 'sg_blk_cnt' into the virtual address
2726                         * array 'sg_list_ptr'.
2727                         *
2728                         * XXX - Assumes all SG physical blocks are virtually contiguous.
2729                         */
2730                        sg_ptr =
2731                            &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2732                        asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2733                        if (sg_ptr->sg_ptr == 0) {
2734                                break;
2735                        }
2736                        sg_blk_cnt++;
2737                }
2738        }
2739}
2740#endif /* ADVANSYS_DEBUG */
2741
2742/*
2743 * The advansys chip/microcode contains a 32-bit identifier for each command
2744 * known as the 'srb'.  I don't know what it stands for.  The driver used
2745 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2746 * with bus_to_virt.  Now the driver keeps a per-host map of integers to
2747 * pointers.  It auto-expands when full, unless it can't allocate memory.
2748 * Note that an srb of 0 is treated specially by the chip/firmware, hence
2749 * the return of i+1 in this routine, and the corresponding subtraction in
2750 * the inverse routine.
2751 */
2752#define BAD_SRB 0
2753static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2754{
2755        int i;
2756        void **new_ptr;
2757
2758        for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2759                if (!asc_dvc->ptr_map[i])
2760                        goto out;
2761        }
2762
2763        if (asc_dvc->ptr_map_count == 0)
2764                asc_dvc->ptr_map_count = 1;
2765        else
2766                asc_dvc->ptr_map_count *= 2;
2767
2768        new_ptr = krealloc(asc_dvc->ptr_map,
2769                        asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2770        if (!new_ptr)
2771                return BAD_SRB;
2772        asc_dvc->ptr_map = new_ptr;
2773 out:
2774        ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2775        asc_dvc->ptr_map[i] = ptr;
2776        return i + 1;
2777}
2778
2779static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2780{
2781        void *ptr;
2782
2783        srb--;
2784        if (srb >= asc_dvc->ptr_map_count) {
2785                printk("advansys: bad SRB %u, max %u\n", srb,
2786                                                        asc_dvc->ptr_map_count);
2787                return NULL;
2788        }
2789        ptr = asc_dvc->ptr_map[srb];
2790        asc_dvc->ptr_map[srb] = NULL;
2791        ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2792        return ptr;
2793}
2794
2795/*
2796 * advansys_info()
2797 *
2798 * Return suitable for printing on the console with the argument
2799 * adapter's configuration information.
2800 *
2801 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2802 * otherwise the static 'info' array will be overrun.
2803 */
2804static const char *advansys_info(struct Scsi_Host *shost)
2805{
2806        static char info[ASC_INFO_SIZE];
2807        struct asc_board *boardp = shost_priv(shost);
2808        ASC_DVC_VAR *asc_dvc_varp;
2809        ADV_DVC_VAR *adv_dvc_varp;
2810        char *busname;
2811        char *widename = NULL;
2812
2813        if (ASC_NARROW_BOARD(boardp)) {
2814                asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2815                ASC_DBG(1, "begin\n");
2816                if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2817                        if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2818                            ASC_IS_ISAPNP) {
2819                                busname = "ISA PnP";
2820                        } else {
2821                                busname = "ISA";
2822                        }
2823                        sprintf(info,
2824                                "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2825                                ASC_VERSION, busname,
2826                                (ulong)shost->io_port,
2827                                (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2828                                boardp->irq, shost->dma_channel);
2829                } else {
2830                        if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2831                                busname = "VL";
2832                        } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2833                                busname = "EISA";
2834                        } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2835                                if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2836                                    == ASC_IS_PCI_ULTRA) {
2837                                        busname = "PCI Ultra";
2838                                } else {
2839                                        busname = "PCI";
2840                                }
2841                        } else {
2842                                busname = "?";
2843                                shost_printk(KERN_ERR, shost, "unknown bus "
2844                                        "type %d\n", asc_dvc_varp->bus_type);
2845                        }
2846                        sprintf(info,
2847                                "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2848                                ASC_VERSION, busname, (ulong)shost->io_port,
2849                                (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2850                                boardp->irq);
2851                }
2852        } else {
2853                /*
2854                 * Wide Adapter Information
2855                 *
2856                 * Memory-mapped I/O is used instead of I/O space to access
2857                 * the adapter, but display the I/O Port range. The Memory
2858                 * I/O address is displayed through the driver /proc file.
2859                 */
2860                adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2861                if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2862                        widename = "Ultra-Wide";
2863                } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2864                        widename = "Ultra2-Wide";
2865                } else {
2866                        widename = "Ultra3-Wide";
2867                }
2868                sprintf(info,
2869                        "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2870                        ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2871                        (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2872        }
2873        BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2874        ASC_DBG(1, "end\n");
2875        return info;
2876}
2877
2878#ifdef CONFIG_PROC_FS
2879/*
2880 * asc_prt_line()
2881 *
2882 * If 'cp' is NULL print to the console, otherwise print to a buffer.
2883 *
2884 * Return 0 if printing to the console, otherwise return the number of
2885 * bytes written to the buffer.
2886 *
2887 * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack
2888 * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes.
2889 */
2890static int asc_prt_line(char *buf, int buflen, char *fmt, ...)
2891{
2892        va_list args;
2893        int ret;
2894        char s[ASC_PRTLINE_SIZE];
2895
2896        va_start(args, fmt);
2897        ret = vsprintf(s, fmt, args);
2898        BUG_ON(ret >= ASC_PRTLINE_SIZE);
2899        if (buf == NULL) {
2900                (void)printk(s);
2901                ret = 0;
2902        } else {
2903                ret = min(buflen, ret);
2904                memcpy(buf, s, ret);
2905        }
2906        va_end(args);
2907        return ret;
2908}
2909
2910/*
2911 * asc_prt_board_devices()
2912 *
2913 * Print driver information for devices attached to the board.
2914 *
2915 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
2916 * cf. asc_prt_line().
2917 *
2918 * Return the number of characters copied into 'cp'. No more than
2919 * 'cplen' characters will be copied to 'cp'.
2920 */
2921static int asc_prt_board_devices(struct Scsi_Host *shost, char *cp, int cplen)
2922{
2923        struct asc_board *boardp = shost_priv(shost);
2924        int leftlen;
2925        int totlen;
2926        int len;
2927        int chip_scsi_id;
2928        int i;
2929
2930        leftlen = cplen;
2931        totlen = len = 0;
2932
2933        len = asc_prt_line(cp, leftlen,
2934                           "\nDevice Information for AdvanSys SCSI Host %d:\n",
2935                           shost->host_no);
2936        ASC_PRT_NEXT();
2937
2938        if (ASC_NARROW_BOARD(boardp)) {
2939                chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2940        } else {
2941                chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2942        }
2943
2944        len = asc_prt_line(cp, leftlen, "Target IDs Detected:");
2945        ASC_PRT_NEXT();
2946        for (i = 0; i <= ADV_MAX_TID; i++) {
2947                if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) {
2948                        len = asc_prt_line(cp, leftlen, " %X,", i);
2949                        ASC_PRT_NEXT();
2950                }
2951        }
2952        len = asc_prt_line(cp, leftlen, " (%X=Host Adapter)\n", chip_scsi_id);
2953        ASC_PRT_NEXT();
2954
2955        return totlen;
2956}
2957
2958/*
2959 * Display Wide Board BIOS Information.
2960 */
2961static int asc_prt_adv_bios(struct Scsi_Host *shost, char *cp, int cplen)
2962{
2963        struct asc_board *boardp = shost_priv(shost);
2964        int leftlen;
2965        int totlen;
2966        int len;
2967        ushort major, minor, letter;
2968
2969        leftlen = cplen;
2970        totlen = len = 0;
2971
2972        len = asc_prt_line(cp, leftlen, "\nROM BIOS Version: ");
2973        ASC_PRT_NEXT();
2974
2975        /*
2976         * If the BIOS saved a valid signature, then fill in
2977         * the BIOS code segment base address.
2978         */
2979        if (boardp->bios_signature != 0x55AA) {
2980                len = asc_prt_line(cp, leftlen, "Disabled or Pre-3.1\n");
2981                ASC_PRT_NEXT();
2982                len = asc_prt_line(cp, leftlen,
2983                                   "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n");
2984                ASC_PRT_NEXT();
2985                len = asc_prt_line(cp, leftlen,
2986                                   "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2987                ASC_PRT_NEXT();
2988        } else {
2989                major = (boardp->bios_version >> 12) & 0xF;
2990                minor = (boardp->bios_version >> 8) & 0xF;
2991                letter = (boardp->bios_version & 0xFF);
2992
2993                len = asc_prt_line(cp, leftlen, "%d.%d%c\n",
2994                                   major, minor,
2995                                   letter >= 26 ? '?' : letter + 'A');
2996                ASC_PRT_NEXT();
2997
2998                /*
2999                 * Current available ROM BIOS release is 3.1I for UW
3000                 * and 3.2I for U2W. This code doesn't differentiate
3001                 * UW and U2W boards.
3002                 */
3003                if (major < 3 || (major <= 3 && minor < 1) ||
3004                    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
3005                        len = asc_prt_line(cp, leftlen,
3006                                           "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n");
3007                        ASC_PRT_NEXT();
3008                        len = asc_prt_line(cp, leftlen,
3009                                           "ftp://ftp.connectcom.net/pub\n");
3010                        ASC_PRT_NEXT();
3011                }
3012        }
3013
3014        return totlen;
3015}
3016
3017/*
3018 * Add serial number to information bar if signature AAh
3019 * is found in at bit 15-9 (7 bits) of word 1.
3020 *
3021 * Serial Number consists fo 12 alpha-numeric digits.
3022 *
3023 *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
3024 *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
3025 *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
3026 *       5 - Product revision (A-J)    Word0:  "         "
3027 *
3028 *           Signature                 Word1: 15-9 (7 bits)
3029 *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
3030 *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
3031 *
3032 *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
3033 *
3034 * Note 1: Only production cards will have a serial number.
3035 *
3036 * Note 2: Signature is most significant 7 bits (0xFE).
3037 *
3038 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
3039 */
3040static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
3041{
3042        ushort w, num;
3043
3044        if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
3045                return ASC_FALSE;
3046        } else {
3047                /*
3048                 * First word - 6 digits.
3049                 */
3050                w = serialnum[0];
3051
3052                /* Product type - 1st digit. */
3053                if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
3054                        /* Product type is P=Prototype */
3055                        *cp += 0x8;
3056                }
3057                cp++;
3058
3059                /* Manufacturing location - 2nd digit. */
3060                *cp++ = 'A' + ((w & 0x1C00) >> 10);
3061
3062                /* Product ID - 3rd, 4th digits. */
3063                num = w & 0x3FF;
3064                *cp++ = '0' + (num / 100);
3065                num %= 100;
3066                *cp++ = '0' + (num / 10);
3067
3068                /* Product revision - 5th digit. */
3069                *cp++ = 'A' + (num % 10);
3070
3071                /*
3072                 * Second word
3073                 */
3074                w = serialnum[1];
3075
3076                /*
3077                 * Year - 6th digit.
3078                 *
3079                 * If bit 15 of third word is set, then the
3080                 * last digit of the year is greater than 7.
3081                 */
3082                if (serialnum[2] & 0x8000) {
3083                        *cp++ = '8' + ((w & 0x1C0) >> 6);
3084                } else {
3085                        *cp++ = '0' + ((w & 0x1C0) >> 6);
3086                }
3087
3088                /* Week of year - 7th, 8th digits. */
3089                num = w & 0x003F;
3090                *cp++ = '0' + num / 10;
3091                num %= 10;
3092                *cp++ = '0' + num;
3093
3094                /*
3095                 * Third word
3096                 */
3097                w = serialnum[2] & 0x7FFF;
3098
3099                /* Serial number - 9th digit. */
3100                *cp++ = 'A' + (w / 1000);
3101
3102                /* 10th, 11th, 12th digits. */
3103                num = w % 1000;
3104                *cp++ = '0' + num / 100;
3105                num %= 100;
3106                *cp++ = '0' + num / 10;
3107                num %= 10;
3108                *cp++ = '0' + num;
3109
3110                *cp = '\0';     /* Null Terminate the string. */
3111                return ASC_TRUE;
3112        }
3113}
3114
3115/*
3116 * asc_prt_asc_board_eeprom()
3117 *
3118 * Print board EEPROM configuration.
3119 *
3120 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3121 * cf. asc_prt_line().
3122 *
3123 * Return the number of characters copied into 'cp'. No more than
3124 * 'cplen' characters will be copied to 'cp'.
3125 */
3126static int asc_prt_asc_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3127{
3128        struct asc_board *boardp = shost_priv(shost);
3129        ASC_DVC_VAR *asc_dvc_varp;
3130        int leftlen;
3131        int totlen;
3132        int len;
3133        ASCEEP_CONFIG *ep;
3134        int i;
3135#ifdef CONFIG_ISA
3136        int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3137#endif /* CONFIG_ISA */
3138        uchar serialstr[13];
3139
3140        asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3141        ep = &boardp->eep_config.asc_eep;
3142
3143        leftlen = cplen;
3144        totlen = len = 0;
3145
3146        len = asc_prt_line(cp, leftlen,
3147                           "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3148                           shost->host_no);
3149        ASC_PRT_NEXT();
3150
3151        if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3152            == ASC_TRUE) {
3153                len =
3154                    asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3155                                 serialstr);
3156                ASC_PRT_NEXT();
3157        } else {
3158                if (ep->adapter_info[5] == 0xBB) {
3159                        len = asc_prt_line(cp, leftlen,
3160                                           " Default Settings Used for EEPROM-less Adapter.\n");
3161                        ASC_PRT_NEXT();
3162                } else {
3163                        len = asc_prt_line(cp, leftlen,
3164                                           " Serial Number Signature Not Present.\n");
3165                        ASC_PRT_NEXT();
3166                }
3167        }
3168
3169        len = asc_prt_line(cp, leftlen,
3170                           " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3171                           ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
3172                           ep->max_tag_qng);
3173        ASC_PRT_NEXT();
3174
3175        len = asc_prt_line(cp, leftlen,
3176                           " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3177        ASC_PRT_NEXT();
3178
3179        len = asc_prt_line(cp, leftlen, " Target ID:           ");
3180        ASC_PRT_NEXT();
3181        for (i = 0; i <= ASC_MAX_TID; i++) {
3182                len = asc_prt_line(cp, leftlen, " %d", i);
3183                ASC_PRT_NEXT();
3184        }
3185        len = asc_prt_line(cp, leftlen, "\n");
3186        ASC_PRT_NEXT();
3187
3188        len = asc_prt_line(cp, leftlen, " Disconnects:         ");
3189        ASC_PRT_NEXT();
3190        for (i = 0; i <= ASC_MAX_TID; i++) {
3191                len = asc_prt_line(cp, leftlen, " %c",
3192                                   (ep->
3193                                    disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3194                                   'N');
3195                ASC_PRT_NEXT();
3196        }
3197        len = asc_prt_line(cp, leftlen, "\n");
3198        ASC_PRT_NEXT();
3199
3200        len = asc_prt_line(cp, leftlen, " Command Queuing:     ");
3201        ASC_PRT_NEXT();
3202        for (i = 0; i <= ASC_MAX_TID; i++) {
3203                len = asc_prt_line(cp, leftlen, " %c",
3204                                   (ep->
3205                                    use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3206                                   'N');
3207                ASC_PRT_NEXT();
3208        }
3209        len = asc_prt_line(cp, leftlen, "\n");
3210        ASC_PRT_NEXT();
3211
3212        len = asc_prt_line(cp, leftlen, " Start Motor:         ");
3213        ASC_PRT_NEXT();
3214        for (i = 0; i <= ASC_MAX_TID; i++) {
3215                len = asc_prt_line(cp, leftlen, " %c",
3216                                   (ep->
3217                                    start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3218                                   'N');
3219                ASC_PRT_NEXT();
3220        }
3221        len = asc_prt_line(cp, leftlen, "\n");
3222        ASC_PRT_NEXT();
3223
3224        len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3225        ASC_PRT_NEXT();
3226        for (i = 0; i <= ASC_MAX_TID; i++) {
3227                len = asc_prt_line(cp, leftlen, " %c",
3228                                   (ep->
3229                                    init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3230                                   'N');
3231                ASC_PRT_NEXT();
3232        }
3233        len = asc_prt_line(cp, leftlen, "\n");
3234        ASC_PRT_NEXT();
3235
3236#ifdef CONFIG_ISA
3237        if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3238                len = asc_prt_line(cp, leftlen,
3239                                   " Host ISA DMA speed:   %d MB/S\n",
3240                                   isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3241                ASC_PRT_NEXT();
3242        }
3243#endif /* CONFIG_ISA */
3244
3245        return totlen;
3246}
3247
3248/*
3249 * asc_prt_adv_board_eeprom()
3250 *
3251 * Print board EEPROM configuration.
3252 *
3253 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3254 * cf. asc_prt_line().
3255 *
3256 * Return the number of characters copied into 'cp'. No more than
3257 * 'cplen' characters will be copied to 'cp'.
3258 */
3259static int asc_prt_adv_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen)
3260{
3261        struct asc_board *boardp = shost_priv(shost);
3262        ADV_DVC_VAR *adv_dvc_varp;
3263        int leftlen;
3264        int totlen;
3265        int len;
3266        int i;
3267        char *termstr;
3268        uchar serialstr[13];
3269        ADVEEP_3550_CONFIG *ep_3550 = NULL;
3270        ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3271        ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3272        ushort word;
3273        ushort *wordp;
3274        ushort sdtr_speed = 0;
3275
3276        adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3277        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3278                ep_3550 = &boardp->eep_config.adv_3550_eep;
3279        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3280                ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3281        } else {
3282                ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3283        }
3284
3285        leftlen = cplen;
3286        totlen = len = 0;
3287
3288        len = asc_prt_line(cp, leftlen,
3289                           "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3290                           shost->host_no);
3291        ASC_PRT_NEXT();
3292
3293        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3294                wordp = &ep_3550->serial_number_word1;
3295        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3296                wordp = &ep_38C0800->serial_number_word1;
3297        } else {
3298                wordp = &ep_38C1600->serial_number_word1;
3299        }
3300
3301        if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) {
3302                len =
3303                    asc_prt_line(cp, leftlen, " Serial Number: %s\n",
3304                                 serialstr);
3305                ASC_PRT_NEXT();
3306        } else {
3307                len = asc_prt_line(cp, leftlen,
3308                                   " Serial Number Signature Not Present.\n");
3309                ASC_PRT_NEXT();
3310        }
3311
3312        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3313                len = asc_prt_line(cp, leftlen,
3314                                   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3315                                   ep_3550->adapter_scsi_id,
3316                                   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3317                ASC_PRT_NEXT();
3318        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3319                len = asc_prt_line(cp, leftlen,
3320                                   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3321                                   ep_38C0800->adapter_scsi_id,
3322                                   ep_38C0800->max_host_qng,
3323                                   ep_38C0800->max_dvc_qng);
3324                ASC_PRT_NEXT();
3325        } else {
3326                len = asc_prt_line(cp, leftlen,
3327                                   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3328                                   ep_38C1600->adapter_scsi_id,
3329                                   ep_38C1600->max_host_qng,
3330                                   ep_38C1600->max_dvc_qng);
3331                ASC_PRT_NEXT();
3332        }
3333        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3334                word = ep_3550->termination;
3335        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3336                word = ep_38C0800->termination_lvd;
3337        } else {
3338                word = ep_38C1600->termination_lvd;
3339        }
3340        switch (word) {
3341        case 1:
3342                termstr = "Low Off/High Off";
3343                break;
3344        case 2:
3345                termstr = "Low Off/High On";
3346                break;
3347        case 3:
3348                termstr = "Low On/High On";
3349                break;
3350        default:
3351        case 0:
3352                termstr = "Automatic";
3353                break;
3354        }
3355
3356        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3357                len = asc_prt_line(cp, leftlen,
3358                                   " termination: %u (%s), bios_ctrl: 0x%x\n",
3359                                   ep_3550->termination, termstr,
3360                                   ep_3550->bios_ctrl);
3361                ASC_PRT_NEXT();
3362        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3363                len = asc_prt_line(cp, leftlen,
3364                                   " termination: %u (%s), bios_ctrl: 0x%x\n",
3365                                   ep_38C0800->termination_lvd, termstr,
3366                                   ep_38C0800->bios_ctrl);
3367                ASC_PRT_NEXT();
3368        } else {
3369                len = asc_prt_line(cp, leftlen,
3370                                   " termination: %u (%s), bios_ctrl: 0x%x\n",
3371                                   ep_38C1600->termination_lvd, termstr,
3372                                   ep_38C1600->bios_ctrl);
3373                ASC_PRT_NEXT();
3374        }
3375
3376        len = asc_prt_line(cp, leftlen, " Target ID:           ");
3377        ASC_PRT_NEXT();
3378        for (i = 0; i <= ADV_MAX_TID; i++) {
3379                len = asc_prt_line(cp, leftlen, " %X", i);
3380                ASC_PRT_NEXT();
3381        }
3382        len = asc_prt_line(cp, leftlen, "\n");
3383        ASC_PRT_NEXT();
3384
3385        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3386                word = ep_3550->disc_enable;
3387        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3388                word = ep_38C0800->disc_enable;
3389        } else {
3390                word = ep_38C1600->disc_enable;
3391        }
3392        len = asc_prt_line(cp, leftlen, " Disconnects:         ");
3393        ASC_PRT_NEXT();
3394        for (i = 0; i <= ADV_MAX_TID; i++) {
3395                len = asc_prt_line(cp, leftlen, " %c",
3396                                   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3397                ASC_PRT_NEXT();
3398        }
3399        len = asc_prt_line(cp, leftlen, "\n");
3400        ASC_PRT_NEXT();
3401
3402        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3403                word = ep_3550->tagqng_able;
3404        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3405                word = ep_38C0800->tagqng_able;
3406        } else {
3407                word = ep_38C1600->tagqng_able;
3408        }
3409        len = asc_prt_line(cp, leftlen, " Command Queuing:     ");
3410        ASC_PRT_NEXT();
3411        for (i = 0; i <= ADV_MAX_TID; i++) {
3412                len = asc_prt_line(cp, leftlen, " %c",
3413                                   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3414                ASC_PRT_NEXT();
3415        }
3416        len = asc_prt_line(cp, leftlen, "\n");
3417        ASC_PRT_NEXT();
3418
3419        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3420                word = ep_3550->start_motor;
3421        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3422                word = ep_38C0800->start_motor;
3423        } else {
3424                word = ep_38C1600->start_motor;
3425        }
3426        len = asc_prt_line(cp, leftlen, " Start Motor:         ");
3427        ASC_PRT_NEXT();
3428        for (i = 0; i <= ADV_MAX_TID; i++) {
3429                len = asc_prt_line(cp, leftlen, " %c",
3430                                   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3431                ASC_PRT_NEXT();
3432        }
3433        len = asc_prt_line(cp, leftlen, "\n");
3434        ASC_PRT_NEXT();
3435
3436        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3437                len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3438                ASC_PRT_NEXT();
3439                for (i = 0; i <= ADV_MAX_TID; i++) {
3440                        len = asc_prt_line(cp, leftlen, " %c",
3441                                           (ep_3550->
3442                                            sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3443                                           'Y' : 'N');
3444                        ASC_PRT_NEXT();
3445                }
3446                len = asc_prt_line(cp, leftlen, "\n");
3447                ASC_PRT_NEXT();
3448        }
3449
3450        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3451                len = asc_prt_line(cp, leftlen, " Ultra Transfer:      ");
3452                ASC_PRT_NEXT();
3453                for (i = 0; i <= ADV_MAX_TID; i++) {
3454                        len = asc_prt_line(cp, leftlen, " %c",
3455                                           (ep_3550->
3456                                            ultra_able & ADV_TID_TO_TIDMASK(i))
3457                                           ? 'Y' : 'N');
3458                        ASC_PRT_NEXT();
3459                }
3460                len = asc_prt_line(cp, leftlen, "\n");
3461                ASC_PRT_NEXT();
3462        }
3463
3464        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3465                word = ep_3550->wdtr_able;
3466        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3467                word = ep_38C0800->wdtr_able;
3468        } else {
3469                word = ep_38C1600->wdtr_able;
3470        }
3471        len = asc_prt_line(cp, leftlen, " Wide Transfer:       ");
3472        ASC_PRT_NEXT();
3473        for (i = 0; i <= ADV_MAX_TID; i++) {
3474                len = asc_prt_line(cp, leftlen, " %c",
3475                                   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3476                ASC_PRT_NEXT();
3477        }
3478        len = asc_prt_line(cp, leftlen, "\n");
3479        ASC_PRT_NEXT();
3480
3481        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3482            adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3483                len = asc_prt_line(cp, leftlen,
3484                                   " Synchronous Transfer Speed (Mhz):\n  ");
3485                ASC_PRT_NEXT();
3486                for (i = 0; i <= ADV_MAX_TID; i++) {
3487                        char *speed_str;
3488
3489                        if (i == 0) {
3490                                sdtr_speed = adv_dvc_varp->sdtr_speed1;
3491                        } else if (i == 4) {
3492                                sdtr_speed = adv_dvc_varp->sdtr_speed2;
3493                        } else if (i == 8) {
3494                                sdtr_speed = adv_dvc_varp->sdtr_speed3;
3495                        } else if (i == 12) {
3496                                sdtr_speed = adv_dvc_varp->sdtr_speed4;
3497                        }
3498                        switch (sdtr_speed & ADV_MAX_TID) {
3499                        case 0:
3500                                speed_str = "Off";
3501                                break;
3502                        case 1:
3503                                speed_str = "  5";
3504                                break;
3505                        case 2:
3506                                speed_str = " 10";
3507                                break;
3508                        case 3:
3509                                speed_str = " 20";
3510                                break;
3511                        case 4:
3512                                speed_str = " 40";
3513                                break;
3514                        case 5:
3515                                speed_str = " 80";
3516                                break;
3517                        default:
3518                                speed_str = "Unk";
3519                                break;
3520                        }
3521                        len = asc_prt_line(cp, leftlen, "%X:%s ", i, speed_str);
3522                        ASC_PRT_NEXT();
3523                        if (i == 7) {
3524                                len = asc_prt_line(cp, leftlen, "\n  ");
3525                                ASC_PRT_NEXT();
3526                        }
3527                        sdtr_speed >>= 4;
3528                }
3529                len = asc_prt_line(cp, leftlen, "\n");
3530                ASC_PRT_NEXT();
3531        }
3532
3533        return totlen;
3534}
3535
3536/*
3537 * asc_prt_driver_conf()
3538 *
3539 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3540 * cf. asc_prt_line().
3541 *
3542 * Return the number of characters copied into 'cp'. No more than
3543 * 'cplen' characters will be copied to 'cp'.
3544 */
3545static int asc_prt_driver_conf(struct Scsi_Host *shost, char *cp, int cplen)
3546{
3547        struct asc_board *boardp = shost_priv(shost);
3548        int leftlen;
3549        int totlen;
3550        int len;
3551        int chip_scsi_id;
3552
3553        leftlen = cplen;
3554        totlen = len = 0;
3555
3556        len = asc_prt_line(cp, leftlen,
3557                           "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3558                           shost->host_no);
3559        ASC_PRT_NEXT();
3560
3561        len = asc_prt_line(cp, leftlen,
3562                           " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n",
3563                           shost->host_busy, shost->last_reset, shost->max_id,
3564                           shost->max_lun, shost->max_channel);
3565        ASC_PRT_NEXT();
3566
3567        len = asc_prt_line(cp, leftlen,
3568                           " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3569                           shost->unique_id, shost->can_queue, shost->this_id,
3570                           shost->sg_tablesize, shost->cmd_per_lun);
3571        ASC_PRT_NEXT();
3572
3573        len = asc_prt_line(cp, leftlen,
3574                           " unchecked_isa_dma %d, use_clustering %d\n",
3575                           shost->unchecked_isa_dma, shost->use_clustering);
3576        ASC_PRT_NEXT();
3577
3578        len = asc_prt_line(cp, leftlen,
3579                           " flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n",
3580                           boardp->flags, boardp->last_reset, jiffies,
3581                           boardp->asc_n_io_port);
3582        ASC_PRT_NEXT();
3583
3584        len = asc_prt_line(cp, leftlen, " io_port 0x%x\n", shost->io_port);
3585        ASC_PRT_NEXT();
3586
3587        if (ASC_NARROW_BOARD(boardp)) {
3588                chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3589        } else {
3590                chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3591        }
3592
3593        return totlen;
3594}
3595
3596/*
3597 * asc_prt_asc_board_info()
3598 *
3599 * Print dynamic board configuration information.
3600 *
3601 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3602 * cf. asc_prt_line().
3603 *
3604 * Return the number of characters copied into 'cp'. No more than
3605 * 'cplen' characters will be copied to 'cp'.
3606 */
3607static int asc_prt_asc_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3608{
3609        struct asc_board *boardp = shost_priv(shost);
3610        int chip_scsi_id;
3611        int leftlen;
3612        int totlen;
3613        int len;
3614        ASC_DVC_VAR *v;
3615        ASC_DVC_CFG *c;
3616        int i;
3617        int renegotiate = 0;
3618
3619        v = &boardp->dvc_var.asc_dvc_var;
3620        c = &boardp->dvc_cfg.asc_dvc_cfg;
3621        chip_scsi_id = c->chip_scsi_id;
3622
3623        leftlen = cplen;
3624        totlen = len = 0;
3625
3626        len = asc_prt_line(cp, leftlen,
3627                           "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3628                           shost->host_no);
3629        ASC_PRT_NEXT();
3630
3631        len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3632                           "mcode_version 0x%x, err_code %u\n",
3633                           c->chip_version, c->mcode_date, c->mcode_version,
3634                           v->err_code);
3635        ASC_PRT_NEXT();
3636
3637        /* Current number of commands waiting for the host. */
3638        len = asc_prt_line(cp, leftlen,
3639                           " Total Command Pending: %d\n", v->cur_total_qng);
3640        ASC_PRT_NEXT();
3641
3642        len = asc_prt_line(cp, leftlen, " Command Queuing:");
3643        ASC_PRT_NEXT();
3644        for (i = 0; i <= ASC_MAX_TID; i++) {
3645                if ((chip_scsi_id == i) ||
3646                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3647                        continue;
3648                }
3649                len = asc_prt_line(cp, leftlen, " %X:%c",
3650                                   i,
3651                                   (v->
3652                                    use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ?
3653                                   'Y' : 'N');
3654                ASC_PRT_NEXT();
3655        }
3656        len = asc_prt_line(cp, leftlen, "\n");
3657        ASC_PRT_NEXT();
3658
3659        /* Current number of commands waiting for a device. */
3660        len = asc_prt_line(cp, leftlen, " Command Queue Pending:");
3661        ASC_PRT_NEXT();
3662        for (i = 0; i <= ASC_MAX_TID; i++) {
3663                if ((chip_scsi_id == i) ||
3664                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3665                        continue;
3666                }
3667                len = asc_prt_line(cp, leftlen, " %X:%u", i, v->cur_dvc_qng[i]);
3668                ASC_PRT_NEXT();
3669        }
3670        len = asc_prt_line(cp, leftlen, "\n");
3671        ASC_PRT_NEXT();
3672
3673        /* Current limit on number of commands that can be sent to a device. */
3674        len = asc_prt_line(cp, leftlen, " Command Queue Limit:");
3675        ASC_PRT_NEXT();
3676        for (i = 0; i <= ASC_MAX_TID; i++) {
3677                if ((chip_scsi_id == i) ||
3678                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3679                        continue;
3680                }
3681                len = asc_prt_line(cp, leftlen, " %X:%u", i, v->max_dvc_qng[i]);
3682                ASC_PRT_NEXT();
3683        }
3684        len = asc_prt_line(cp, leftlen, "\n");
3685        ASC_PRT_NEXT();
3686
3687        /* Indicate whether the device has returned queue full status. */
3688        len = asc_prt_line(cp, leftlen, " Command Queue Full:");
3689        ASC_PRT_NEXT();
3690        for (i = 0; i <= ASC_MAX_TID; i++) {
3691                if ((chip_scsi_id == i) ||
3692                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3693                        continue;
3694                }
3695                if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) {
3696                        len = asc_prt_line(cp, leftlen, " %X:Y-%d",
3697                                           i, boardp->queue_full_cnt[i]);
3698                } else {
3699                        len = asc_prt_line(cp, leftlen, " %X:N", i);
3700                }
3701                ASC_PRT_NEXT();
3702        }
3703        len = asc_prt_line(cp, leftlen, "\n");
3704        ASC_PRT_NEXT();
3705
3706        len = asc_prt_line(cp, leftlen, " Synchronous Transfer:");
3707        ASC_PRT_NEXT();
3708        for (i = 0; i <= ASC_MAX_TID; i++) {
3709                if ((chip_scsi_id == i) ||
3710                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3711                        continue;
3712                }
3713                len = asc_prt_line(cp, leftlen, " %X:%c",
3714                                   i,
3715                                   (v->
3716                                    sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3717                                   'N');
3718                ASC_PRT_NEXT();
3719        }
3720        len = asc_prt_line(cp, leftlen, "\n");
3721        ASC_PRT_NEXT();
3722
3723        for (i = 0; i <= ASC_MAX_TID; i++) {
3724                uchar syn_period_ix;
3725
3726                if ((chip_scsi_id == i) ||
3727                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3728                    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3729                        continue;
3730                }
3731
3732                len = asc_prt_line(cp, leftlen, "  %X:", i);
3733                ASC_PRT_NEXT();
3734
3735                if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3736                        len = asc_prt_line(cp, leftlen, " Asynchronous");
3737                        ASC_PRT_NEXT();
3738                } else {
3739                        syn_period_ix =
3740                            (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3741                                                           1);
3742
3743                        len = asc_prt_line(cp, leftlen,
3744                                           " Transfer Period Factor: %d (%d.%d Mhz),",
3745                                           v->sdtr_period_tbl[syn_period_ix],
3746                                           250 /
3747                                           v->sdtr_period_tbl[syn_period_ix],
3748                                           ASC_TENTHS(250,
3749                                                      v->
3750                                                      sdtr_period_tbl
3751                                                      [syn_period_ix]));
3752                        ASC_PRT_NEXT();
3753
3754                        len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
3755                                           boardp->
3756                                           sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3757                        ASC_PRT_NEXT();
3758                }
3759
3760                if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3761                        len = asc_prt_line(cp, leftlen, "*\n");
3762                        renegotiate = 1;
3763                } else {
3764                        len = asc_prt_line(cp, leftlen, "\n");
3765                }
3766                ASC_PRT_NEXT();
3767        }
3768
3769        if (renegotiate) {
3770                len = asc_prt_line(cp, leftlen,
3771                                   " * = Re-negotiation pending before next command.\n");
3772                ASC_PRT_NEXT();
3773        }
3774
3775        return totlen;
3776}
3777
3778/*
3779 * asc_prt_adv_board_info()
3780 *
3781 * Print dynamic board configuration information.
3782 *
3783 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
3784 * cf. asc_prt_line().
3785 *
3786 * Return the number of characters copied into 'cp'. No more than
3787 * 'cplen' characters will be copied to 'cp'.
3788 */
3789static int asc_prt_adv_board_info(struct Scsi_Host *shost, char *cp, int cplen)
3790{
3791        struct asc_board *boardp = shost_priv(shost);
3792        int leftlen;
3793        int totlen;
3794        int len;
3795        int i;
3796        ADV_DVC_VAR *v;
3797        ADV_DVC_CFG *c;
3798        AdvPortAddr iop_base;
3799        ushort chip_scsi_id;
3800        ushort lramword;
3801        uchar lrambyte;
3802        ushort tagqng_able;
3803        ushort sdtr_able, wdtr_able;
3804        ushort wdtr_done, sdtr_done;
3805        ushort period = 0;
3806        int renegotiate = 0;
3807
3808        v = &boardp->dvc_var.adv_dvc_var;
3809        c = &boardp->dvc_cfg.adv_dvc_cfg;
3810        iop_base = v->iop_base;
3811        chip_scsi_id = v->chip_scsi_id;
3812
3813        leftlen = cplen;
3814        totlen = len = 0;
3815
3816        len = asc_prt_line(cp, leftlen,
3817                           "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3818                           shost->host_no);
3819        ASC_PRT_NEXT();
3820
3821        len = asc_prt_line(cp, leftlen,
3822                           " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3823                           v->iop_base,
3824                           AdvReadWordRegister(iop_base,
3825                                               IOPW_SCSI_CFG1) & CABLE_DETECT,
3826                           v->err_code);
3827        ASC_PRT_NEXT();
3828
3829        len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, "
3830                           "mcode_version 0x%x\n", c->chip_version,
3831                           c->mcode_date, c->mcode_version);
3832        ASC_PRT_NEXT();
3833
3834        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3835        len = asc_prt_line(cp, leftlen, " Queuing Enabled:");
3836        ASC_PRT_NEXT();
3837        for (i = 0; i <= ADV_MAX_TID; i++) {
3838                if ((chip_scsi_id == i) ||
3839                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3840                        continue;
3841                }
3842
3843                len = asc_prt_line(cp, leftlen, " %X:%c",
3844                                   i,
3845                                   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3846                                   'N');
3847                ASC_PRT_NEXT();
3848        }
3849        len = asc_prt_line(cp, leftlen, "\n");
3850        ASC_PRT_NEXT();
3851
3852        len = asc_prt_line(cp, leftlen, " Queue Limit:");
3853        ASC_PRT_NEXT();
3854        for (i = 0; i <= ADV_MAX_TID; i++) {
3855                if ((chip_scsi_id == i) ||
3856                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3857                        continue;
3858                }
3859
3860                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3861                                lrambyte);
3862
3863                len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3864                ASC_PRT_NEXT();
3865        }
3866        len = asc_prt_line(cp, leftlen, "\n");
3867        ASC_PRT_NEXT();
3868
3869        len = asc_prt_line(cp, leftlen, " Command Pending:");
3870        ASC_PRT_NEXT();
3871        for (i = 0; i <= ADV_MAX_TID; i++) {
3872                if ((chip_scsi_id == i) ||
3873                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3874                        continue;
3875                }
3876
3877                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3878                                lrambyte);
3879
3880                len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte);
3881                ASC_PRT_NEXT();
3882        }
3883        len = asc_prt_line(cp, leftlen, "\n");
3884        ASC_PRT_NEXT();
3885
3886        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3887        len = asc_prt_line(cp, leftlen, " Wide Enabled:");
3888        ASC_PRT_NEXT();
3889        for (i = 0; i <= ADV_MAX_TID; i++) {
3890                if ((chip_scsi_id == i) ||
3891                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3892                        continue;
3893                }
3894
3895                len = asc_prt_line(cp, leftlen, " %X:%c",
3896                                   i,
3897                                   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3898                                   'N');
3899                ASC_PRT_NEXT();
3900        }
3901        len = asc_prt_line(cp, leftlen, "\n");
3902        ASC_PRT_NEXT();
3903
3904        AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3905        len = asc_prt_line(cp, leftlen, " Transfer Bit Width:");
3906        ASC_PRT_NEXT();
3907        for (i = 0; i <= ADV_MAX_TID; i++) {
3908                if ((chip_scsi_id == i) ||
3909                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3910                        continue;
3911                }
3912
3913                AdvReadWordLram(iop_base,
3914                                ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3915                                lramword);
3916
3917                len = asc_prt_line(cp, leftlen, " %X:%d",
3918                                   i, (lramword & 0x8000) ? 16 : 8);
3919                ASC_PRT_NEXT();
3920
3921                if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3922                    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3923                        len = asc_prt_line(cp, leftlen, "*");
3924                        ASC_PRT_NEXT();
3925                        renegotiate = 1;
3926                }
3927        }
3928        len = asc_prt_line(cp, leftlen, "\n");
3929        ASC_PRT_NEXT();
3930
3931        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3932        len = asc_prt_line(cp, leftlen, " Synchronous Enabled:");
3933        ASC_PRT_NEXT();
3934        for (i = 0; i <= ADV_MAX_TID; i++) {
3935                if ((chip_scsi_id == i) ||
3936                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3937                        continue;
3938                }
3939
3940                len = asc_prt_line(cp, leftlen, " %X:%c",
3941                                   i,
3942                                   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' :
3943                                   'N');
3944                ASC_PRT_NEXT();
3945        }
3946        len = asc_prt_line(cp, leftlen, "\n");
3947        ASC_PRT_NEXT();
3948
3949        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3950        for (i = 0; i <= ADV_MAX_TID; i++) {
3951
3952                AdvReadWordLram(iop_base,
3953                                ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3954                                lramword);
3955                lramword &= ~0x8000;
3956
3957                if ((chip_scsi_id == i) ||
3958                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3959                    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3960                        continue;
3961                }
3962
3963                len = asc_prt_line(cp, leftlen, "  %X:", i);
3964                ASC_PRT_NEXT();
3965
3966                if ((lramword & 0x1F) == 0) {   /* Check for REQ/ACK Offset 0. */
3967                        len = asc_prt_line(cp, leftlen, " Asynchronous");
3968                        ASC_PRT_NEXT();
3969                } else {
3970                        len =
3971                            asc_prt_line(cp, leftlen,
3972                                         " Transfer Period Factor: ");
3973                        ASC_PRT_NEXT();
3974
3975                        if ((lramword & 0x1F00) == 0x1100) {    /* 80 Mhz */
3976                                len =
3977                                    asc_prt_line(cp, leftlen, "9 (80.0 Mhz),");
3978                                ASC_PRT_NEXT();
3979                        } else if ((lramword & 0x1F00) == 0x1000) {     /* 40 Mhz */
3980                                len =
3981                                    asc_prt_line(cp, leftlen, "10 (40.0 Mhz),");
3982                                ASC_PRT_NEXT();
3983                        } else {        /* 20 Mhz or below. */
3984
3985                                period = (((lramword >> 8) * 25) + 50) / 4;
3986
3987                                if (period == 0) {      /* Should never happen. */
3988                                        len =
3989                                            asc_prt_line(cp, leftlen,
3990                                                         "%d (? Mhz), ");
3991                                        ASC_PRT_NEXT();
3992                                } else {
3993                                        len = asc_prt_line(cp, leftlen,
3994                                                           "%d (%d.%d Mhz),",
3995                                                           period, 250 / period,
3996                                                           ASC_TENTHS(250,
3997                                                                      period));
3998                                        ASC_PRT_NEXT();
3999                                }
4000                        }
4001
4002                        len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d",
4003                                           lramword & 0x1F);
4004                        ASC_PRT_NEXT();
4005                }
4006
4007                if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
4008                        len = asc_prt_line(cp, leftlen, "*\n");
4009                        renegotiate = 1;
4010                } else {
4011                        len = asc_prt_line(cp, leftlen, "\n");
4012                }
4013                ASC_PRT_NEXT();
4014        }
4015
4016        if (renegotiate) {
4017                len = asc_prt_line(cp, leftlen,
4018                                   " * = Re-negotiation pending before next command.\n");
4019                ASC_PRT_NEXT();
4020        }
4021
4022        return totlen;
4023}
4024
4025/*
4026 * asc_proc_copy()
4027 *
4028 * Copy proc information to a read buffer taking into account the current
4029 * read offset in the file and the remaining space in the read buffer.
4030 */
4031static int
4032asc_proc_copy(off_t advoffset, off_t offset, char *curbuf, int leftlen,
4033              char *cp, int cplen)
4034{
4035        int cnt = 0;
4036
4037        ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n",
4038                 (unsigned)offset, (unsigned)advoffset, cplen);
4039        if (offset <= advoffset) {
4040                /* Read offset below current offset, copy everything. */
4041                cnt = min(cplen, leftlen);
4042                ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4043                         (ulong)curbuf, (ulong)cp, cnt);
4044                memcpy(curbuf, cp, cnt);
4045        } else if (offset < advoffset + cplen) {
4046                /* Read offset within current range, partial copy. */
4047                cnt = (advoffset + cplen) - offset;
4048                cp = (cp + cplen) - cnt;
4049                cnt = min(cnt, leftlen);
4050                ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n",
4051                         (ulong)curbuf, (ulong)cp, cnt);
4052                memcpy(curbuf, cp, cnt);
4053        }
4054        return cnt;
4055}
4056
4057#ifdef ADVANSYS_STATS
4058/*
4059 * asc_prt_board_stats()
4060 *
4061 * Note: no single line should be greater than ASC_PRTLINE_SIZE,
4062 * cf. asc_prt_line().
4063 *
4064 * Return the number of characters copied into 'cp'. No more than
4065 * 'cplen' characters will be copied to 'cp'.
4066 */
4067static int asc_prt_board_stats(struct Scsi_Host *shost, char *cp, int cplen)
4068{
4069        struct asc_board *boardp = shost_priv(shost);
4070        struct asc_stats *s = &boardp->asc_stats;
4071
4072        int leftlen = cplen;
4073        int len, totlen = 0;
4074
4075        len = asc_prt_line(cp, leftlen,
4076                           "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
4077                           shost->host_no);
4078        ASC_PRT_NEXT();
4079
4080        len = asc_prt_line(cp, leftlen,
4081                           " queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n",
4082                           s->queuecommand, s->reset, s->biosparam,
4083                           s->interrupt);
4084        ASC_PRT_NEXT();
4085
4086        len = asc_prt_line(cp, leftlen,
4087                           " callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n",
4088                           s->callback, s->done, s->build_error,
4089                           s->adv_build_noreq, s->adv_build_nosg);
4090        ASC_PRT_NEXT();
4091
4092        len = asc_prt_line(cp, leftlen,
4093                           " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n",
4094                           s->exe_noerror, s->exe_busy, s->exe_error,
4095                           s->exe_unknown);
4096        ASC_PRT_NEXT();
4097
4098        /*
4099         * Display data transfer statistics.
4100         */
4101        if (s->xfer_cnt > 0) {
4102                len = asc_prt_line(cp, leftlen, " xfer_cnt %lu, xfer_elem %lu, ",
4103                                   s->xfer_cnt, s->xfer_elem);
4104                ASC_PRT_NEXT();
4105
4106                len = asc_prt_line(cp, leftlen, "xfer_bytes %lu.%01lu kb\n",
4107                                   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
4108                ASC_PRT_NEXT();
4109
4110                /* Scatter gather transfer statistics */
4111                len = asc_prt_line(cp, leftlen, " avg_num_elem %lu.%01lu, ",
4112                                   s->xfer_elem / s->xfer_cnt,
4113                                   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
4114                ASC_PRT_NEXT();
4115
4116                len = asc_prt_line(cp, leftlen, "avg_elem_size %lu.%01lu kb, ",
4117                                   (s->xfer_sect / 2) / s->xfer_elem,
4118                                   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
4119                ASC_PRT_NEXT();
4120
4121                len = asc_prt_line(cp, leftlen, "avg_xfer_size %lu.%01lu kb\n",
4122                                   (s->xfer_sect / 2) / s->xfer_cnt,
4123                                   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
4124                ASC_PRT_NEXT();
4125        }
4126
4127        return totlen;
4128}
4129#endif /* ADVANSYS_STATS */
4130
4131/*
4132 * advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...}
4133 *
4134 * *buffer: I/O buffer
4135 * **start: if inout == FALSE pointer into buffer where user read should start
4136 * offset: current offset into a /proc/scsi/advansys/[0...] file
4137 * length: length of buffer
4138 * hostno: Scsi_Host host_no
4139 * inout: TRUE - user is writing; FALSE - user is reading
4140 *
4141 * Return the number of bytes read from or written to a
4142 * /proc/scsi/advansys/[0...] file.
4143 *
4144 * Note: This function uses the per board buffer 'prtbuf' which is
4145 * allocated when the board is initialized in advansys_detect(). The
4146 * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is
4147 * used to write to the buffer. The way asc_proc_copy() is written
4148 * if 'prtbuf' is too small it will not be overwritten. Instead the
4149 * user just won't get all the available statistics.
4150 */
4151static int
4152advansys_proc_info(struct Scsi_Host *shost, char *buffer, char **start,
4153                   off_t offset, int length, int inout)
4154{
4155        struct asc_board *boardp = shost_priv(shost);
4156        char *cp;
4157        int cplen;
4158        int cnt;
4159        int totcnt;
4160        int leftlen;
4161        char *curbuf;
4162        off_t advoffset;
4163
4164        ASC_DBG(1, "begin\n");
4165
4166        /*
4167         * User write not supported.
4168         */
4169        if (inout == TRUE)
4170                return -ENOSYS;
4171
4172        /*
4173         * User read of /proc/scsi/advansys/[0...] file.
4174         */
4175
4176        /* Copy read data starting at the beginning of the buffer. */
4177        *start = buffer;
4178        curbuf = buffer;
4179        advoffset = 0;
4180        totcnt = 0;
4181        leftlen = length;
4182
4183        /*
4184         * Get board configuration information.
4185         *
4186         * advansys_info() returns the board string from its own static buffer.
4187         */
4188        cp = (char *)advansys_info(shost);
4189        strcat(cp, "\n");
4190        cplen = strlen(cp);
4191        /* Copy board information. */
4192        cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4193        totcnt += cnt;
4194        leftlen -= cnt;
4195        if (leftlen == 0) {
4196                ASC_DBG(1, "totcnt %d\n", totcnt);
4197                return totcnt;
4198        }
4199        advoffset += cplen;
4200        curbuf += cnt;
4201
4202        /*
4203         * Display Wide Board BIOS Information.
4204         */
4205        if (!ASC_NARROW_BOARD(boardp)) {
4206                cp = boardp->prtbuf;
4207                cplen = asc_prt_adv_bios(shost, cp, ASC_PRTBUF_SIZE);
4208                BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4209                cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp,
4210                                  cplen);
4211                totcnt += cnt;
4212                leftlen -= cnt;
4213                if (leftlen == 0) {
4214                        ASC_DBG(1, "totcnt %d\n", totcnt);
4215                        return totcnt;
4216                }
4217                advoffset += cplen;
4218                curbuf += cnt;
4219        }
4220
4221        /*
4222         * Display driver information for each device attached to the board.
4223         */
4224        cp = boardp->prtbuf;
4225        cplen = asc_prt_board_devices(shost, cp, ASC_PRTBUF_SIZE);
4226        BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4227        cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4228        totcnt += cnt;
4229        leftlen -= cnt;
4230        if (leftlen == 0) {
4231                ASC_DBG(1, "totcnt %d\n", totcnt);
4232                return totcnt;
4233        }
4234        advoffset += cplen;
4235        curbuf += cnt;
4236
4237        /*
4238         * Display EEPROM configuration for the board.
4239         */
4240        cp = boardp->prtbuf;
4241        if (ASC_NARROW_BOARD(boardp)) {
4242                cplen = asc_prt_asc_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4243        } else {
4244                cplen = asc_prt_adv_board_eeprom(shost, cp, ASC_PRTBUF_SIZE);
4245        }
4246        BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4247        cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4248        totcnt += cnt;
4249        leftlen -= cnt;
4250        if (leftlen == 0) {
4251                ASC_DBG(1, "totcnt %d\n", totcnt);
4252                return totcnt;
4253        }
4254        advoffset += cplen;
4255        curbuf += cnt;
4256
4257        /*
4258         * Display driver configuration and information for the board.
4259         */
4260        cp = boardp->prtbuf;
4261        cplen = asc_prt_driver_conf(shost, cp, ASC_PRTBUF_SIZE);
4262        BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4263        cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4264        totcnt += cnt;
4265        leftlen -= cnt;
4266        if (leftlen == 0) {
4267                ASC_DBG(1, "totcnt %d\n", totcnt);
4268                return totcnt;
4269        }
4270        advoffset += cplen;
4271        curbuf += cnt;
4272
4273#ifdef ADVANSYS_STATS
4274        /*
4275         * Display driver statistics for the board.
4276         */
4277        cp = boardp->prtbuf;
4278        cplen = asc_prt_board_stats(shost, cp, ASC_PRTBUF_SIZE);
4279        BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4280        cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4281        totcnt += cnt;
4282        leftlen -= cnt;
4283        if (leftlen == 0) {
4284                ASC_DBG(1, "totcnt %d\n", totcnt);
4285                return totcnt;
4286        }
4287        advoffset += cplen;
4288        curbuf += cnt;
4289#endif /* ADVANSYS_STATS */
4290
4291        /*
4292         * Display Asc Library dynamic configuration information
4293         * for the board.
4294         */
4295        cp = boardp->prtbuf;
4296        if (ASC_NARROW_BOARD(boardp)) {
4297                cplen = asc_prt_asc_board_info(shost, cp, ASC_PRTBUF_SIZE);
4298        } else {
4299                cplen = asc_prt_adv_board_info(shost, cp, ASC_PRTBUF_SIZE);
4300        }
4301        BUG_ON(cplen >= ASC_PRTBUF_SIZE);
4302        cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen);
4303        totcnt += cnt;
4304        leftlen -= cnt;
4305        if (leftlen == 0) {
4306                ASC_DBG(1, "totcnt %d\n", totcnt);
4307                return totcnt;
4308        }
4309        advoffset += cplen;
4310        curbuf += cnt;
4311
4312        ASC_DBG(1, "totcnt %d\n", totcnt);
4313
4314        return totcnt;
4315}
4316#endif /* CONFIG_PROC_FS */
4317
4318static void asc_scsi_done(struct scsi_cmnd *scp)
4319{
4320        scsi_dma_unmap(scp);
4321        ASC_STATS(scp->device->host, done);
4322        scp->scsi_done(scp);
4323}
4324
4325static void AscSetBank(PortAddr iop_base, uchar bank)
4326{
4327        uchar val;
4328
4329        val = AscGetChipControl(iop_base) &
4330            (~
4331             (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
4332              CC_CHIP_RESET));
4333        if (bank == 1) {
4334                val |= CC_BANK_ONE;
4335        } else if (bank == 2) {
4336                val |= CC_DIAG | CC_BANK_ONE;
4337        } else {
4338                val &= ~CC_BANK_ONE;
4339        }
4340        AscSetChipControl(iop_base, val);
4341}
4342
4343static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
4344{
4345        AscSetBank(iop_base, 1);
4346        AscWriteChipIH(iop_base, ins_code);
4347        AscSetBank(iop_base, 0);
4348}
4349
4350static int AscStartChip(PortAddr iop_base)
4351{
4352        AscSetChipControl(iop_base, 0);
4353        if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4354                return (0);
4355        }
4356        return (1);
4357}
4358
4359static int AscStopChip(PortAddr iop_base)
4360{
4361        uchar cc_val;
4362
4363        cc_val =
4364            AscGetChipControl(iop_base) &
4365            (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
4366        AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
4367        AscSetChipIH(iop_base, INS_HALT);
4368        AscSetChipIH(iop_base, INS_RFLAG_WTM);
4369        if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
4370                return (0);
4371        }
4372        return (1);
4373}
4374
4375static int AscIsChipHalted(PortAddr iop_base)
4376{
4377        if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
4378                if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
4379                        return (1);
4380                }
4381        }
4382        return (0);
4383}
4384
4385static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
4386{
4387        PortAddr iop_base;
4388        int i = 10;
4389
4390        iop_base = asc_dvc->iop_base;
4391        while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
4392               && (i-- > 0)) {
4393                mdelay(100);
4394        }
4395        AscStopChip(iop_base);
4396        AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
4397        udelay(60);
4398        AscSetChipIH(iop_base, INS_RFLAG_WTM);
4399        AscSetChipIH(iop_base, INS_HALT);
4400        AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
4401        AscSetChipControl(iop_base, CC_HALT);
4402        mdelay(200);
4403        AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
4404        AscSetChipStatus(iop_base, 0);
4405        return (AscIsChipHalted(iop_base));
4406}
4407
4408static int AscFindSignature(PortAddr iop_base)
4409{
4410        ushort sig_word;
4411
4412        ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
4413                 iop_base, AscGetChipSignatureByte(iop_base));
4414        if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
4415                ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
4416                         iop_base, AscGetChipSignatureWord(iop_base));
4417                sig_word = AscGetChipSignatureWord(iop_base);
4418                if ((sig_word == (ushort)ASC_1000_ID0W) ||
4419                    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
4420                        return (1);
4421                }
4422        }
4423        return (0);
4424}
4425
4426static void AscEnableInterrupt(PortAddr iop_base)
4427{
4428        ushort cfg;
4429
4430        cfg = AscGetChipCfgLsw(iop_base);
4431        AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
4432}
4433
4434static void AscDisableInterrupt(PortAddr iop_base)
4435{
4436        ushort cfg;
4437
4438        cfg = AscGetChipCfgLsw(iop_base);
4439        AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
4440}
4441
4442static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
4443{
4444        unsigned char byte_data;
4445        unsigned short word_data;
4446
4447        if (isodd_word(addr)) {
4448                AscSetChipLramAddr(iop_base, addr - 1);
4449                word_data = AscGetChipLramData(iop_base);
4450                byte_data = (word_data >> 8) & 0xFF;
4451        } else {
4452                AscSetChipLramAddr(iop_base, addr);
4453                word_data = AscGetChipLramData(iop_base);
4454                byte_data = word_data & 0xFF;
4455        }
4456        return byte_data;
4457}
4458
4459static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
4460{
4461        ushort word_data;
4462
4463        AscSetChipLramAddr(iop_base, addr);
4464        word_data = AscGetChipLramData(iop_base);
4465        return (word_data);
4466}
4467
4468#if CC_VERY_LONG_SG_LIST
4469static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
4470{
4471        ushort val_low, val_high;
4472        ASC_DCNT dword_data;
4473
4474        AscSetChipLramAddr(iop_base, addr);
4475        val_low = AscGetChipLramData(iop_base);
4476        val_high = AscGetChipLramData(iop_base);
4477        dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
4478        return (dword_data);
4479}
4480#endif /* CC_VERY_LONG_SG_LIST */
4481
4482static void
4483AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
4484{
4485        int i;
4486
4487        AscSetChipLramAddr(iop_base, s_addr);
4488        for (i = 0; i < words; i++) {
4489                AscSetChipLramData(iop_base, set_wval);
4490        }
4491}
4492
4493static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
4494{
4495        AscSetChipLramAddr(iop_base, addr);
4496        AscSetChipLramData(iop_base, word_val);
4497}
4498
4499static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
4500{
4501        ushort word_data;
4502
4503        if (isodd_word(addr)) {
4504                addr--;
4505                word_data = AscReadLramWord(iop_base, addr);
4506                word_data &= 0x00FF;
4507                word_data |= (((ushort)byte_val << 8) & 0xFF00);
4508        } else {
4509                word_data = AscReadLramWord(iop_base, addr);
4510                word_data &= 0xFF00;
4511                word_data |= ((ushort)byte_val & 0x00FF);
4512        }
4513        AscWriteLramWord(iop_base, addr, word_data);
4514}
4515
4516/*
4517 * Copy 2 bytes to LRAM.
4518 *
4519 * The source data is assumed to be in little-endian order in memory
4520 * and is maintained in little-endian order when written to LRAM.
4521 */
4522static void
4523AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4524                        const uchar *s_buffer, int words)
4525{
4526        int i;
4527
4528        AscSetChipLramAddr(iop_base, s_addr);
4529        for (i = 0; i < 2 * words; i += 2) {
4530                /*
4531                 * On a little-endian system the second argument below
4532                 * produces a little-endian ushort which is written to
4533                 * LRAM in little-endian order. On a big-endian system
4534                 * the second argument produces a big-endian ushort which
4535                 * is "transparently" byte-swapped by outpw() and written
4536                 * in little-endian order to LRAM.
4537                 */
4538                outpw(iop_base + IOP_RAM_DATA,
4539                      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4540        }
4541}
4542
4543/*
4544 * Copy 4 bytes to LRAM.
4545 *
4546 * The source data is assumed to be in little-endian order in memory
4547 * and is maintained in little-endian order when writen to LRAM.
4548 */
4549static void
4550AscMemDWordCopyPtrToLram(PortAddr iop_base,
4551                         ushort s_addr, uchar *s_buffer, int dwords)
4552{
4553        int i;
4554
4555        AscSetChipLramAddr(iop_base, s_addr);
4556        for (i = 0; i < 4 * dwords; i += 4) {
4557                outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);   /* LSW */
4558                outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);       /* MSW */
4559        }
4560}
4561
4562/*
4563 * Copy 2 bytes from LRAM.
4564 *
4565 * The source data is assumed to be in little-endian order in LRAM
4566 * and is maintained in little-endian order when written to memory.
4567 */
4568static void
4569AscMemWordCopyPtrFromLram(PortAddr iop_base,
4570                          ushort s_addr, uchar *d_buffer, int words)
4571{
4572        int i;
4573        ushort word;
4574
4575        AscSetChipLramAddr(iop_base, s_addr);
4576        for (i = 0; i < 2 * words; i += 2) {
4577                word = inpw(iop_base + IOP_RAM_DATA);
4578                d_buffer[i] = word & 0xff;
4579                d_buffer[i + 1] = (word >> 8) & 0xff;
4580        }
4581}
4582
4583static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4584{
4585        ASC_DCNT sum;
4586        int i;
4587
4588        sum = 0L;
4589        for (i = 0; i < words; i++, s_addr += 2) {
4590                sum += AscReadLramWord(iop_base, s_addr);
4591        }
4592        return (sum);
4593}
4594
4595static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4596{
4597        uchar i;
4598        ushort s_addr;
4599        PortAddr iop_base;
4600        ushort warn_code;
4601
4602        iop_base = asc_dvc->iop_base;
4603        warn_code = 0;
4604        AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4605                          (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4606                                    64) >> 1));
4607        i = ASC_MIN_ACTIVE_QNO;
4608        s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4609        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4610                         (uchar)(i + 1));
4611        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4612                         (uchar)(asc_dvc->max_total_qng));
4613        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4614                         (uchar)i);
4615        i++;
4616        s_addr += ASC_QBLK_SIZE;
4617        for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4618                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4619                                 (uchar)(i + 1));
4620                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4621                                 (uchar)(i - 1));
4622                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4623                                 (uchar)i);
4624        }
4625        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4626                         (uchar)ASC_QLINK_END);
4627        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4628                         (uchar)(asc_dvc->max_total_qng - 1));
4629        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4630                         (uchar)asc_dvc->max_total_qng);
4631        i++;
4632        s_addr += ASC_QBLK_SIZE;
4633        for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4634             i++, s_addr += ASC_QBLK_SIZE) {
4635                AscWriteLramByte(iop_base,
4636                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4637                AscWriteLramByte(iop_base,
4638                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4639                AscWriteLramByte(iop_base,
4640                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4641        }
4642        return warn_code;
4643}
4644
4645static ASC_DCNT
4646AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4647                 const uchar *mcode_buf, ushort mcode_size)
4648{
4649        ASC_DCNT chksum;
4650        ushort mcode_word_size;
4651        ushort mcode_chksum;
4652
4653        /* Write the microcode buffer starting at LRAM address 0. */
4654        mcode_word_size = (ushort)(mcode_size >> 1);
4655        AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4656        AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4657
4658        chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4659        ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4660        mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4661                                                 (ushort)ASC_CODE_SEC_BEG,
4662                                                 (ushort)((mcode_size -
4663                                                           s_addr - (ushort)
4664                                                           ASC_CODE_SEC_BEG) /
4665                                                          2));
4666        ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4667        AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4668        AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4669        return chksum;
4670}
4671
4672static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4673{
4674        PortAddr iop_base;
4675        int i;
4676        ushort lram_addr;
4677
4678        iop_base = asc_dvc->iop_base;
4679        AscPutRiscVarFreeQHead(iop_base, 1);
4680        AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4681        AscPutVarFreeQHead(iop_base, 1);
4682        AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4683        AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4684                         (uchar)((int)asc_dvc->max_total_qng + 1));
4685        AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4686                         (uchar)((int)asc_dvc->max_total_qng + 2));
4687        AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4688                         asc_dvc->max_total_qng);
4689        AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4690        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4691        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4692        AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4693        AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4694        AscPutQDoneInProgress(iop_base, 0);
4695        lram_addr = ASC_QADR_BEG;
4696        for (i = 0; i < 32; i++, lram_addr += 2) {
4697                AscWriteLramWord(iop_base, lram_addr, 0);
4698        }
4699}
4700
4701static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4702{
4703        int i;
4704        ushort warn_code;
4705        PortAddr iop_base;
4706        ASC_PADDR phy_addr;
4707        ASC_DCNT phy_size;
4708        struct asc_board *board = asc_dvc_to_board(asc_dvc);
4709
4710        iop_base = asc_dvc->iop_base;
4711        warn_code = 0;
4712        for (i = 0; i <= ASC_MAX_TID; i++) {
4713                AscPutMCodeInitSDTRAtID(iop_base, i,
4714                                        asc_dvc->cfg->sdtr_period_offset[i]);
4715        }
4716
4717        AscInitQLinkVar(asc_dvc);
4718        AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4719                         asc_dvc->cfg->disc_enable);
4720        AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4721                         ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4722
4723        /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4724        BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4725        asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4726                                        ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4727        if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4728                warn_code = -ENOMEM;
4729                goto err_dma_map;
4730        }
4731        phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4732        AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4733                                 (uchar *)&phy_addr, 1);
4734        phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4735        AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4736                                 (uchar *)&phy_size, 1);
4737
4738        asc_dvc->cfg->mcode_date =
4739            AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4740        asc_dvc->cfg->mcode_version =
4741            AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4742
4743        AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4744        if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4745                asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4746                warn_code = UW_ERR;
4747                goto err_mcode_start;
4748        }
4749        if (AscStartChip(iop_base) != 1) {
4750                asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4751                warn_code = UW_ERR;
4752                goto err_mcode_start;
4753        }
4754
4755        return warn_code;
4756
4757err_mcode_start:
4758        dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4759                         ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4760err_dma_map:
4761        asc_dvc->overrun_dma = 0;
4762        return warn_code;
4763}
4764
4765static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4766{
4767        const struct firmware *fw;
4768        const char fwname[] = "advansys/mcode.bin";
4769        int err;
4770        unsigned long chksum;
4771        ushort warn_code;
4772        PortAddr iop_base;
4773
4774        iop_base = asc_dvc->iop_base;
4775        warn_code = 0;
4776        if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4777            !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4778                AscResetChipAndScsiBus(asc_dvc);
4779                mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4780        }
4781        asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4782        if (asc_dvc->err_code != 0)
4783                return UW_ERR;
4784        if (!AscFindSignature(asc_dvc->iop_base)) {
4785                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4786                return warn_code;
4787        }
4788        AscDisableInterrupt(iop_base);
4789        warn_code |= AscInitLram(asc_dvc);
4790        if (asc_dvc->err_code != 0)
4791                return UW_ERR;
4792
4793        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4794        if (err) {
4795                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4796                       fwname, err);
4797                asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4798                return err;
4799        }
4800        if (fw->size < 4) {
4801                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4802                       fw->size, fwname);
4803                release_firmware(fw);
4804                asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4805                return -EINVAL;
4806        }
4807        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4808                 (fw->data[1] << 8) | fw->data[0];
4809        ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4810        if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4811                             fw->size - 4) != chksum) {
4812                asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4813                release_firmware(fw);
4814                return warn_code;
4815        }
4816        release_firmware(fw);
4817        warn_code |= AscInitMicroCodeVar(asc_dvc);
4818        if (!asc_dvc->overrun_dma)
4819                return warn_code;
4820        asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4821        AscEnableInterrupt(iop_base);
4822        return warn_code;
4823}
4824
4825/*
4826 * Load the Microcode
4827 *
4828 * Write the microcode image to RISC memory starting at address 0.
4829 *
4830 * The microcode is stored compressed in the following format:
4831 *
4832 *  254 word (508 byte) table indexed by byte code followed
4833 *  by the following byte codes:
4834 *
4835 *    1-Byte Code:
4836 *      00: Emit word 0 in table.
4837 *      01: Emit word 1 in table.
4838 *      .
4839 *      FD: Emit word 253 in table.
4840 *
4841 *    Multi-Byte Code:
4842 *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4843 *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4844 *
4845 * Returns 0 or an error if the checksum doesn't match
4846 */
4847static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4848                            int size, int memsize, int chksum)
4849{
4850        int i, j, end, len = 0;
4851        ADV_DCNT sum;
4852
4853        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4854
4855        for (i = 253 * 2; i < size; i++) {
4856                if (buf[i] == 0xff) {
4857                        unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4858                        for (j = 0; j < buf[i + 1]; j++) {
4859                                AdvWriteWordAutoIncLram(iop_base, word);
4860                                len += 2;
4861                        }
4862                        i += 3;
4863                } else if (buf[i] == 0xfe) {
4864                        unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4865                        AdvWriteWordAutoIncLram(iop_base, word);
4866                        i += 2;
4867                        len += 2;
4868                } else {
4869                        unsigned int off = buf[i] * 2;
4870                        unsigned short word = (buf[off + 1] << 8) | buf[off];
4871                        AdvWriteWordAutoIncLram(iop_base, word);
4872                        len += 2;
4873                }
4874        }
4875
4876        end = len;
4877
4878        while (len < memsize) {
4879                AdvWriteWordAutoIncLram(iop_base, 0);
4880                len += 2;
4881        }
4882
4883        /* Verify the microcode checksum. */
4884        sum = 0;
4885        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4886
4887        for (len = 0; len < end; len += 2) {
4888                sum += AdvReadWordAutoIncLram(iop_base);
4889        }
4890
4891        if (sum != chksum)
4892                return ASC_IERR_MCODE_CHKSUM;
4893
4894        return 0;
4895}
4896
4897static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4898{
4899        ADV_CARR_T *carrp;
4900        ADV_SDCNT buf_size;
4901        ADV_PADDR carr_paddr;
4902
4903        carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4904        asc_dvc->carr_freelist = NULL;
4905        if (carrp == asc_dvc->carrier_buf) {
4906                buf_size = ADV_CARRIER_BUFSIZE;
4907        } else {
4908                buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4909        }
4910
4911        do {
4912                /* Get physical address of the carrier 'carrp'. */
4913                carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4914
4915                buf_size -= sizeof(ADV_CARR_T);
4916
4917                carrp->carr_pa = carr_paddr;
4918                carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4919
4920                /*
4921                 * Insert the carrier at the beginning of the freelist.
4922                 */
4923                carrp->next_vpa =
4924                        cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
4925                asc_dvc->carr_freelist = carrp;
4926
4927                carrp++;
4928        } while (buf_size > 0);
4929}
4930
4931/*
4932 * Send an idle command to the chip and wait for completion.
4933 *
4934 * Command completion is polled for once per microsecond.
4935 *
4936 * The function can be called from anywhere including an interrupt handler.
4937 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4938 * functions to prevent reentrancy.
4939 *
4940 * Return Values:
4941 *   ADV_TRUE - command completed successfully
4942 *   ADV_FALSE - command failed
4943 *   ADV_ERROR - command timed out
4944 */
4945static int
4946AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4947               ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4948{
4949        int result;
4950        ADV_DCNT i, j;
4951        AdvPortAddr iop_base;
4952
4953        iop_base = asc_dvc->iop_base;
4954
4955        /*
4956         * Clear the idle command status which is set by the microcode
4957         * to a non-zero value to indicate when the command is completed.
4958         * The non-zero result is one of the IDLE_CMD_STATUS_* values
4959         */
4960        AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4961
4962        /*
4963         * Write the idle command value after the idle command parameter
4964         * has been written to avoid a race condition. If the order is not
4965         * followed, the microcode may process the idle command before the
4966         * parameters have been written to LRAM.
4967         */
4968        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4969                                cpu_to_le32(idle_cmd_parameter));
4970        AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4971
4972        /*
4973         * Tickle the RISC to tell it to process the idle command.
4974         */
4975        AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4976        if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4977                /*
4978                 * Clear the tickle value. In the ASC-3550 the RISC flag
4979                 * command 'clr_tickle_b' does not work unless the host
4980                 * value is cleared.
4981                 */
4982                AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4983        }
4984
4985        /* Wait for up to 100 millisecond for the idle command to timeout. */
4986        for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4987                /* Poll once each microsecond for command completion. */
4988                for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4989                        AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4990                                        result);
4991                        if (result != 0)
4992                                return result;
4993                        udelay(1);
4994                }
4995        }
4996
4997        BUG();          /* The idle command should never timeout. */
4998        return ADV_ERROR;
4999}
5000
5001/*
5002 * Reset SCSI Bus and purge all outstanding requests.
5003 *
5004 * Return Value:
5005 *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
5006 *      ADV_FALSE(0) -  Microcode command failed.
5007 *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
5008 *                      may be hung which requires driver recovery.
5009 */
5010static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
5011{
5012        int status;
5013
5014        /*
5015         * Send the SCSI Bus Reset idle start idle command which asserts
5016         * the SCSI Bus Reset signal.
5017         */
5018        status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
5019        if (status != ADV_TRUE) {
5020                return status;
5021        }
5022
5023        /*
5024         * Delay for the specified SCSI Bus Reset hold time.
5025         *
5026         * The hold time delay is done on the host because the RISC has no
5027         * microsecond accurate timer.
5028         */
5029        udelay(ASC_SCSI_RESET_HOLD_TIME_US);
5030
5031        /*
5032         * Send the SCSI Bus Reset end idle command which de-asserts
5033         * the SCSI Bus Reset signal and purges any pending requests.
5034         */
5035        status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
5036        if (status != ADV_TRUE) {
5037                return status;
5038        }
5039
5040        mdelay(asc_dvc->scsi_reset_wait * 1000);        /* XXX: msleep? */
5041
5042        return status;
5043}
5044
5045/*
5046 * Initialize the ASC-3550.
5047 *
5048 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5049 *
5050 * For a non-fatal error return a warning code. If there are no warnings
5051 * then 0 is returned.
5052 *
5053 * Needed after initialization for error recovery.
5054 */
5055static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
5056{
5057        const struct firmware *fw;
5058        const char fwname[] = "advansys/3550.bin";
5059        AdvPortAddr iop_base;
5060        ushort warn_code;
5061        int begin_addr;
5062        int end_addr;
5063        ushort code_sum;
5064        int word;
5065        int i;
5066        int err;
5067        unsigned long chksum;
5068        ushort scsi_cfg1;
5069        uchar tid;
5070        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
5071        ushort wdtr_able = 0, sdtr_able, tagqng_able;
5072        uchar max_cmd[ADV_MAX_TID + 1];
5073
5074        /* If there is already an error, don't continue. */
5075        if (asc_dvc->err_code != 0)
5076                return ADV_ERROR;
5077
5078        /*
5079         * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
5080         */
5081        if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
5082                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5083                return ADV_ERROR;
5084        }
5085
5086        warn_code = 0;
5087        iop_base = asc_dvc->iop_base;
5088
5089        /*
5090         * Save the RISC memory BIOS region before writing the microcode.
5091         * The BIOS may already be loaded and using its RISC LRAM region
5092         * so its region must be saved and restored.
5093         *
5094         * Note: This code makes the assumption, which is currently true,
5095         * that a chip reset does not clear RISC LRAM.
5096         */
5097        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5098                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5099                                bios_mem[i]);
5100        }
5101
5102        /*
5103         * Save current per TID negotiated values.
5104         */
5105        if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
5106                ushort bios_version, major, minor;
5107
5108                bios_version =
5109                    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
5110                major = (bios_version >> 12) & 0xF;
5111                minor = (bios_version >> 8) & 0xF;
5112                if (major < 3 || (major == 3 && minor == 1)) {
5113                        /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
5114                        AdvReadWordLram(iop_base, 0x120, wdtr_able);
5115                } else {
5116                        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5117                }
5118        }
5119        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5120        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5121        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5122                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5123                                max_cmd[tid]);
5124        }
5125
5126        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5127        if (err) {
5128                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5129                       fwname, err);
5130                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5131                return err;
5132        }
5133        if (fw->size < 4) {
5134                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5135                       fw->size, fwname);
5136                release_firmware(fw);
5137                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5138                return -EINVAL;
5139        }
5140        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5141                 (fw->data[1] << 8) | fw->data[0];
5142        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5143                                             fw->size - 4, ADV_3550_MEMSIZE,
5144                                             chksum);
5145        release_firmware(fw);
5146        if (asc_dvc->err_code)
5147                return ADV_ERROR;
5148
5149        /*
5150         * Restore the RISC memory BIOS region.
5151         */
5152        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5153                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5154                                 bios_mem[i]);
5155        }
5156
5157        /*
5158         * Calculate and write the microcode code checksum to the microcode
5159         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5160         */
5161        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5162        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5163        code_sum = 0;
5164        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5165        for (word = begin_addr; word < end_addr; word += 2) {
5166                code_sum += AdvReadWordAutoIncLram(iop_base);
5167        }
5168        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5169
5170        /*
5171         * Read and save microcode version and date.
5172         */
5173        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5174                        asc_dvc->cfg->mcode_date);
5175        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5176                        asc_dvc->cfg->mcode_version);
5177
5178        /*
5179         * Set the chip type to indicate the ASC3550.
5180         */
5181        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
5182
5183        /*
5184         * If the PCI Configuration Command Register "Parity Error Response
5185         * Control" Bit was clear (0), then set the microcode variable
5186         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5187         * to ignore DMA parity errors.
5188         */
5189        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5190                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5191                word |= CONTROL_FLAG_IGNORE_PERR;
5192                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5193        }
5194
5195        /*
5196         * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
5197         * threshold of 128 bytes. This register is only accessible to the host.
5198         */
5199        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5200                             START_CTL_EMFU | READ_CMD_MRM);
5201
5202        /*
5203         * Microcode operating variables for WDTR, SDTR, and command tag
5204         * queuing will be set in slave_configure() based on what a
5205         * device reports it is capable of in Inquiry byte 7.
5206         *
5207         * If SCSI Bus Resets have been disabled, then directly set
5208         * SDTR and WDTR from the EEPROM configuration. This will allow
5209         * the BIOS and warm boot to work without a SCSI bus hang on
5210         * the Inquiry caused by host and target mismatched DTR values.
5211         * Without the SCSI Bus Reset, before an Inquiry a device can't
5212         * be assumed to be in Asynchronous, Narrow mode.
5213         */
5214        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5215                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5216                                 asc_dvc->wdtr_able);
5217                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5218                                 asc_dvc->sdtr_able);
5219        }
5220
5221        /*
5222         * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
5223         * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
5224         * bitmask. These values determine the maximum SDTR speed negotiated
5225         * with a device.
5226         *
5227         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5228         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5229         * without determining here whether the device supports SDTR.
5230         *
5231         * 4-bit speed  SDTR speed name
5232         * ===========  ===============
5233         * 0000b (0x0)  SDTR disabled
5234         * 0001b (0x1)  5 Mhz
5235         * 0010b (0x2)  10 Mhz
5236         * 0011b (0x3)  20 Mhz (Ultra)
5237         * 0100b (0x4)  40 Mhz (LVD/Ultra2)
5238         * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
5239         * 0110b (0x6)  Undefined
5240         * .
5241         * 1111b (0xF)  Undefined
5242         */
5243        word = 0;
5244        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5245                if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
5246                        /* Set Ultra speed for TID 'tid'. */
5247                        word |= (0x3 << (4 * (tid % 4)));
5248                } else {
5249                        /* Set Fast speed for TID 'tid'. */
5250                        word |= (0x2 << (4 * (tid % 4)));
5251                }
5252                if (tid == 3) { /* Check if done with sdtr_speed1. */
5253                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
5254                        word = 0;
5255                } else if (tid == 7) {  /* Check if done with sdtr_speed2. */
5256                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
5257                        word = 0;
5258                } else if (tid == 11) { /* Check if done with sdtr_speed3. */
5259                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
5260                        word = 0;
5261                } else if (tid == 15) { /* Check if done with sdtr_speed4. */
5262                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
5263                        /* End of loop. */
5264                }
5265        }
5266
5267        /*
5268         * Set microcode operating variable for the disconnect per TID bitmask.
5269         */
5270        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5271                         asc_dvc->cfg->disc_enable);
5272
5273        /*
5274         * Set SCSI_CFG0 Microcode Default Value.
5275         *
5276         * The microcode will set the SCSI_CFG0 register using this value
5277         * after it is started below.
5278         */
5279        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5280                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5281                         asc_dvc->chip_scsi_id);
5282
5283        /*
5284         * Determine SCSI_CFG1 Microcode Default Value.
5285         *
5286         * The microcode will set the SCSI_CFG1 register using this value
5287         * after it is started below.
5288         */
5289
5290        /* Read current SCSI_CFG1 Register value. */
5291        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5292
5293        /*
5294         * If all three connectors are in use, return an error.
5295         */
5296        if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
5297            (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
5298                asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
5299                return ADV_ERROR;
5300        }
5301
5302        /*
5303         * If the internal narrow cable is reversed all of the SCSI_CTRL
5304         * register signals will be set. Check for and return an error if
5305         * this condition is found.
5306         */
5307        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5308                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5309                return ADV_ERROR;
5310        }
5311
5312        /*
5313         * If this is a differential board and a single-ended device
5314         * is attached to one of the connectors, return an error.
5315         */
5316        if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
5317                asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
5318                return ADV_ERROR;
5319        }
5320
5321        /*
5322         * If automatic termination control is enabled, then set the
5323         * termination value based on a table listed in a_condor.h.
5324         *
5325         * If manual termination was specified with an EEPROM setting
5326         * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
5327         * is ready to be 'ored' into SCSI_CFG1.
5328         */
5329        if (asc_dvc->cfg->termination == 0) {
5330                /*
5331                 * The software always controls termination by setting TERM_CTL_SEL.
5332                 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
5333                 */
5334                asc_dvc->cfg->termination |= TERM_CTL_SEL;
5335
5336                switch (scsi_cfg1 & CABLE_DETECT) {
5337                        /* TERM_CTL_H: on, TERM_CTL_L: on */
5338                case 0x3:
5339                case 0x7:
5340                case 0xB:
5341                case 0xD:
5342                case 0xE:
5343                case 0xF:
5344                        asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
5345                        break;
5346
5347                        /* TERM_CTL_H: on, TERM_CTL_L: off */
5348                case 0x1:
5349                case 0x5:
5350                case 0x9:
5351                case 0xA:
5352                case 0xC:
5353                        asc_dvc->cfg->termination |= TERM_CTL_H;
5354                        break;
5355
5356                        /* TERM_CTL_H: off, TERM_CTL_L: off */
5357                case 0x2:
5358                case 0x6:
5359                        break;
5360                }
5361        }
5362
5363        /*
5364         * Clear any set TERM_CTL_H and TERM_CTL_L bits.
5365         */
5366        scsi_cfg1 &= ~TERM_CTL;
5367
5368        /*
5369         * Invert the TERM_CTL_H and TERM_CTL_L bits and then
5370         * set 'scsi_cfg1'. The TERM_POL bit does not need to be
5371         * referenced, because the hardware internally inverts
5372         * the Termination High and Low bits if TERM_POL is set.
5373         */
5374        scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
5375
5376        /*
5377         * Set SCSI_CFG1 Microcode Default Value
5378         *
5379         * Set filter value and possibly modified termination control
5380         * bits in the Microcode SCSI_CFG1 Register Value.
5381         *
5382         * The microcode will set the SCSI_CFG1 register using this value
5383         * after it is started below.
5384         */
5385        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
5386                         FLTR_DISABLE | scsi_cfg1);
5387
5388        /*
5389         * Set MEM_CFG Microcode Default Value
5390         *
5391         * The microcode will set the MEM_CFG register using this value
5392         * after it is started below.
5393         *
5394         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5395         * are defined.
5396         *
5397         * ASC-3550 has 8KB internal memory.
5398         */
5399        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5400                         BIOS_EN | RAM_SZ_8KB);
5401
5402        /*
5403         * Set SEL_MASK Microcode Default Value
5404         *
5405         * The microcode will set the SEL_MASK register using this value
5406         * after it is started below.
5407         */
5408        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5409                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5410
5411        AdvBuildCarrierFreelist(asc_dvc);
5412
5413        /*
5414         * Set-up the Host->RISC Initiator Command Queue (ICQ).
5415         */
5416
5417        if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5418                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5419                return ADV_ERROR;
5420        }
5421        asc_dvc->carr_freelist = (ADV_CARR_T *)
5422            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5423
5424        /*
5425         * The first command issued will be placed in the stopper carrier.
5426         */
5427        asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5428
5429        /*
5430         * Set RISC ICQ physical address start value.
5431         */
5432        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5433
5434        /*
5435         * Set-up the RISC->Host Initiator Response Queue (IRQ).
5436         */
5437        if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5438                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5439                return ADV_ERROR;
5440        }
5441        asc_dvc->carr_freelist = (ADV_CARR_T *)
5442            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5443
5444        /*
5445         * The first command completed by the RISC will be placed in
5446         * the stopper.
5447         *
5448         * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5449         * completed the RISC will set the ASC_RQ_STOPPER bit.
5450         */
5451        asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5452
5453        /*
5454         * Set RISC IRQ physical address start value.
5455         */
5456        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5457        asc_dvc->carr_pending_cnt = 0;
5458
5459        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5460                             (ADV_INTR_ENABLE_HOST_INTR |
5461                              ADV_INTR_ENABLE_GLOBAL_INTR));
5462
5463        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5464        AdvWriteWordRegister(iop_base, IOPW_PC, word);
5465
5466        /* finally, finally, gentlemen, start your engine */
5467        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5468
5469        /*
5470         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5471         * Resets should be performed. The RISC has to be running
5472         * to issue a SCSI Bus Reset.
5473         */
5474        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5475                /*
5476                 * If the BIOS Signature is present in memory, restore the
5477                 * BIOS Handshake Configuration Table and do not perform
5478                 * a SCSI Bus Reset.
5479                 */
5480                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5481                    0x55AA) {
5482                        /*
5483                         * Restore per TID negotiated values.
5484                         */
5485                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5486                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5487                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5488                                         tagqng_able);
5489                        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5490                                AdvWriteByteLram(iop_base,
5491                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5492                                                 max_cmd[tid]);
5493                        }
5494                } else {
5495                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5496                                warn_code = ASC_WARN_BUSRESET_ERROR;
5497                        }
5498                }
5499        }
5500
5501        return warn_code;
5502}
5503
5504/*
5505 * Initialize the ASC-38C0800.
5506 *
5507 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
5508 *
5509 * For a non-fatal error return a warning code. If there are no warnings
5510 * then 0 is returned.
5511 *
5512 * Needed after initialization for error recovery.
5513 */
5514static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5515{
5516        const struct firmware *fw;
5517        const char fwname[] = "advansys/38C0800.bin";
5518        AdvPortAddr iop_base;
5519        ushort warn_code;
5520        int begin_addr;
5521        int end_addr;
5522        ushort code_sum;
5523        int word;
5524        int i;
5525        int err;
5526        unsigned long chksum;
5527        ushort scsi_cfg1;
5528        uchar byte;
5529        uchar tid;
5530        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
5531        ushort wdtr_able, sdtr_able, tagqng_able;
5532        uchar max_cmd[ADV_MAX_TID + 1];
5533
5534        /* If there is already an error, don't continue. */
5535        if (asc_dvc->err_code != 0)
5536                return ADV_ERROR;
5537
5538        /*
5539         * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5540         */
5541        if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5542                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5543                return ADV_ERROR;
5544        }
5545
5546        warn_code = 0;
5547        iop_base = asc_dvc->iop_base;
5548
5549        /*
5550         * Save the RISC memory BIOS region before writing the microcode.
5551         * The BIOS may already be loaded and using its RISC LRAM region
5552         * so its region must be saved and restored.
5553         *
5554         * Note: This code makes the assumption, which is currently true,
5555         * that a chip reset does not clear RISC LRAM.
5556         */
5557        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5558                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5559                                bios_mem[i]);
5560        }
5561
5562        /*
5563         * Save current per TID negotiated values.
5564         */
5565        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5566        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5567        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5568        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5569                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5570                                max_cmd[tid]);
5571        }
5572
5573        /*
5574         * RAM BIST (RAM Built-In Self Test)
5575         *
5576         * Address : I/O base + offset 0x38h register (byte).
5577         * Function: Bit 7-6(RW) : RAM mode
5578         *                          Normal Mode   : 0x00
5579         *                          Pre-test Mode : 0x40
5580         *                          RAM Test Mode : 0x80
5581         *           Bit 5       : unused
5582         *           Bit 4(RO)   : Done bit
5583         *           Bit 3-0(RO) : Status
5584         *                          Host Error    : 0x08
5585         *                          Int_RAM Error : 0x04
5586         *                          RISC Error    : 0x02
5587         *                          SCSI Error    : 0x01
5588         *                          No Error      : 0x00
5589         *
5590         * Note: RAM BIST code should be put right here, before loading the
5591         * microcode and after saving the RISC memory BIOS region.
5592         */
5593
5594        /*
5595         * LRAM Pre-test
5596         *
5597         * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5598         * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5599         * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5600         * to NORMAL_MODE, return an error too.
5601         */
5602        for (i = 0; i < 2; i++) {
5603                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5604                mdelay(10);     /* Wait for 10ms before reading back. */
5605                byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5606                if ((byte & RAM_TEST_DONE) == 0
5607                    || (byte & 0x0F) != PRE_TEST_VALUE) {
5608                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5609                        return ADV_ERROR;
5610                }
5611
5612                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5613                mdelay(10);     /* Wait for 10ms before reading back. */
5614                if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5615                    != NORMAL_VALUE) {
5616                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5617                        return ADV_ERROR;
5618                }
5619        }
5620
5621        /*
5622         * LRAM Test - It takes about 1.5 ms to run through the test.
5623         *
5624         * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5625         * If Done bit not set or Status not 0, save register byte, set the
5626         * err_code, and return an error.
5627         */
5628        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5629        mdelay(10);     /* Wait for 10ms before checking status. */
5630
5631        byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5632        if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5633                /* Get here if Done bit not set or Status not 0. */
5634                asc_dvc->bist_err_code = byte;  /* for BIOS display message */
5635                asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5636                return ADV_ERROR;
5637        }
5638
5639        /* We need to reset back to normal mode after LRAM test passes. */
5640        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5641
5642        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5643        if (err) {
5644                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5645                       fwname, err);
5646                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5647                return err;
5648        }
5649        if (fw->size < 4) {
5650                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5651                       fw->size, fwname);
5652                release_firmware(fw);
5653                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5654                return -EINVAL;
5655        }
5656        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5657                 (fw->data[1] << 8) | fw->data[0];
5658        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5659                                             fw->size - 4, ADV_38C0800_MEMSIZE,
5660                                             chksum);
5661        release_firmware(fw);
5662        if (asc_dvc->err_code)
5663                return ADV_ERROR;
5664
5665        /*
5666         * Restore the RISC memory BIOS region.
5667         */
5668        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5669                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5670                                 bios_mem[i]);
5671        }
5672
5673        /*
5674         * Calculate and write the microcode code checksum to the microcode
5675         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5676         */
5677        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5678        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5679        code_sum = 0;
5680        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5681        for (word = begin_addr; word < end_addr; word += 2) {
5682                code_sum += AdvReadWordAutoIncLram(iop_base);
5683        }
5684        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5685
5686        /*
5687         * Read microcode version and date.
5688         */
5689        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5690                        asc_dvc->cfg->mcode_date);
5691        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5692                        asc_dvc->cfg->mcode_version);
5693
5694        /*
5695         * Set the chip type to indicate the ASC38C0800.
5696         */
5697        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5698
5699        /*
5700         * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5701         * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5702         * cable detection and then we are able to read C_DET[3:0].
5703         *
5704         * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5705         * Microcode Default Value' section below.
5706         */
5707        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5708        AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5709                             scsi_cfg1 | DIS_TERM_DRV);
5710
5711        /*
5712         * If the PCI Configuration Command Register "Parity Error Response
5713         * Control" Bit was clear (0), then set the microcode variable
5714         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5715         * to ignore DMA parity errors.
5716         */
5717        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5718                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5719                word |= CONTROL_FLAG_IGNORE_PERR;
5720                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5721        }
5722
5723        /*
5724         * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5725         * bits for the default FIFO threshold.
5726         *
5727         * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5728         *
5729         * For DMA Errata #4 set the BC_THRESH_ENB bit.
5730         */
5731        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5732                             BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5733                             READ_CMD_MRM);
5734
5735        /*
5736         * Microcode operating variables for WDTR, SDTR, and command tag
5737         * queuing will be set in slave_configure() based on what a
5738         * device reports it is capable of in Inquiry byte 7.
5739         *
5740         * If SCSI Bus Resets have been disabled, then directly set
5741         * SDTR and WDTR from the EEPROM configuration. This will allow
5742         * the BIOS and warm boot to work without a SCSI bus hang on
5743         * the Inquiry caused by host and target mismatched DTR values.
5744         * Without the SCSI Bus Reset, before an Inquiry a device can't
5745         * be assumed to be in Asynchronous, Narrow mode.
5746         */
5747        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5748                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5749                                 asc_dvc->wdtr_able);
5750                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5751                                 asc_dvc->sdtr_able);
5752        }
5753
5754        /*
5755         * Set microcode operating variables for DISC and SDTR_SPEED1,
5756         * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5757         * configuration values.
5758         *
5759         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5760         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5761         * without determining here whether the device supports SDTR.
5762         */
5763        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5764                         asc_dvc->cfg->disc_enable);
5765        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5766        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5767        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5768        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5769
5770        /*
5771         * Set SCSI_CFG0 Microcode Default Value.
5772         *
5773         * The microcode will set the SCSI_CFG0 register using this value
5774         * after it is started below.
5775         */
5776        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5777                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5778                         asc_dvc->chip_scsi_id);
5779
5780        /*
5781         * Determine SCSI_CFG1 Microcode Default Value.
5782         *
5783         * The microcode will set the SCSI_CFG1 register using this value
5784         * after it is started below.
5785         */
5786
5787        /* Read current SCSI_CFG1 Register value. */
5788        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5789
5790        /*
5791         * If the internal narrow cable is reversed all of the SCSI_CTRL
5792         * register signals will be set. Check for and return an error if
5793         * this condition is found.
5794         */
5795        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5796                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5797                return ADV_ERROR;
5798        }
5799
5800        /*
5801         * All kind of combinations of devices attached to one of four
5802         * connectors are acceptable except HVD device attached. For example,
5803         * LVD device can be attached to SE connector while SE device attached
5804         * to LVD connector.  If LVD device attached to SE connector, it only
5805         * runs up to Ultra speed.
5806         *
5807         * If an HVD device is attached to one of LVD connectors, return an
5808         * error.  However, there is no way to detect HVD device attached to
5809         * SE connectors.
5810         */
5811        if (scsi_cfg1 & HVD) {
5812                asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5813                return ADV_ERROR;
5814        }
5815
5816        /*
5817         * If either SE or LVD automatic termination control is enabled, then
5818         * set the termination value based on a table listed in a_condor.h.
5819         *
5820         * If manual termination was specified with an EEPROM setting then
5821         * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5822         * to be 'ored' into SCSI_CFG1.
5823         */
5824        if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5825                /* SE automatic termination control is enabled. */
5826                switch (scsi_cfg1 & C_DET_SE) {
5827                        /* TERM_SE_HI: on, TERM_SE_LO: on */
5828                case 0x1:
5829                case 0x2:
5830                case 0x3:
5831                        asc_dvc->cfg->termination |= TERM_SE;
5832                        break;
5833
5834                        /* TERM_SE_HI: on, TERM_SE_LO: off */
5835                case 0x0:
5836                        asc_dvc->cfg->termination |= TERM_SE_HI;
5837                        break;
5838                }
5839        }
5840
5841        if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5842                /* LVD automatic termination control is enabled. */
5843                switch (scsi_cfg1 & C_DET_LVD) {
5844                        /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5845                case 0x4:
5846                case 0x8:
5847                case 0xC:
5848                        asc_dvc->cfg->termination |= TERM_LVD;
5849                        break;
5850
5851                        /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5852                case 0x0:
5853                        break;
5854                }
5855        }
5856
5857        /*
5858         * Clear any set TERM_SE and TERM_LVD bits.
5859         */
5860        scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5861
5862        /*
5863         * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5864         */
5865        scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5866
5867        /*
5868         * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5869         * bits and set possibly modified termination control bits in the
5870         * Microcode SCSI_CFG1 Register Value.
5871         */
5872        scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5873
5874        /*
5875         * Set SCSI_CFG1 Microcode Default Value
5876         *
5877         * Set possibly modified termination control and reset DIS_TERM_DRV
5878         * bits in the Microcode SCSI_CFG1 Register Value.
5879         *
5880         * The microcode will set the SCSI_CFG1 register using this value
5881         * after it is started below.
5882         */
5883        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5884
5885        /*
5886         * Set MEM_CFG Microcode Default Value
5887         *
5888         * The microcode will set the MEM_CFG register using this value
5889         * after it is started below.
5890         *
5891         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5892         * are defined.
5893         *
5894         * ASC-38C0800 has 16KB internal memory.
5895         */
5896        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5897                         BIOS_EN | RAM_SZ_16KB);
5898
5899        /*
5900         * Set SEL_MASK Microcode Default Value
5901         *
5902         * The microcode will set the SEL_MASK register using this value
5903         * after it is started below.
5904         */
5905        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5906                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5907
5908        AdvBuildCarrierFreelist(asc_dvc);
5909
5910        /*
5911         * Set-up the Host->RISC Initiator Command Queue (ICQ).
5912         */
5913
5914        if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5915                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5916                return ADV_ERROR;
5917        }
5918        asc_dvc->carr_freelist = (ADV_CARR_T *)
5919            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5920
5921        /*
5922         * The first command issued will be placed in the stopper carrier.
5923         */
5924        asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5925
5926        /*
5927         * Set RISC ICQ physical address start value.
5928         * carr_pa is LE, must be native before write
5929         */
5930        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5931
5932        /*
5933         * Set-up the RISC->Host Initiator Response Queue (IRQ).
5934         */
5935        if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5936                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5937                return ADV_ERROR;
5938        }
5939        asc_dvc->carr_freelist = (ADV_CARR_T *)
5940            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5941
5942        /*
5943         * The first command completed by the RISC will be placed in
5944         * the stopper.
5945         *
5946         * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5947         * completed the RISC will set the ASC_RQ_STOPPER bit.
5948         */
5949        asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5950
5951        /*
5952         * Set RISC IRQ physical address start value.
5953         *
5954         * carr_pa is LE, must be native before write *
5955         */
5956        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5957        asc_dvc->carr_pending_cnt = 0;
5958
5959        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5960                             (ADV_INTR_ENABLE_HOST_INTR |
5961                              ADV_INTR_ENABLE_GLOBAL_INTR));
5962
5963        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5964        AdvWriteWordRegister(iop_base, IOPW_PC, word);
5965
5966        /* finally, finally, gentlemen, start your engine */
5967        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5968
5969        /*
5970         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5971         * Resets should be performed. The RISC has to be running
5972         * to issue a SCSI Bus Reset.
5973         */
5974        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5975                /*
5976                 * If the BIOS Signature is present in memory, restore the
5977                 * BIOS Handshake Configuration Table and do not perform
5978                 * a SCSI Bus Reset.
5979                 */
5980                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5981                    0x55AA) {
5982                        /*
5983                         * Restore per TID negotiated values.
5984                         */
5985                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5986                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5987                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5988                                         tagqng_able);
5989                        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5990                                AdvWriteByteLram(iop_base,
5991                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5992                                                 max_cmd[tid]);
5993                        }
5994                } else {
5995                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5996                                warn_code = ASC_WARN_BUSRESET_ERROR;
5997                        }
5998                }
5999        }
6000
6001        return warn_code;
6002}
6003
6004/*
6005 * Initialize the ASC-38C1600.
6006 *
6007 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
6008 *
6009 * For a non-fatal error return a warning code. If there are no warnings
6010 * then 0 is returned.
6011 *
6012 * Needed after initialization for error recovery.
6013 */
6014static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
6015{
6016        const struct firmware *fw;
6017        const char fwname[] = "advansys/38C1600.bin";
6018        AdvPortAddr iop_base;
6019        ushort warn_code;
6020        int begin_addr;
6021        int end_addr;
6022        ushort code_sum;
6023        long word;
6024        int i;
6025        int err;
6026        unsigned long chksum;
6027        ushort scsi_cfg1;
6028        uchar byte;
6029        uchar tid;
6030        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
6031        ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
6032        uchar max_cmd[ASC_MAX_TID + 1];
6033
6034        /* If there is already an error, don't continue. */
6035        if (asc_dvc->err_code != 0) {
6036                return ADV_ERROR;
6037        }
6038
6039        /*
6040         * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
6041         */
6042        if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
6043                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
6044                return ADV_ERROR;
6045        }
6046
6047        warn_code = 0;
6048        iop_base = asc_dvc->iop_base;
6049
6050        /*
6051         * Save the RISC memory BIOS region before writing the microcode.
6052         * The BIOS may already be loaded and using its RISC LRAM region
6053         * so its region must be saved and restored.
6054         *
6055         * Note: This code makes the assumption, which is currently true,
6056         * that a chip reset does not clear RISC LRAM.
6057         */
6058        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6059                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6060                                bios_mem[i]);
6061        }
6062
6063        /*
6064         * Save current per TID negotiated values.
6065         */
6066        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6067        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6068        AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6069        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6070        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6071                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6072                                max_cmd[tid]);
6073        }
6074
6075        /*
6076         * RAM BIST (Built-In Self Test)
6077         *
6078         * Address : I/O base + offset 0x38h register (byte).
6079         * Function: Bit 7-6(RW) : RAM mode
6080         *                          Normal Mode   : 0x00
6081         *                          Pre-test Mode : 0x40
6082         *                          RAM Test Mode : 0x80
6083         *           Bit 5       : unused
6084         *           Bit 4(RO)   : Done bit
6085         *           Bit 3-0(RO) : Status
6086         *                          Host Error    : 0x08
6087         *                          Int_RAM Error : 0x04
6088         *                          RISC Error    : 0x02
6089         *                          SCSI Error    : 0x01
6090         *                          No Error      : 0x00
6091         *
6092         * Note: RAM BIST code should be put right here, before loading the
6093         * microcode and after saving the RISC memory BIOS region.
6094         */
6095
6096        /*
6097         * LRAM Pre-test
6098         *
6099         * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
6100         * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
6101         * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
6102         * to NORMAL_MODE, return an error too.
6103         */
6104        for (i = 0; i < 2; i++) {
6105                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
6106                mdelay(10);     /* Wait for 10ms before reading back. */
6107                byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6108                if ((byte & RAM_TEST_DONE) == 0
6109                    || (byte & 0x0F) != PRE_TEST_VALUE) {
6110                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6111                        return ADV_ERROR;
6112                }
6113
6114                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6115                mdelay(10);     /* Wait for 10ms before reading back. */
6116                if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
6117                    != NORMAL_VALUE) {
6118                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
6119                        return ADV_ERROR;
6120                }
6121        }
6122
6123        /*
6124         * LRAM Test - It takes about 1.5 ms to run through the test.
6125         *
6126         * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
6127         * If Done bit not set or Status not 0, save register byte, set the
6128         * err_code, and return an error.
6129         */
6130        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
6131        mdelay(10);     /* Wait for 10ms before checking status. */
6132
6133        byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
6134        if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
6135                /* Get here if Done bit not set or Status not 0. */
6136                asc_dvc->bist_err_code = byte;  /* for BIOS display message */
6137                asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
6138                return ADV_ERROR;
6139        }
6140
6141        /* We need to reset back to normal mode after LRAM test passes. */
6142        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
6143
6144        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
6145        if (err) {
6146                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
6147                       fwname, err);
6148                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
6149                return err;
6150        }
6151        if (fw->size < 4) {
6152                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
6153                       fw->size, fwname);
6154                release_firmware(fw);
6155                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
6156                return -EINVAL;
6157        }
6158        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
6159                 (fw->data[1] << 8) | fw->data[0];
6160        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
6161                                             fw->size - 4, ADV_38C1600_MEMSIZE,
6162                                             chksum);
6163        release_firmware(fw);
6164        if (asc_dvc->err_code)
6165                return ADV_ERROR;
6166
6167        /*
6168         * Restore the RISC memory BIOS region.
6169         */
6170        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
6171                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
6172                                 bios_mem[i]);
6173        }
6174
6175        /*
6176         * Calculate and write the microcode code checksum to the microcode
6177         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
6178         */
6179        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
6180        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
6181        code_sum = 0;
6182        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
6183        for (word = begin_addr; word < end_addr; word += 2) {
6184                code_sum += AdvReadWordAutoIncLram(iop_base);
6185        }
6186        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
6187
6188        /*
6189         * Read microcode version and date.
6190         */
6191        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
6192                        asc_dvc->cfg->mcode_date);
6193        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
6194                        asc_dvc->cfg->mcode_version);
6195
6196        /*
6197         * Set the chip type to indicate the ASC38C1600.
6198         */
6199        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
6200
6201        /*
6202         * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
6203         * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
6204         * cable detection and then we are able to read C_DET[3:0].
6205         *
6206         * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
6207         * Microcode Default Value' section below.
6208         */
6209        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6210        AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
6211                             scsi_cfg1 | DIS_TERM_DRV);
6212
6213        /*
6214         * If the PCI Configuration Command Register "Parity Error Response
6215         * Control" Bit was clear (0), then set the microcode variable
6216         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
6217         * to ignore DMA parity errors.
6218         */
6219        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
6220                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6221                word |= CONTROL_FLAG_IGNORE_PERR;
6222                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6223        }
6224
6225        /*
6226         * If the BIOS control flag AIPP (Asynchronous Information
6227         * Phase Protection) disable bit is not set, then set the firmware
6228         * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
6229         * AIPP checking and encoding.
6230         */
6231        if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
6232                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6233                word |= CONTROL_FLAG_ENABLE_AIPP;
6234                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
6235        }
6236
6237        /*
6238         * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
6239         * and START_CTL_TH [3:2].
6240         */
6241        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
6242                             FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
6243
6244        /*
6245         * Microcode operating variables for WDTR, SDTR, and command tag
6246         * queuing will be set in slave_configure() based on what a
6247         * device reports it is capable of in Inquiry byte 7.
6248         *
6249         * If SCSI Bus Resets have been disabled, then directly set
6250         * SDTR and WDTR from the EEPROM configuration. This will allow
6251         * the BIOS and warm boot to work without a SCSI bus hang on
6252         * the Inquiry caused by host and target mismatched DTR values.
6253         * Without the SCSI Bus Reset, before an Inquiry a device can't
6254         * be assumed to be in Asynchronous, Narrow mode.
6255         */
6256        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
6257                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
6258                                 asc_dvc->wdtr_able);
6259                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
6260                                 asc_dvc->sdtr_able);
6261        }
6262
6263        /*
6264         * Set microcode operating variables for DISC and SDTR_SPEED1,
6265         * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
6266         * configuration values.
6267         *
6268         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
6269         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
6270         * without determining here whether the device supports SDTR.
6271         */
6272        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
6273                         asc_dvc->cfg->disc_enable);
6274        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
6275        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
6276        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
6277        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
6278
6279        /*
6280         * Set SCSI_CFG0 Microcode Default Value.
6281         *
6282         * The microcode will set the SCSI_CFG0 register using this value
6283         * after it is started below.
6284         */
6285        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
6286                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
6287                         asc_dvc->chip_scsi_id);
6288
6289        /*
6290         * Calculate SCSI_CFG1 Microcode Default Value.
6291         *
6292         * The microcode will set the SCSI_CFG1 register using this value
6293         * after it is started below.
6294         *
6295         * Each ASC-38C1600 function has only two cable detect bits.
6296         * The bus mode override bits are in IOPB_SOFT_OVER_WR.
6297         */
6298        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
6299
6300        /*
6301         * If the cable is reversed all of the SCSI_CTRL register signals
6302         * will be set. Check for and return an error if this condition is
6303         * found.
6304         */
6305        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
6306                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
6307                return ADV_ERROR;
6308        }
6309
6310        /*
6311         * Each ASC-38C1600 function has two connectors. Only an HVD device
6312         * can not be connected to either connector. An LVD device or SE device
6313         * may be connected to either connecor. If an SE device is connected,
6314         * then at most Ultra speed (20 Mhz) can be used on both connectors.
6315         *
6316         * If an HVD device is attached, return an error.
6317         */
6318        if (scsi_cfg1 & HVD) {
6319                asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
6320                return ADV_ERROR;
6321        }
6322
6323        /*
6324         * Each function in the ASC-38C1600 uses only the SE cable detect and
6325         * termination because there are two connectors for each function. Each
6326         * function may use either LVD or SE mode. Corresponding the SE automatic
6327         * termination control EEPROM bits are used for each function. Each
6328         * function has its own EEPROM. If SE automatic control is enabled for
6329         * the function, then set the termination value based on a table listed
6330         * in a_condor.h.
6331         *
6332         * If manual termination is specified in the EEPROM for the function,
6333         * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
6334         * ready to be 'ored' into SCSI_CFG1.
6335         */
6336        if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
6337                struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
6338                /* SE automatic termination control is enabled. */
6339                switch (scsi_cfg1 & C_DET_SE) {
6340                        /* TERM_SE_HI: on, TERM_SE_LO: on */
6341                case 0x1:
6342                case 0x2:
6343                case 0x3:
6344                        asc_dvc->cfg->termination |= TERM_SE;
6345                        break;
6346
6347                case 0x0:
6348                        if (PCI_FUNC(pdev->devfn) == 0) {
6349                                /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
6350                        } else {
6351                                /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
6352                                asc_dvc->cfg->termination |= TERM_SE_HI;
6353                        }
6354                        break;
6355                }
6356        }
6357
6358        /*
6359         * Clear any set TERM_SE bits.
6360         */
6361        scsi_cfg1 &= ~TERM_SE;
6362
6363        /*
6364         * Invert the TERM_SE bits and then set 'scsi_cfg1'.
6365         */
6366        scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
6367
6368        /*
6369         * Clear Big Endian and Terminator Polarity bits and set possibly
6370         * modified termination control bits in the Microcode SCSI_CFG1
6371         * Register Value.
6372         *
6373         * Big Endian bit is not used even on big endian machines.
6374         */
6375        scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
6376
6377        /*
6378         * Set SCSI_CFG1 Microcode Default Value
6379         *
6380         * Set possibly modified termination control bits in the Microcode
6381         * SCSI_CFG1 Register Value.
6382         *
6383         * The microcode will set the SCSI_CFG1 register using this value
6384         * after it is started below.
6385         */
6386        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
6387
6388        /*
6389         * Set MEM_CFG Microcode Default Value
6390         *
6391         * The microcode will set the MEM_CFG register using this value
6392         * after it is started below.
6393         *
6394         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
6395         * are defined.
6396         *
6397         * ASC-38C1600 has 32KB internal memory.
6398         *
6399         * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
6400         * out a special 16K Adv Library and Microcode version. After the issue
6401         * resolved, we should turn back to the 32K support. Both a_condor.h and
6402         * mcode.sas files also need to be updated.
6403         *
6404         * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6405         *  BIOS_EN | RAM_SZ_32KB);
6406         */
6407        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
6408                         BIOS_EN | RAM_SZ_16KB);
6409
6410        /*
6411         * Set SEL_MASK Microcode Default Value
6412         *
6413         * The microcode will set the SEL_MASK register using this value
6414         * after it is started below.
6415         */
6416        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
6417                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
6418
6419        AdvBuildCarrierFreelist(asc_dvc);
6420
6421        /*
6422         * Set-up the Host->RISC Initiator Command Queue (ICQ).
6423         */
6424        if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
6425                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6426                return ADV_ERROR;
6427        }
6428        asc_dvc->carr_freelist = (ADV_CARR_T *)
6429            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
6430
6431        /*
6432         * The first command issued will be placed in the stopper carrier.
6433         */
6434        asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6435
6436        /*
6437         * Set RISC ICQ physical address start value. Initialize the
6438         * COMMA register to the same value otherwise the RISC will
6439         * prematurely detect a command is available.
6440         */
6441        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
6442        AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
6443                              le32_to_cpu(asc_dvc->icq_sp->carr_pa));
6444
6445        /*
6446         * Set-up the RISC->Host Initiator Response Queue (IRQ).
6447         */
6448        if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
6449                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
6450                return ADV_ERROR;
6451        }
6452        asc_dvc->carr_freelist = (ADV_CARR_T *)
6453            ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
6454
6455        /*
6456         * The first command completed by the RISC will be placed in
6457         * the stopper.
6458         *
6459         * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
6460         * completed the RISC will set the ASC_RQ_STOPPER bit.
6461         */
6462        asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
6463
6464        /*
6465         * Set RISC IRQ physical address start value.
6466         */
6467        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
6468        asc_dvc->carr_pending_cnt = 0;
6469
6470        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
6471                             (ADV_INTR_ENABLE_HOST_INTR |
6472                              ADV_INTR_ENABLE_GLOBAL_INTR));
6473        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
6474        AdvWriteWordRegister(iop_base, IOPW_PC, word);
6475
6476        /* finally, finally, gentlemen, start your engine */
6477        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
6478
6479        /*
6480         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
6481         * Resets should be performed. The RISC has to be running
6482         * to issue a SCSI Bus Reset.
6483         */
6484        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
6485                /*
6486                 * If the BIOS Signature is present in memory, restore the
6487                 * per TID microcode operating variables.
6488                 */
6489                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
6490                    0x55AA) {
6491                        /*
6492                         * Restore per TID negotiated values.
6493                         */
6494                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6495                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6496                        AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6497                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
6498                                         tagqng_able);
6499                        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
6500                                AdvWriteByteLram(iop_base,
6501                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
6502                                                 max_cmd[tid]);
6503                        }
6504                } else {
6505                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
6506                                warn_code = ASC_WARN_BUSRESET_ERROR;
6507                        }
6508                }
6509        }
6510
6511        return warn_code;
6512}
6513
6514/*
6515 * Reset chip and SCSI Bus.
6516 *
6517 * Return Value:
6518 *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
6519 *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
6520 */
6521static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6522{
6523        int status;
6524        ushort wdtr_able, sdtr_able, tagqng_able;
6525        ushort ppr_able = 0;
6526        uchar tid, max_cmd[ADV_MAX_TID + 1];
6527        AdvPortAddr iop_base;
6528        ushort bios_sig;
6529
6530        iop_base = asc_dvc->iop_base;
6531
6532        /*
6533         * Save current per TID negotiated values.
6534         */
6535        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6536        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6537        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6538                AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6539        }
6540        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6541        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6542                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6543                                max_cmd[tid]);
6544        }
6545
6546        /*
6547         * Force the AdvInitAsc3550/38C0800Driver() function to
6548         * perform a SCSI Bus Reset by clearing the BIOS signature word.
6549         * The initialization functions assumes a SCSI Bus Reset is not
6550         * needed if the BIOS signature word is present.
6551         */
6552        AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6553        AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
6554
6555        /*
6556         * Stop chip and reset it.
6557         */
6558        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
6559        AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
6560        mdelay(100);
6561        AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
6562                             ADV_CTRL_REG_CMD_WR_IO_REG);
6563
6564        /*
6565         * Reset Adv Library error code, if any, and try
6566         * re-initializing the chip.
6567         */
6568        asc_dvc->err_code = 0;
6569        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6570                status = AdvInitAsc38C1600Driver(asc_dvc);
6571        } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6572                status = AdvInitAsc38C0800Driver(asc_dvc);
6573        } else {
6574                status = AdvInitAsc3550Driver(asc_dvc);
6575        }
6576
6577        /* Translate initialization return value to status value. */
6578        if (status == 0) {
6579                status = ADV_TRUE;
6580        } else {
6581                status = ADV_FALSE;
6582        }
6583
6584        /*
6585         * Restore the BIOS signature word.
6586         */
6587        AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6588
6589        /*
6590         * Restore per TID negotiated values.
6591         */
6592        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6593        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6594        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6595                AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6596        }
6597        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6598        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6599                AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6600                                 max_cmd[tid]);
6601        }
6602
6603        return status;
6604}
6605
6606/*
6607 * adv_async_callback() - Adv Library asynchronous event callback function.
6608 */
6609static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6610{
6611        switch (code) {
6612        case ADV_ASYNC_SCSI_BUS_RESET_DET:
6613                /*
6614                 * The firmware detected a SCSI Bus reset.
6615                 */
6616                ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6617                break;
6618
6619        case ADV_ASYNC_RDMA_FAILURE:
6620                /*
6621                 * Handle RDMA failure by resetting the SCSI Bus and
6622                 * possibly the chip if it is unresponsive. Log the error
6623                 * with a unique code.
6624                 */
6625                ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6626                AdvResetChipAndSB(adv_dvc_varp);
6627                break;
6628
6629        case ADV_HOST_SCSI_BUS_RESET:
6630                /*
6631                 * Host generated SCSI bus reset occurred.
6632                 */
6633                ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6634                break;
6635
6636        default:
6637                ASC_DBG(0, "unknown code 0x%x\n", code);
6638                break;
6639        }
6640}
6641
6642/*
6643 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6644 *
6645 * Callback function for the Wide SCSI Adv Library.
6646 */
6647static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6648{
6649        struct asc_board *boardp;
6650        adv_req_t *reqp;
6651        adv_sgblk_t *sgblkp;
6652        struct scsi_cmnd *scp;
6653        struct Scsi_Host *shost;
6654        ADV_DCNT resid_cnt;
6655
6656        ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6657                 (ulong)adv_dvc_varp, (ulong)scsiqp);
6658        ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6659
6660        /*
6661         * Get the adv_req_t structure for the command that has been
6662         * completed. The adv_req_t structure actually contains the
6663         * completed ADV_SCSI_REQ_Q structure.
6664         */
6665        reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6666        ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6667        if (reqp == NULL) {
6668                ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6669                return;
6670        }
6671
6672        /*
6673         * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6674         * command that has been completed.
6675         *
6676         * Note: The adv_req_t request structure and adv_sgblk_t structure,
6677         * if any, are dropped, because a board structure pointer can not be
6678         * determined.
6679         */
6680        scp = reqp->cmndp;
6681        ASC_DBG(1, "scp 0x%p\n", scp);
6682        if (scp == NULL) {
6683                ASC_PRINT
6684                    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6685                return;
6686        }
6687        ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6688
6689        shost = scp->device->host;
6690        ASC_STATS(shost, callback);
6691        ASC_DBG(1, "shost 0x%p\n", shost);
6692
6693        boardp = shost_priv(shost);
6694        BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6695
6696        /*
6697         * 'done_status' contains the command's ending status.
6698         */
6699        switch (scsiqp->done_status) {
6700        case QD_NO_ERROR:
6701                ASC_DBG(2, "QD_NO_ERROR\n");
6702                scp->result = 0;
6703
6704                /*
6705                 * Check for an underrun condition.
6706                 *
6707                 * If there was no error and an underrun condition, then
6708                 * then return the number of underrun bytes.
6709                 */
6710                resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6711                if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6712                    resid_cnt <= scsi_bufflen(scp)) {
6713                        ASC_DBG(1, "underrun condition %lu bytes\n",
6714                                 (ulong)resid_cnt);
6715                        scsi_set_resid(scp, resid_cnt);
6716                }
6717                break;
6718
6719        case QD_WITH_ERROR:
6720                ASC_DBG(2, "QD_WITH_ERROR\n");
6721                switch (scsiqp->host_status) {
6722                case QHSTA_NO_ERROR:
6723                        if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6724                                ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6725                                ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6726                                                  SCSI_SENSE_BUFFERSIZE);
6727                                /*
6728                                 * Note: The 'status_byte()' macro used by
6729                                 * target drivers defined in scsi.h shifts the
6730                                 * status byte returned by host drivers right
6731                                 * by 1 bit.  This is why target drivers also
6732                                 * use right shifted status byte definitions.
6733                                 * For instance target drivers use
6734                                 * CHECK_CONDITION, defined to 0x1, instead of
6735                                 * the SCSI defined check condition value of
6736                                 * 0x2. Host drivers are supposed to return
6737                                 * the status byte as it is defined by SCSI.
6738                                 */
6739                                scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6740                                    STATUS_BYTE(scsiqp->scsi_status);
6741                        } else {
6742                                scp->result = STATUS_BYTE(scsiqp->scsi_status);
6743                        }
6744                        break;
6745
6746                default:
6747                        /* Some other QHSTA error occurred. */
6748                        ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6749                        scp->result = HOST_BYTE(DID_BAD_TARGET);
6750                        break;
6751                }
6752                break;
6753
6754        case QD_ABORTED_BY_HOST:
6755                ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6756                scp->result =
6757                    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6758                break;
6759
6760        default:
6761                ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6762                scp->result =
6763                    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6764                break;
6765        }
6766
6767        /*
6768         * If the 'init_tidmask' bit isn't already set for the target and the
6769         * current request finished normally, then set the bit for the target
6770         * to indicate that a device is present.
6771         */
6772        if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6773            scsiqp->done_status == QD_NO_ERROR &&
6774            scsiqp->host_status == QHSTA_NO_ERROR) {
6775                boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6776        }
6777
6778        asc_scsi_done(scp);
6779
6780        /*
6781         * Free all 'adv_sgblk_t' structures allocated for the request.
6782         */
6783        while ((sgblkp = reqp->sgblkp) != NULL) {
6784                /* Remove 'sgblkp' from the request list. */
6785                reqp->sgblkp = sgblkp->next_sgblkp;
6786
6787                /* Add 'sgblkp' to the board free list. */
6788                sgblkp->next_sgblkp = boardp->adv_sgblkp;
6789                boardp->adv_sgblkp = sgblkp;
6790        }
6791
6792        /*
6793         * Free the adv_req_t structure used with the command by adding
6794         * it back to the board free list.
6795         */
6796        reqp->next_reqp = boardp->adv_reqp;
6797        boardp->adv_reqp = reqp;
6798
6799        ASC_DBG(1, "done\n");
6800}
6801
6802/*
6803 * Adv Library Interrupt Service Routine
6804 *
6805 *  This function is called by a driver's interrupt service routine.
6806 *  The function disables and re-enables interrupts.
6807 *
6808 *  When a microcode idle command is completed, the ADV_DVC_VAR
6809 *  'idle_cmd_done' field is set to ADV_TRUE.
6810 *
6811 *  Note: AdvISR() can be called when interrupts are disabled or even
6812 *  when there is no hardware interrupt condition present. It will
6813 *  always check for completed idle commands and microcode requests.
6814 *  This is an important feature that shouldn't be changed because it
6815 *  allows commands to be completed from polling mode loops.
6816 *
6817 * Return:
6818 *   ADV_TRUE(1) - interrupt was pending
6819 *   ADV_FALSE(0) - no interrupt was pending
6820 */
6821static int AdvISR(ADV_DVC_VAR *asc_dvc)
6822{
6823        AdvPortAddr iop_base;
6824        uchar int_stat;
6825        ushort target_bit;
6826        ADV_CARR_T *free_carrp;
6827        ADV_VADDR irq_next_vpa;
6828        ADV_SCSI_REQ_Q *scsiq;
6829
6830        iop_base = asc_dvc->iop_base;
6831
6832        /* Reading the register clears the interrupt. */
6833        int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6834
6835        if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6836                         ADV_INTR_STATUS_INTRC)) == 0) {
6837                return ADV_FALSE;
6838        }
6839
6840        /*
6841         * Notify the driver of an asynchronous microcode condition by
6842         * calling the adv_async_callback function. The function
6843         * is passed the microcode ASC_MC_INTRB_CODE byte value.
6844         */
6845        if (int_stat & ADV_INTR_STATUS_INTRB) {
6846                uchar intrb_code;
6847
6848                AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6849
6850                if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6851                    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6852                        if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6853                            asc_dvc->carr_pending_cnt != 0) {
6854                                AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6855                                                     ADV_TICKLE_A);
6856                                if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6857                                        AdvWriteByteRegister(iop_base,
6858                                                             IOPB_TICKLE,
6859                                                             ADV_TICKLE_NOP);
6860                                }
6861                        }
6862                }
6863
6864                adv_async_callback(asc_dvc, intrb_code);
6865        }
6866
6867        /*
6868         * Check if the IRQ stopper carrier contains a completed request.
6869         */
6870        while (((irq_next_vpa =
6871                 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6872                /*
6873                 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6874                 * The RISC will have set 'areq_vpa' to a virtual address.
6875                 *
6876                 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6877                 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6878                 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6879                 * in AdvExeScsiQueue().
6880                 */
6881                scsiq = (ADV_SCSI_REQ_Q *)
6882                    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
6883
6884                /*
6885                 * Request finished with good status and the queue was not
6886                 * DMAed to host memory by the firmware. Set all status fields
6887                 * to indicate good status.
6888                 */
6889                if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6890                        scsiq->done_status = QD_NO_ERROR;
6891                        scsiq->host_status = scsiq->scsi_status = 0;
6892                        scsiq->data_cnt = 0L;
6893                }
6894
6895                /*
6896                 * Advance the stopper pointer to the next carrier
6897                 * ignoring the lower four bits. Free the previous
6898                 * stopper carrier.
6899                 */
6900                free_carrp = asc_dvc->irq_sp;
6901                asc_dvc->irq_sp = (ADV_CARR_T *)
6902                    ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6903
6904                free_carrp->next_vpa =
6905                    cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
6906                asc_dvc->carr_freelist = free_carrp;
6907                asc_dvc->carr_pending_cnt--;
6908
6909                target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6910
6911                /*
6912                 * Clear request microcode control flag.
6913                 */
6914                scsiq->cntl = 0;
6915
6916                /*
6917                 * Notify the driver of the completed request by passing
6918                 * the ADV_SCSI_REQ_Q pointer to its callback function.
6919                 */
6920                scsiq->a_flag |= ADV_SCSIQ_DONE;
6921                adv_isr_callback(asc_dvc, scsiq);
6922                /*
6923                 * Note: After the driver callback function is called, 'scsiq'
6924                 * can no longer be referenced.
6925                 *
6926                 * Fall through and continue processing other completed
6927                 * requests...
6928                 */
6929        }
6930        return ADV_TRUE;
6931}
6932
6933static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6934{
6935        if (asc_dvc->err_code == 0) {
6936                asc_dvc->err_code = err_code;
6937                AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6938                                 err_code);
6939        }
6940        return err_code;
6941}
6942
6943static void AscAckInterrupt(PortAddr iop_base)
6944{
6945        uchar host_flag;
6946        uchar risc_flag;
6947        ushort loop;
6948
6949        loop = 0;
6950        do {
6951                risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6952                if (loop++ > 0x7FFF) {
6953                        break;
6954                }
6955        } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6956        host_flag =
6957            AscReadLramByte(iop_base,
6958                            ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6959        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6960                         (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6961        AscSetChipStatus(iop_base, CIW_INT_ACK);
6962        loop = 0;
6963        while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6964                AscSetChipStatus(iop_base, CIW_INT_ACK);
6965                if (loop++ > 3) {
6966                        break;
6967                }
6968        }
6969        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6970}
6971
6972static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6973{
6974        const uchar *period_table;
6975        int max_index;
6976        int min_index;
6977        int i;
6978
6979        period_table = asc_dvc->sdtr_period_tbl;
6980        max_index = (int)asc_dvc->max_sdtr_index;
6981        min_index = (int)asc_dvc->min_sdtr_index;
6982        if ((syn_time <= period_table[max_index])) {
6983                for (i = min_index; i < (max_index - 1); i++) {
6984                        if (syn_time <= period_table[i]) {
6985                                return (uchar)i;
6986                        }
6987                }
6988                return (uchar)max_index;
6989        } else {
6990                return (uchar)(max_index + 1);
6991        }
6992}
6993
6994static uchar
6995AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6996{
6997        EXT_MSG sdtr_buf;
6998        uchar sdtr_period_index;
6999        PortAddr iop_base;
7000
7001        iop_base = asc_dvc->iop_base;
7002        sdtr_buf.msg_type = EXTENDED_MESSAGE;
7003        sdtr_buf.msg_len = MS_SDTR_LEN;
7004        sdtr_buf.msg_req = EXTENDED_SDTR;
7005        sdtr_buf.xfer_period = sdtr_period;
7006        sdtr_offset &= ASC_SYN_MAX_OFFSET;
7007        sdtr_buf.req_ack_offset = sdtr_offset;
7008        sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
7009        if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
7010                AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
7011                                        (uchar *)&sdtr_buf,
7012                                        sizeof(EXT_MSG) >> 1);
7013                return ((sdtr_period_index << 4) | sdtr_offset);
7014        } else {
7015                sdtr_buf.req_ack_offset = 0;
7016                AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
7017                                        (uchar *)&sdtr_buf,
7018                                        sizeof(EXT_MSG) >> 1);
7019                return 0;
7020        }
7021}
7022
7023static uchar
7024AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
7025{
7026        uchar byte;
7027        uchar sdtr_period_ix;
7028
7029        sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
7030        if (sdtr_period_ix > asc_dvc->max_sdtr_index)
7031                return 0xFF;
7032        byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
7033        return byte;
7034}
7035
7036static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
7037{
7038        ASC_SCSI_BIT_ID_TYPE org_id;
7039        int i;
7040        int sta = TRUE;
7041
7042        AscSetBank(iop_base, 1);
7043        org_id = AscReadChipDvcID(iop_base);
7044        for (i = 0; i <= ASC_MAX_TID; i++) {
7045                if (org_id == (0x01 << i))
7046                        break;
7047        }
7048        org_id = (ASC_SCSI_BIT_ID_TYPE) i;
7049        AscWriteChipDvcID(iop_base, id);
7050        if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
7051                AscSetBank(iop_base, 0);
7052                AscSetChipSyn(iop_base, sdtr_data);
7053                if (AscGetChipSyn(iop_base) != sdtr_data) {
7054                        sta = FALSE;
7055                }
7056        } else {
7057                sta = FALSE;
7058        }
7059        AscSetBank(iop_base, 1);
7060        AscWriteChipDvcID(iop_base, org_id);
7061        AscSetBank(iop_base, 0);
7062        return (sta);
7063}
7064
7065static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
7066{
7067        AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7068        AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
7069}
7070
7071static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
7072{
7073        EXT_MSG ext_msg;
7074        EXT_MSG out_msg;
7075        ushort halt_q_addr;
7076        int sdtr_accept;
7077        ushort int_halt_code;
7078        ASC_SCSI_BIT_ID_TYPE scsi_busy;
7079        ASC_SCSI_BIT_ID_TYPE target_id;
7080        PortAddr iop_base;
7081        uchar tag_code;
7082        uchar q_status;
7083        uchar halt_qp;
7084        uchar sdtr_data;
7085        uchar target_ix;
7086        uchar q_cntl, tid_no;
7087        uchar cur_dvc_qng;
7088        uchar asyn_sdtr;
7089        uchar scsi_status;
7090        struct asc_board *boardp;
7091
7092        BUG_ON(!asc_dvc->drv_ptr);
7093        boardp = asc_dvc->drv_ptr;
7094
7095        iop_base = asc_dvc->iop_base;
7096        int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
7097
7098        halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
7099        halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
7100        target_ix = AscReadLramByte(iop_base,
7101                                    (ushort)(halt_q_addr +
7102                                             (ushort)ASC_SCSIQ_B_TARGET_IX));
7103        q_cntl = AscReadLramByte(iop_base,
7104                            (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7105        tid_no = ASC_TIX_TO_TID(target_ix);
7106        target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
7107        if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7108                asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
7109        } else {
7110                asyn_sdtr = 0;
7111        }
7112        if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
7113                if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7114                        AscSetChipSDTR(iop_base, 0, tid_no);
7115                        boardp->sdtr_data[tid_no] = 0;
7116                }
7117                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7118                return (0);
7119        } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
7120                if (asc_dvc->pci_fix_asyn_xfer & target_id) {
7121                        AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7122                        boardp->sdtr_data[tid_no] = asyn_sdtr;
7123                }
7124                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7125                return (0);
7126        } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
7127                AscMemWordCopyPtrFromLram(iop_base,
7128                                          ASCV_MSGIN_BEG,
7129                                          (uchar *)&ext_msg,
7130                                          sizeof(EXT_MSG) >> 1);
7131
7132                if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7133                    ext_msg.msg_req == EXTENDED_SDTR &&
7134                    ext_msg.msg_len == MS_SDTR_LEN) {
7135                        sdtr_accept = TRUE;
7136                        if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
7137
7138                                sdtr_accept = FALSE;
7139                                ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
7140                        }
7141                        if ((ext_msg.xfer_period <
7142                             asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
7143                            || (ext_msg.xfer_period >
7144                                asc_dvc->sdtr_period_tbl[asc_dvc->
7145                                                         max_sdtr_index])) {
7146                                sdtr_accept = FALSE;
7147                                ext_msg.xfer_period =
7148                                    asc_dvc->sdtr_period_tbl[asc_dvc->
7149                                                             min_sdtr_index];
7150                        }
7151                        if (sdtr_accept) {
7152                                sdtr_data =
7153                                    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
7154                                                   ext_msg.req_ack_offset);
7155                                if ((sdtr_data == 0xFF)) {
7156
7157                                        q_cntl |= QC_MSG_OUT;
7158                                        asc_dvc->init_sdtr &= ~target_id;
7159                                        asc_dvc->sdtr_done &= ~target_id;
7160                                        AscSetChipSDTR(iop_base, asyn_sdtr,
7161                                                       tid_no);
7162                                        boardp->sdtr_data[tid_no] = asyn_sdtr;
7163                                }
7164                        }
7165                        if (ext_msg.req_ack_offset == 0) {
7166
7167                                q_cntl &= ~QC_MSG_OUT;
7168                                asc_dvc->init_sdtr &= ~target_id;
7169                                asc_dvc->sdtr_done &= ~target_id;
7170                                AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7171                        } else {
7172                                if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
7173                                        q_cntl &= ~QC_MSG_OUT;
7174                                        asc_dvc->sdtr_done |= target_id;
7175                                        asc_dvc->init_sdtr |= target_id;
7176                                        asc_dvc->pci_fix_asyn_xfer &=
7177                                            ~target_id;
7178                                        sdtr_data =
7179                                            AscCalSDTRData(asc_dvc,
7180                                                           ext_msg.xfer_period,
7181                                                           ext_msg.
7182                                                           req_ack_offset);
7183                                        AscSetChipSDTR(iop_base, sdtr_data,
7184                                                       tid_no);
7185                                        boardp->sdtr_data[tid_no] = sdtr_data;
7186                                } else {
7187                                        q_cntl |= QC_MSG_OUT;
7188                                        AscMsgOutSDTR(asc_dvc,
7189                                                      ext_msg.xfer_period,
7190                                                      ext_msg.req_ack_offset);
7191                                        asc_dvc->pci_fix_asyn_xfer &=
7192                                            ~target_id;
7193                                        sdtr_data =
7194                                            AscCalSDTRData(asc_dvc,
7195                                                           ext_msg.xfer_period,
7196                                                           ext_msg.
7197                                                           req_ack_offset);
7198                                        AscSetChipSDTR(iop_base, sdtr_data,
7199                                                       tid_no);
7200                                        boardp->sdtr_data[tid_no] = sdtr_data;
7201                                        asc_dvc->sdtr_done |= target_id;
7202                                        asc_dvc->init_sdtr |= target_id;
7203                                }
7204                        }
7205
7206                        AscWriteLramByte(iop_base,
7207                                         (ushort)(halt_q_addr +
7208                                                  (ushort)ASC_SCSIQ_B_CNTL),
7209                                         q_cntl);
7210                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7211                        return (0);
7212                } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
7213                           ext_msg.msg_req == EXTENDED_WDTR &&
7214                           ext_msg.msg_len == MS_WDTR_LEN) {
7215
7216                        ext_msg.wdtr_width = 0;
7217                        AscMemWordCopyPtrToLram(iop_base,
7218                                                ASCV_MSGOUT_BEG,
7219                                                (uchar *)&ext_msg,
7220                                                sizeof(EXT_MSG) >> 1);
7221                        q_cntl |= QC_MSG_OUT;
7222                        AscWriteLramByte(iop_base,
7223                                         (ushort)(halt_q_addr +
7224                                                  (ushort)ASC_SCSIQ_B_CNTL),
7225                                         q_cntl);
7226                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7227                        return (0);
7228                } else {
7229
7230                        ext_msg.msg_type = MESSAGE_REJECT;
7231                        AscMemWordCopyPtrToLram(iop_base,
7232                                                ASCV_MSGOUT_BEG,
7233                                                (uchar *)&ext_msg,
7234                                                sizeof(EXT_MSG) >> 1);
7235                        q_cntl |= QC_MSG_OUT;
7236                        AscWriteLramByte(iop_base,
7237                                         (ushort)(halt_q_addr +
7238                                                  (ushort)ASC_SCSIQ_B_CNTL),
7239                                         q_cntl);
7240                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7241                        return (0);
7242                }
7243        } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
7244
7245                q_cntl |= QC_REQ_SENSE;
7246
7247                if ((asc_dvc->init_sdtr & target_id) != 0) {
7248
7249                        asc_dvc->sdtr_done &= ~target_id;
7250
7251                        sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7252                        q_cntl |= QC_MSG_OUT;
7253                        AscMsgOutSDTR(asc_dvc,
7254                                      asc_dvc->
7255                                      sdtr_period_tbl[(sdtr_data >> 4) &
7256                                                      (uchar)(asc_dvc->
7257                                                              max_sdtr_index -
7258                                                              1)],
7259                                      (uchar)(sdtr_data & (uchar)
7260                                              ASC_SYN_MAX_OFFSET));
7261                }
7262
7263                AscWriteLramByte(iop_base,
7264                                 (ushort)(halt_q_addr +
7265                                          (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7266
7267                tag_code = AscReadLramByte(iop_base,
7268                                           (ushort)(halt_q_addr + (ushort)
7269                                                    ASC_SCSIQ_B_TAG_CODE));
7270                tag_code &= 0xDC;
7271                if ((asc_dvc->pci_fix_asyn_xfer & target_id)
7272                    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
7273                    ) {
7274
7275                        tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
7276                                     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
7277
7278                }
7279                AscWriteLramByte(iop_base,
7280                                 (ushort)(halt_q_addr +
7281                                          (ushort)ASC_SCSIQ_B_TAG_CODE),
7282                                 tag_code);
7283
7284                q_status = AscReadLramByte(iop_base,
7285                                           (ushort)(halt_q_addr + (ushort)
7286                                                    ASC_SCSIQ_B_STATUS));
7287                q_status |= (QS_READY | QS_BUSY);
7288                AscWriteLramByte(iop_base,
7289                                 (ushort)(halt_q_addr +
7290                                          (ushort)ASC_SCSIQ_B_STATUS),
7291                                 q_status);
7292
7293                scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
7294                scsi_busy &= ~target_id;
7295                AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7296
7297                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7298                return (0);
7299        } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
7300
7301                AscMemWordCopyPtrFromLram(iop_base,
7302                                          ASCV_MSGOUT_BEG,
7303                                          (uchar *)&out_msg,
7304                                          sizeof(EXT_MSG) >> 1);
7305
7306                if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
7307                    (out_msg.msg_len == MS_SDTR_LEN) &&
7308                    (out_msg.msg_req == EXTENDED_SDTR)) {
7309
7310                        asc_dvc->init_sdtr &= ~target_id;
7311                        asc_dvc->sdtr_done &= ~target_id;
7312                        AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
7313                        boardp->sdtr_data[tid_no] = asyn_sdtr;
7314                }
7315                q_cntl &= ~QC_MSG_OUT;
7316                AscWriteLramByte(iop_base,
7317                                 (ushort)(halt_q_addr +
7318                                          (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
7319                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7320                return (0);
7321        } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
7322
7323                scsi_status = AscReadLramByte(iop_base,
7324                                              (ushort)((ushort)halt_q_addr +
7325                                                       (ushort)
7326                                                       ASC_SCSIQ_SCSI_STATUS));
7327                cur_dvc_qng =
7328                    AscReadLramByte(iop_base,
7329                                    (ushort)((ushort)ASC_QADR_BEG +
7330                                             (ushort)target_ix));
7331                if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
7332
7333                        scsi_busy = AscReadLramByte(iop_base,
7334                                                    (ushort)ASCV_SCSIBUSY_B);
7335                        scsi_busy |= target_id;
7336                        AscWriteLramByte(iop_base,
7337                                         (ushort)ASCV_SCSIBUSY_B, scsi_busy);
7338                        asc_dvc->queue_full_or_busy |= target_id;
7339
7340                        if (scsi_status == SAM_STAT_TASK_SET_FULL) {
7341                                if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
7342                                        cur_dvc_qng -= 1;
7343                                        asc_dvc->max_dvc_qng[tid_no] =
7344                                            cur_dvc_qng;
7345
7346                                        AscWriteLramByte(iop_base,
7347                                                         (ushort)((ushort)
7348                                                                  ASCV_MAX_DVC_QNG_BEG
7349                                                                  + (ushort)
7350                                                                  tid_no),
7351                                                         cur_dvc_qng);
7352
7353                                        /*
7354                                         * Set the device queue depth to the
7355                                         * number of active requests when the
7356                                         * QUEUE FULL condition was encountered.
7357                                         */
7358                                        boardp->queue_full |= target_id;
7359                                        boardp->queue_full_cnt[tid_no] =
7360                                            cur_dvc_qng;
7361                                }
7362                        }
7363                }
7364                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7365                return (0);
7366        }
7367#if CC_VERY_LONG_SG_LIST
7368        else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
7369                uchar q_no;
7370                ushort q_addr;
7371                uchar sg_wk_q_no;
7372                uchar first_sg_wk_q_no;
7373                ASC_SCSI_Q *scsiq;      /* Ptr to driver request. */
7374                ASC_SG_HEAD *sg_head;   /* Ptr to driver SG request. */
7375                ASC_SG_LIST_Q scsi_sg_q;        /* Structure written to queue. */
7376                ushort sg_list_dwords;
7377                ushort sg_entry_cnt;
7378                uchar next_qp;
7379                int i;
7380
7381                q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
7382                if (q_no == ASC_QLINK_END)
7383                        return 0;
7384
7385                q_addr = ASC_QNO_TO_QADDR(q_no);
7386
7387                /*
7388                 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
7389                 * structure pointer using a macro provided by the driver.
7390                 * The ASC_SCSI_REQ pointer provides a pointer to the
7391                 * host ASC_SG_HEAD structure.
7392                 */
7393                /* Read request's SRB pointer. */
7394                scsiq = (ASC_SCSI_Q *)
7395                    ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
7396                                                                    (ushort)
7397                                                                    (q_addr +
7398                                                                     ASC_SCSIQ_D_SRBPTR))));
7399
7400                /*
7401                 * Get request's first and working SG queue.
7402                 */
7403                sg_wk_q_no = AscReadLramByte(iop_base,
7404                                             (ushort)(q_addr +
7405                                                      ASC_SCSIQ_B_SG_WK_QP));
7406
7407                first_sg_wk_q_no = AscReadLramByte(iop_base,
7408                                                   (ushort)(q_addr +
7409                                                            ASC_SCSIQ_B_FIRST_SG_WK_QP));
7410
7411                /*
7412                 * Reset request's working SG queue back to the
7413                 * first SG queue.
7414                 */
7415                AscWriteLramByte(iop_base,
7416                                 (ushort)(q_addr +
7417                                          (ushort)ASC_SCSIQ_B_SG_WK_QP),
7418                                 first_sg_wk_q_no);
7419
7420                sg_head = scsiq->sg_head;
7421
7422                /*
7423                 * Set sg_entry_cnt to the number of SG elements
7424                 * that will be completed on this interrupt.
7425                 *
7426                 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
7427                 * SG elements. The data_cnt and data_addr fields which
7428                 * add 1 to the SG element capacity are not used when
7429                 * restarting SG handling after a halt.
7430                 */
7431                if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
7432                        sg_entry_cnt = ASC_MAX_SG_LIST - 1;
7433
7434                        /*
7435                         * Keep track of remaining number of SG elements that
7436                         * will need to be handled on the next interrupt.
7437                         */
7438                        scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
7439                } else {
7440                        sg_entry_cnt = scsiq->remain_sg_entry_cnt;
7441                        scsiq->remain_sg_entry_cnt = 0;
7442                }
7443
7444                /*
7445                 * Copy SG elements into the list of allocated SG queues.
7446                 *
7447                 * Last index completed is saved in scsiq->next_sg_index.
7448                 */
7449                next_qp = first_sg_wk_q_no;
7450                q_addr = ASC_QNO_TO_QADDR(next_qp);
7451                scsi_sg_q.sg_head_qp = q_no;
7452                scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
7453                for (i = 0; i < sg_head->queue_cnt; i++) {
7454                        scsi_sg_q.seq_no = i + 1;
7455                        if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
7456                                sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
7457                                sg_entry_cnt -= ASC_SG_LIST_PER_Q;
7458                                /*
7459                                 * After very first SG queue RISC FW uses next
7460                                 * SG queue first element then checks sg_list_cnt
7461                                 * against zero and then decrements, so set
7462                                 * sg_list_cnt 1 less than number of SG elements
7463                                 * in each SG queue.
7464                                 */
7465                                scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
7466                                scsi_sg_q.sg_cur_list_cnt =
7467                                    ASC_SG_LIST_PER_Q - 1;
7468                        } else {
7469                                /*
7470                                 * This is the last SG queue in the list of
7471                                 * allocated SG queues. If there are more
7472                                 * SG elements than will fit in the allocated
7473                                 * queues, then set the QCSG_SG_XFER_MORE flag.
7474                                 */
7475                                if (scsiq->remain_sg_entry_cnt != 0) {
7476                                        scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
7477                                } else {
7478                                        scsi_sg_q.cntl |= QCSG_SG_XFER_END;
7479                                }
7480                                /* equals sg_entry_cnt * 2 */
7481                                sg_list_dwords = sg_entry_cnt << 1;
7482                                scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
7483                                scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
7484                                sg_entry_cnt = 0;
7485                        }
7486
7487                        scsi_sg_q.q_no = next_qp;
7488                        AscMemWordCopyPtrToLram(iop_base,
7489                                                q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
7490                                                (uchar *)&scsi_sg_q,
7491                                                sizeof(ASC_SG_LIST_Q) >> 1);
7492
7493                        AscMemDWordCopyPtrToLram(iop_base,
7494                                                 q_addr + ASC_SGQ_LIST_BEG,
7495                                                 (uchar *)&sg_head->
7496                                                 sg_list[scsiq->next_sg_index],
7497                                                 sg_list_dwords);
7498
7499                        scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
7500
7501                        /*
7502                         * If the just completed SG queue contained the
7503                         * last SG element, then no more SG queues need
7504                         * to be written.
7505                         */
7506                        if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
7507                                break;
7508                        }
7509
7510                        next_qp = AscReadLramByte(iop_base,
7511                                                  (ushort)(q_addr +
7512                                                           ASC_SCSIQ_B_FWD));
7513                        q_addr = ASC_QNO_TO_QADDR(next_qp);
7514                }
7515
7516                /*
7517                 * Clear the halt condition so the RISC will be restarted
7518                 * after the return.
7519                 */
7520                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7521                return (0);
7522        }
7523#endif /* CC_VERY_LONG_SG_LIST */
7524        return (0);
7525}
7526
7527/*
7528 * void
7529 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7530 *
7531 * Calling/Exit State:
7532 *    none
7533 *
7534 * Description:
7535 *     Input an ASC_QDONE_INFO structure from the chip
7536 */
7537static void
7538DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7539{
7540        int i;
7541        ushort word;
7542
7543        AscSetChipLramAddr(iop_base, s_addr);
7544        for (i = 0; i < 2 * words; i += 2) {
7545                if (i == 10) {
7546                        continue;
7547                }
7548                word = inpw(iop_base + IOP_RAM_DATA);
7549                inbuf[i] = word & 0xff;
7550                inbuf[i + 1] = (word >> 8) & 0xff;
7551        }
7552        ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7553}
7554
7555static uchar
7556_AscCopyLramScsiDoneQ(PortAddr iop_base,
7557                      ushort q_addr,
7558                      ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7559{
7560        ushort _val;
7561        uchar sg_queue_cnt;
7562
7563        DvcGetQinfo(iop_base,
7564                    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7565                    (uchar *)scsiq,
7566                    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7567
7568        _val = AscReadLramWord(iop_base,
7569                               (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7570        scsiq->q_status = (uchar)_val;
7571        scsiq->q_no = (uchar)(_val >> 8);
7572        _val = AscReadLramWord(iop_base,
7573                               (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7574        scsiq->cntl = (uchar)_val;
7575        sg_queue_cnt = (uchar)(_val >> 8);
7576        _val = AscReadLramWord(iop_base,
7577                               (ushort)(q_addr +
7578                                        (ushort)ASC_SCSIQ_B_SENSE_LEN));
7579        scsiq->sense_len = (uchar)_val;
7580        scsiq->extra_bytes = (uchar)(_val >> 8);
7581
7582        /*
7583         * Read high word of remain bytes from alternate location.
7584         */
7585        scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7586                                                          (ushort)(q_addr +
7587                                                                   (ushort)
7588                                                                   ASC_SCSIQ_W_ALT_DC1)))
7589                               << 16);
7590        /*
7591         * Read low word of remain bytes from original location.
7592         */
7593        scsiq->remain_bytes += AscReadLramWord(iop_base,
7594                                               (ushort)(q_addr + (ushort)
7595                                                        ASC_SCSIQ_DW_REMAIN_XFER_CNT));
7596
7597        scsiq->remain_bytes &= max_dma_count;
7598        return sg_queue_cnt;
7599}
7600
7601/*
7602 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7603 *
7604 * Interrupt callback function for the Narrow SCSI Asc Library.
7605 */
7606static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7607{
7608        struct asc_board *boardp;
7609        struct scsi_cmnd *scp;
7610        struct Scsi_Host *shost;
7611
7612        ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7613        ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7614
7615        scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7616        if (!scp)
7617                return;
7618
7619        ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7620
7621        shost = scp->device->host;
7622        ASC_STATS(shost, callback);
7623        ASC_DBG(1, "shost 0x%p\n", shost);
7624
7625        boardp = shost_priv(shost);
7626        BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7627
7628        dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7629                         SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7630        /*
7631         * 'qdonep' contains the command's ending status.
7632         */
7633        switch (qdonep->d3.done_stat) {
7634        case QD_NO_ERROR:
7635                ASC_DBG(2, "QD_NO_ERROR\n");
7636                scp->result = 0;
7637
7638                /*
7639                 * Check for an underrun condition.
7640                 *
7641                 * If there was no error and an underrun condition, then
7642                 * return the number of underrun bytes.
7643                 */
7644                if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7645                    qdonep->remain_bytes <= scsi_bufflen(scp)) {
7646                        ASC_DBG(1, "underrun condition %u bytes\n",
7647                                 (unsigned)qdonep->remain_bytes);
7648                        scsi_set_resid(scp, qdonep->remain_bytes);
7649                }
7650                break;
7651
7652        case QD_WITH_ERROR:
7653                ASC_DBG(2, "QD_WITH_ERROR\n");
7654                switch (qdonep->d3.host_stat) {
7655                case QHSTA_NO_ERROR:
7656                        if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7657                                ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7658                                ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
7659                                                  SCSI_SENSE_BUFFERSIZE);
7660                                /*
7661                                 * Note: The 'status_byte()' macro used by
7662                                 * target drivers defined in scsi.h shifts the
7663                                 * status byte returned by host drivers right
7664                                 * by 1 bit.  This is why target drivers also
7665                                 * use right shifted status byte definitions.
7666                                 * For instance target drivers use
7667                                 * CHECK_CONDITION, defined to 0x1, instead of
7668                                 * the SCSI defined check condition value of
7669                                 * 0x2. Host drivers are supposed to return
7670                                 * the status byte as it is defined by SCSI.
7671                                 */
7672                                scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7673                                    STATUS_BYTE(qdonep->d3.scsi_stat);
7674                        } else {
7675                                scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7676                        }
7677                        break;
7678
7679                default:
7680                        /* QHSTA error occurred */
7681                        ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7682                        scp->result = HOST_BYTE(DID_BAD_TARGET);
7683                        break;
7684                }
7685                break;
7686
7687        case QD_ABORTED_BY_HOST:
7688                ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7689                scp->result =
7690                    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7691                                                    scsi_msg) |
7692                    STATUS_BYTE(qdonep->d3.scsi_stat);
7693                break;
7694
7695        default:
7696                ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7697                scp->result =
7698                    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7699                                                    scsi_msg) |
7700                    STATUS_BYTE(qdonep->d3.scsi_stat);
7701                break;
7702        }
7703
7704        /*
7705         * If the 'init_tidmask' bit isn't already set for the target and the
7706         * current request finished normally, then set the bit for the target
7707         * to indicate that a device is present.
7708         */
7709        if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7710            qdonep->d3.done_stat == QD_NO_ERROR &&
7711            qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7712                boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7713        }
7714
7715        asc_scsi_done(scp);
7716}
7717
7718static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7719{
7720        uchar next_qp;
7721        uchar n_q_used;
7722        uchar sg_list_qp;
7723        uchar sg_queue_cnt;
7724        uchar q_cnt;
7725        uchar done_q_tail;
7726        uchar tid_no;
7727        ASC_SCSI_BIT_ID_TYPE scsi_busy;
7728        ASC_SCSI_BIT_ID_TYPE target_id;
7729        PortAddr iop_base;
7730        ushort q_addr;
7731        ushort sg_q_addr;
7732        uchar cur_target_qng;
7733        ASC_QDONE_INFO scsiq_buf;
7734        ASC_QDONE_INFO *scsiq;
7735        int false_overrun;
7736
7737        iop_base = asc_dvc->iop_base;
7738        n_q_used = 1;
7739        scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7740        done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7741        q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7742        next_qp = AscReadLramByte(iop_base,
7743                                  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7744        if (next_qp != ASC_QLINK_END) {
7745                AscPutVarDoneQTail(iop_base, next_qp);
7746                q_addr = ASC_QNO_TO_QADDR(next_qp);
7747                sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7748                                                     asc_dvc->max_dma_count);
7749                AscWriteLramByte(iop_base,
7750                                 (ushort)(q_addr +
7751                                          (ushort)ASC_SCSIQ_B_STATUS),
7752                                 (uchar)(scsiq->
7753                                         q_status & (uchar)~(QS_READY |
7754                                                             QS_ABORTED)));
7755                tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7756                target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7757                if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7758                        sg_q_addr = q_addr;
7759                        sg_list_qp = next_qp;
7760                        for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7761                                sg_list_qp = AscReadLramByte(iop_base,
7762                                                             (ushort)(sg_q_addr
7763                                                                      + (ushort)
7764                                                                      ASC_SCSIQ_B_FWD));
7765                                sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7766                                if (sg_list_qp == ASC_QLINK_END) {
7767                                        AscSetLibErrorCode(asc_dvc,
7768                                                           ASCQ_ERR_SG_Q_LINKS);
7769                                        scsiq->d3.done_stat = QD_WITH_ERROR;
7770                                        scsiq->d3.host_stat =
7771                                            QHSTA_D_QDONE_SG_LIST_CORRUPTED;
7772                                        goto FATAL_ERR_QDONE;
7773                                }
7774                                AscWriteLramByte(iop_base,
7775                                                 (ushort)(sg_q_addr + (ushort)
7776                                                          ASC_SCSIQ_B_STATUS),
7777                                                 QS_FREE);
7778                        }
7779                        n_q_used = sg_queue_cnt + 1;
7780                        AscPutVarDoneQTail(iop_base, sg_list_qp);
7781                }
7782                if (asc_dvc->queue_full_or_busy & target_id) {
7783                        cur_target_qng = AscReadLramByte(iop_base,
7784                                                         (ushort)((ushort)
7785                                                                  ASC_QADR_BEG
7786                                                                  + (ushort)
7787                                                                  scsiq->d2.
7788                                                                  target_ix));
7789                        if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7790                                scsi_busy = AscReadLramByte(iop_base, (ushort)
7791                                                            ASCV_SCSIBUSY_B);
7792                                scsi_busy &= ~target_id;
7793                                AscWriteLramByte(iop_base,
7794                                                 (ushort)ASCV_SCSIBUSY_B,
7795                                                 scsi_busy);
7796                                asc_dvc->queue_full_or_busy &= ~target_id;
7797                        }
7798                }
7799                if (asc_dvc->cur_total_qng >= n_q_used) {
7800                        asc_dvc->cur_total_qng -= n_q_used;
7801                        if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7802                                asc_dvc->cur_dvc_qng[tid_no]--;
7803                        }
7804                } else {
7805                        AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7806                        scsiq->d3.done_stat = QD_WITH_ERROR;
7807                        goto FATAL_ERR_QDONE;
7808                }
7809                if ((scsiq->d2.srb_ptr == 0UL) ||
7810                    ((scsiq->q_status & QS_ABORTED) != 0)) {
7811                        return (0x11);
7812                } else if (scsiq->q_status == QS_DONE) {
7813                        false_overrun = FALSE;
7814                        if (scsiq->extra_bytes != 0) {
7815                                scsiq->remain_bytes +=
7816                                    (ADV_DCNT)scsiq->extra_bytes;
7817                        }
7818                        if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7819                                if (scsiq->d3.host_stat ==
7820                                    QHSTA_M_DATA_OVER_RUN) {
7821                                        if ((scsiq->
7822                                             cntl & (QC_DATA_IN | QC_DATA_OUT))
7823                                            == 0) {
7824                                                scsiq->d3.done_stat =
7825                                                    QD_NO_ERROR;
7826                                                scsiq->d3.host_stat =
7827                                                    QHSTA_NO_ERROR;
7828                                        } else if (false_overrun) {
7829                                                scsiq->d3.done_stat =
7830                                                    QD_NO_ERROR;
7831                                                scsiq->d3.host_stat =
7832                                                    QHSTA_NO_ERROR;
7833                                        }
7834                                } else if (scsiq->d3.host_stat ==
7835                                           QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
7836                                        AscStopChip(iop_base);
7837                                        AscSetChipControl(iop_base,
7838                                                          (uchar)(CC_SCSI_RESET
7839                                                                  | CC_HALT));
7840                                        udelay(60);
7841                                        AscSetChipControl(iop_base, CC_HALT);
7842                                        AscSetChipStatus(iop_base,
7843                                                         CIW_CLR_SCSI_RESET_INT);
7844                                        AscSetChipStatus(iop_base, 0);
7845                                        AscSetChipControl(iop_base, 0);
7846                                }
7847                        }
7848                        if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7849                                asc_isr_callback(asc_dvc, scsiq);
7850                        } else {
7851                                if ((AscReadLramByte(iop_base,
7852                                                     (ushort)(q_addr + (ushort)
7853                                                              ASC_SCSIQ_CDB_BEG))
7854                                     == START_STOP)) {
7855                                        asc_dvc->unit_not_ready &= ~target_id;
7856                                        if (scsiq->d3.done_stat != QD_NO_ERROR) {
7857                                                asc_dvc->start_motor &=
7858                                                    ~target_id;
7859                                        }
7860                                }
7861                        }
7862                        return (1);
7863                } else {
7864                        AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7865 FATAL_ERR_QDONE:
7866                        if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7867                                asc_isr_callback(asc_dvc, scsiq);
7868                        }
7869                        return (0x80);
7870                }
7871        }
7872        return (0);
7873}
7874
7875static int AscISR(ASC_DVC_VAR *asc_dvc)
7876{
7877        ASC_CS_TYPE chipstat;
7878        PortAddr iop_base;
7879        ushort saved_ram_addr;
7880        uchar ctrl_reg;
7881        uchar saved_ctrl_reg;
7882        int int_pending;
7883        int status;
7884        uchar host_flag;
7885
7886        iop_base = asc_dvc->iop_base;
7887        int_pending = FALSE;
7888
7889        if (AscIsIntPending(iop_base) == 0)
7890                return int_pending;
7891
7892        if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7893                return ERR;
7894        }
7895        if (asc_dvc->in_critical_cnt != 0) {
7896                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7897                return ERR;
7898        }
7899        if (asc_dvc->is_in_int) {
7900                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7901                return ERR;
7902        }
7903        asc_dvc->is_in_int = TRUE;
7904        ctrl_reg = AscGetChipControl(iop_base);
7905        saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7906                                       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7907        chipstat = AscGetChipStatus(iop_base);
7908        if (chipstat & CSW_SCSI_RESET_LATCH) {
7909                if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7910                        int i = 10;
7911                        int_pending = TRUE;
7912                        asc_dvc->sdtr_done = 0;
7913                        saved_ctrl_reg &= (uchar)(~CC_HALT);
7914                        while ((AscGetChipStatus(iop_base) &
7915                                CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7916                                mdelay(100);
7917                        }
7918                        AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7919                        AscSetChipControl(iop_base, CC_HALT);
7920                        AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7921                        AscSetChipStatus(iop_base, 0);
7922                        chipstat = AscGetChipStatus(iop_base);
7923                }
7924        }
7925        saved_ram_addr = AscGetChipLramAddr(iop_base);
7926        host_flag = AscReadLramByte(iop_base,
7927                                    ASCV_HOST_FLAG_B) &
7928            (uchar)(~ASC_HOST_FLAG_IN_ISR);
7929        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7930                         (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7931        if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7932                AscAckInterrupt(iop_base);
7933                int_pending = TRUE;
7934                if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7935                        if (AscIsrChipHalted(asc_dvc) == ERR) {
7936                                goto ISR_REPORT_QDONE_FATAL_ERROR;
7937                        } else {
7938                                saved_ctrl_reg &= (uchar)(~CC_HALT);
7939                        }
7940                } else {
7941 ISR_REPORT_QDONE_FATAL_ERROR:
7942                        if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7943                                while (((status =
7944                                         AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7945                                }
7946                        } else {
7947                                do {
7948                                        if ((status =
7949                                             AscIsrQDone(asc_dvc)) == 1) {
7950                                                break;
7951                                        }
7952                                } while (status == 0x11);
7953                        }
7954                        if ((status & 0x80) != 0)
7955                                int_pending = ERR;
7956                }
7957        }
7958        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7959        AscSetChipLramAddr(iop_base, saved_ram_addr);
7960        AscSetChipControl(iop_base, saved_ctrl_reg);
7961        asc_dvc->is_in_int = FALSE;
7962        return int_pending;
7963}
7964
7965/*
7966 * advansys_reset()
7967 *
7968 * Reset the bus associated with the command 'scp'.
7969 *
7970 * This function runs its own thread. Interrupts must be blocked but
7971 * sleeping is allowed and no locking other than for host structures is
7972 * required. Returns SUCCESS or FAILED.
7973 */
7974static int advansys_reset(struct scsi_cmnd *scp)
7975{
7976        struct Scsi_Host *shost = scp->device->host;
7977        struct asc_board *boardp = shost_priv(shost);
7978        unsigned long flags;
7979        int status;
7980        int ret = SUCCESS;
7981
7982        ASC_DBG(1, "0x%p\n", scp);
7983
7984        ASC_STATS(shost, reset);
7985
7986        scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7987
7988        if (ASC_NARROW_BOARD(boardp)) {
7989                ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7990
7991                /* Reset the chip and SCSI bus. */
7992                ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7993                status = AscInitAsc1000Driver(asc_dvc);
7994
7995                /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7996                if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7997                        scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7998                                    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7999                                    status);
8000                        ret = FAILED;
8001                } else if (status) {
8002                        scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
8003                                    "0x%x\n", status);
8004                } else {
8005                        scmd_printk(KERN_INFO, scp, "SCSI bus reset "
8006                                    "successful\n");
8007                }
8008
8009                ASC_DBG(1, "after AscInitAsc1000Driver()\n");
8010                spin_lock_irqsave(shost->host_lock, flags);
8011        } else {
8012                /*
8013                 * If the suggest reset bus flags are set, then reset the bus.
8014                 * Otherwise only reset the device.
8015                 */
8016                ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8017
8018                /*
8019                 * Reset the target's SCSI bus.
8020                 */
8021                ASC_DBG(1, "before AdvResetChipAndSB()\n");
8022                switch (AdvResetChipAndSB(adv_dvc)) {
8023                case ASC_TRUE:
8024                        scmd_printk(KERN_INFO, scp, "SCSI bus reset "
8025                                    "successful\n");
8026                        break;
8027                case ASC_FALSE:
8028                default:
8029                        scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
8030                        ret = FAILED;
8031                        break;
8032                }
8033                spin_lock_irqsave(shost->host_lock, flags);
8034                AdvISR(adv_dvc);
8035        }
8036
8037        /* Save the time of the most recently completed reset. */
8038        boardp->last_reset = jiffies;
8039        spin_unlock_irqrestore(shost->host_lock, flags);
8040
8041        ASC_DBG(1, "ret %d\n", ret);
8042
8043        return ret;
8044}
8045
8046/*
8047 * advansys_biosparam()
8048 *
8049 * Translate disk drive geometry if the "BIOS greater than 1 GB"
8050 * support is enabled for a drive.
8051 *
8052 * ip (information pointer) is an int array with the following definition:
8053 * ip[0]: heads
8054 * ip[1]: sectors
8055 * ip[2]: cylinders
8056 */
8057static int
8058advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
8059                   sector_t capacity, int ip[])
8060{
8061        struct asc_board *boardp = shost_priv(sdev->host);
8062
8063        ASC_DBG(1, "begin\n");
8064        ASC_STATS(sdev->host, biosparam);
8065        if (ASC_NARROW_BOARD(boardp)) {
8066                if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
8067                     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
8068                        ip[0] = 255;
8069                        ip[1] = 63;
8070                } else {
8071                        ip[0] = 64;
8072                        ip[1] = 32;
8073                }
8074        } else {
8075                if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
8076                     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
8077                        ip[0] = 255;
8078                        ip[1] = 63;
8079                } else {
8080                        ip[0] = 64;
8081                        ip[1] = 32;
8082                }
8083        }
8084        ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
8085        ASC_DBG(1, "end\n");
8086        return 0;
8087}
8088
8089/*
8090 * First-level interrupt handler.
8091 *
8092 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
8093 */
8094static irqreturn_t advansys_interrupt(int irq, void *dev_id)
8095{
8096        struct Scsi_Host *shost = dev_id;
8097        struct asc_board *boardp = shost_priv(shost);
8098        irqreturn_t result = IRQ_NONE;
8099
8100        ASC_DBG(2, "boardp 0x%p\n", boardp);
8101        spin_lock(shost->host_lock);
8102        if (ASC_NARROW_BOARD(boardp)) {
8103                if (AscIsIntPending(shost->io_port)) {
8104                        result = IRQ_HANDLED;
8105                        ASC_STATS(shost, interrupt);
8106                        ASC_DBG(1, "before AscISR()\n");
8107                        AscISR(&boardp->dvc_var.asc_dvc_var);
8108                }
8109        } else {
8110                ASC_DBG(1, "before AdvISR()\n");
8111                if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
8112                        result = IRQ_HANDLED;
8113                        ASC_STATS(shost, interrupt);
8114                }
8115        }
8116        spin_unlock(shost->host_lock);
8117
8118        ASC_DBG(1, "end\n");
8119        return result;
8120}
8121
8122static int AscHostReqRiscHalt(PortAddr iop_base)
8123{
8124        int count = 0;
8125        int sta = 0;
8126        uchar saved_stop_code;
8127
8128        if (AscIsChipHalted(iop_base))
8129                return (1);
8130        saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
8131        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8132                         ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
8133        do {
8134                if (AscIsChipHalted(iop_base)) {
8135                        sta = 1;
8136                        break;
8137                }
8138                mdelay(100);
8139        } while (count++ < 20);
8140        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
8141        return (sta);
8142}
8143
8144static int
8145AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
8146{
8147        int sta = FALSE;
8148
8149        if (AscHostReqRiscHalt(iop_base)) {
8150                sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
8151                AscStartChip(iop_base);
8152        }
8153        return sta;
8154}
8155
8156static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
8157{
8158        char type = sdev->type;
8159        ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
8160
8161        if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
8162                return;
8163        if (asc_dvc->init_sdtr & tid_bits)
8164                return;
8165
8166        if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
8167                asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
8168
8169        asc_dvc->pci_fix_asyn_xfer |= tid_bits;
8170        if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
8171            (type == TYPE_ROM) || (type == TYPE_TAPE))
8172                asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
8173
8174        if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
8175                AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
8176                                        ASYN_SDTR_DATA_FIX_PCI_REV_AB);
8177}
8178
8179static void
8180advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
8181{
8182        ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
8183        ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
8184
8185        if (sdev->lun == 0) {
8186                ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
8187                if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
8188                        asc_dvc->init_sdtr |= tid_bit;
8189                } else {
8190                        asc_dvc->init_sdtr &= ~tid_bit;
8191                }
8192
8193                if (orig_init_sdtr != asc_dvc->init_sdtr)
8194                        AscAsyncFix(asc_dvc, sdev);
8195        }
8196
8197        if (sdev->tagged_supported) {
8198                if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
8199                        if (sdev->lun == 0) {
8200                                asc_dvc->cfg->can_tagged_qng |= tid_bit;
8201                                asc_dvc->use_tagged_qng |= tid_bit;
8202                        }
8203                        scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8204                                                asc_dvc->max_dvc_qng[sdev->id]);
8205                }
8206        } else {
8207                if (sdev->lun == 0) {
8208                        asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
8209                        asc_dvc->use_tagged_qng &= ~tid_bit;
8210                }
8211                scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8212        }
8213
8214        if ((sdev->lun == 0) &&
8215            (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
8216                AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
8217                                 asc_dvc->cfg->disc_enable);
8218                AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
8219                                 asc_dvc->use_tagged_qng);
8220                AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
8221                                 asc_dvc->cfg->can_tagged_qng);
8222
8223                asc_dvc->max_dvc_qng[sdev->id] =
8224                                        asc_dvc->cfg->max_tag_qng[sdev->id];
8225                AscWriteLramByte(asc_dvc->iop_base,
8226                                 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
8227                                 asc_dvc->max_dvc_qng[sdev->id]);
8228        }
8229}
8230
8231/*
8232 * Wide Transfers
8233 *
8234 * If the EEPROM enabled WDTR for the device and the device supports wide
8235 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
8236 * write the new value to the microcode.
8237 */
8238static void
8239advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
8240{
8241        unsigned short cfg_word;
8242        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8243        if ((cfg_word & tidmask) != 0)
8244                return;
8245
8246        cfg_word |= tidmask;
8247        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
8248
8249        /*
8250         * Clear the microcode SDTR and WDTR negotiation done indicators for
8251         * the target to cause it to negotiate with the new setting set above.
8252         * WDTR when accepted causes the target to enter asynchronous mode, so
8253         * SDTR must be negotiated.
8254         */
8255        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8256        cfg_word &= ~tidmask;
8257        AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8258        AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8259        cfg_word &= ~tidmask;
8260        AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
8261}
8262
8263/*
8264 * Synchronous Transfers
8265 *
8266 * If the EEPROM enabled SDTR for the device and the device
8267 * supports synchronous transfers, then turn on the device's
8268 * 'sdtr_able' bit. Write the new value to the microcode.
8269 */
8270static void
8271advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
8272{
8273        unsigned short cfg_word;
8274        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8275        if ((cfg_word & tidmask) != 0)
8276                return;
8277
8278        cfg_word |= tidmask;
8279        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
8280
8281        /*
8282         * Clear the microcode "SDTR negotiation" done indicator for the
8283         * target to cause it to negotiate with the new setting set above.
8284         */
8285        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8286        cfg_word &= ~tidmask;
8287        AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
8288}
8289
8290/*
8291 * PPR (Parallel Protocol Request) Capable
8292 *
8293 * If the device supports DT mode, then it must be PPR capable.
8294 * The PPR message will be used in place of the SDTR and WDTR
8295 * messages to negotiate synchronous speed and offset, transfer
8296 * width, and protocol options.
8297 */
8298static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
8299                                AdvPortAddr iop_base, unsigned short tidmask)
8300{
8301        AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8302        adv_dvc->ppr_able |= tidmask;
8303        AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
8304}
8305
8306static void
8307advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
8308{
8309        AdvPortAddr iop_base = adv_dvc->iop_base;
8310        unsigned short tidmask = 1 << sdev->id;
8311
8312        if (sdev->lun == 0) {
8313                /*
8314                 * Handle WDTR, SDTR, and Tag Queuing. If the feature
8315                 * is enabled in the EEPROM and the device supports the
8316                 * feature, then enable it in the microcode.
8317                 */
8318
8319                if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
8320                        advansys_wide_enable_wdtr(iop_base, tidmask);
8321                if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
8322                        advansys_wide_enable_sdtr(iop_base, tidmask);
8323                if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
8324                        advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
8325
8326                /*
8327                 * Tag Queuing is disabled for the BIOS which runs in polled
8328                 * mode and would see no benefit from Tag Queuing. Also by
8329                 * disabling Tag Queuing in the BIOS devices with Tag Queuing
8330                 * bugs will at least work with the BIOS.
8331                 */
8332                if ((adv_dvc->tagqng_able & tidmask) &&
8333                    sdev->tagged_supported) {
8334                        unsigned short cfg_word;
8335                        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
8336                        cfg_word |= tidmask;
8337                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
8338                                         cfg_word);
8339                        AdvWriteByteLram(iop_base,
8340                                         ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
8341                                         adv_dvc->max_dvc_qng);
8342                }
8343        }
8344
8345        if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) {
8346                scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG,
8347                                        adv_dvc->max_dvc_qng);
8348        } else {
8349                scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
8350        }
8351}
8352
8353/*
8354 * Set the number of commands to queue per device for the
8355 * specified host adapter.
8356 */
8357static int advansys_slave_configure(struct scsi_device *sdev)
8358{
8359        struct asc_board *boardp = shost_priv(sdev->host);
8360
8361        if (ASC_NARROW_BOARD(boardp))
8362                advansys_narrow_slave_configure(sdev,
8363                                                &boardp->dvc_var.asc_dvc_var);
8364        else
8365                advansys_wide_slave_configure(sdev,
8366                                                &boardp->dvc_var.adv_dvc_var);
8367
8368        return 0;
8369}
8370
8371static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
8372{
8373        struct asc_board *board = shost_priv(scp->device->host);
8374        scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
8375                                             SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8376        dma_cache_sync(board->dev, scp->sense_buffer,
8377                       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
8378        return cpu_to_le32(scp->SCp.dma_handle);
8379}
8380
8381static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8382                        struct asc_scsi_q *asc_scsi_q)
8383{
8384        struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8385        int use_sg;
8386
8387        memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
8388
8389        /*
8390         * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
8391         */
8392        asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
8393        if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
8394                scp->result = HOST_BYTE(DID_SOFT_ERROR);
8395                return ASC_ERROR;
8396        }
8397
8398        /*
8399         * Build the ASC_SCSI_Q request.
8400         */
8401        asc_scsi_q->cdbptr = &scp->cmnd[0];
8402        asc_scsi_q->q2.cdb_len = scp->cmd_len;
8403        asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
8404        asc_scsi_q->q1.target_lun = scp->device->lun;
8405        asc_scsi_q->q2.target_ix =
8406            ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
8407        asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
8408        asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
8409
8410        /*
8411         * If there are any outstanding requests for the current target,
8412         * then every 255th request send an ORDERED request. This heuristic
8413         * tries to retain the benefit of request sorting while preventing
8414         * request starvation. 255 is the max number of tags or pending commands
8415         * a device may have outstanding.
8416         *
8417         * The request count is incremented below for every successfully
8418         * started request.
8419         *
8420         */
8421        if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
8422            (boardp->reqcnt[scp->device->id] % 255) == 0) {
8423                asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG;
8424        } else {
8425                asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG;
8426        }
8427
8428        /* Build ASC_SCSI_Q */
8429        use_sg = scsi_dma_map(scp);
8430        if (use_sg != 0) {
8431                int sgcnt;
8432                struct scatterlist *slp;
8433                struct asc_sg_head *asc_sg_head;
8434
8435                if (use_sg > scp->device->host->sg_tablesize) {
8436                        scmd_printk(KERN_ERR, scp, "use_sg %d > "
8437                                "sg_tablesize %d\n", use_sg,
8438                                scp->device->host->sg_tablesize);
8439                        scsi_dma_unmap(scp);
8440                        scp->result = HOST_BYTE(DID_ERROR);
8441                        return ASC_ERROR;
8442                }
8443
8444                asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
8445                        use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
8446                if (!asc_sg_head) {
8447                        scsi_dma_unmap(scp);
8448                        scp->result = HOST_BYTE(DID_SOFT_ERROR);
8449                        return ASC_ERROR;
8450                }
8451
8452                asc_scsi_q->q1.cntl |= QC_SG_HEAD;
8453                asc_scsi_q->sg_head = asc_sg_head;
8454                asc_scsi_q->q1.data_cnt = 0;
8455                asc_scsi_q->q1.data_addr = 0;
8456                /* This is a byte value, otherwise it would need to be swapped. */
8457                asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
8458                ASC_STATS_ADD(scp->device->host, xfer_elem,
8459                              asc_sg_head->entry_cnt);
8460
8461                /*
8462                 * Convert scatter-gather list into ASC_SG_HEAD list.
8463                 */
8464                scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
8465                        asc_sg_head->sg_list[sgcnt].addr =
8466                            cpu_to_le32(sg_dma_address(slp));
8467                        asc_sg_head->sg_list[sgcnt].bytes =
8468                            cpu_to_le32(sg_dma_len(slp));
8469                        ASC_STATS_ADD(scp->device->host, xfer_sect,
8470                                      DIV_ROUND_UP(sg_dma_len(slp), 512));
8471                }
8472        }
8473
8474        ASC_STATS(scp->device->host, xfer_cnt);
8475
8476        ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
8477        ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8478
8479        return ASC_NOERROR;
8480}
8481
8482/*
8483 * Build scatter-gather list for Adv Library (Wide Board).
8484 *
8485 * Additional ADV_SG_BLOCK structures will need to be allocated
8486 * if the total number of scatter-gather elements exceeds
8487 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
8488 * assumed to be physically contiguous.
8489 *
8490 * Return:
8491 *      ADV_SUCCESS(1) - SG List successfully created
8492 *      ADV_ERROR(-1) - SG List creation failed
8493 */
8494static int
8495adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
8496               int use_sg)
8497{
8498        adv_sgblk_t *sgblkp;
8499        ADV_SCSI_REQ_Q *scsiqp;
8500        struct scatterlist *slp;
8501        int sg_elem_cnt;
8502        ADV_SG_BLOCK *sg_block, *prev_sg_block;
8503        ADV_PADDR sg_block_paddr;
8504        int i;
8505
8506        scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8507        slp = scsi_sglist(scp);
8508        sg_elem_cnt = use_sg;
8509        prev_sg_block = NULL;
8510        reqp->sgblkp = NULL;
8511
8512        for (;;) {
8513                /*
8514                 * Allocate a 'adv_sgblk_t' structure from the board free
8515                 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
8516                 * (15) scatter-gather elements.
8517                 */
8518                if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8519                        ASC_DBG(1, "no free adv_sgblk_t\n");
8520                        ASC_STATS(scp->device->host, adv_build_nosg);
8521
8522                        /*
8523                         * Allocation failed. Free 'adv_sgblk_t' structures
8524                         * already allocated for the request.
8525                         */
8526                        while ((sgblkp = reqp->sgblkp) != NULL) {
8527                                /* Remove 'sgblkp' from the request list. */
8528                                reqp->sgblkp = sgblkp->next_sgblkp;
8529
8530                                /* Add 'sgblkp' to the board free list. */
8531                                sgblkp->next_sgblkp = boardp->adv_sgblkp;
8532                                boardp->adv_sgblkp = sgblkp;
8533                        }
8534                        return ASC_BUSY;
8535                }
8536
8537                /* Complete 'adv_sgblk_t' board allocation. */
8538                boardp->adv_sgblkp = sgblkp->next_sgblkp;
8539                sgblkp->next_sgblkp = NULL;
8540
8541                /*
8542                 * Get 8 byte aligned virtual and physical addresses
8543                 * for the allocated ADV_SG_BLOCK structure.
8544                 */
8545                sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8546                sg_block_paddr = virt_to_bus(sg_block);
8547
8548                /*
8549                 * Check if this is the first 'adv_sgblk_t' for the
8550                 * request.
8551                 */
8552                if (reqp->sgblkp == NULL) {
8553                        /* Request's first scatter-gather block. */
8554                        reqp->sgblkp = sgblkp;
8555
8556                        /*
8557                         * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8558                         * address pointers.
8559                         */
8560                        scsiqp->sg_list_ptr = sg_block;
8561                        scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8562                } else {
8563                        /* Request's second or later scatter-gather block. */
8564                        sgblkp->next_sgblkp = reqp->sgblkp;
8565                        reqp->sgblkp = sgblkp;
8566
8567                        /*
8568                         * Point the previous ADV_SG_BLOCK structure to
8569                         * the newly allocated ADV_SG_BLOCK structure.
8570                         */
8571                        prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8572                }
8573
8574                for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8575                        sg_block->sg_list[i].sg_addr =
8576                                        cpu_to_le32(sg_dma_address(slp));
8577                        sg_block->sg_list[i].sg_count =
8578                                        cpu_to_le32(sg_dma_len(slp));
8579                        ASC_STATS_ADD(scp->device->host, xfer_sect,
8580                                      DIV_ROUND_UP(sg_dma_len(slp), 512));
8581
8582                        if (--sg_elem_cnt == 0) {       /* Last ADV_SG_BLOCK and scatter-gather entry. */
8583                                sg_block->sg_cnt = i + 1;
8584                                sg_block->sg_ptr = 0L;  /* Last ADV_SG_BLOCK in list. */
8585                                return ADV_SUCCESS;
8586                        }
8587                        slp++;
8588                }
8589                sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8590                prev_sg_block = sg_block;
8591        }
8592}
8593
8594/*
8595 * Build a request structure for the Adv Library (Wide Board).
8596 *
8597 * If an adv_req_t can not be allocated to issue the request,
8598 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8599 *
8600 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8601 * microcode for DMA addresses or math operations are byte swapped
8602 * to little-endian order.
8603 */
8604static int
8605adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8606              ADV_SCSI_REQ_Q **adv_scsiqpp)
8607{
8608        adv_req_t *reqp;
8609        ADV_SCSI_REQ_Q *scsiqp;
8610        int i;
8611        int ret;
8612        int use_sg;
8613
8614        /*
8615         * Allocate an adv_req_t structure from the board to execute
8616         * the command.
8617         */
8618        if (boardp->adv_reqp == NULL) {
8619                ASC_DBG(1, "no free adv_req_t\n");
8620                ASC_STATS(scp->device->host, adv_build_noreq);
8621                return ASC_BUSY;
8622        } else {
8623                reqp = boardp->adv_reqp;
8624                boardp->adv_reqp = reqp->next_reqp;
8625                reqp->next_reqp = NULL;
8626        }
8627
8628        /*
8629         * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8630         */
8631        scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8632
8633        /*
8634         * Initialize the structure.
8635         */
8636        scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8637
8638        /*
8639         * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8640         */
8641        scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8642
8643        /*
8644         * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8645         */
8646        reqp->cmndp = scp;
8647
8648        /*
8649         * Build the ADV_SCSI_REQ_Q request.
8650         */
8651
8652        /* Set CDB length and copy it to the request structure.  */
8653        scsiqp->cdb_len = scp->cmd_len;
8654        /* Copy first 12 CDB bytes to cdb[]. */
8655        for (i = 0; i < scp->cmd_len && i < 12; i++) {
8656                scsiqp->cdb[i] = scp->cmnd[i];
8657        }
8658        /* Copy last 4 CDB bytes, if present, to cdb16[]. */
8659        for (; i < scp->cmd_len; i++) {
8660                scsiqp->cdb16[i - 12] = scp->cmnd[i];
8661        }
8662
8663        scsiqp->target_id = scp->device->id;
8664        scsiqp->target_lun = scp->device->lun;
8665
8666        scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8667        scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8668
8669        /* Build ADV_SCSI_REQ_Q */
8670
8671        use_sg = scsi_dma_map(scp);
8672        if (use_sg == 0) {
8673                /* Zero-length transfer */
8674                reqp->sgblkp = NULL;
8675                scsiqp->data_cnt = 0;
8676                scsiqp->vdata_addr = NULL;
8677
8678                scsiqp->data_addr = 0;
8679                scsiqp->sg_list_ptr = NULL;
8680                scsiqp->sg_real_addr = 0;
8681        } else {
8682                if (use_sg > ADV_MAX_SG_LIST) {
8683                        scmd_printk(KERN_ERR, scp, "use_sg %d > "
8684                                   "ADV_MAX_SG_LIST %d\n", use_sg,
8685                                   scp->device->host->sg_tablesize);
8686                        scsi_dma_unmap(scp);
8687                        scp->result = HOST_BYTE(DID_ERROR);
8688
8689                        /*
8690                         * Free the 'adv_req_t' structure by adding it back
8691                         * to the board free list.
8692                         */
8693                        reqp->next_reqp = boardp->adv_reqp;
8694                        boardp->adv_reqp = reqp;
8695
8696                        return ASC_ERROR;
8697                }
8698
8699                scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8700
8701                ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8702                if (ret != ADV_SUCCESS) {
8703                        /*
8704                         * Free the adv_req_t structure by adding it back to
8705                         * the board free list.
8706                         */
8707                        reqp->next_reqp = boardp->adv_reqp;
8708                        boardp->adv_reqp = reqp;
8709
8710                        return ret;
8711                }
8712
8713                ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8714        }
8715
8716        ASC_STATS(scp->device->host, xfer_cnt);
8717
8718        ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8719        ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8720
8721        *adv_scsiqpp = scsiqp;
8722
8723        return ASC_NOERROR;
8724}
8725
8726static int AscSgListToQueue(int sg_list)
8727{
8728        int n_sg_list_qs;
8729
8730        n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8731        if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8732                n_sg_list_qs++;
8733        return n_sg_list_qs + 1;
8734}
8735
8736static uint
8737AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8738{
8739        uint cur_used_qs;
8740        uint cur_free_qs;
8741        ASC_SCSI_BIT_ID_TYPE target_id;
8742        uchar tid_no;
8743
8744        target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8745        tid_no = ASC_TIX_TO_TID(target_ix);
8746        if ((asc_dvc->unit_not_ready & target_id) ||
8747            (asc_dvc->queue_full_or_busy & target_id)) {
8748                return 0;
8749        }
8750        if (n_qs == 1) {
8751                cur_used_qs = (uint) asc_dvc->cur_total_qng +
8752                    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8753        } else {
8754                cur_used_qs = (uint) asc_dvc->cur_total_qng +
8755                    (uint) ASC_MIN_FREE_Q;
8756        }
8757        if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8758                cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8759                if (asc_dvc->cur_dvc_qng[tid_no] >=
8760                    asc_dvc->max_dvc_qng[tid_no]) {
8761                        return 0;
8762                }
8763                return cur_free_qs;
8764        }
8765        if (n_qs > 1) {
8766                if ((n_qs > asc_dvc->last_q_shortage)
8767                    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8768                        asc_dvc->last_q_shortage = n_qs;
8769                }
8770        }
8771        return 0;
8772}
8773
8774static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8775{
8776        ushort q_addr;
8777        uchar next_qp;
8778        uchar q_status;
8779
8780        q_addr = ASC_QNO_TO_QADDR(free_q_head);
8781        q_status = (uchar)AscReadLramByte(iop_base,
8782                                          (ushort)(q_addr +
8783                                                   ASC_SCSIQ_B_STATUS));
8784        next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8785        if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8786                return next_qp;
8787        return ASC_QLINK_END;
8788}
8789
8790static uchar
8791AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8792{
8793        uchar i;
8794
8795        for (i = 0; i < n_free_q; i++) {
8796                free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8797                if (free_q_head == ASC_QLINK_END)
8798                        break;
8799        }
8800        return free_q_head;
8801}
8802
8803/*
8804 * void
8805 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8806 *
8807 * Calling/Exit State:
8808 *    none
8809 *
8810 * Description:
8811 *     Output an ASC_SCSI_Q structure to the chip
8812 */
8813static void
8814DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8815{
8816        int i;
8817
8818        ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8819        AscSetChipLramAddr(iop_base, s_addr);
8820        for (i = 0; i < 2 * words; i += 2) {
8821                if (i == 4 || i == 20) {
8822                        continue;
8823                }
8824                outpw(iop_base + IOP_RAM_DATA,
8825                      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8826        }
8827}
8828
8829static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8830{
8831        ushort q_addr;
8832        uchar tid_no;
8833        uchar sdtr_data;
8834        uchar syn_period_ix;
8835        uchar syn_offset;
8836        PortAddr iop_base;
8837
8838        iop_base = asc_dvc->iop_base;
8839        if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8840            ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8841                tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8842                sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8843                syn_period_ix =
8844                    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8845                syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8846                AscMsgOutSDTR(asc_dvc,
8847                              asc_dvc->sdtr_period_tbl[syn_period_ix],
8848                              syn_offset);
8849                scsiq->q1.cntl |= QC_MSG_OUT;
8850        }
8851        q_addr = ASC_QNO_TO_QADDR(q_no);
8852        if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8853                scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
8854        }
8855        scsiq->q1.status = QS_FREE;
8856        AscMemWordCopyPtrToLram(iop_base,
8857                                q_addr + ASC_SCSIQ_CDB_BEG,
8858                                (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8859
8860        DvcPutScsiQ(iop_base,
8861                    q_addr + ASC_SCSIQ_CPY_BEG,
8862                    (uchar *)&scsiq->q1.cntl,
8863                    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8864        AscWriteLramWord(iop_base,
8865                         (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8866                         (ushort)(((ushort)scsiq->q1.
8867                                   q_no << 8) | (ushort)QS_READY));
8868        return 1;
8869}
8870
8871static int
8872AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8873{
8874        int sta;
8875        int i;
8876        ASC_SG_HEAD *sg_head;
8877        ASC_SG_LIST_Q scsi_sg_q;
8878        ASC_DCNT saved_data_addr;
8879        ASC_DCNT saved_data_cnt;
8880        PortAddr iop_base;
8881        ushort sg_list_dwords;
8882        ushort sg_index;
8883        ushort sg_entry_cnt;
8884        ushort q_addr;
8885        uchar next_qp;
8886
8887        iop_base = asc_dvc->iop_base;
8888        sg_head = scsiq->sg_head;
8889        saved_data_addr = scsiq->q1.data_addr;
8890        saved_data_cnt = scsiq->q1.data_cnt;
8891        scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8892        scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8893#if CC_VERY_LONG_SG_LIST
8894        /*
8895         * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8896         * then not all SG elements will fit in the allocated queues.
8897         * The rest of the SG elements will be copied when the RISC
8898         * completes the SG elements that fit and halts.
8899         */
8900        if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8901                /*
8902                 * Set sg_entry_cnt to be the number of SG elements that
8903                 * will fit in the allocated SG queues. It is minus 1, because
8904                 * the first SG element is handled above. ASC_MAX_SG_LIST is
8905                 * already inflated by 1 to account for this. For example it
8906                 * may be 50 which is 1 + 7 queues * 7 SG elements.
8907                 */
8908                sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8909
8910                /*
8911                 * Keep track of remaining number of SG elements that will
8912                 * need to be handled from a_isr.c.
8913                 */
8914                scsiq->remain_sg_entry_cnt =
8915                    sg_head->entry_cnt - ASC_MAX_SG_LIST;
8916        } else {
8917#endif /* CC_VERY_LONG_SG_LIST */
8918                /*
8919                 * Set sg_entry_cnt to be the number of SG elements that
8920                 * will fit in the allocated SG queues. It is minus 1, because
8921                 * the first SG element is handled above.
8922                 */
8923                sg_entry_cnt = sg_head->entry_cnt - 1;
8924#if CC_VERY_LONG_SG_LIST
8925        }
8926#endif /* CC_VERY_LONG_SG_LIST */
8927        if (sg_entry_cnt != 0) {
8928                scsiq->q1.cntl |= QC_SG_HEAD;
8929                q_addr = ASC_QNO_TO_QADDR(q_no);
8930                sg_index = 1;
8931                scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8932                scsi_sg_q.sg_head_qp = q_no;
8933                scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8934                for (i = 0; i < sg_head->queue_cnt; i++) {
8935                        scsi_sg_q.seq_no = i + 1;
8936                        if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8937                                sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8938                                sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8939                                if (i == 0) {
8940                                        scsi_sg_q.sg_list_cnt =
8941                                            ASC_SG_LIST_PER_Q;
8942                                        scsi_sg_q.sg_cur_list_cnt =
8943                                            ASC_SG_LIST_PER_Q;
8944                                } else {
8945                                        scsi_sg_q.sg_list_cnt =
8946                                            ASC_SG_LIST_PER_Q - 1;
8947                                        scsi_sg_q.sg_cur_list_cnt =
8948                                            ASC_SG_LIST_PER_Q - 1;
8949                                }
8950                        } else {
8951#if CC_VERY_LONG_SG_LIST
8952                                /*
8953                                 * This is the last SG queue in the list of
8954                                 * allocated SG queues. If there are more
8955                                 * SG elements than will fit in the allocated
8956                                 * queues, then set the QCSG_SG_XFER_MORE flag.
8957                                 */
8958                                if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8959                                        scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8960                                } else {
8961#endif /* CC_VERY_LONG_SG_LIST */
8962                                        scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8963#if CC_VERY_LONG_SG_LIST
8964                                }
8965#endif /* CC_VERY_LONG_SG_LIST */
8966                                sg_list_dwords = sg_entry_cnt << 1;
8967                                if (i == 0) {
8968                                        scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8969                                        scsi_sg_q.sg_cur_list_cnt =
8970                                            sg_entry_cnt;
8971                                } else {
8972                                        scsi_sg_q.sg_list_cnt =
8973                                            sg_entry_cnt - 1;
8974                                        scsi_sg_q.sg_cur_list_cnt =
8975                                            sg_entry_cnt - 1;
8976                                }
8977                                sg_entry_cnt = 0;
8978                        }
8979                        next_qp = AscReadLramByte(iop_base,
8980                                                  (ushort)(q_addr +
8981                                                           ASC_SCSIQ_B_FWD));
8982                        scsi_sg_q.q_no = next_qp;
8983                        q_addr = ASC_QNO_TO_QADDR(next_qp);
8984                        AscMemWordCopyPtrToLram(iop_base,
8985                                                q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8986                                                (uchar *)&scsi_sg_q,
8987                                                sizeof(ASC_SG_LIST_Q) >> 1);
8988                        AscMemDWordCopyPtrToLram(iop_base,
8989                                                 q_addr + ASC_SGQ_LIST_BEG,
8990                                                 (uchar *)&sg_head->
8991                                                 sg_list[sg_index],
8992                                                 sg_list_dwords);
8993                        sg_index += ASC_SG_LIST_PER_Q;
8994                        scsiq->next_sg_index = sg_index;
8995                }
8996        } else {
8997                scsiq->q1.cntl &= ~QC_SG_HEAD;
8998        }
8999        sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
9000        scsiq->q1.data_addr = saved_data_addr;
9001        scsiq->q1.data_cnt = saved_data_cnt;
9002        return (sta);
9003}
9004
9005static int
9006AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
9007{
9008        PortAddr iop_base;
9009        uchar free_q_head;
9010        uchar next_qp;
9011        uchar tid_no;
9012        uchar target_ix;
9013        int sta;
9014
9015        iop_base = asc_dvc->iop_base;
9016        target_ix = scsiq->q2.target_ix;
9017        tid_no = ASC_TIX_TO_TID(target_ix);
9018        sta = 0;
9019        free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
9020        if (n_q_required > 1) {
9021                next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
9022                                                    (uchar)n_q_required);
9023                if (next_qp != ASC_QLINK_END) {
9024                        asc_dvc->last_q_shortage = 0;
9025                        scsiq->sg_head->queue_cnt = n_q_required - 1;
9026                        scsiq->q1.q_no = free_q_head;
9027                        sta = AscPutReadySgListQueue(asc_dvc, scsiq,
9028                                                     free_q_head);
9029                }
9030        } else if (n_q_required == 1) {
9031                next_qp = AscAllocFreeQueue(iop_base, free_q_head);
9032                if (next_qp != ASC_QLINK_END) {
9033                        scsiq->q1.q_no = free_q_head;
9034                        sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
9035                }
9036        }
9037        if (sta == 1) {
9038                AscPutVarFreeQHead(iop_base, next_qp);
9039                asc_dvc->cur_total_qng += n_q_required;
9040                asc_dvc->cur_dvc_qng[tid_no]++;
9041        }
9042        return sta;
9043}
9044
9045#define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
9046static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
9047        INQUIRY,
9048        REQUEST_SENSE,
9049        READ_CAPACITY,
9050        READ_TOC,
9051        MODE_SELECT,
9052        MODE_SENSE,
9053        MODE_SELECT_10,
9054        MODE_SENSE_10,
9055        0xFF,
9056        0xFF,
9057        0xFF,
9058        0xFF,
9059        0xFF,
9060        0xFF,
9061        0xFF,
9062        0xFF
9063};
9064
9065static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
9066{
9067        PortAddr iop_base;
9068        int sta;
9069        int n_q_required;
9070        int disable_syn_offset_one_fix;
9071        int i;
9072        ASC_PADDR addr;
9073        ushort sg_entry_cnt = 0;
9074        ushort sg_entry_cnt_minus_one = 0;
9075        uchar target_ix;
9076        uchar tid_no;
9077        uchar sdtr_data;
9078        uchar extra_bytes;
9079        uchar scsi_cmd;
9080        uchar disable_cmd;
9081        ASC_SG_HEAD *sg_head;
9082        ASC_DCNT data_cnt;
9083
9084        iop_base = asc_dvc->iop_base;
9085        sg_head = scsiq->sg_head;
9086        if (asc_dvc->err_code != 0)
9087                return (ERR);
9088        scsiq->q1.q_no = 0;
9089        if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
9090                scsiq->q1.extra_bytes = 0;
9091        }
9092        sta = 0;
9093        target_ix = scsiq->q2.target_ix;
9094        tid_no = ASC_TIX_TO_TID(target_ix);
9095        n_q_required = 1;
9096        if (scsiq->cdbptr[0] == REQUEST_SENSE) {
9097                if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
9098                        asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
9099                        sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
9100                        AscMsgOutSDTR(asc_dvc,
9101                                      asc_dvc->
9102                                      sdtr_period_tbl[(sdtr_data >> 4) &
9103                                                      (uchar)(asc_dvc->
9104                                                              max_sdtr_index -
9105                                                              1)],
9106                                      (uchar)(sdtr_data & (uchar)
9107                                              ASC_SYN_MAX_OFFSET));
9108                        scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
9109                }
9110        }
9111        if (asc_dvc->in_critical_cnt != 0) {
9112                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
9113                return (ERR);
9114        }
9115        asc_dvc->in_critical_cnt++;
9116        if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9117                if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
9118                        asc_dvc->in_critical_cnt--;
9119                        return (ERR);
9120                }
9121#if !CC_VERY_LONG_SG_LIST
9122                if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9123                        asc_dvc->in_critical_cnt--;
9124                        return (ERR);
9125                }
9126#endif /* !CC_VERY_LONG_SG_LIST */
9127                if (sg_entry_cnt == 1) {
9128                        scsiq->q1.data_addr =
9129                            (ADV_PADDR)sg_head->sg_list[0].addr;
9130                        scsiq->q1.data_cnt =
9131                            (ADV_DCNT)sg_head->sg_list[0].bytes;
9132                        scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
9133                }
9134                sg_entry_cnt_minus_one = sg_entry_cnt - 1;
9135        }
9136        scsi_cmd = scsiq->cdbptr[0];
9137        disable_syn_offset_one_fix = FALSE;
9138        if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
9139            !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
9140                if (scsiq->q1.cntl & QC_SG_HEAD) {
9141                        data_cnt = 0;
9142                        for (i = 0; i < sg_entry_cnt; i++) {
9143                                data_cnt +=
9144                                    (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
9145                                                          bytes);
9146                        }
9147                } else {
9148                        data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
9149                }
9150                if (data_cnt != 0UL) {
9151                        if (data_cnt < 512UL) {
9152                                disable_syn_offset_one_fix = TRUE;
9153                        } else {
9154                                for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
9155                                     i++) {
9156                                        disable_cmd =
9157                                            _syn_offset_one_disable_cmd[i];
9158                                        if (disable_cmd == 0xFF) {
9159                                                break;
9160                                        }
9161                                        if (scsi_cmd == disable_cmd) {
9162                                                disable_syn_offset_one_fix =
9163                                                    TRUE;
9164                                                break;
9165                                        }
9166                                }
9167                        }
9168                }
9169        }
9170        if (disable_syn_offset_one_fix) {
9171                scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG;
9172                scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
9173                                       ASC_TAG_FLAG_DISABLE_DISCONNECT);
9174        } else {
9175                scsiq->q2.tag_code &= 0x27;
9176        }
9177        if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
9178                if (asc_dvc->bug_fix_cntl) {
9179                        if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9180                                if ((scsi_cmd == READ_6) ||
9181                                    (scsi_cmd == READ_10)) {
9182                                        addr =
9183                                            (ADV_PADDR)le32_to_cpu(sg_head->
9184                                                                   sg_list
9185                                                                   [sg_entry_cnt_minus_one].
9186                                                                   addr) +
9187                                            (ADV_DCNT)le32_to_cpu(sg_head->
9188                                                                  sg_list
9189                                                                  [sg_entry_cnt_minus_one].
9190                                                                  bytes);
9191                                        extra_bytes =
9192                                            (uchar)((ushort)addr & 0x0003);
9193                                        if ((extra_bytes != 0)
9194                                            &&
9195                                            ((scsiq->q2.
9196                                              tag_code &
9197                                              ASC_TAG_FLAG_EXTRA_BYTES)
9198                                             == 0)) {
9199                                                scsiq->q2.tag_code |=
9200                                                    ASC_TAG_FLAG_EXTRA_BYTES;
9201                                                scsiq->q1.extra_bytes =
9202                                                    extra_bytes;
9203                                                data_cnt =
9204                                                    le32_to_cpu(sg_head->
9205                                                                sg_list
9206                                                                [sg_entry_cnt_minus_one].
9207                                                                bytes);
9208                                                data_cnt -=
9209                                                    (ASC_DCNT) extra_bytes;
9210                                                sg_head->
9211                                                    sg_list
9212                                                    [sg_entry_cnt_minus_one].
9213                                                    bytes =
9214                                                    cpu_to_le32(data_cnt);
9215                                        }
9216                                }
9217                        }
9218                }
9219                sg_head->entry_to_copy = sg_head->entry_cnt;
9220#if CC_VERY_LONG_SG_LIST
9221                /*
9222                 * Set the sg_entry_cnt to the maximum possible. The rest of
9223                 * the SG elements will be copied when the RISC completes the
9224                 * SG elements that fit and halts.
9225                 */
9226                if (sg_entry_cnt > ASC_MAX_SG_LIST) {
9227                        sg_entry_cnt = ASC_MAX_SG_LIST;
9228                }
9229#endif /* CC_VERY_LONG_SG_LIST */
9230                n_q_required = AscSgListToQueue(sg_entry_cnt);
9231                if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
9232                     (uint) n_q_required)
9233                    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9234                        if ((sta =
9235                             AscSendScsiQueue(asc_dvc, scsiq,
9236                                              n_q_required)) == 1) {
9237                                asc_dvc->in_critical_cnt--;
9238                                return (sta);
9239                        }
9240                }
9241        } else {
9242                if (asc_dvc->bug_fix_cntl) {
9243                        if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
9244                                if ((scsi_cmd == READ_6) ||
9245                                    (scsi_cmd == READ_10)) {
9246                                        addr =
9247                                            le32_to_cpu(scsiq->q1.data_addr) +
9248                                            le32_to_cpu(scsiq->q1.data_cnt);
9249                                        extra_bytes =
9250                                            (uchar)((ushort)addr & 0x0003);
9251                                        if ((extra_bytes != 0)
9252                                            &&
9253                                            ((scsiq->q2.
9254                                              tag_code &
9255                                              ASC_TAG_FLAG_EXTRA_BYTES)
9256                                             == 0)) {
9257                                                data_cnt =
9258                                                    le32_to_cpu(scsiq->q1.
9259                                                                data_cnt);
9260                                                if (((ushort)data_cnt & 0x01FF)
9261                                                    == 0) {
9262                                                        scsiq->q2.tag_code |=
9263                                                            ASC_TAG_FLAG_EXTRA_BYTES;
9264                                                        data_cnt -= (ASC_DCNT)
9265                                                            extra_bytes;
9266                                                        scsiq->q1.data_cnt =
9267                                                            cpu_to_le32
9268                                                            (data_cnt);
9269                                                        scsiq->q1.extra_bytes =
9270                                                            extra_bytes;
9271                                                }
9272                                        }
9273                                }
9274                        }
9275                }
9276                n_q_required = 1;
9277                if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
9278                    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
9279                        if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
9280                                                    n_q_required)) == 1) {
9281                                asc_dvc->in_critical_cnt--;
9282                                return (sta);
9283                        }
9284                }
9285        }
9286        asc_dvc->in_critical_cnt--;
9287        return (sta);
9288}
9289
9290/*
9291 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
9292 *
9293 *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
9294 *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
9295 *   RISC to notify it a new command is ready to be executed.
9296 *
9297 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
9298 * set to SCSI_MAX_RETRY.
9299 *
9300 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
9301 * for DMA addresses or math operations are byte swapped to little-endian
9302 * order.
9303 *
9304 * Return:
9305 *      ADV_SUCCESS(1) - The request was successfully queued.
9306 *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
9307 *                       request completes.
9308 *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
9309 *                       host IC error.
9310 */
9311static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
9312{
9313        AdvPortAddr iop_base;
9314        ADV_PADDR req_paddr;
9315        ADV_CARR_T *new_carrp;
9316
9317        /*
9318         * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
9319         */
9320        if (scsiq->target_id > ADV_MAX_TID) {
9321                scsiq->host_status = QHSTA_M_INVALID_DEVICE;
9322                scsiq->done_status = QD_WITH_ERROR;
9323                return ADV_ERROR;
9324        }
9325
9326        iop_base = asc_dvc->iop_base;
9327
9328        /*
9329         * Allocate a carrier ensuring at least one carrier always
9330         * remains on the freelist and initialize fields.
9331         */
9332        if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
9333                return ADV_BUSY;
9334        }
9335        asc_dvc->carr_freelist = (ADV_CARR_T *)
9336            ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
9337        asc_dvc->carr_pending_cnt++;
9338
9339        /*
9340         * Set the carrier to be a stopper by setting 'next_vpa'
9341         * to the stopper value. The current stopper will be changed
9342         * below to point to the new stopper.
9343         */
9344        new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
9345
9346        /*
9347         * Clear the ADV_SCSI_REQ_Q done flag.
9348         */
9349        scsiq->a_flag &= ~ADV_SCSIQ_DONE;
9350
9351        req_paddr = virt_to_bus(scsiq);
9352        BUG_ON(req_paddr & 31);
9353        /* Wait for assertion before making little-endian */
9354        req_paddr = cpu_to_le32(req_paddr);
9355
9356        /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
9357        scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
9358        scsiq->scsiq_rptr = req_paddr;
9359
9360        scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
9361        /*
9362         * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
9363         * order during initialization.
9364         */
9365        scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
9366
9367        /*
9368         * Use the current stopper to send the ADV_SCSI_REQ_Q command to
9369         * the microcode. The newly allocated stopper will become the new
9370         * stopper.
9371         */
9372        asc_dvc->icq_sp->areq_vpa = req_paddr;
9373
9374        /*
9375         * Set the 'next_vpa' pointer for the old stopper to be the
9376         * physical address of the new stopper. The RISC can only
9377         * follow physical addresses.
9378         */
9379        asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
9380
9381        /*
9382         * Set the host adapter stopper pointer to point to the new carrier.
9383         */
9384        asc_dvc->icq_sp = new_carrp;
9385
9386        if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
9387            asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
9388                /*
9389                 * Tickle the RISC to tell it to read its Command Queue Head pointer.
9390                 */
9391                AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
9392                if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
9393                        /*
9394                         * Clear the tickle value. In the ASC-3550 the RISC flag
9395                         * command 'clr_tickle_a' does not work unless the host
9396                         * value is cleared.
9397                         */
9398                        AdvWriteByteRegister(iop_base, IOPB_TICKLE,
9399                                             ADV_TICKLE_NOP);
9400                }
9401        } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
9402                /*
9403                 * Notify the RISC a carrier is ready by writing the physical
9404                 * address of the new carrier stopper to the COMMA register.
9405                 */
9406                AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
9407                                      le32_to_cpu(new_carrp->carr_pa));
9408        }
9409
9410        return ADV_SUCCESS;
9411}
9412
9413/*
9414 * Execute a single 'Scsi_Cmnd'.
9415 */
9416static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
9417{
9418        int ret, err_code;
9419        struct asc_board *boardp = shost_priv(scp->device->host);
9420
9421        ASC_DBG(1, "scp 0x%p\n", scp);
9422
9423        if (ASC_NARROW_BOARD(boardp)) {
9424                ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
9425                struct asc_scsi_q asc_scsi_q;
9426
9427                /* asc_build_req() can not return ASC_BUSY. */
9428                ret = asc_build_req(boardp, scp, &asc_scsi_q);
9429                if (ret == ASC_ERROR) {
9430                        ASC_STATS(scp->device->host, build_error);
9431                        return ASC_ERROR;
9432                }
9433
9434                ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
9435                kfree(asc_scsi_q.sg_head);
9436                err_code = asc_dvc->err_code;
9437        } else {
9438                ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
9439                ADV_SCSI_REQ_Q *adv_scsiqp;
9440
9441                switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
9442                case ASC_NOERROR:
9443                        ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
9444                        break;
9445                case ASC_BUSY:
9446                        ASC_DBG(1, "adv_build_req ASC_BUSY\n");
9447                        /*
9448                         * The asc_stats fields 'adv_build_noreq' and
9449                         * 'adv_build_nosg' count wide board busy conditions.
9450                         * They are updated in adv_build_req and
9451                         * adv_get_sglist, respectively.
9452                         */
9453                        return ASC_BUSY;
9454                case ASC_ERROR:
9455                default:
9456                        ASC_DBG(1, "adv_build_req ASC_ERROR\n");
9457                        ASC_STATS(scp->device->host, build_error);
9458                        return ASC_ERROR;
9459                }
9460
9461                ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
9462                err_code = adv_dvc->err_code;
9463        }
9464
9465        switch (ret) {
9466        case ASC_NOERROR:
9467                ASC_STATS(scp->device->host, exe_noerror);
9468                /*
9469                 * Increment monotonically increasing per device
9470                 * successful request counter. Wrapping doesn't matter.
9471                 */
9472                boardp->reqcnt[scp->device->id]++;
9473                ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
9474                break;
9475        case ASC_BUSY:
9476                ASC_STATS(scp->device->host, exe_busy);
9477                break;
9478        case ASC_ERROR:
9479                scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
9480                        "err_code 0x%x\n", err_code);
9481                ASC_STATS(scp->device->host, exe_error);
9482                scp->result = HOST_BYTE(DID_ERROR);
9483                break;
9484        default:
9485                scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
9486                        "err_code 0x%x\n", err_code);
9487                ASC_STATS(scp->device->host, exe_unknown);
9488                scp->result = HOST_BYTE(DID_ERROR);
9489                break;
9490        }
9491
9492        ASC_DBG(1, "end\n");
9493        return ret;
9494}
9495
9496/*
9497 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
9498 *
9499 * This function always returns 0. Command return status is saved
9500 * in the 'scp' result field.
9501 */
9502static int
9503advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
9504{
9505        struct Scsi_Host *shost = scp->device->host;
9506        int asc_res, result = 0;
9507
9508        ASC_STATS(shost, queuecommand);
9509        scp->scsi_done = done;
9510
9511        asc_res = asc_execute_scsi_cmnd(scp);
9512
9513        switch (asc_res) {
9514        case ASC_NOERROR:
9515                break;
9516        case ASC_BUSY:
9517                result = SCSI_MLQUEUE_HOST_BUSY;
9518                break;
9519        case ASC_ERROR:
9520        default:
9521                asc_scsi_done(scp);
9522                break;
9523        }
9524
9525        return result;
9526}
9527
9528static DEF_SCSI_QCMD(advansys_queuecommand)
9529
9530static ushort __devinit AscGetEisaChipCfg(PortAddr iop_base)
9531{
9532        PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9533            (PortAddr) (ASC_EISA_CFG_IOP_MASK);
9534        return inpw(eisa_cfg_iop);
9535}
9536
9537/*
9538 * Return the BIOS address of the adapter at the specified
9539 * I/O port and with the specified bus type.
9540 */
9541static unsigned short __devinit
9542AscGetChipBiosAddress(PortAddr iop_base, unsigned short bus_type)
9543{
9544        unsigned short cfg_lsw;
9545        unsigned short bios_addr;
9546
9547        /*
9548         * The PCI BIOS is re-located by the motherboard BIOS. Because
9549         * of this the driver can not determine where a PCI BIOS is
9550         * loaded and executes.
9551         */
9552        if (bus_type & ASC_IS_PCI)
9553                return 0;
9554
9555        if ((bus_type & ASC_IS_EISA) != 0) {
9556                cfg_lsw = AscGetEisaChipCfg(iop_base);
9557                cfg_lsw &= 0x000F;
9558                bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9559                return bios_addr;
9560        }
9561
9562        cfg_lsw = AscGetChipCfgLsw(iop_base);
9563
9564        /*
9565         *  ISA PnP uses the top bit as the 32K BIOS flag
9566         */
9567        if (bus_type == ASC_IS_ISAPNP)
9568                cfg_lsw &= 0x7FFF;
9569        bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9570        return bios_addr;
9571}
9572
9573static uchar __devinit AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9574{
9575        ushort cfg_lsw;
9576
9577        if (AscGetChipScsiID(iop_base) == new_host_id) {
9578                return (new_host_id);
9579        }
9580        cfg_lsw = AscGetChipCfgLsw(iop_base);
9581        cfg_lsw &= 0xF8FF;
9582        cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9583        AscSetChipCfgLsw(iop_base, cfg_lsw);
9584        return (AscGetChipScsiID(iop_base));
9585}
9586
9587static unsigned char __devinit AscGetChipScsiCtrl(PortAddr iop_base)
9588{
9589        unsigned char sc;
9590
9591        AscSetBank(iop_base, 1);
9592        sc = inp(iop_base + IOP_REG_SC);
9593        AscSetBank(iop_base, 0);
9594        return sc;
9595}
9596
9597static unsigned char __devinit
9598AscGetChipVersion(PortAddr iop_base, unsigned short bus_type)
9599{
9600        if (bus_type & ASC_IS_EISA) {
9601                PortAddr eisa_iop;
9602                unsigned char revision;
9603                eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9604                    (PortAddr) ASC_EISA_REV_IOP_MASK;
9605                revision = inp(eisa_iop);
9606                return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9607        }
9608        return AscGetChipVerNo(iop_base);
9609}
9610
9611#ifdef CONFIG_ISA
9612static void __devinit AscEnableIsaDma(uchar dma_channel)
9613{
9614        if (dma_channel < 4) {
9615                outp(0x000B, (ushort)(0xC0 | dma_channel));
9616                outp(0x000A, dma_channel);
9617        } else if (dma_channel < 8) {
9618                outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9619                outp(0x00D4, (ushort)(dma_channel - 4));
9620        }
9621}
9622#endif /* CONFIG_ISA */
9623
9624static int AscStopQueueExe(PortAddr iop_base)
9625{
9626        int count = 0;
9627
9628        if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9629                AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9630                                 ASC_STOP_REQ_RISC_STOP);
9631                do {
9632                        if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9633                            ASC_STOP_ACK_RISC_STOP) {
9634                                return (1);
9635                        }
9636                        mdelay(100);
9637                } while (count++ < 20);
9638        }
9639        return (0);
9640}
9641
9642static ASC_DCNT __devinit AscGetMaxDmaCount(ushort bus_type)
9643{
9644        if (bus_type & ASC_IS_ISA)
9645                return ASC_MAX_ISA_DMA_COUNT;
9646        else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9647                return ASC_MAX_VL_DMA_COUNT;
9648        return ASC_MAX_PCI_DMA_COUNT;
9649}
9650
9651#ifdef CONFIG_ISA
9652static ushort __devinit AscGetIsaDmaChannel(PortAddr iop_base)
9653{
9654        ushort channel;
9655
9656        channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9657        if (channel == 0x03)
9658                return (0);
9659        else if (channel == 0x00)
9660                return (7);
9661        return (channel + 4);
9662}
9663
9664static ushort __devinit AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9665{
9666        ushort cfg_lsw;
9667        uchar value;
9668
9669        if ((dma_channel >= 5) && (dma_channel <= 7)) {
9670                if (dma_channel == 7)
9671                        value = 0x00;
9672                else
9673                        value = dma_channel - 4;
9674                cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9675                cfg_lsw |= value;
9676                AscSetChipCfgLsw(iop_base, cfg_lsw);
9677                return (AscGetIsaDmaChannel(iop_base));
9678        }
9679        return 0;
9680}
9681
9682static uchar __devinit AscGetIsaDmaSpeed(PortAddr iop_base)
9683{
9684        uchar speed_value;
9685
9686        AscSetBank(iop_base, 1);
9687        speed_value = AscReadChipDmaSpeed(iop_base);
9688        speed_value &= 0x07;
9689        AscSetBank(iop_base, 0);
9690        return speed_value;
9691}
9692
9693static uchar __devinit AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9694{
9695        speed_value &= 0x07;
9696        AscSetBank(iop_base, 1);
9697        AscWriteChipDmaSpeed(iop_base, speed_value);
9698        AscSetBank(iop_base, 0);
9699        return AscGetIsaDmaSpeed(iop_base);
9700}
9701#endif /* CONFIG_ISA */
9702
9703static ushort __devinit AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9704{
9705        int i;
9706        PortAddr iop_base;
9707        ushort warn_code;
9708        uchar chip_version;
9709
9710        iop_base = asc_dvc->iop_base;
9711        warn_code = 0;
9712        asc_dvc->err_code = 0;
9713        if ((asc_dvc->bus_type &
9714             (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9715                asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9716        }
9717        AscSetChipControl(iop_base, CC_HALT);
9718        AscSetChipStatus(iop_base, 0);
9719        asc_dvc->bug_fix_cntl = 0;
9720        asc_dvc->pci_fix_asyn_xfer = 0;
9721        asc_dvc->pci_fix_asyn_xfer_always = 0;
9722        /* asc_dvc->init_state initialized in AscInitGetConfig(). */
9723        asc_dvc->sdtr_done = 0;
9724        asc_dvc->cur_total_qng = 0;
9725        asc_dvc->is_in_int = 0;
9726        asc_dvc->in_critical_cnt = 0;
9727        asc_dvc->last_q_shortage = 0;
9728        asc_dvc->use_tagged_qng = 0;
9729        asc_dvc->no_scam = 0;
9730        asc_dvc->unit_not_ready = 0;
9731        asc_dvc->queue_full_or_busy = 0;
9732        asc_dvc->redo_scam = 0;
9733        asc_dvc->res2 = 0;
9734        asc_dvc->min_sdtr_index = 0;
9735        asc_dvc->cfg->can_tagged_qng = 0;
9736        asc_dvc->cfg->cmd_qng_enabled = 0;
9737        asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9738        asc_dvc->init_sdtr = 0;
9739        asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
9740        asc_dvc->scsi_reset_wait = 3;
9741        asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
9742        asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9743        asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
9744        asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
9745        asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
9746        chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9747        asc_dvc->cfg->chip_version = chip_version;
9748        asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9749        asc_dvc->max_sdtr_index = 7;
9750        if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9751            (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9752                asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9753                asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9754                asc_dvc->max_sdtr_index = 15;
9755                if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9756                        AscSetExtraControl(iop_base,
9757                                           (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9758                } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9759                        AscSetExtraControl(iop_base,
9760                                           (SEC_ACTIVE_NEGATE |
9761                                            SEC_ENABLE_FILTER));
9762                }
9763        }
9764        if (asc_dvc->bus_type == ASC_IS_PCI) {
9765                AscSetExtraControl(iop_base,
9766                                   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9767        }
9768
9769        asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
9770#ifdef CONFIG_ISA
9771        if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9772                if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9773                        AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9774                        asc_dvc->bus_type = ASC_IS_ISAPNP;
9775                }
9776                asc_dvc->cfg->isa_dma_channel =
9777                    (uchar)AscGetIsaDmaChannel(iop_base);
9778        }
9779#endif /* CONFIG_ISA */
9780        for (i = 0; i <= ASC_MAX_TID; i++) {
9781                asc_dvc->cur_dvc_qng[i] = 0;
9782                asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9783                asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9784                asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9785                asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9786        }
9787        return warn_code;
9788}
9789
9790static int __devinit AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9791{
9792        int retry;
9793
9794        for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9795                unsigned char read_back;
9796                AscSetChipEEPCmd(iop_base, cmd_reg);
9797                mdelay(1);
9798                read_back = AscGetChipEEPCmd(iop_base);
9799                if (read_back == cmd_reg)
9800                        return 1;
9801        }
9802        return 0;
9803}
9804
9805static void __devinit AscWaitEEPRead(void)
9806{
9807        mdelay(1);
9808}
9809
9810static ushort __devinit AscReadEEPWord(PortAddr iop_base, uchar addr)
9811{
9812        ushort read_wval;
9813        uchar cmd_reg;
9814
9815        AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9816        AscWaitEEPRead();
9817        cmd_reg = addr | ASC_EEP_CMD_READ;
9818        AscWriteEEPCmdReg(iop_base, cmd_reg);
9819        AscWaitEEPRead();
9820        read_wval = AscGetChipEEPData(iop_base);
9821        AscWaitEEPRead();
9822        return read_wval;
9823}
9824
9825static ushort __devinit
9826AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9827{
9828        ushort wval;
9829        ushort sum;
9830        ushort *wbuf;
9831        int cfg_beg;
9832        int cfg_end;
9833        int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9834        int s_addr;
9835
9836        wbuf = (ushort *)cfg_buf;
9837        sum = 0;
9838        /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9839        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9840                *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9841                sum += *wbuf;
9842        }
9843        if (bus_type & ASC_IS_VL) {
9844                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9845                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9846        } else {
9847                cfg_beg = ASC_EEP_DVC_CFG_BEG;
9848                cfg_end = ASC_EEP_MAX_DVC_ADDR;
9849        }
9850        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9851                wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9852                if (s_addr <= uchar_end_in_config) {
9853                        /*
9854                         * Swap all char fields - must unswap bytes already swapped
9855                         * by AscReadEEPWord().
9856                         */
9857                        *wbuf = le16_to_cpu(wval);
9858                } else {
9859                        /* Don't swap word field at the end - cntl field. */
9860                        *wbuf = wval;
9861                }
9862                sum += wval;    /* Checksum treats all EEPROM data as words. */
9863        }
9864        /*
9865         * Read the checksum word which will be compared against 'sum'
9866         * by the caller. Word field already swapped.
9867         */
9868        *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9869        return sum;
9870}
9871
9872static int __devinit AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9873{
9874        PortAddr iop_base;
9875        ushort q_addr;
9876        ushort saved_word;
9877        int sta;
9878
9879        iop_base = asc_dvc->iop_base;
9880        sta = 0;
9881        q_addr = ASC_QNO_TO_QADDR(241);
9882        saved_word = AscReadLramWord(iop_base, q_addr);
9883        AscSetChipLramAddr(iop_base, q_addr);
9884        AscSetChipLramData(iop_base, 0x55AA);
9885        mdelay(10);
9886        AscSetChipLramAddr(iop_base, q_addr);
9887        if (AscGetChipLramData(iop_base) == 0x55AA) {
9888                sta = 1;
9889                AscWriteLramWord(iop_base, q_addr, saved_word);
9890        }
9891        return (sta);
9892}
9893
9894static void __devinit AscWaitEEPWrite(void)
9895{
9896        mdelay(20);
9897}
9898
9899static int __devinit AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9900{
9901        ushort read_back;
9902        int retry;
9903
9904        retry = 0;
9905        while (TRUE) {
9906                AscSetChipEEPData(iop_base, data_reg);
9907                mdelay(1);
9908                read_back = AscGetChipEEPData(iop_base);
9909                if (read_back == data_reg) {
9910                        return (1);
9911                }
9912                if (retry++ > ASC_EEP_MAX_RETRY) {
9913                        return (0);
9914                }
9915        }
9916}
9917
9918static ushort __devinit
9919AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9920{
9921        ushort read_wval;
9922
9923        read_wval = AscReadEEPWord(iop_base, addr);
9924        if (read_wval != word_val) {
9925                AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9926                AscWaitEEPRead();
9927                AscWriteEEPDataReg(iop_base, word_val);
9928                AscWaitEEPRead();
9929                AscWriteEEPCmdReg(iop_base,
9930                                  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9931                AscWaitEEPWrite();
9932                AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9933                AscWaitEEPRead();
9934                return (AscReadEEPWord(iop_base, addr));
9935        }
9936        return (read_wval);
9937}
9938
9939static int __devinit
9940AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
9941{
9942        int n_error;
9943        ushort *wbuf;
9944        ushort word;
9945        ushort sum;
9946        int s_addr;
9947        int cfg_beg;
9948        int cfg_end;
9949        int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9950
9951        wbuf = (ushort *)cfg_buf;
9952        n_error = 0;
9953        sum = 0;
9954        /* Write two config words; AscWriteEEPWord() will swap bytes. */
9955        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9956                sum += *wbuf;
9957                if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9958                        n_error++;
9959                }
9960        }
9961        if (bus_type & ASC_IS_VL) {
9962                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9963                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9964        } else {
9965                cfg_beg = ASC_EEP_DVC_CFG_BEG;
9966                cfg_end = ASC_EEP_MAX_DVC_ADDR;
9967        }
9968        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9969                if (s_addr <= uchar_end_in_config) {
9970                        /*
9971                         * This is a char field. Swap char fields before they are
9972                         * swapped again by AscWriteEEPWord().
9973                         */
9974                        word = cpu_to_le16(*wbuf);
9975                        if (word !=
9976                            AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9977                                n_error++;
9978                        }
9979                } else {
9980                        /* Don't swap word field at the end - cntl field. */
9981                        if (*wbuf !=
9982                            AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9983                                n_error++;
9984                        }
9985                }
9986                sum += *wbuf;   /* Checksum calculated from word values. */
9987        }
9988        /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9989        *wbuf = sum;
9990        if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9991                n_error++;
9992        }
9993
9994        /* Read EEPROM back again. */
9995        wbuf = (ushort *)cfg_buf;
9996        /*
9997         * Read two config words; Byte-swapping done by AscReadEEPWord().
9998         */
9999        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
10000                if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
10001                        n_error++;
10002                }
10003        }
10004        if (bus_type & ASC_IS_VL) {
10005                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
10006                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
10007        } else {
10008                cfg_beg = ASC_EEP_DVC_CFG_BEG;
10009                cfg_end = ASC_EEP_MAX_DVC_ADDR;
10010        }
10011        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
10012                if (s_addr <= uchar_end_in_config) {
10013                        /*
10014                         * Swap all char fields. Must unswap bytes already swapped
10015                         * by AscReadEEPWord().
10016                         */
10017                        word =
10018                            le16_to_cpu(AscReadEEPWord
10019                                        (iop_base, (uchar)s_addr));
10020                } else {
10021                        /* Don't swap word field at the end - cntl field. */
10022                        word = AscReadEEPWord(iop_base, (uchar)s_addr);
10023                }
10024                if (*wbuf != word) {
10025                        n_error++;
10026                }
10027        }
10028        /* Read checksum; Byte swapping not needed. */
10029        if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
10030                n_error++;
10031        }
10032        return n_error;
10033}
10034
10035static int __devinit
10036AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type)
10037{
10038        int retry;
10039        int n_error;
10040
10041        retry = 0;
10042        while (TRUE) {
10043                if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
10044                                                   bus_type)) == 0) {
10045                        break;
10046                }
10047                if (++retry > ASC_EEP_MAX_RETRY) {
10048                        break;
10049                }
10050        }
10051        return n_error;
10052}
10053
10054static ushort __devinit AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
10055{
10056        ASCEEP_CONFIG eep_config_buf;
10057        ASCEEP_CONFIG *eep_config;
10058        PortAddr iop_base;
10059        ushort chksum;
10060        ushort warn_code;
10061        ushort cfg_msw, cfg_lsw;
10062        int i;
10063        int write_eep = 0;
10064
10065        iop_base = asc_dvc->iop_base;
10066        warn_code = 0;
10067        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
10068        AscStopQueueExe(iop_base);
10069        if ((AscStopChip(iop_base) == FALSE) ||
10070            (AscGetChipScsiCtrl(iop_base) != 0)) {
10071                asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
10072                AscResetChipAndScsiBus(asc_dvc);
10073                mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
10074        }
10075        if (AscIsChipHalted(iop_base) == FALSE) {
10076                asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
10077                return (warn_code);
10078        }
10079        AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
10080        if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
10081                asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
10082                return (warn_code);
10083        }
10084        eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
10085        cfg_msw = AscGetChipCfgMsw(iop_base);
10086        cfg_lsw = AscGetChipCfgLsw(iop_base);
10087        if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10088                cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10089                warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10090                AscSetChipCfgMsw(iop_base, cfg_msw);
10091        }
10092        chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
10093        ASC_DBG(1, "chksum 0x%x\n", chksum);
10094        if (chksum == 0) {
10095                chksum = 0xaa55;
10096        }
10097        if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10098                warn_code |= ASC_WARN_AUTO_CONFIG;
10099                if (asc_dvc->cfg->chip_version == 3) {
10100                        if (eep_config->cfg_lsw != cfg_lsw) {
10101                                warn_code |= ASC_WARN_EEPROM_RECOVER;
10102                                eep_config->cfg_lsw =
10103                                    AscGetChipCfgLsw(iop_base);
10104                        }
10105                        if (eep_config->cfg_msw != cfg_msw) {
10106                                warn_code |= ASC_WARN_EEPROM_RECOVER;
10107                                eep_config->cfg_msw =
10108                                    AscGetChipCfgMsw(iop_base);
10109                        }
10110                }
10111        }
10112        eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10113        eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
10114        ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
10115        if (chksum != eep_config->chksum) {
10116                if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
10117                    ASC_CHIP_VER_PCI_ULTRA_3050) {
10118                        ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
10119                        eep_config->init_sdtr = 0xFF;
10120                        eep_config->disc_enable = 0xFF;
10121                        eep_config->start_motor = 0xFF;
10122                        eep_config->use_cmd_qng = 0;
10123                        eep_config->max_total_qng = 0xF0;
10124                        eep_config->max_tag_qng = 0x20;
10125                        eep_config->cntl = 0xBFFF;
10126                        ASC_EEP_SET_CHIP_ID(eep_config, 7);
10127                        eep_config->no_scam = 0;
10128                        eep_config->adapter_info[0] = 0;
10129                        eep_config->adapter_info[1] = 0;
10130                        eep_config->adapter_info[2] = 0;
10131                        eep_config->adapter_info[3] = 0;
10132                        eep_config->adapter_info[4] = 0;
10133                        /* Indicate EEPROM-less board. */
10134                        eep_config->adapter_info[5] = 0xBB;
10135                } else {
10136                        ASC_PRINT
10137                            ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
10138                        write_eep = 1;
10139                        warn_code |= ASC_WARN_EEPROM_CHKSUM;
10140                }
10141        }
10142        asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
10143        asc_dvc->cfg->disc_enable = eep_config->disc_enable;
10144        asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
10145        asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
10146        asc_dvc->start_motor = eep_config->start_motor;
10147        asc_dvc->dvc_cntl = eep_config->cntl;
10148        asc_dvc->no_scam = eep_config->no_scam;
10149        asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
10150        asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
10151        asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
10152        asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
10153        asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
10154        asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
10155        if (!AscTestExternalLram(asc_dvc)) {
10156                if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
10157                     ASC_IS_PCI_ULTRA)) {
10158                        eep_config->max_total_qng =
10159                            ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
10160                        eep_config->max_tag_qng =
10161                            ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
10162                } else {
10163                        eep_config->cfg_msw |= 0x0800;
10164                        cfg_msw |= 0x0800;
10165                        AscSetChipCfgMsw(iop_base, cfg_msw);
10166                        eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
10167                        eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
10168                }
10169        } else {
10170        }
10171        if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
10172                eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
10173        }
10174        if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
10175                eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
10176        }
10177        if (eep_config->max_tag_qng > eep_config->max_total_qng) {
10178                eep_config->max_tag_qng = eep_config->max_total_qng;
10179        }
10180        if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
10181                eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
10182        }
10183        asc_dvc->max_total_qng = eep_config->max_total_qng;
10184        if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
10185            eep_config->use_cmd_qng) {
10186                eep_config->disc_enable = eep_config->use_cmd_qng;
10187                warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10188        }
10189        ASC_EEP_SET_CHIP_ID(eep_config,
10190                            ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
10191        asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
10192        if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
10193            !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
10194                asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
10195        }
10196
10197        for (i = 0; i <= ASC_MAX_TID; i++) {
10198                asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
10199                asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
10200                asc_dvc->cfg->sdtr_period_offset[i] =
10201                    (uchar)(ASC_DEF_SDTR_OFFSET |
10202                            (asc_dvc->min_sdtr_index << 4));
10203        }
10204        eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
10205        if (write_eep) {
10206                if ((i = AscSetEEPConfig(iop_base, eep_config,
10207                                     asc_dvc->bus_type)) != 0) {
10208                        ASC_PRINT1
10209                            ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
10210                             i);
10211                } else {
10212                        ASC_PRINT
10213                            ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
10214                }
10215        }
10216        return (warn_code);
10217}
10218
10219static int __devinit AscInitGetConfig(struct Scsi_Host *shost)
10220{
10221        struct asc_board *board = shost_priv(shost);
10222        ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10223        unsigned short warn_code = 0;
10224
10225        asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
10226        if (asc_dvc->err_code != 0)
10227                return asc_dvc->err_code;
10228
10229        if (AscFindSignature(asc_dvc->iop_base)) {
10230                warn_code |= AscInitAscDvcVar(asc_dvc);
10231                warn_code |= AscInitFromEEP(asc_dvc);
10232                asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
10233                if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
10234                        asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
10235        } else {
10236                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10237        }
10238
10239        switch (warn_code) {
10240        case 0: /* No error */
10241                break;
10242        case ASC_WARN_IO_PORT_ROTATE:
10243                shost_printk(KERN_WARNING, shost, "I/O port address "
10244                                "modified\n");
10245                break;
10246        case ASC_WARN_AUTO_CONFIG:
10247                shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10248                                "enabled\n");
10249                break;
10250        case ASC_WARN_EEPROM_CHKSUM:
10251                shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10252                break;
10253        case ASC_WARN_IRQ_MODIFIED:
10254                shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10255                break;
10256        case ASC_WARN_CMD_QNG_CONFLICT:
10257                shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
10258                                "disconnects\n");
10259                break;
10260        default:
10261                shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10262                                warn_code);
10263                break;
10264        }
10265
10266        if (asc_dvc->err_code != 0)
10267                shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10268                        "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10269
10270        return asc_dvc->err_code;
10271}
10272
10273static int __devinit AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10274{
10275        struct asc_board *board = shost_priv(shost);
10276        ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
10277        PortAddr iop_base = asc_dvc->iop_base;
10278        unsigned short cfg_msw;
10279        unsigned short warn_code = 0;
10280
10281        asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
10282        if (asc_dvc->err_code != 0)
10283                return asc_dvc->err_code;
10284        if (!AscFindSignature(asc_dvc->iop_base)) {
10285                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10286                return asc_dvc->err_code;
10287        }
10288
10289        cfg_msw = AscGetChipCfgMsw(iop_base);
10290        if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
10291                cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
10292                warn_code |= ASC_WARN_CFG_MSW_RECOVER;
10293                AscSetChipCfgMsw(iop_base, cfg_msw);
10294        }
10295        if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
10296            asc_dvc->cfg->cmd_qng_enabled) {
10297                asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
10298                warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
10299        }
10300        if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
10301                warn_code |= ASC_WARN_AUTO_CONFIG;
10302        }
10303#ifdef CONFIG_PCI
10304        if (asc_dvc->bus_type & ASC_IS_PCI) {
10305                cfg_msw &= 0xFFC0;
10306                AscSetChipCfgMsw(iop_base, cfg_msw);
10307                if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
10308                } else {
10309                        if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
10310                            (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
10311                                asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
10312                                asc_dvc->bug_fix_cntl |=
10313                                    ASC_BUG_FIX_ASYN_USE_SYN;
10314                        }
10315                }
10316        } else
10317#endif /* CONFIG_PCI */
10318        if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
10319                if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
10320                    == ASC_CHIP_VER_ASYN_BUG) {
10321                        asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
10322                }
10323        }
10324        if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
10325            asc_dvc->cfg->chip_scsi_id) {
10326                asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
10327        }
10328#ifdef CONFIG_ISA
10329        if (asc_dvc->bus_type & ASC_IS_ISA) {
10330                AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
10331                AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
10332        }
10333#endif /* CONFIG_ISA */
10334
10335        asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
10336
10337        switch (warn_code) {
10338        case 0: /* No error. */
10339                break;
10340        case ASC_WARN_IO_PORT_ROTATE:
10341                shost_printk(KERN_WARNING, shost, "I/O port address "
10342                                "modified\n");
10343                break;
10344        case ASC_WARN_AUTO_CONFIG:
10345                shost_printk(KERN_WARNING, shost, "I/O port increment switch "
10346                                "enabled\n");
10347                break;
10348        case ASC_WARN_EEPROM_CHKSUM:
10349                shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
10350                break;
10351        case ASC_WARN_IRQ_MODIFIED:
10352                shost_printk(KERN_WARNING, shost, "IRQ modified\n");
10353                break;
10354        case ASC_WARN_CMD_QNG_CONFLICT:
10355                shost_printk(KERN_WARNING, shost, "tag queuing w/o "
10356                                "disconnects\n");
10357                break;
10358        default:
10359                shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
10360                                warn_code);
10361                break;
10362        }
10363
10364        if (asc_dvc->err_code != 0)
10365                shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
10366                        "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
10367
10368        return asc_dvc->err_code;
10369}
10370
10371/*
10372 * EEPROM Configuration.
10373 *
10374 * All drivers should use this structure to set the default EEPROM
10375 * configuration. The BIOS now uses this structure when it is built.
10376 * Additional structure information can be found in a_condor.h where
10377 * the structure is defined.
10378 *
10379 * The *_Field_IsChar structs are needed to correct for endianness.
10380 * These values are read from the board 16 bits at a time directly
10381 * into the structs. Because some fields are char, the values will be
10382 * in the wrong order. The *_Field_IsChar tells when to flip the
10383 * bytes. Data read and written to PCI memory is automatically swapped
10384 * on big-endian platforms so char fields read as words are actually being
10385 * unswapped on big-endian platforms.
10386 */
10387static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata = {
10388        ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
10389        0x0000,                 /* cfg_msw */
10390        0xFFFF,                 /* disc_enable */
10391        0xFFFF,                 /* wdtr_able */
10392        0xFFFF,                 /* sdtr_able */
10393        0xFFFF,                 /* start_motor */
10394        0xFFFF,                 /* tagqng_able */
10395        0xFFFF,                 /* bios_scan */
10396        0,                      /* scam_tolerant */
10397        7,                      /* adapter_scsi_id */
10398        0,                      /* bios_boot_delay */
10399        3,                      /* scsi_reset_delay */
10400        0,                      /* bios_id_lun */
10401        0,                      /* termination */
10402        0,                      /* reserved1 */
10403        0xFFE7,                 /* bios_ctrl */
10404        0xFFFF,                 /* ultra_able */
10405        0,                      /* reserved2 */
10406        ASC_DEF_MAX_HOST_QNG,   /* max_host_qng */
10407        ASC_DEF_MAX_DVC_QNG,    /* max_dvc_qng */
10408        0,                      /* dvc_cntl */
10409        0,                      /* bug_fix */
10410        0,                      /* serial_number_word1 */
10411        0,                      /* serial_number_word2 */
10412        0,                      /* serial_number_word3 */
10413        0,                      /* check_sum */
10414        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10415        ,                       /* oem_name[16] */
10416        0,                      /* dvc_err_code */
10417        0,                      /* adv_err_code */
10418        0,                      /* adv_err_addr */
10419        0,                      /* saved_dvc_err_code */
10420        0,                      /* saved_adv_err_code */
10421        0,                      /* saved_adv_err_addr */
10422        0                       /* num_of_err */
10423};
10424
10425static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata = {
10426        0,                      /* cfg_lsw */
10427        0,                      /* cfg_msw */
10428        0,                      /* -disc_enable */
10429        0,                      /* wdtr_able */
10430        0,                      /* sdtr_able */
10431        0,                      /* start_motor */
10432        0,                      /* tagqng_able */
10433        0,                      /* bios_scan */
10434        0,                      /* scam_tolerant */
10435        1,                      /* adapter_scsi_id */
10436        1,                      /* bios_boot_delay */
10437        1,                      /* scsi_reset_delay */
10438        1,                      /* bios_id_lun */
10439        1,                      /* termination */
10440        1,                      /* reserved1 */
10441        0,                      /* bios_ctrl */
10442        0,                      /* ultra_able */
10443        0,                      /* reserved2 */
10444        1,                      /* max_host_qng */
10445        1,                      /* max_dvc_qng */
10446        0,                      /* dvc_cntl */
10447        0,                      /* bug_fix */
10448        0,                      /* serial_number_word1 */
10449        0,                      /* serial_number_word2 */
10450        0,                      /* serial_number_word3 */
10451        0,                      /* check_sum */
10452        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10453        ,                       /* oem_name[16] */
10454        0,                      /* dvc_err_code */
10455        0,                      /* adv_err_code */
10456        0,                      /* adv_err_addr */
10457        0,                      /* saved_dvc_err_code */
10458        0,                      /* saved_adv_err_code */
10459        0,                      /* saved_adv_err_addr */
10460        0                       /* num_of_err */
10461};
10462
10463static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata = {
10464        ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10465        0x0000,                 /* 01 cfg_msw */
10466        0xFFFF,                 /* 02 disc_enable */
10467        0xFFFF,                 /* 03 wdtr_able */
10468        0x4444,                 /* 04 sdtr_speed1 */
10469        0xFFFF,                 /* 05 start_motor */
10470        0xFFFF,                 /* 06 tagqng_able */
10471        0xFFFF,                 /* 07 bios_scan */
10472        0,                      /* 08 scam_tolerant */
10473        7,                      /* 09 adapter_scsi_id */
10474        0,                      /*    bios_boot_delay */
10475        3,                      /* 10 scsi_reset_delay */
10476        0,                      /*    bios_id_lun */
10477        0,                      /* 11 termination_se */
10478        0,                      /*    termination_lvd */
10479        0xFFE7,                 /* 12 bios_ctrl */
10480        0x4444,                 /* 13 sdtr_speed2 */
10481        0x4444,                 /* 14 sdtr_speed3 */
10482        ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
10483        ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
10484        0,                      /* 16 dvc_cntl */
10485        0x4444,                 /* 17 sdtr_speed4 */
10486        0,                      /* 18 serial_number_word1 */
10487        0,                      /* 19 serial_number_word2 */
10488        0,                      /* 20 serial_number_word3 */
10489        0,                      /* 21 check_sum */
10490        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10491        ,                       /* 22-29 oem_name[16] */
10492        0,                      /* 30 dvc_err_code */
10493        0,                      /* 31 adv_err_code */
10494        0,                      /* 32 adv_err_addr */
10495        0,                      /* 33 saved_dvc_err_code */
10496        0,                      /* 34 saved_adv_err_code */
10497        0,                      /* 35 saved_adv_err_addr */
10498        0,                      /* 36 reserved */
10499        0,                      /* 37 reserved */
10500        0,                      /* 38 reserved */
10501        0,                      /* 39 reserved */
10502        0,                      /* 40 reserved */
10503        0,                      /* 41 reserved */
10504        0,                      /* 42 reserved */
10505        0,                      /* 43 reserved */
10506        0,                      /* 44 reserved */
10507        0,                      /* 45 reserved */
10508        0,                      /* 46 reserved */
10509        0,                      /* 47 reserved */
10510        0,                      /* 48 reserved */
10511        0,                      /* 49 reserved */
10512        0,                      /* 50 reserved */
10513        0,                      /* 51 reserved */
10514        0,                      /* 52 reserved */
10515        0,                      /* 53 reserved */
10516        0,                      /* 54 reserved */
10517        0,                      /* 55 reserved */
10518        0,                      /* 56 cisptr_lsw */
10519        0,                      /* 57 cisprt_msw */
10520        PCI_VENDOR_ID_ASP,      /* 58 subsysvid */
10521        PCI_DEVICE_ID_38C0800_REV1,     /* 59 subsysid */
10522        0,                      /* 60 reserved */
10523        0,                      /* 61 reserved */
10524        0,                      /* 62 reserved */
10525        0                       /* 63 reserved */
10526};
10527
10528static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata = {
10529        0,                      /* 00 cfg_lsw */
10530        0,                      /* 01 cfg_msw */
10531        0,                      /* 02 disc_enable */
10532        0,                      /* 03 wdtr_able */
10533        0,                      /* 04 sdtr_speed1 */
10534        0,                      /* 05 start_motor */
10535        0,                      /* 06 tagqng_able */
10536        0,                      /* 07 bios_scan */
10537        0,                      /* 08 scam_tolerant */
10538        1,                      /* 09 adapter_scsi_id */
10539        1,                      /*    bios_boot_delay */
10540        1,                      /* 10 scsi_reset_delay */
10541        1,                      /*    bios_id_lun */
10542        1,                      /* 11 termination_se */
10543        1,                      /*    termination_lvd */
10544        0,                      /* 12 bios_ctrl */
10545        0,                      /* 13 sdtr_speed2 */
10546        0,                      /* 14 sdtr_speed3 */
10547        1,                      /* 15 max_host_qng */
10548        1,                      /*    max_dvc_qng */
10549        0,                      /* 16 dvc_cntl */
10550        0,                      /* 17 sdtr_speed4 */
10551        0,                      /* 18 serial_number_word1 */
10552        0,                      /* 19 serial_number_word2 */
10553        0,                      /* 20 serial_number_word3 */
10554        0,                      /* 21 check_sum */
10555        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10556        ,                       /* 22-29 oem_name[16] */
10557        0,                      /* 30 dvc_err_code */
10558        0,                      /* 31 adv_err_code */
10559        0,                      /* 32 adv_err_addr */
10560        0,                      /* 33 saved_dvc_err_code */
10561        0,                      /* 34 saved_adv_err_code */
10562        0,                      /* 35 saved_adv_err_addr */
10563        0,                      /* 36 reserved */
10564        0,                      /* 37 reserved */
10565        0,                      /* 38 reserved */
10566        0,                      /* 39 reserved */
10567        0,                      /* 40 reserved */
10568        0,                      /* 41 reserved */
10569        0,                      /* 42 reserved */
10570        0,                      /* 43 reserved */
10571        0,                      /* 44 reserved */
10572        0,                      /* 45 reserved */
10573        0,                      /* 46 reserved */
10574        0,                      /* 47 reserved */
10575        0,                      /* 48 reserved */
10576        0,                      /* 49 reserved */
10577        0,                      /* 50 reserved */
10578        0,                      /* 51 reserved */
10579        0,                      /* 52 reserved */
10580        0,                      /* 53 reserved */
10581        0,                      /* 54 reserved */
10582        0,                      /* 55 reserved */
10583        0,                      /* 56 cisptr_lsw */
10584        0,                      /* 57 cisprt_msw */
10585        0,                      /* 58 subsysvid */
10586        0,                      /* 59 subsysid */
10587        0,                      /* 60 reserved */
10588        0,                      /* 61 reserved */
10589        0,                      /* 62 reserved */
10590        0                       /* 63 reserved */
10591};
10592
10593static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata = {
10594        ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
10595        0x0000,                 /* 01 cfg_msw */
10596        0xFFFF,                 /* 02 disc_enable */
10597        0xFFFF,                 /* 03 wdtr_able */
10598        0x5555,                 /* 04 sdtr_speed1 */
10599        0xFFFF,                 /* 05 start_motor */
10600        0xFFFF,                 /* 06 tagqng_able */
10601        0xFFFF,                 /* 07 bios_scan */
10602        0,                      /* 08 scam_tolerant */
10603        7,                      /* 09 adapter_scsi_id */
10604        0,                      /*    bios_boot_delay */
10605        3,                      /* 10 scsi_reset_delay */
10606        0,                      /*    bios_id_lun */
10607        0,                      /* 11 termination_se */
10608        0,                      /*    termination_lvd */
10609        0xFFE7,                 /* 12 bios_ctrl */
10610        0x5555,                 /* 13 sdtr_speed2 */
10611        0x5555,                 /* 14 sdtr_speed3 */
10612        ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
10613        ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
10614        0,                      /* 16 dvc_cntl */
10615        0x5555,                 /* 17 sdtr_speed4 */
10616        0,                      /* 18 serial_number_word1 */
10617        0,                      /* 19 serial_number_word2 */
10618        0,                      /* 20 serial_number_word3 */
10619        0,                      /* 21 check_sum */
10620        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10621        ,                       /* 22-29 oem_name[16] */
10622        0,                      /* 30 dvc_err_code */
10623        0,                      /* 31 adv_err_code */
10624        0,                      /* 32 adv_err_addr */
10625        0,                      /* 33 saved_dvc_err_code */
10626        0,                      /* 34 saved_adv_err_code */
10627        0,                      /* 35 saved_adv_err_addr */
10628        0,                      /* 36 reserved */
10629        0,                      /* 37 reserved */
10630        0,                      /* 38 reserved */
10631        0,                      /* 39 reserved */
10632        0,                      /* 40 reserved */
10633        0,                      /* 41 reserved */
10634        0,                      /* 42 reserved */
10635        0,                      /* 43 reserved */
10636        0,                      /* 44 reserved */
10637        0,                      /* 45 reserved */
10638        0,                      /* 46 reserved */
10639        0,                      /* 47 reserved */
10640        0,                      /* 48 reserved */
10641        0,                      /* 49 reserved */
10642        0,                      /* 50 reserved */
10643        0,                      /* 51 reserved */
10644        0,                      /* 52 reserved */
10645        0,                      /* 53 reserved */
10646        0,                      /* 54 reserved */
10647        0,                      /* 55 reserved */
10648        0,                      /* 56 cisptr_lsw */
10649        0,                      /* 57 cisprt_msw */
10650        PCI_VENDOR_ID_ASP,      /* 58 subsysvid */
10651        PCI_DEVICE_ID_38C1600_REV1,     /* 59 subsysid */
10652        0,                      /* 60 reserved */
10653        0,                      /* 61 reserved */
10654        0,                      /* 62 reserved */
10655        0                       /* 63 reserved */
10656};
10657
10658static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata = {
10659        0,                      /* 00 cfg_lsw */
10660        0,                      /* 01 cfg_msw */
10661        0,                      /* 02 disc_enable */
10662        0,                      /* 03 wdtr_able */
10663        0,                      /* 04 sdtr_speed1 */
10664        0,                      /* 05 start_motor */
10665        0,                      /* 06 tagqng_able */
10666        0,                      /* 07 bios_scan */
10667        0,                      /* 08 scam_tolerant */
10668        1,                      /* 09 adapter_scsi_id */
10669        1,                      /*    bios_boot_delay */
10670        1,                      /* 10 scsi_reset_delay */
10671        1,                      /*    bios_id_lun */
10672        1,                      /* 11 termination_se */
10673        1,                      /*    termination_lvd */
10674        0,                      /* 12 bios_ctrl */
10675        0,                      /* 13 sdtr_speed2 */
10676        0,                      /* 14 sdtr_speed3 */
10677        1,                      /* 15 max_host_qng */
10678        1,                      /*    max_dvc_qng */
10679        0,                      /* 16 dvc_cntl */
10680        0,                      /* 17 sdtr_speed4 */
10681        0,                      /* 18 serial_number_word1 */
10682        0,                      /* 19 serial_number_word2 */
10683        0,                      /* 20 serial_number_word3 */
10684        0,                      /* 21 check_sum */
10685        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10686        ,                       /* 22-29 oem_name[16] */
10687        0,                      /* 30 dvc_err_code */
10688        0,                      /* 31 adv_err_code */
10689        0,                      /* 32 adv_err_addr */
10690        0,                      /* 33 saved_dvc_err_code */
10691        0,                      /* 34 saved_adv_err_code */
10692        0,                      /* 35 saved_adv_err_addr */
10693        0,                      /* 36 reserved */
10694        0,                      /* 37 reserved */
10695        0,                      /* 38 reserved */
10696        0,                      /* 39 reserved */
10697        0,                      /* 40 reserved */
10698        0,                      /* 41 reserved */
10699        0,                      /* 42 reserved */
10700        0,                      /* 43 reserved */
10701        0,                      /* 44 reserved */
10702        0,                      /* 45 reserved */
10703        0,                      /* 46 reserved */
10704        0,                      /* 47 reserved */
10705        0,                      /* 48 reserved */
10706        0,                      /* 49 reserved */
10707        0,                      /* 50 reserved */
10708        0,                      /* 51 reserved */
10709        0,                      /* 52 reserved */
10710        0,                      /* 53 reserved */
10711        0,                      /* 54 reserved */
10712        0,                      /* 55 reserved */
10713        0,                      /* 56 cisptr_lsw */
10714        0,                      /* 57 cisprt_msw */
10715        0,                      /* 58 subsysvid */
10716        0,                      /* 59 subsysid */
10717        0,                      /* 60 reserved */
10718        0,                      /* 61 reserved */
10719        0,                      /* 62 reserved */
10720        0                       /* 63 reserved */
10721};
10722
10723#ifdef CONFIG_PCI
10724/*
10725 * Wait for EEPROM command to complete
10726 */
10727static void __devinit AdvWaitEEPCmd(AdvPortAddr iop_base)
10728{
10729        int eep_delay_ms;
10730
10731        for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10732                if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10733                    ASC_EEP_CMD_DONE) {
10734                        break;
10735                }
10736                mdelay(1);
10737        }
10738        if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10739            0)
10740                BUG();
10741}
10742
10743/*
10744 * Read the EEPROM from specified location
10745 */
10746static ushort __devinit AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10747{
10748        AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10749                             ASC_EEP_CMD_READ | eep_word_addr);
10750        AdvWaitEEPCmd(iop_base);
10751        return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10752}
10753
10754/*
10755 * Write the EEPROM from 'cfg_buf'.
10756 */
10757static void __devinit
10758AdvSet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10759{
10760        ushort *wbuf;
10761        ushort addr, chksum;
10762        ushort *charfields;
10763
10764        wbuf = (ushort *)cfg_buf;
10765        charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10766        chksum = 0;
10767
10768        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10769        AdvWaitEEPCmd(iop_base);
10770
10771        /*
10772         * Write EEPROM from word 0 to word 20.
10773         */
10774        for (addr = ADV_EEP_DVC_CFG_BEGIN;
10775             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10776                ushort word;
10777
10778                if (*charfields++) {
10779                        word = cpu_to_le16(*wbuf);
10780                } else {
10781                        word = *wbuf;
10782                }
10783                chksum += *wbuf;        /* Checksum is calculated from word values. */
10784                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10785                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10786                                     ASC_EEP_CMD_WRITE | addr);
10787                AdvWaitEEPCmd(iop_base);
10788                mdelay(ADV_EEP_DELAY_MS);
10789        }
10790
10791        /*
10792         * Write EEPROM checksum at word 21.
10793         */
10794        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10795        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10796        AdvWaitEEPCmd(iop_base);
10797        wbuf++;
10798        charfields++;
10799
10800        /*
10801         * Write EEPROM OEM name at words 22 to 29.
10802         */
10803        for (addr = ADV_EEP_DVC_CTL_BEGIN;
10804             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10805                ushort word;
10806
10807                if (*charfields++) {
10808                        word = cpu_to_le16(*wbuf);
10809                } else {
10810                        word = *wbuf;
10811                }
10812                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10813                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10814                                     ASC_EEP_CMD_WRITE | addr);
10815                AdvWaitEEPCmd(iop_base);
10816        }
10817        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10818        AdvWaitEEPCmd(iop_base);
10819}
10820
10821/*
10822 * Write the EEPROM from 'cfg_buf'.
10823 */
10824static void __devinit
10825AdvSet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
10826{
10827        ushort *wbuf;
10828        ushort *charfields;
10829        ushort addr, chksum;
10830
10831        wbuf = (ushort *)cfg_buf;
10832        charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10833        chksum = 0;
10834
10835        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10836        AdvWaitEEPCmd(iop_base);
10837
10838        /*
10839         * Write EEPROM from word 0 to word 20.
10840         */
10841        for (addr = ADV_EEP_DVC_CFG_BEGIN;
10842             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10843                ushort word;
10844
10845                if (*charfields++) {
10846                        word = cpu_to_le16(*wbuf);
10847                } else {
10848                        word = *wbuf;
10849                }
10850                chksum += *wbuf;        /* Checksum is calculated from word values. */
10851                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10852                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10853                                     ASC_EEP_CMD_WRITE | addr);
10854                AdvWaitEEPCmd(iop_base);
10855                mdelay(ADV_EEP_DELAY_MS);
10856        }
10857
10858        /*
10859         * Write EEPROM checksum at word 21.
10860         */
10861        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10862        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10863        AdvWaitEEPCmd(iop_base);
10864        wbuf++;
10865        charfields++;
10866
10867        /*
10868         * Write EEPROM OEM name at words 22 to 29.
10869         */
10870        for (addr = ADV_EEP_DVC_CTL_BEGIN;
10871             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10872                ushort word;
10873
10874                if (*charfields++) {
10875                        word = cpu_to_le16(*wbuf);
10876                } else {
10877                        word = *wbuf;
10878                }
10879                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10880                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10881                                     ASC_EEP_CMD_WRITE | addr);
10882                AdvWaitEEPCmd(iop_base);
10883        }
10884        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10885        AdvWaitEEPCmd(iop_base);
10886}
10887
10888/*
10889 * Write the EEPROM from 'cfg_buf'.
10890 */
10891static void __devinit
10892AdvSet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
10893{
10894        ushort *wbuf;
10895        ushort *charfields;
10896        ushort addr, chksum;
10897
10898        wbuf = (ushort *)cfg_buf;
10899        charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10900        chksum = 0;
10901
10902        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10903        AdvWaitEEPCmd(iop_base);
10904
10905        /*
10906         * Write EEPROM from word 0 to word 20.
10907         */
10908        for (addr = ADV_EEP_DVC_CFG_BEGIN;
10909             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10910                ushort word;
10911
10912                if (*charfields++) {
10913                        word = cpu_to_le16(*wbuf);
10914                } else {
10915                        word = *wbuf;
10916                }
10917                chksum += *wbuf;        /* Checksum is calculated from word values. */
10918                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10919                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10920                                     ASC_EEP_CMD_WRITE | addr);
10921                AdvWaitEEPCmd(iop_base);
10922                mdelay(ADV_EEP_DELAY_MS);
10923        }
10924
10925        /*
10926         * Write EEPROM checksum at word 21.
10927         */
10928        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10929        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10930        AdvWaitEEPCmd(iop_base);
10931        wbuf++;
10932        charfields++;
10933
10934        /*
10935         * Write EEPROM OEM name at words 22 to 29.
10936         */
10937        for (addr = ADV_EEP_DVC_CTL_BEGIN;
10938             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10939                ushort word;
10940
10941                if (*charfields++) {
10942                        word = cpu_to_le16(*wbuf);
10943                } else {
10944                        word = *wbuf;
10945                }
10946                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10947                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10948                                     ASC_EEP_CMD_WRITE | addr);
10949                AdvWaitEEPCmd(iop_base);
10950        }
10951        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10952        AdvWaitEEPCmd(iop_base);
10953}
10954
10955/*
10956 * Read EEPROM configuration into the specified buffer.
10957 *
10958 * Return a checksum based on the EEPROM configuration read.
10959 */
10960static ushort __devinit
10961AdvGet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf)
10962{
10963        ushort wval, chksum;
10964        ushort *wbuf;
10965        int eep_addr;
10966        ushort *charfields;
10967
10968        charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10969        wbuf = (ushort *)cfg_buf;
10970        chksum = 0;
10971
10972        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10973             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10974                wval = AdvReadEEPWord(iop_base, eep_addr);
10975                chksum += wval; /* Checksum is calculated from word values. */
10976                if (*charfields++) {
10977                        *wbuf = le16_to_cpu(wval);
10978                } else {
10979                        *wbuf = wval;
10980                }
10981        }
10982        /* Read checksum word. */
10983        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10984        wbuf++;
10985        charfields++;
10986
10987        /* Read rest of EEPROM not covered by the checksum. */
10988        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10989             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10990                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10991                if (*charfields++) {
10992                        *wbuf = le16_to_cpu(*wbuf);
10993                }
10994        }
10995        return chksum;
10996}
10997
10998/*
10999 * Read EEPROM configuration into the specified buffer.
11000 *
11001 * Return a checksum based on the EEPROM configuration read.
11002 */
11003static ushort __devinit
11004AdvGet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf)
11005{
11006        ushort wval, chksum;
11007        ushort *wbuf;
11008        int eep_addr;
11009        ushort *charfields;
11010
11011        charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
11012        wbuf = (ushort *)cfg_buf;
11013        chksum = 0;
11014
11015        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
11016             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
11017                wval = AdvReadEEPWord(iop_base, eep_addr);
11018                chksum += wval; /* Checksum is calculated from word values. */
11019                if (*charfields++) {
11020                        *wbuf = le16_to_cpu(wval);
11021                } else {
11022                        *wbuf = wval;
11023                }
11024        }
11025        /* Read checksum word. */
11026        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11027        wbuf++;
11028        charfields++;
11029
11030        /* Read rest of EEPROM not covered by the checksum. */
11031        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11032             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11033                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11034                if (*charfields++) {
11035                        *wbuf = le16_to_cpu(*wbuf);
11036                }
11037        }
11038        return chksum;
11039}
11040
11041/*
11042 * Read EEPROM configuration into the specified buffer.
11043 *
11044 * Return a checksum based on the EEPROM configuration read.
11045 */
11046static ushort __devinit
11047AdvGet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf)
11048{
11049        ushort wval, chksum;
11050        ushort *wbuf;
11051        int eep_addr;
11052        ushort *charfields;
11053
11054        charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
11055        wbuf = (ushort *)cfg_buf;
11056        chksum = 0;
11057
11058        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
11059             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
11060                wval = AdvReadEEPWord(iop_base, eep_addr);
11061                chksum += wval; /* Checksum is calculated from word values. */
11062                if (*charfields++) {
11063                        *wbuf = le16_to_cpu(wval);
11064                } else {
11065                        *wbuf = wval;
11066                }
11067        }
11068        /* Read checksum word. */
11069        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11070        wbuf++;
11071        charfields++;
11072
11073        /* Read rest of EEPROM not covered by the checksum. */
11074        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
11075             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
11076                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
11077                if (*charfields++) {
11078                        *wbuf = le16_to_cpu(*wbuf);
11079                }
11080        }
11081        return chksum;
11082}
11083
11084/*
11085 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11086 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11087 * all of this is done.
11088 *
11089 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11090 *
11091 * For a non-fatal error return a warning code. If there are no warnings
11092 * then 0 is returned.
11093 *
11094 * Note: Chip is stopped on entry.
11095 */
11096static int __devinit AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
11097{
11098        AdvPortAddr iop_base;
11099        ushort warn_code;
11100        ADVEEP_3550_CONFIG eep_config;
11101
11102        iop_base = asc_dvc->iop_base;
11103
11104        warn_code = 0;
11105
11106        /*
11107         * Read the board's EEPROM configuration.
11108         *
11109         * Set default values if a bad checksum is found.
11110         */
11111        if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
11112                warn_code |= ASC_WARN_EEPROM_CHKSUM;
11113
11114                /*
11115                 * Set EEPROM default values.
11116                 */
11117                memcpy(&eep_config, &Default_3550_EEPROM_Config,
11118                        sizeof(ADVEEP_3550_CONFIG));
11119
11120                /*
11121                 * Assume the 6 byte board serial number that was read from
11122                 * EEPROM is correct even if the EEPROM checksum failed.
11123                 */
11124                eep_config.serial_number_word3 =
11125                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11126
11127                eep_config.serial_number_word2 =
11128                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11129
11130                eep_config.serial_number_word1 =
11131                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11132
11133                AdvSet3550EEPConfig(iop_base, &eep_config);
11134        }
11135        /*
11136         * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11137         * EEPROM configuration that was read.
11138         *
11139         * This is the mapping of EEPROM fields to Adv Library fields.
11140         */
11141        asc_dvc->wdtr_able = eep_config.wdtr_able;
11142        asc_dvc->sdtr_able = eep_config.sdtr_able;
11143        asc_dvc->ultra_able = eep_config.ultra_able;
11144        asc_dvc->tagqng_able = eep_config.tagqng_able;
11145        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11146        asc_dvc->max_host_qng = eep_config.max_host_qng;
11147        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11148        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11149        asc_dvc->start_motor = eep_config.start_motor;
11150        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11151        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11152        asc_dvc->no_scam = eep_config.scam_tolerant;
11153        asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11154        asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11155        asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11156
11157        /*
11158         * Set the host maximum queuing (max. 253, min. 16) and the per device
11159         * maximum queuing (max. 63, min. 4).
11160         */
11161        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11162                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11163        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11164                /* If the value is zero, assume it is uninitialized. */
11165                if (eep_config.max_host_qng == 0) {
11166                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11167                } else {
11168                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11169                }
11170        }
11171
11172        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11173                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11174        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11175                /* If the value is zero, assume it is uninitialized. */
11176                if (eep_config.max_dvc_qng == 0) {
11177                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11178                } else {
11179                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11180                }
11181        }
11182
11183        /*
11184         * If 'max_dvc_qng' is greater than 'max_host_qng', then
11185         * set 'max_dvc_qng' to 'max_host_qng'.
11186         */
11187        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11188                eep_config.max_dvc_qng = eep_config.max_host_qng;
11189        }
11190
11191        /*
11192         * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11193         * values based on possibly adjusted EEPROM values.
11194         */
11195        asc_dvc->max_host_qng = eep_config.max_host_qng;
11196        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11197
11198        /*
11199         * If the EEPROM 'termination' field is set to automatic (0), then set
11200         * the ADV_DVC_CFG 'termination' field to automatic also.
11201         *
11202         * If the termination is specified with a non-zero 'termination'
11203         * value check that a legal value is set and set the ADV_DVC_CFG
11204         * 'termination' field appropriately.
11205         */
11206        if (eep_config.termination == 0) {
11207                asc_dvc->cfg->termination = 0;  /* auto termination */
11208        } else {
11209                /* Enable manual control with low off / high off. */
11210                if (eep_config.termination == 1) {
11211                        asc_dvc->cfg->termination = TERM_CTL_SEL;
11212
11213                        /* Enable manual control with low off / high on. */
11214                } else if (eep_config.termination == 2) {
11215                        asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
11216
11217                        /* Enable manual control with low on / high on. */
11218                } else if (eep_config.termination == 3) {
11219                        asc_dvc->cfg->termination =
11220                            TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
11221                } else {
11222                        /*
11223                         * The EEPROM 'termination' field contains a bad value. Use
11224                         * automatic termination instead.
11225                         */
11226                        asc_dvc->cfg->termination = 0;
11227                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
11228                }
11229        }
11230
11231        return warn_code;
11232}
11233
11234/*
11235 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
11236 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
11237 * all of this is done.
11238 *
11239 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11240 *
11241 * For a non-fatal error return a warning code. If there are no warnings
11242 * then 0 is returned.
11243 *
11244 * Note: Chip is stopped on entry.
11245 */
11246static int __devinit AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
11247{
11248        AdvPortAddr iop_base;
11249        ushort warn_code;
11250        ADVEEP_38C0800_CONFIG eep_config;
11251        uchar tid, termination;
11252        ushort sdtr_speed = 0;
11253
11254        iop_base = asc_dvc->iop_base;
11255
11256        warn_code = 0;
11257
11258        /*
11259         * Read the board's EEPROM configuration.
11260         *
11261         * Set default values if a bad checksum is found.
11262         */
11263        if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
11264            eep_config.check_sum) {
11265                warn_code |= ASC_WARN_EEPROM_CHKSUM;
11266
11267                /*
11268                 * Set EEPROM default values.
11269                 */
11270                memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
11271                        sizeof(ADVEEP_38C0800_CONFIG));
11272
11273                /*
11274                 * Assume the 6 byte board serial number that was read from
11275                 * EEPROM is correct even if the EEPROM checksum failed.
11276                 */
11277                eep_config.serial_number_word3 =
11278                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11279
11280                eep_config.serial_number_word2 =
11281                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11282
11283                eep_config.serial_number_word1 =
11284                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11285
11286                AdvSet38C0800EEPConfig(iop_base, &eep_config);
11287        }
11288        /*
11289         * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
11290         * EEPROM configuration that was read.
11291         *
11292         * This is the mapping of EEPROM fields to Adv Library fields.
11293         */
11294        asc_dvc->wdtr_able = eep_config.wdtr_able;
11295        asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11296        asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11297        asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11298        asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11299        asc_dvc->tagqng_able = eep_config.tagqng_able;
11300        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11301        asc_dvc->max_host_qng = eep_config.max_host_qng;
11302        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11303        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
11304        asc_dvc->start_motor = eep_config.start_motor;
11305        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11306        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11307        asc_dvc->no_scam = eep_config.scam_tolerant;
11308        asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
11309        asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
11310        asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
11311
11312        /*
11313         * For every Target ID if any of its 'sdtr_speed[1234]' bits
11314         * are set, then set an 'sdtr_able' bit for it.
11315         */
11316        asc_dvc->sdtr_able = 0;
11317        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
11318                if (tid == 0) {
11319                        sdtr_speed = asc_dvc->sdtr_speed1;
11320                } else if (tid == 4) {
11321                        sdtr_speed = asc_dvc->sdtr_speed2;
11322                } else if (tid == 8) {
11323                        sdtr_speed = asc_dvc->sdtr_speed3;
11324                } else if (tid == 12) {
11325                        sdtr_speed = asc_dvc->sdtr_speed4;
11326                }
11327                if (sdtr_speed & ADV_MAX_TID) {
11328                        asc_dvc->sdtr_able |= (1 << tid);
11329                }
11330                sdtr_speed >>= 4;
11331        }
11332
11333        /*
11334         * Set the host maximum queuing (max. 253, min. 16) and the per device
11335         * maximum queuing (max. 63, min. 4).
11336         */
11337        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11338                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11339        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11340                /* If the value is zero, assume it is uninitialized. */
11341                if (eep_config.max_host_qng == 0) {
11342                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11343                } else {
11344                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11345                }
11346        }
11347
11348        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11349                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11350        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11351                /* If the value is zero, assume it is uninitialized. */
11352                if (eep_config.max_dvc_qng == 0) {
11353                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11354                } else {
11355                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11356                }
11357        }
11358
11359        /*
11360         * If 'max_dvc_qng' is greater than 'max_host_qng', then
11361         * set 'max_dvc_qng' to 'max_host_qng'.
11362         */
11363        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11364                eep_config.max_dvc_qng = eep_config.max_host_qng;
11365        }
11366
11367        /*
11368         * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
11369         * values based on possibly adjusted EEPROM values.
11370         */
11371        asc_dvc->max_host_qng = eep_config.max_host_qng;
11372        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11373
11374        /*
11375         * If the EEPROM 'termination' field is set to automatic (0), then set
11376         * the ADV_DVC_CFG 'termination' field to automatic also.
11377         *
11378         * If the termination is specified with a non-zero 'termination'
11379         * value check that a legal value is set and set the ADV_DVC_CFG
11380         * 'termination' field appropriately.
11381         */
11382        if (eep_config.termination_se == 0) {
11383                termination = 0;        /* auto termination for SE */
11384        } else {
11385                /* Enable manual control with low off / high off. */
11386                if (eep_config.termination_se == 1) {
11387                        termination = 0;
11388
11389                        /* Enable manual control with low off / high on. */
11390                } else if (eep_config.termination_se == 2) {
11391                        termination = TERM_SE_HI;
11392
11393                        /* Enable manual control with low on / high on. */
11394                } else if (eep_config.termination_se == 3) {
11395                        termination = TERM_SE;
11396                } else {
11397                        /*
11398                         * The EEPROM 'termination_se' field contains a bad value.
11399                         * Use automatic termination instead.
11400                         */
11401                        termination = 0;
11402                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
11403                }
11404        }
11405
11406        if (eep_config.termination_lvd == 0) {
11407                asc_dvc->cfg->termination = termination;        /* auto termination for LVD */
11408        } else {
11409                /* Enable manual control with low off / high off. */
11410                if (eep_config.termination_lvd == 1) {
11411                        asc_dvc->cfg->termination = termination;
11412
11413                        /* Enable manual control with low off / high on. */
11414                } else if (eep_config.termination_lvd == 2) {
11415                        asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11416
11417                        /* Enable manual control with low on / high on. */
11418                } else if (eep_config.termination_lvd == 3) {
11419                        asc_dvc->cfg->termination = termination | TERM_LVD;
11420                } else {
11421                        /*
11422                         * The EEPROM 'termination_lvd' field contains a bad value.
11423                         * Use automatic termination instead.
11424                         */
11425                        asc_dvc->cfg->termination = termination;
11426                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
11427                }
11428        }
11429
11430        return warn_code;
11431}
11432
11433/*
11434 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
11435 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
11436 * all of this is done.
11437 *
11438 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
11439 *
11440 * For a non-fatal error return a warning code. If there are no warnings
11441 * then 0 is returned.
11442 *
11443 * Note: Chip is stopped on entry.
11444 */
11445static int __devinit AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
11446{
11447        AdvPortAddr iop_base;
11448        ushort warn_code;
11449        ADVEEP_38C1600_CONFIG eep_config;
11450        uchar tid, termination;
11451        ushort sdtr_speed = 0;
11452
11453        iop_base = asc_dvc->iop_base;
11454
11455        warn_code = 0;
11456
11457        /*
11458         * Read the board's EEPROM configuration.
11459         *
11460         * Set default values if a bad checksum is found.
11461         */
11462        if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
11463            eep_config.check_sum) {
11464                struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
11465                warn_code |= ASC_WARN_EEPROM_CHKSUM;
11466
11467                /*
11468                 * Set EEPROM default values.
11469                 */
11470                memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
11471                        sizeof(ADVEEP_38C1600_CONFIG));
11472
11473                if (PCI_FUNC(pdev->devfn) != 0) {
11474                        u8 ints;
11475                        /*
11476                         * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
11477                         * and old Mac system booting problem. The Expansion
11478                         * ROM must be disabled in Function 1 for these systems
11479                         */
11480                        eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
11481                        /*
11482                         * Clear the INTAB (bit 11) if the GPIO 0 input
11483                         * indicates the Function 1 interrupt line is wired
11484                         * to INTB.
11485                         *
11486                         * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
11487                         *   1 - Function 1 interrupt line wired to INT A.
11488                         *   0 - Function 1 interrupt line wired to INT B.
11489                         *
11490                         * Note: Function 0 is always wired to INTA.
11491                         * Put all 5 GPIO bits in input mode and then read
11492                         * their input values.
11493                         */
11494                        AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
11495                        ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
11496                        if ((ints & 0x01) == 0)
11497                                eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
11498                }
11499
11500                /*
11501                 * Assume the 6 byte board serial number that was read from
11502                 * EEPROM is correct even if the EEPROM checksum failed.
11503                 */
11504                eep_config.serial_number_word3 =
11505                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
11506                eep_config.serial_number_word2 =
11507                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
11508                eep_config.serial_number_word1 =
11509                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
11510
11511                AdvSet38C1600EEPConfig(iop_base, &eep_config);
11512        }
11513
11514        /*
11515         * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
11516         * EEPROM configuration that was read.
11517         *
11518         * This is the mapping of EEPROM fields to Adv Library fields.
11519         */
11520        asc_dvc->wdtr_able = eep_config.wdtr_able;
11521        asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11522        asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11523        asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11524        asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11525        asc_dvc->ppr_able = 0;
11526        asc_dvc->tagqng_able = eep_config.tagqng_able;
11527        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11528        asc_dvc->max_host_qng = eep_config.max_host_qng;
11529        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11530        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11531        asc_dvc->start_motor = eep_config.start_motor;
11532        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11533        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11534        asc_dvc->no_scam = eep_config.scam_tolerant;
11535
11536        /*
11537         * For every Target ID if any of its 'sdtr_speed[1234]' bits
11538         * are set, then set an 'sdtr_able' bit for it.
11539         */
11540        asc_dvc->sdtr_able = 0;
11541        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11542                if (tid == 0) {
11543                        sdtr_speed = asc_dvc->sdtr_speed1;
11544                } else if (tid == 4) {
11545                        sdtr_speed = asc_dvc->sdtr_speed2;
11546                } else if (tid == 8) {
11547                        sdtr_speed = asc_dvc->sdtr_speed3;
11548                } else if (tid == 12) {
11549                        sdtr_speed = asc_dvc->sdtr_speed4;
11550                }
11551                if (sdtr_speed & ASC_MAX_TID) {
11552                        asc_dvc->sdtr_able |= (1 << tid);
11553                }
11554                sdtr_speed >>= 4;
11555        }
11556
11557        /*
11558         * Set the host maximum queuing (max. 253, min. 16) and the per device
11559         * maximum queuing (max. 63, min. 4).
11560         */
11561        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11562                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11563        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11564                /* If the value is zero, assume it is uninitialized. */
11565                if (eep_config.max_host_qng == 0) {
11566                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11567                } else {
11568                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11569                }
11570        }
11571
11572        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11573                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11574        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11575                /* If the value is zero, assume it is uninitialized. */
11576                if (eep_config.max_dvc_qng == 0) {
11577                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11578                } else {
11579                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11580                }
11581        }
11582
11583        /*
11584         * If 'max_dvc_qng' is greater than 'max_host_qng', then
11585         * set 'max_dvc_qng' to 'max_host_qng'.
11586         */
11587        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11588                eep_config.max_dvc_qng = eep_config.max_host_qng;
11589        }
11590
11591        /*
11592         * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11593         * values based on possibly adjusted EEPROM values.
11594         */
11595        asc_dvc->max_host_qng = eep_config.max_host_qng;
11596        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11597
11598        /*
11599         * If the EEPROM 'termination' field is set to automatic (0), then set
11600         * the ASC_DVC_CFG 'termination' field to automatic also.
11601         *
11602         * If the termination is specified with a non-zero 'termination'
11603         * value check that a legal value is set and set the ASC_DVC_CFG
11604         * 'termination' field appropriately.
11605         */
11606        if (eep_config.termination_se == 0) {
11607                termination = 0;        /* auto termination for SE */
11608        } else {
11609                /* Enable manual control with low off / high off. */
11610                if (eep_config.termination_se == 1) {
11611                        termination = 0;
11612
11613                        /* Enable manual control with low off / high on. */
11614                } else if (eep_config.termination_se == 2) {
11615                        termination = TERM_SE_HI;
11616
11617                        /* Enable manual control with low on / high on. */
11618                } else if (eep_config.termination_se == 3) {
11619                        termination = TERM_SE;
11620                } else {
11621                        /*
11622                         * The EEPROM 'termination_se' field contains a bad value.
11623                         * Use automatic termination instead.
11624                         */
11625                        termination = 0;
11626                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
11627                }
11628        }
11629
11630        if (eep_config.termination_lvd == 0) {
11631                asc_dvc->cfg->termination = termination;        /* auto termination for LVD */
11632        } else {
11633                /* Enable manual control with low off / high off. */
11634                if (eep_config.termination_lvd == 1) {
11635                        asc_dvc->cfg->termination = termination;
11636
11637                        /* Enable manual control with low off / high on. */
11638                } else if (eep_config.termination_lvd == 2) {
11639                        asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11640
11641                        /* Enable manual control with low on / high on. */
11642                } else if (eep_config.termination_lvd == 3) {
11643                        asc_dvc->cfg->termination = termination | TERM_LVD;
11644                } else {
11645                        /*
11646                         * The EEPROM 'termination_lvd' field contains a bad value.
11647                         * Use automatic termination instead.
11648                         */
11649                        asc_dvc->cfg->termination = termination;
11650                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
11651                }
11652        }
11653
11654        return warn_code;
11655}
11656
11657/*
11658 * Initialize the ADV_DVC_VAR structure.
11659 *
11660 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11661 *
11662 * For a non-fatal error return a warning code. If there are no warnings
11663 * then 0 is returned.
11664 */
11665static int __devinit
11666AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11667{
11668        struct asc_board *board = shost_priv(shost);
11669        ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11670        unsigned short warn_code = 0;
11671        AdvPortAddr iop_base = asc_dvc->iop_base;
11672        u16 cmd;
11673        int status;
11674
11675        asc_dvc->err_code = 0;
11676
11677        /*
11678         * Save the state of the PCI Configuration Command Register
11679         * "Parity Error Response Control" Bit. If the bit is clear (0),
11680         * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11681         * DMA parity errors.
11682         */
11683        asc_dvc->cfg->control_flag = 0;
11684        pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11685        if ((cmd & PCI_COMMAND_PARITY) == 0)
11686                asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
11687
11688        asc_dvc->cfg->chip_version =
11689            AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11690
11691        ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11692                 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
11693                 (ushort)ADV_CHIP_ID_BYTE);
11694
11695        ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11696                 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
11697                 (ushort)ADV_CHIP_ID_WORD);
11698
11699        /*
11700         * Reset the chip to start and allow register writes.
11701         */
11702        if (AdvFindSignature(iop_base) == 0) {
11703                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11704                return ADV_ERROR;
11705        } else {
11706                /*
11707                 * The caller must set 'chip_type' to a valid setting.
11708                 */
11709                if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11710                    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11711                    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11712                        asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11713                        return ADV_ERROR;
11714                }
11715
11716                /*
11717                 * Reset Chip.
11718                 */
11719                AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11720                                     ADV_CTRL_REG_CMD_RESET);
11721                mdelay(100);
11722                AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11723                                     ADV_CTRL_REG_CMD_WR_IO_REG);
11724
11725                if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11726                        status = AdvInitFrom38C1600EEP(asc_dvc);
11727                } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11728                        status = AdvInitFrom38C0800EEP(asc_dvc);
11729                } else {
11730                        status = AdvInitFrom3550EEP(asc_dvc);
11731                }
11732                warn_code |= status;
11733        }
11734
11735        if (warn_code != 0)
11736                shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11737
11738        if (asc_dvc->err_code)
11739                shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11740                                asc_dvc->err_code);
11741
11742        return asc_dvc->err_code;
11743}
11744#endif
11745
11746static struct scsi_host_template advansys_template = {
11747        .proc_name = DRV_NAME,
11748#ifdef CONFIG_PROC_FS
11749        .proc_info = advansys_proc_info,
11750#endif
11751        .name = DRV_NAME,
11752        .info = advansys_info,
11753        .queuecommand = advansys_queuecommand,
11754        .eh_bus_reset_handler = advansys_reset,
11755        .bios_param = advansys_biosparam,
11756        .slave_configure = advansys_slave_configure,
11757        /*
11758         * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11759         * must be set. The flag will be cleared in advansys_board_found
11760         * for non-ISA adapters.
11761         */
11762        .unchecked_isa_dma = 1,
11763        /*
11764         * All adapters controlled by this driver are capable of large
11765         * scatter-gather lists. According to the mid-level SCSI documentation
11766         * this obviates any performance gain provided by setting
11767         * 'use_clustering'. But empirically while CPU utilization is increased
11768         * by enabling clustering, I/O throughput increases as well.
11769         */
11770        .use_clustering = ENABLE_CLUSTERING,
11771};
11772
11773static int __devinit advansys_wide_init_chip(struct Scsi_Host *shost)
11774{
11775        struct asc_board *board = shost_priv(shost);
11776        struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11777        int req_cnt = 0;
11778        adv_req_t *reqp = NULL;
11779        int sg_cnt = 0;
11780        adv_sgblk_t *sgp;
11781        int warn_code, err_code;
11782
11783        /*
11784         * Allocate buffer carrier structures. The total size
11785         * is about 4 KB, so allocate all at once.
11786         */
11787        adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
11788        ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11789
11790        if (!adv_dvc->carrier_buf)
11791                goto kmalloc_failed;
11792
11793        /*
11794         * Allocate up to 'max_host_qng' request structures for the Wide
11795         * board. The total size is about 16 KB, so allocate all at once.
11796         * If the allocation fails decrement and try again.
11797         */
11798        for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11799                reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11800
11801                ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11802                         (ulong)sizeof(adv_req_t) * req_cnt);
11803
11804                if (reqp)
11805                        break;
11806        }
11807
11808        if (!reqp)
11809                goto kmalloc_failed;
11810
11811        adv_dvc->orig_reqp = reqp;
11812
11813        /*
11814         * Allocate up to ADV_TOT_SG_BLOCK request structures for
11815         * the Wide board. Each structure is about 136 bytes.
11816         */
11817        board->adv_sgblkp = NULL;
11818        for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11819                sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11820
11821                if (!sgp)
11822                        break;
11823
11824                sgp->next_sgblkp = board->adv_sgblkp;
11825                board->adv_sgblkp = sgp;
11826
11827        }
11828
11829        ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11830                 sizeof(adv_sgblk_t) * sg_cnt);
11831
11832        if (!board->adv_sgblkp)
11833                goto kmalloc_failed;
11834
11835        /*
11836         * Point 'adv_reqp' to the request structures and
11837         * link them together.
11838         */
11839        req_cnt--;
11840        reqp[req_cnt].next_reqp = NULL;
11841        for (; req_cnt > 0; req_cnt--) {
11842                reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11843        }
11844        board->adv_reqp = &reqp[0];
11845
11846        if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11847                ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11848                warn_code = AdvInitAsc3550Driver(adv_dvc);
11849        } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11850                ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11851                warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11852        } else {
11853                ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11854                warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11855        }
11856        err_code = adv_dvc->err_code;
11857
11858        if (warn_code || err_code) {
11859                shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11860                        "0x%x\n", warn_code, err_code);
11861        }
11862
11863        goto exit;
11864
11865 kmalloc_failed:
11866        shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11867        err_code = ADV_ERROR;
11868 exit:
11869        return err_code;
11870}
11871
11872static void advansys_wide_free_mem(struct asc_board *board)
11873{
11874        struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11875        kfree(adv_dvc->carrier_buf);
11876        adv_dvc->carrier_buf = NULL;
11877        kfree(adv_dvc->orig_reqp);
11878        adv_dvc->orig_reqp = board->adv_reqp = NULL;
11879        while (board->adv_sgblkp) {
11880                adv_sgblk_t *sgp = board->adv_sgblkp;
11881                board->adv_sgblkp = sgp->next_sgblkp;
11882                kfree(sgp);
11883        }
11884}
11885
11886static int __devinit advansys_board_found(struct Scsi_Host *shost,
11887                                          unsigned int iop, int bus_type)
11888{
11889        struct pci_dev *pdev;
11890        struct asc_board *boardp = shost_priv(shost);
11891        ASC_DVC_VAR *asc_dvc_varp = NULL;
11892        ADV_DVC_VAR *adv_dvc_varp = NULL;
11893        int share_irq, warn_code, ret;
11894
11895        pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11896
11897        if (ASC_NARROW_BOARD(boardp)) {
11898                ASC_DBG(1, "narrow board\n");
11899                asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11900                asc_dvc_varp->bus_type = bus_type;
11901                asc_dvc_varp->drv_ptr = boardp;
11902                asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11903                asc_dvc_varp->iop_base = iop;
11904        } else {
11905#ifdef CONFIG_PCI
11906                adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11907                adv_dvc_varp->drv_ptr = boardp;
11908                adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11909                if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11910                        ASC_DBG(1, "wide board ASC-3550\n");
11911                        adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11912                } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11913                        ASC_DBG(1, "wide board ASC-38C0800\n");
11914                        adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11915                } else {
11916                        ASC_DBG(1, "wide board ASC-38C1600\n");
11917                        adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11918                }
11919
11920                boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11921                boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11922                if (!boardp->ioremap_addr) {
11923                        shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11924                                        "returned NULL\n",
11925                                        (long)pci_resource_start(pdev, 1),
11926                                        boardp->asc_n_io_port);
11927                        ret = -ENODEV;
11928                        goto err_shost;
11929                }
11930                adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11931                ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11932
11933                /*
11934                 * Even though it isn't used to access wide boards, other
11935                 * than for the debug line below, save I/O Port address so
11936                 * that it can be reported.
11937                 */
11938                boardp->ioport = iop;
11939
11940                ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11941                                (ushort)inp(iop + 1), (ushort)inpw(iop));
11942#endif /* CONFIG_PCI */
11943        }
11944
11945#ifdef CONFIG_PROC_FS
11946        /*
11947         * Allocate buffer for printing information from
11948         * /proc/scsi/advansys/[0...].
11949         */
11950        boardp->prtbuf = kmalloc(ASC_PRTBUF_SIZE, GFP_KERNEL);
11951        if (!boardp->prtbuf) {
11952                shost_printk(KERN_ERR, shost, "kmalloc(%d) returned NULL\n",
11953                                ASC_PRTBUF_SIZE);
11954                ret = -ENOMEM;
11955                goto err_unmap;
11956        }
11957#endif /* CONFIG_PROC_FS */
11958
11959        if (ASC_NARROW_BOARD(boardp)) {
11960                /*
11961                 * Set the board bus type and PCI IRQ before
11962                 * calling AscInitGetConfig().
11963                 */
11964                switch (asc_dvc_varp->bus_type) {
11965#ifdef CONFIG_ISA
11966                case ASC_IS_ISA:
11967                        shost->unchecked_isa_dma = TRUE;
11968                        share_irq = 0;
11969                        break;
11970                case ASC_IS_VL:
11971                        shost->unchecked_isa_dma = FALSE;
11972                        share_irq = 0;
11973                        break;
11974                case ASC_IS_EISA:
11975                        shost->unchecked_isa_dma = FALSE;
11976                        share_irq = IRQF_SHARED;
11977                        break;
11978#endif /* CONFIG_ISA */
11979#ifdef CONFIG_PCI
11980                case ASC_IS_PCI:
11981                        shost->unchecked_isa_dma = FALSE;
11982                        share_irq = IRQF_SHARED;
11983                        break;
11984#endif /* CONFIG_PCI */
11985                default:
11986                        shost_printk(KERN_ERR, shost, "unknown adapter type: "
11987                                        "%d\n", asc_dvc_varp->bus_type);
11988                        shost->unchecked_isa_dma = TRUE;
11989                        share_irq = 0;
11990                        break;
11991                }
11992
11993                /*
11994                 * NOTE: AscInitGetConfig() may change the board's
11995                 * bus_type value. The bus_type value should no
11996                 * longer be used. If the bus_type field must be
11997                 * referenced only use the bit-wise AND operator "&".
11998                 */
11999                ASC_DBG(2, "AscInitGetConfig()\n");
12000                ret = AscInitGetConfig(shost) ? -ENODEV : 0;
12001        } else {
12002#ifdef CONFIG_PCI
12003                /*
12004                 * For Wide boards set PCI information before calling
12005                 * AdvInitGetConfig().
12006                 */
12007                shost->unchecked_isa_dma = FALSE;
12008                share_irq = IRQF_SHARED;
12009                ASC_DBG(2, "AdvInitGetConfig()\n");
12010
12011                ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
12012#endif /* CONFIG_PCI */
12013        }
12014
12015        if (ret)
12016                goto err_free_proc;
12017
12018        /*
12019         * Save the EEPROM configuration so that it can be displayed
12020         * from /proc/scsi/advansys/[0...].
12021         */
12022        if (ASC_NARROW_BOARD(boardp)) {
12023
12024                ASCEEP_CONFIG *ep;
12025
12026                /*
12027                 * Set the adapter's target id bit in the 'init_tidmask' field.
12028                 */
12029                boardp->init_tidmask |=
12030                    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
12031
12032                /*
12033                 * Save EEPROM settings for the board.
12034                 */
12035                ep = &boardp->eep_config.asc_eep;
12036
12037                ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
12038                ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
12039                ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
12040                ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
12041                ep->start_motor = asc_dvc_varp->start_motor;
12042                ep->cntl = asc_dvc_varp->dvc_cntl;
12043                ep->no_scam = asc_dvc_varp->no_scam;
12044                ep->max_total_qng = asc_dvc_varp->max_total_qng;
12045                ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
12046                /* 'max_tag_qng' is set to the same value for every device. */
12047                ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
12048                ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
12049                ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
12050                ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
12051                ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
12052                ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
12053                ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
12054
12055                /*
12056                 * Modify board configuration.
12057                 */
12058                ASC_DBG(2, "AscInitSetConfig()\n");
12059                ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
12060                if (ret)
12061                        goto err_free_proc;
12062        } else {
12063                ADVEEP_3550_CONFIG *ep_3550;
12064                ADVEEP_38C0800_CONFIG *ep_38C0800;
12065                ADVEEP_38C1600_CONFIG *ep_38C1600;
12066
12067                /*
12068                 * Save Wide EEP Configuration Information.
12069                 */
12070                if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
12071                        ep_3550 = &boardp->eep_config.adv_3550_eep;
12072
12073                        ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
12074                        ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
12075                        ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12076                        ep_3550->termination = adv_dvc_varp->cfg->termination;
12077                        ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
12078                        ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
12079                        ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
12080                        ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
12081                        ep_3550->ultra_able = adv_dvc_varp->ultra_able;
12082                        ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
12083                        ep_3550->start_motor = adv_dvc_varp->start_motor;
12084                        ep_3550->scsi_reset_delay =
12085                            adv_dvc_varp->scsi_reset_wait;
12086                        ep_3550->serial_number_word1 =
12087                            adv_dvc_varp->cfg->serial1;
12088                        ep_3550->serial_number_word2 =
12089                            adv_dvc_varp->cfg->serial2;
12090                        ep_3550->serial_number_word3 =
12091                            adv_dvc_varp->cfg->serial3;
12092                } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
12093                        ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
12094
12095                        ep_38C0800->adapter_scsi_id =
12096                            adv_dvc_varp->chip_scsi_id;
12097                        ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
12098                        ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12099                        ep_38C0800->termination_lvd =
12100                            adv_dvc_varp->cfg->termination;
12101                        ep_38C0800->disc_enable =
12102                            adv_dvc_varp->cfg->disc_enable;
12103                        ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
12104                        ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
12105                        ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12106                        ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12107                        ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12108                        ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12109                        ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12110                        ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
12111                        ep_38C0800->start_motor = adv_dvc_varp->start_motor;
12112                        ep_38C0800->scsi_reset_delay =
12113                            adv_dvc_varp->scsi_reset_wait;
12114                        ep_38C0800->serial_number_word1 =
12115                            adv_dvc_varp->cfg->serial1;
12116                        ep_38C0800->serial_number_word2 =
12117                            adv_dvc_varp->cfg->serial2;
12118                        ep_38C0800->serial_number_word3 =
12119                            adv_dvc_varp->cfg->serial3;
12120                } else {
12121                        ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
12122
12123                        ep_38C1600->adapter_scsi_id =
12124                            adv_dvc_varp->chip_scsi_id;
12125                        ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
12126                        ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
12127                        ep_38C1600->termination_lvd =
12128                            adv_dvc_varp->cfg->termination;
12129                        ep_38C1600->disc_enable =
12130                            adv_dvc_varp->cfg->disc_enable;
12131                        ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
12132                        ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
12133                        ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12134                        ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
12135                        ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
12136                        ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
12137                        ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
12138                        ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
12139                        ep_38C1600->start_motor = adv_dvc_varp->start_motor;
12140                        ep_38C1600->scsi_reset_delay =
12141                            adv_dvc_varp->scsi_reset_wait;
12142                        ep_38C1600->serial_number_word1 =
12143                            adv_dvc_varp->cfg->serial1;
12144                        ep_38C1600->serial_number_word2 =
12145                            adv_dvc_varp->cfg->serial2;
12146                        ep_38C1600->serial_number_word3 =
12147                            adv_dvc_varp->cfg->serial3;
12148                }
12149
12150                /*
12151                 * Set the adapter's target id bit in the 'init_tidmask' field.
12152                 */
12153                boardp->init_tidmask |=
12154                    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
12155        }
12156
12157        /*
12158         * Channels are numbered beginning with 0. For AdvanSys one host
12159         * structure supports one channel. Multi-channel boards have a
12160         * separate host structure for each channel.
12161         */
12162        shost->max_channel = 0;
12163        if (ASC_NARROW_BOARD(boardp)) {
12164                shost->max_id = ASC_MAX_TID + 1;
12165                shost->max_lun = ASC_MAX_LUN + 1;
12166                shost->max_cmd_len = ASC_MAX_CDB_LEN;
12167
12168                shost->io_port = asc_dvc_varp->iop_base;
12169                boardp->asc_n_io_port = ASC_IOADR_GAP;
12170                shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
12171
12172                /* Set maximum number of queues the adapter can handle. */
12173                shost->can_queue = asc_dvc_varp->max_total_qng;
12174        } else {
12175                shost->max_id = ADV_MAX_TID + 1;
12176                shost->max_lun = ADV_MAX_LUN + 1;
12177                shost->max_cmd_len = ADV_MAX_CDB_LEN;
12178
12179                /*
12180                 * Save the I/O Port address and length even though
12181                 * I/O ports are not used to access Wide boards.
12182                 * Instead the Wide boards are accessed with
12183                 * PCI Memory Mapped I/O.
12184                 */
12185                shost->io_port = iop;
12186
12187                shost->this_id = adv_dvc_varp->chip_scsi_id;
12188
12189                /* Set maximum number of queues the adapter can handle. */
12190                shost->can_queue = adv_dvc_varp->max_host_qng;
12191        }
12192
12193        /*
12194         * Following v1.3.89, 'cmd_per_lun' is no longer needed
12195         * and should be set to zero.
12196         *
12197         * But because of a bug introduced in v1.3.89 if the driver is
12198         * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
12199         * SCSI function 'allocate_device' will panic. To allow the driver
12200         * to work as a module in these kernels set 'cmd_per_lun' to 1.
12201         *
12202         * Note: This is wrong.  cmd_per_lun should be set to the depth
12203         * you want on untagged devices always.
12204         #ifdef MODULE
12205         */
12206        shost->cmd_per_lun = 1;
12207/* #else
12208            shost->cmd_per_lun = 0;
12209#endif */
12210
12211        /*
12212         * Set the maximum number of scatter-gather elements the
12213         * adapter can handle.
12214         */
12215        if (ASC_NARROW_BOARD(boardp)) {
12216                /*
12217                 * Allow two commands with 'sg_tablesize' scatter-gather
12218                 * elements to be executed simultaneously. This value is
12219                 * the theoretical hardware limit. It may be decreased
12220                 * below.
12221                 */
12222                shost->sg_tablesize =
12223                    (((asc_dvc_varp->max_total_qng - 2) / 2) *
12224                     ASC_SG_LIST_PER_Q) + 1;
12225        } else {
12226                shost->sg_tablesize = ADV_MAX_SG_LIST;
12227        }
12228
12229        /*
12230         * The value of 'sg_tablesize' can not exceed the SCSI
12231         * mid-level driver definition of SG_ALL. SG_ALL also
12232         * must not be exceeded, because it is used to define the
12233         * size of the scatter-gather table in 'struct asc_sg_head'.
12234         */
12235        if (shost->sg_tablesize > SG_ALL) {
12236                shost->sg_tablesize = SG_ALL;
12237        }
12238
12239        ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
12240
12241        /* BIOS start address. */
12242        if (ASC_NARROW_BOARD(boardp)) {
12243                shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
12244                                                    asc_dvc_varp->bus_type);
12245        } else {
12246                /*
12247                 * Fill-in BIOS board variables. The Wide BIOS saves
12248                 * information in LRAM that is used by the driver.
12249                 */
12250                AdvReadWordLram(adv_dvc_varp->iop_base,
12251                                BIOS_SIGNATURE, boardp->bios_signature);
12252                AdvReadWordLram(adv_dvc_varp->iop_base,
12253                                BIOS_VERSION, boardp->bios_version);
12254                AdvReadWordLram(adv_dvc_varp->iop_base,
12255                                BIOS_CODESEG, boardp->bios_codeseg);
12256                AdvReadWordLram(adv_dvc_varp->iop_base,
12257                                BIOS_CODELEN, boardp->bios_codelen);
12258
12259                ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
12260                         boardp->bios_signature, boardp->bios_version);
12261
12262                ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
12263                         boardp->bios_codeseg, boardp->bios_codelen);
12264
12265                /*
12266                 * If the BIOS saved a valid signature, then fill in
12267                 * the BIOS code segment base address.
12268                 */
12269                if (boardp->bios_signature == 0x55AA) {
12270                        /*
12271                         * Convert x86 realmode code segment to a linear
12272                         * address by shifting left 4.
12273                         */
12274                        shost->base = ((ulong)boardp->bios_codeseg << 4);
12275                } else {
12276                        shost->base = 0;
12277                }
12278        }
12279
12280        /*
12281         * Register Board Resources - I/O Port, DMA, IRQ
12282         */
12283
12284        /* Register DMA Channel for Narrow boards. */
12285        shost->dma_channel = NO_ISA_DMA;        /* Default to no ISA DMA. */
12286#ifdef CONFIG_ISA
12287        if (ASC_NARROW_BOARD(boardp)) {
12288                /* Register DMA channel for ISA bus. */
12289                if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
12290                        shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
12291                        ret = request_dma(shost->dma_channel, DRV_NAME);
12292                        if (ret) {
12293                                shost_printk(KERN_ERR, shost, "request_dma() "
12294                                                "%d failed %d\n",
12295                                                shost->dma_channel, ret);
12296                                goto err_free_proc;
12297                        }
12298                        AscEnableIsaDma(shost->dma_channel);
12299                }
12300        }
12301#endif /* CONFIG_ISA */
12302
12303        /* Register IRQ Number. */
12304        ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
12305
12306        ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
12307                          DRV_NAME, shost);
12308
12309        if (ret) {
12310                if (ret == -EBUSY) {
12311                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12312                                        "already in use\n", boardp->irq);
12313                } else if (ret == -EINVAL) {
12314                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12315                                        "not valid\n", boardp->irq);
12316                } else {
12317                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
12318                                        "failed with %d\n", boardp->irq, ret);
12319                }
12320                goto err_free_dma;
12321        }
12322
12323        /*
12324         * Initialize board RISC chip and enable interrupts.
12325         */
12326        if (ASC_NARROW_BOARD(boardp)) {
12327                ASC_DBG(2, "AscInitAsc1000Driver()\n");
12328
12329                asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
12330                if (!asc_dvc_varp->overrun_buf) {
12331                        ret = -ENOMEM;
12332                        goto err_free_irq;
12333                }
12334                warn_code = AscInitAsc1000Driver(asc_dvc_varp);
12335
12336                if (warn_code || asc_dvc_varp->err_code) {
12337                        shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
12338                                        "warn 0x%x, error 0x%x\n",
12339                                        asc_dvc_varp->init_state, warn_code,
12340                                        asc_dvc_varp->err_code);
12341                        if (!asc_dvc_varp->overrun_dma) {
12342                                ret = -ENODEV;
12343                                goto err_free_mem;
12344                        }
12345                }
12346        } else {
12347                if (advansys_wide_init_chip(shost)) {
12348                        ret = -ENODEV;
12349                        goto err_free_mem;
12350                }
12351        }
12352
12353        ASC_DBG_PRT_SCSI_HOST(2, shost);
12354
12355        ret = scsi_add_host(shost, boardp->dev);
12356        if (ret)
12357                goto err_free_mem;
12358
12359        scsi_scan_host(shost);
12360        return 0;
12361
12362 err_free_mem:
12363        if (ASC_NARROW_BOARD(boardp)) {
12364                if (asc_dvc_varp->overrun_dma)
12365                        dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
12366                                         ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
12367                kfree(asc_dvc_varp->overrun_buf);
12368        } else
12369                advansys_wide_free_mem(boardp);
12370 err_free_irq:
12371        free_irq(boardp->irq, shost);
12372 err_free_dma:
12373#ifdef CONFIG_ISA
12374        if (shost->dma_channel != NO_ISA_DMA)
12375                free_dma(shost->dma_channel);
12376#endif
12377 err_free_proc:
12378        kfree(boardp->prtbuf);
12379 err_unmap:
12380        if (boardp->ioremap_addr)
12381                iounmap(boardp->ioremap_addr);
12382 err_shost:
12383        return ret;
12384}
12385
12386/*
12387 * advansys_release()
12388 *
12389 * Release resources allocated for a single AdvanSys adapter.
12390 */
12391static int advansys_release(struct Scsi_Host *shost)
12392{
12393        struct asc_board *board = shost_priv(shost);
12394        ASC_DBG(1, "begin\n");
12395        scsi_remove_host(shost);
12396        free_irq(board->irq, shost);
12397#ifdef CONFIG_ISA
12398        if (shost->dma_channel != NO_ISA_DMA) {
12399                ASC_DBG(1, "free_dma()\n");
12400                free_dma(shost->dma_channel);
12401        }
12402#endif
12403        if (ASC_NARROW_BOARD(board)) {
12404                dma_unmap_single(board->dev,
12405                                        board->dvc_var.asc_dvc_var.overrun_dma,
12406                                        ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
12407                kfree(board->dvc_var.asc_dvc_var.overrun_buf);
12408        } else {
12409                iounmap(board->ioremap_addr);
12410                advansys_wide_free_mem(board);
12411        }
12412        kfree(board->prtbuf);
12413        scsi_host_put(shost);
12414        ASC_DBG(1, "end\n");
12415        return 0;
12416}
12417
12418#define ASC_IOADR_TABLE_MAX_IX  11
12419
12420static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
12421        0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
12422        0x0210, 0x0230, 0x0250, 0x0330
12423};
12424
12425/*
12426 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
12427 * 00: 10
12428 * 01: 11
12429 * 10: 12
12430 * 11: 15
12431 */
12432static unsigned int __devinit advansys_isa_irq_no(PortAddr iop_base)
12433{
12434        unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12435        unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
12436        if (chip_irq == 13)
12437                chip_irq = 15;
12438        return chip_irq;
12439}
12440
12441static int __devinit advansys_isa_probe(struct device *dev, unsigned int id)
12442{
12443        int err = -ENODEV;
12444        PortAddr iop_base = _asc_def_iop_base[id];
12445        struct Scsi_Host *shost;
12446        struct asc_board *board;
12447
12448        if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12449                ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12450                return -ENODEV;
12451        }
12452        ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12453        if (!AscFindSignature(iop_base))
12454                goto release_region;
12455        if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
12456                goto release_region;
12457
12458        err = -ENOMEM;
12459        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12460        if (!shost)
12461                goto release_region;
12462
12463        board = shost_priv(shost);
12464        board->irq = advansys_isa_irq_no(iop_base);
12465        board->dev = dev;
12466
12467        err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
12468        if (err)
12469                goto free_host;
12470
12471        dev_set_drvdata(dev, shost);
12472        return 0;
12473
12474 free_host:
12475        scsi_host_put(shost);
12476 release_region:
12477        release_region(iop_base, ASC_IOADR_GAP);
12478        return err;
12479}
12480
12481static int __devexit advansys_isa_remove(struct device *dev, unsigned int id)
12482{
12483        int ioport = _asc_def_iop_base[id];
12484        advansys_release(dev_get_drvdata(dev));
12485        release_region(ioport, ASC_IOADR_GAP);
12486        return 0;
12487}
12488
12489static struct isa_driver advansys_isa_driver = {
12490        .probe          = advansys_isa_probe,
12491        .remove         = __devexit_p(advansys_isa_remove),
12492        .driver = {
12493                .owner  = THIS_MODULE,
12494                .name   = DRV_NAME,
12495        },
12496};
12497
12498/*
12499 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
12500 * 000: invalid
12501 * 001: 10
12502 * 010: 11
12503 * 011: 12
12504 * 100: invalid
12505 * 101: 14
12506 * 110: 15
12507 * 111: invalid
12508 */
12509static unsigned int __devinit advansys_vlb_irq_no(PortAddr iop_base)
12510{
12511        unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
12512        unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
12513        if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
12514                return 0;
12515        return chip_irq;
12516}
12517
12518static int __devinit advansys_vlb_probe(struct device *dev, unsigned int id)
12519{
12520        int err = -ENODEV;
12521        PortAddr iop_base = _asc_def_iop_base[id];
12522        struct Scsi_Host *shost;
12523        struct asc_board *board;
12524
12525        if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
12526                ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
12527                return -ENODEV;
12528        }
12529        ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
12530        if (!AscFindSignature(iop_base))
12531                goto release_region;
12532        /*
12533         * I don't think this condition can actually happen, but the old
12534         * driver did it, and the chances of finding a VLB setup in 2007
12535         * to do testing with is slight to none.
12536         */
12537        if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12538                goto release_region;
12539
12540        err = -ENOMEM;
12541        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12542        if (!shost)
12543                goto release_region;
12544
12545        board = shost_priv(shost);
12546        board->irq = advansys_vlb_irq_no(iop_base);
12547        board->dev = dev;
12548
12549        err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12550        if (err)
12551                goto free_host;
12552
12553        dev_set_drvdata(dev, shost);
12554        return 0;
12555
12556 free_host:
12557        scsi_host_put(shost);
12558 release_region:
12559        release_region(iop_base, ASC_IOADR_GAP);
12560        return -ENODEV;
12561}
12562
12563static struct isa_driver advansys_vlb_driver = {
12564        .probe          = advansys_vlb_probe,
12565        .remove         = __devexit_p(advansys_isa_remove),
12566        .driver = {
12567                .owner  = THIS_MODULE,
12568                .name   = "advansys_vlb",
12569        },
12570};
12571
12572static struct eisa_device_id advansys_eisa_table[] __devinitdata = {
12573        { "ABP7401" },
12574        { "ABP7501" },
12575        { "" }
12576};
12577
12578MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12579
12580/*
12581 * EISA is a little more tricky than PCI; each EISA device may have two
12582 * channels, and this driver is written to make each channel its own Scsi_Host
12583 */
12584struct eisa_scsi_data {
12585        struct Scsi_Host *host[2];
12586};
12587
12588/*
12589 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
12590 * 000: 10
12591 * 001: 11
12592 * 010: 12
12593 * 011: invalid
12594 * 100: 14
12595 * 101: 15
12596 * 110: invalid
12597 * 111: invalid
12598 */
12599static unsigned int __devinit advansys_eisa_irq_no(struct eisa_device *edev)
12600{
12601        unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12602        unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12603        if ((chip_irq == 13) || (chip_irq > 15))
12604                return 0;
12605        return chip_irq;
12606}
12607
12608static int __devinit advansys_eisa_probe(struct device *dev)
12609{
12610        int i, ioport, irq = 0;
12611        int err;
12612        struct eisa_device *edev = to_eisa_device(dev);
12613        struct eisa_scsi_data *data;
12614
12615        err = -ENOMEM;
12616        data = kzalloc(sizeof(*data), GFP_KERNEL);
12617        if (!data)
12618                goto fail;
12619        ioport = edev->base_addr + 0xc30;
12620
12621        err = -ENODEV;
12622        for (i = 0; i < 2; i++, ioport += 0x20) {
12623                struct asc_board *board;
12624                struct Scsi_Host *shost;
12625                if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12626                        printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12627                               ioport + ASC_IOADR_GAP - 1);
12628                        continue;
12629                }
12630                if (!AscFindSignature(ioport)) {
12631                        release_region(ioport, ASC_IOADR_GAP);
12632                        continue;
12633                }
12634
12635                /*
12636                 * I don't know why we need to do this for EISA chips, but
12637                 * not for any others.  It looks to be equivalent to
12638                 * AscGetChipCfgMsw, but I may have overlooked something,
12639                 * so I'm not converting it until I get an EISA board to
12640                 * test with.
12641                 */
12642                inw(ioport + 4);
12643
12644                if (!irq)
12645                        irq = advansys_eisa_irq_no(edev);
12646
12647                err = -ENOMEM;
12648                shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12649                if (!shost)
12650                        goto release_region;
12651
12652                board = shost_priv(shost);
12653                board->irq = irq;
12654                board->dev = dev;
12655
12656                err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12657                if (!err) {
12658                        data->host[i] = shost;
12659                        continue;
12660                }
12661
12662                scsi_host_put(shost);
12663 release_region:
12664                release_region(ioport, ASC_IOADR_GAP);
12665                break;
12666        }
12667
12668        if (err)
12669                goto free_data;
12670        dev_set_drvdata(dev, data);
12671        return 0;
12672
12673 free_data:
12674        kfree(data->host[0]);
12675        kfree(data->host[1]);
12676        kfree(data);
12677 fail:
12678        return err;
12679}
12680
12681static __devexit int advansys_eisa_remove(struct device *dev)
12682{
12683        int i;
12684        struct eisa_scsi_data *data = dev_get_drvdata(dev);
12685
12686        for (i = 0; i < 2; i++) {
12687                int ioport;
12688                struct Scsi_Host *shost = data->host[i];
12689                if (!shost)
12690                        continue;
12691                ioport = shost->io_port;
12692                advansys_release(shost);
12693                release_region(ioport, ASC_IOADR_GAP);
12694        }
12695
12696        kfree(data);
12697        return 0;
12698}
12699
12700static struct eisa_driver advansys_eisa_driver = {
12701        .id_table =             advansys_eisa_table,
12702        .driver = {
12703                .name =         DRV_NAME,
12704                .probe =        advansys_eisa_probe,
12705                .remove =       __devexit_p(advansys_eisa_remove),
12706        }
12707};
12708
12709/* PCI Devices supported by this driver */
12710static struct pci_device_id advansys_pci_tbl[] __devinitdata = {
12711        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
12712         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12713        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
12714         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12715        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
12716         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12717        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
12718         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12719        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
12720         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12721        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
12722         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12723        {}
12724};
12725
12726MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12727
12728static void __devinit advansys_set_latency(struct pci_dev *pdev)
12729{
12730        if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12731            (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12732                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12733        } else {
12734                u8 latency;
12735                pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12736                if (latency < 0x20)
12737                        pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12738        }
12739}
12740
12741static int __devinit
12742advansys_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
12743{
12744        int err, ioport;
12745        struct Scsi_Host *shost;
12746        struct asc_board *board;
12747
12748        err = pci_enable_device(pdev);
12749        if (err)
12750                goto fail;
12751        err = pci_request_regions(pdev, DRV_NAME);
12752        if (err)
12753                goto disable_device;
12754        pci_set_master(pdev);
12755        advansys_set_latency(pdev);
12756
12757        err = -ENODEV;
12758        if (pci_resource_len(pdev, 0) == 0)
12759                goto release_region;
12760
12761        ioport = pci_resource_start(pdev, 0);
12762
12763        err = -ENOMEM;
12764        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12765        if (!shost)
12766                goto release_region;
12767
12768        board = shost_priv(shost);
12769        board->irq = pdev->irq;
12770        board->dev = &pdev->dev;
12771
12772        if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12773            pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
12774            pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
12775                board->flags |= ASC_IS_WIDE_BOARD;
12776        }
12777
12778        err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12779        if (err)
12780                goto free_host;
12781
12782        pci_set_drvdata(pdev, shost);
12783        return 0;
12784
12785 free_host:
12786        scsi_host_put(shost);
12787 release_region:
12788        pci_release_regions(pdev);
12789 disable_device:
12790        pci_disable_device(pdev);
12791 fail:
12792        return err;
12793}
12794
12795static void __devexit advansys_pci_remove(struct pci_dev *pdev)
12796{
12797        advansys_release(pci_get_drvdata(pdev));
12798        pci_release_regions(pdev);
12799        pci_disable_device(pdev);
12800}
12801
12802static struct pci_driver advansys_pci_driver = {
12803        .name =         DRV_NAME,
12804        .id_table =     advansys_pci_tbl,
12805        .probe =        advansys_pci_probe,
12806        .remove =       __devexit_p(advansys_pci_remove),
12807};
12808
12809static int __init advansys_init(void)
12810{
12811        int error;
12812
12813        error = isa_register_driver(&advansys_isa_driver,
12814                                    ASC_IOADR_TABLE_MAX_IX);
12815        if (error)
12816                goto fail;
12817
12818        error = isa_register_driver(&advansys_vlb_driver,
12819                                    ASC_IOADR_TABLE_MAX_IX);
12820        if (error)
12821                goto unregister_isa;
12822
12823        error = eisa_driver_register(&advansys_eisa_driver);
12824        if (error)
12825                goto unregister_vlb;
12826
12827        error = pci_register_driver(&advansys_pci_driver);
12828        if (error)
12829                goto unregister_eisa;
12830
12831        return 0;
12832
12833 unregister_eisa:
12834        eisa_driver_unregister(&advansys_eisa_driver);
12835 unregister_vlb:
12836        isa_unregister_driver(&advansys_vlb_driver);
12837 unregister_isa:
12838        isa_unregister_driver(&advansys_isa_driver);
12839 fail:
12840        return error;
12841}
12842
12843static void __exit advansys_exit(void)
12844{
12845        pci_unregister_driver(&advansys_pci_driver);
12846        eisa_driver_unregister(&advansys_eisa_driver);
12847        isa_unregister_driver(&advansys_vlb_driver);
12848        isa_unregister_driver(&advansys_isa_driver);
12849}
12850
12851module_init(advansys_init);
12852module_exit(advansys_exit);
12853
12854MODULE_LICENSE("GPL");
12855MODULE_FIRMWARE("advansys/mcode.bin");
12856MODULE_FIRMWARE("advansys/3550.bin");
12857MODULE_FIRMWARE("advansys/38C0800.bin");
12858MODULE_FIRMWARE("advansys/38C1600.bin");
12859