linux/drivers/scsi/scsi_lib.c
<<
>>
Prefs
   1/*
   2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
   3 *
   4 *  SCSI queueing library.
   5 *      Initial versions: Eric Youngdale (eric@andante.org).
   6 *                        Based upon conversations with large numbers
   7 *                        of people at Linux Expo.
   8 */
   9
  10#include <linux/bio.h>
  11#include <linux/bitops.h>
  12#include <linux/blkdev.h>
  13#include <linux/completion.h>
  14#include <linux/kernel.h>
  15#include <linux/mempool.h>
  16#include <linux/slab.h>
  17#include <linux/init.h>
  18#include <linux/pci.h>
  19#include <linux/delay.h>
  20#include <linux/hardirq.h>
  21#include <linux/scatterlist.h>
  22
  23#include <scsi/scsi.h>
  24#include <scsi/scsi_cmnd.h>
  25#include <scsi/scsi_dbg.h>
  26#include <scsi/scsi_device.h>
  27#include <scsi/scsi_driver.h>
  28#include <scsi/scsi_eh.h>
  29#include <scsi/scsi_host.h>
  30
  31#include "scsi_priv.h"
  32#include "scsi_logging.h"
  33
  34
  35#define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
  36#define SG_MEMPOOL_SIZE         2
  37
  38struct scsi_host_sg_pool {
  39        size_t          size;
  40        char            *name;
  41        struct kmem_cache       *slab;
  42        mempool_t       *pool;
  43};
  44
  45#define SP(x) { x, "sgpool-" __stringify(x) }
  46#if (SCSI_MAX_SG_SEGMENTS < 32)
  47#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
  48#endif
  49static struct scsi_host_sg_pool scsi_sg_pools[] = {
  50        SP(8),
  51        SP(16),
  52#if (SCSI_MAX_SG_SEGMENTS > 32)
  53        SP(32),
  54#if (SCSI_MAX_SG_SEGMENTS > 64)
  55        SP(64),
  56#if (SCSI_MAX_SG_SEGMENTS > 128)
  57        SP(128),
  58#if (SCSI_MAX_SG_SEGMENTS > 256)
  59#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
  60#endif
  61#endif
  62#endif
  63#endif
  64        SP(SCSI_MAX_SG_SEGMENTS)
  65};
  66#undef SP
  67
  68struct kmem_cache *scsi_sdb_cache;
  69
  70static void scsi_run_queue(struct request_queue *q);
  71
  72/*
  73 * Function:    scsi_unprep_request()
  74 *
  75 * Purpose:     Remove all preparation done for a request, including its
  76 *              associated scsi_cmnd, so that it can be requeued.
  77 *
  78 * Arguments:   req     - request to unprepare
  79 *
  80 * Lock status: Assumed that no locks are held upon entry.
  81 *
  82 * Returns:     Nothing.
  83 */
  84static void scsi_unprep_request(struct request *req)
  85{
  86        struct scsi_cmnd *cmd = req->special;
  87
  88        blk_unprep_request(req);
  89        req->special = NULL;
  90
  91        scsi_put_command(cmd);
  92}
  93
  94/**
  95 * __scsi_queue_insert - private queue insertion
  96 * @cmd: The SCSI command being requeued
  97 * @reason:  The reason for the requeue
  98 * @unbusy: Whether the queue should be unbusied
  99 *
 100 * This is a private queue insertion.  The public interface
 101 * scsi_queue_insert() always assumes the queue should be unbusied
 102 * because it's always called before the completion.  This function is
 103 * for a requeue after completion, which should only occur in this
 104 * file.
 105 */
 106static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
 107{
 108        struct Scsi_Host *host = cmd->device->host;
 109        struct scsi_device *device = cmd->device;
 110        struct scsi_target *starget = scsi_target(device);
 111        struct request_queue *q = device->request_queue;
 112        unsigned long flags;
 113
 114        SCSI_LOG_MLQUEUE(1,
 115                 printk("Inserting command %p into mlqueue\n", cmd));
 116
 117        /*
 118         * Set the appropriate busy bit for the device/host.
 119         *
 120         * If the host/device isn't busy, assume that something actually
 121         * completed, and that we should be able to queue a command now.
 122         *
 123         * Note that the prior mid-layer assumption that any host could
 124         * always queue at least one command is now broken.  The mid-layer
 125         * will implement a user specifiable stall (see
 126         * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 127         * if a command is requeued with no other commands outstanding
 128         * either for the device or for the host.
 129         */
 130        switch (reason) {
 131        case SCSI_MLQUEUE_HOST_BUSY:
 132                host->host_blocked = host->max_host_blocked;
 133                break;
 134        case SCSI_MLQUEUE_DEVICE_BUSY:
 135                device->device_blocked = device->max_device_blocked;
 136                break;
 137        case SCSI_MLQUEUE_TARGET_BUSY:
 138                starget->target_blocked = starget->max_target_blocked;
 139                break;
 140        }
 141
 142        /*
 143         * Decrement the counters, since these commands are no longer
 144         * active on the host/device.
 145         */
 146        if (unbusy)
 147                scsi_device_unbusy(device);
 148
 149        /*
 150         * Requeue this command.  It will go before all other commands
 151         * that are already in the queue.
 152         *
 153         * NOTE: there is magic here about the way the queue is plugged if
 154         * we have no outstanding commands.
 155         * 
 156         * Although we *don't* plug the queue, we call the request
 157         * function.  The SCSI request function detects the blocked condition
 158         * and plugs the queue appropriately.
 159         */
 160        spin_lock_irqsave(q->queue_lock, flags);
 161        blk_requeue_request(q, cmd->request);
 162        spin_unlock_irqrestore(q->queue_lock, flags);
 163
 164        scsi_run_queue(q);
 165
 166        return 0;
 167}
 168
 169/*
 170 * Function:    scsi_queue_insert()
 171 *
 172 * Purpose:     Insert a command in the midlevel queue.
 173 *
 174 * Arguments:   cmd    - command that we are adding to queue.
 175 *              reason - why we are inserting command to queue.
 176 *
 177 * Lock status: Assumed that lock is not held upon entry.
 178 *
 179 * Returns:     Nothing.
 180 *
 181 * Notes:       We do this for one of two cases.  Either the host is busy
 182 *              and it cannot accept any more commands for the time being,
 183 *              or the device returned QUEUE_FULL and can accept no more
 184 *              commands.
 185 * Notes:       This could be called either from an interrupt context or a
 186 *              normal process context.
 187 */
 188int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 189{
 190        return __scsi_queue_insert(cmd, reason, 1);
 191}
 192/**
 193 * scsi_execute - insert request and wait for the result
 194 * @sdev:       scsi device
 195 * @cmd:        scsi command
 196 * @data_direction: data direction
 197 * @buffer:     data buffer
 198 * @bufflen:    len of buffer
 199 * @sense:      optional sense buffer
 200 * @timeout:    request timeout in seconds
 201 * @retries:    number of times to retry request
 202 * @flags:      or into request flags;
 203 * @resid:      optional residual length
 204 *
 205 * returns the req->errors value which is the scsi_cmnd result
 206 * field.
 207 */
 208int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 209                 int data_direction, void *buffer, unsigned bufflen,
 210                 unsigned char *sense, int timeout, int retries, int flags,
 211                 int *resid)
 212{
 213        struct request *req;
 214        int write = (data_direction == DMA_TO_DEVICE);
 215        int ret = DRIVER_ERROR << 24;
 216
 217        req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
 218
 219        if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
 220                                        buffer, bufflen, __GFP_WAIT))
 221                goto out;
 222
 223        req->cmd_len = COMMAND_SIZE(cmd[0]);
 224        memcpy(req->cmd, cmd, req->cmd_len);
 225        req->sense = sense;
 226        req->sense_len = 0;
 227        req->retries = retries;
 228        req->timeout = timeout;
 229        req->cmd_type = REQ_TYPE_BLOCK_PC;
 230        req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
 231
 232        /*
 233         * head injection *required* here otherwise quiesce won't work
 234         */
 235        blk_execute_rq(req->q, NULL, req, 1);
 236
 237        /*
 238         * Some devices (USB mass-storage in particular) may transfer
 239         * garbage data together with a residue indicating that the data
 240         * is invalid.  Prevent the garbage from being misinterpreted
 241         * and prevent security leaks by zeroing out the excess data.
 242         */
 243        if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 244                memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 245
 246        if (resid)
 247                *resid = req->resid_len;
 248        ret = req->errors;
 249 out:
 250        blk_put_request(req);
 251
 252        return ret;
 253}
 254EXPORT_SYMBOL(scsi_execute);
 255
 256
 257int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
 258                     int data_direction, void *buffer, unsigned bufflen,
 259                     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 260                     int *resid)
 261{
 262        char *sense = NULL;
 263        int result;
 264        
 265        if (sshdr) {
 266                sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 267                if (!sense)
 268                        return DRIVER_ERROR << 24;
 269        }
 270        result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 271                              sense, timeout, retries, 0, resid);
 272        if (sshdr)
 273                scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 274
 275        kfree(sense);
 276        return result;
 277}
 278EXPORT_SYMBOL(scsi_execute_req);
 279
 280/*
 281 * Function:    scsi_init_cmd_errh()
 282 *
 283 * Purpose:     Initialize cmd fields related to error handling.
 284 *
 285 * Arguments:   cmd     - command that is ready to be queued.
 286 *
 287 * Notes:       This function has the job of initializing a number of
 288 *              fields related to error handling.   Typically this will
 289 *              be called once for each command, as required.
 290 */
 291static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 292{
 293        cmd->serial_number = 0;
 294        scsi_set_resid(cmd, 0);
 295        memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 296        if (cmd->cmd_len == 0)
 297                cmd->cmd_len = scsi_command_size(cmd->cmnd);
 298}
 299
 300void scsi_device_unbusy(struct scsi_device *sdev)
 301{
 302        struct Scsi_Host *shost = sdev->host;
 303        struct scsi_target *starget = scsi_target(sdev);
 304        unsigned long flags;
 305
 306        spin_lock_irqsave(shost->host_lock, flags);
 307        shost->host_busy--;
 308        starget->target_busy--;
 309        if (unlikely(scsi_host_in_recovery(shost) &&
 310                     (shost->host_failed || shost->host_eh_scheduled)))
 311                scsi_eh_wakeup(shost);
 312        spin_unlock(shost->host_lock);
 313        spin_lock(sdev->request_queue->queue_lock);
 314        sdev->device_busy--;
 315        spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
 316}
 317
 318/*
 319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 320 * and call blk_run_queue for all the scsi_devices on the target -
 321 * including current_sdev first.
 322 *
 323 * Called with *no* scsi locks held.
 324 */
 325static void scsi_single_lun_run(struct scsi_device *current_sdev)
 326{
 327        struct Scsi_Host *shost = current_sdev->host;
 328        struct scsi_device *sdev, *tmp;
 329        struct scsi_target *starget = scsi_target(current_sdev);
 330        unsigned long flags;
 331
 332        spin_lock_irqsave(shost->host_lock, flags);
 333        starget->starget_sdev_user = NULL;
 334        spin_unlock_irqrestore(shost->host_lock, flags);
 335
 336        /*
 337         * Call blk_run_queue for all LUNs on the target, starting with
 338         * current_sdev. We race with others (to set starget_sdev_user),
 339         * but in most cases, we will be first. Ideally, each LU on the
 340         * target would get some limited time or requests on the target.
 341         */
 342        blk_run_queue(current_sdev->request_queue);
 343
 344        spin_lock_irqsave(shost->host_lock, flags);
 345        if (starget->starget_sdev_user)
 346                goto out;
 347        list_for_each_entry_safe(sdev, tmp, &starget->devices,
 348                        same_target_siblings) {
 349                if (sdev == current_sdev)
 350                        continue;
 351                if (scsi_device_get(sdev))
 352                        continue;
 353
 354                spin_unlock_irqrestore(shost->host_lock, flags);
 355                blk_run_queue(sdev->request_queue);
 356                spin_lock_irqsave(shost->host_lock, flags);
 357        
 358                scsi_device_put(sdev);
 359        }
 360 out:
 361        spin_unlock_irqrestore(shost->host_lock, flags);
 362}
 363
 364static inline int scsi_device_is_busy(struct scsi_device *sdev)
 365{
 366        if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
 367                return 1;
 368
 369        return 0;
 370}
 371
 372static inline int scsi_target_is_busy(struct scsi_target *starget)
 373{
 374        return ((starget->can_queue > 0 &&
 375                 starget->target_busy >= starget->can_queue) ||
 376                 starget->target_blocked);
 377}
 378
 379static inline int scsi_host_is_busy(struct Scsi_Host *shost)
 380{
 381        if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
 382            shost->host_blocked || shost->host_self_blocked)
 383                return 1;
 384
 385        return 0;
 386}
 387
 388/*
 389 * Function:    scsi_run_queue()
 390 *
 391 * Purpose:     Select a proper request queue to serve next
 392 *
 393 * Arguments:   q       - last request's queue
 394 *
 395 * Returns:     Nothing
 396 *
 397 * Notes:       The previous command was completely finished, start
 398 *              a new one if possible.
 399 */
 400static void scsi_run_queue(struct request_queue *q)
 401{
 402        struct scsi_device *sdev = q->queuedata;
 403        struct Scsi_Host *shost = sdev->host;
 404        LIST_HEAD(starved_list);
 405        unsigned long flags;
 406
 407        if (scsi_target(sdev)->single_lun)
 408                scsi_single_lun_run(sdev);
 409
 410        spin_lock_irqsave(shost->host_lock, flags);
 411        list_splice_init(&shost->starved_list, &starved_list);
 412
 413        while (!list_empty(&starved_list)) {
 414                int flagset;
 415
 416                /*
 417                 * As long as shost is accepting commands and we have
 418                 * starved queues, call blk_run_queue. scsi_request_fn
 419                 * drops the queue_lock and can add us back to the
 420                 * starved_list.
 421                 *
 422                 * host_lock protects the starved_list and starved_entry.
 423                 * scsi_request_fn must get the host_lock before checking
 424                 * or modifying starved_list or starved_entry.
 425                 */
 426                if (scsi_host_is_busy(shost))
 427                        break;
 428
 429                sdev = list_entry(starved_list.next,
 430                                  struct scsi_device, starved_entry);
 431                list_del_init(&sdev->starved_entry);
 432                if (scsi_target_is_busy(scsi_target(sdev))) {
 433                        list_move_tail(&sdev->starved_entry,
 434                                       &shost->starved_list);
 435                        continue;
 436                }
 437
 438                spin_unlock(shost->host_lock);
 439
 440                spin_lock(sdev->request_queue->queue_lock);
 441                flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
 442                                !test_bit(QUEUE_FLAG_REENTER,
 443                                        &sdev->request_queue->queue_flags);
 444                if (flagset)
 445                        queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
 446                __blk_run_queue(sdev->request_queue, false);
 447                if (flagset)
 448                        queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
 449                spin_unlock(sdev->request_queue->queue_lock);
 450
 451                spin_lock(shost->host_lock);
 452        }
 453        /* put any unprocessed entries back */
 454        list_splice(&starved_list, &shost->starved_list);
 455        spin_unlock_irqrestore(shost->host_lock, flags);
 456
 457        blk_run_queue(q);
 458}
 459
 460/*
 461 * Function:    scsi_requeue_command()
 462 *
 463 * Purpose:     Handle post-processing of completed commands.
 464 *
 465 * Arguments:   q       - queue to operate on
 466 *              cmd     - command that may need to be requeued.
 467 *
 468 * Returns:     Nothing
 469 *
 470 * Notes:       After command completion, there may be blocks left
 471 *              over which weren't finished by the previous command
 472 *              this can be for a number of reasons - the main one is
 473 *              I/O errors in the middle of the request, in which case
 474 *              we need to request the blocks that come after the bad
 475 *              sector.
 476 * Notes:       Upon return, cmd is a stale pointer.
 477 */
 478static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 479{
 480        struct request *req = cmd->request;
 481        unsigned long flags;
 482
 483        spin_lock_irqsave(q->queue_lock, flags);
 484        scsi_unprep_request(req);
 485        blk_requeue_request(q, req);
 486        spin_unlock_irqrestore(q->queue_lock, flags);
 487
 488        scsi_run_queue(q);
 489}
 490
 491void scsi_next_command(struct scsi_cmnd *cmd)
 492{
 493        struct scsi_device *sdev = cmd->device;
 494        struct request_queue *q = sdev->request_queue;
 495
 496        /* need to hold a reference on the device before we let go of the cmd */
 497        get_device(&sdev->sdev_gendev);
 498
 499        scsi_put_command(cmd);
 500        scsi_run_queue(q);
 501
 502        /* ok to remove device now */
 503        put_device(&sdev->sdev_gendev);
 504}
 505
 506void scsi_run_host_queues(struct Scsi_Host *shost)
 507{
 508        struct scsi_device *sdev;
 509
 510        shost_for_each_device(sdev, shost)
 511                scsi_run_queue(sdev->request_queue);
 512}
 513
 514static void __scsi_release_buffers(struct scsi_cmnd *, int);
 515
 516/*
 517 * Function:    scsi_end_request()
 518 *
 519 * Purpose:     Post-processing of completed commands (usually invoked at end
 520 *              of upper level post-processing and scsi_io_completion).
 521 *
 522 * Arguments:   cmd      - command that is complete.
 523 *              error    - 0 if I/O indicates success, < 0 for I/O error.
 524 *              bytes    - number of bytes of completed I/O
 525 *              requeue  - indicates whether we should requeue leftovers.
 526 *
 527 * Lock status: Assumed that lock is not held upon entry.
 528 *
 529 * Returns:     cmd if requeue required, NULL otherwise.
 530 *
 531 * Notes:       This is called for block device requests in order to
 532 *              mark some number of sectors as complete.
 533 * 
 534 *              We are guaranteeing that the request queue will be goosed
 535 *              at some point during this call.
 536 * Notes:       If cmd was requeued, upon return it will be a stale pointer.
 537 */
 538static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
 539                                          int bytes, int requeue)
 540{
 541        struct request_queue *q = cmd->device->request_queue;
 542        struct request *req = cmd->request;
 543
 544        /*
 545         * If there are blocks left over at the end, set up the command
 546         * to queue the remainder of them.
 547         */
 548        if (blk_end_request(req, error, bytes)) {
 549                /* kill remainder if no retrys */
 550                if (error && scsi_noretry_cmd(cmd))
 551                        blk_end_request_all(req, error);
 552                else {
 553                        if (requeue) {
 554                                /*
 555                                 * Bleah.  Leftovers again.  Stick the
 556                                 * leftovers in the front of the
 557                                 * queue, and goose the queue again.
 558                                 */
 559                                scsi_release_buffers(cmd);
 560                                scsi_requeue_command(q, cmd);
 561                                cmd = NULL;
 562                        }
 563                        return cmd;
 564                }
 565        }
 566
 567        /*
 568         * This will goose the queue request function at the end, so we don't
 569         * need to worry about launching another command.
 570         */
 571        __scsi_release_buffers(cmd, 0);
 572        scsi_next_command(cmd);
 573        return NULL;
 574}
 575
 576static inline unsigned int scsi_sgtable_index(unsigned short nents)
 577{
 578        unsigned int index;
 579
 580        BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
 581
 582        if (nents <= 8)
 583                index = 0;
 584        else
 585                index = get_count_order(nents) - 3;
 586
 587        return index;
 588}
 589
 590static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
 591{
 592        struct scsi_host_sg_pool *sgp;
 593
 594        sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 595        mempool_free(sgl, sgp->pool);
 596}
 597
 598static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
 599{
 600        struct scsi_host_sg_pool *sgp;
 601
 602        sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 603        return mempool_alloc(sgp->pool, gfp_mask);
 604}
 605
 606static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
 607                              gfp_t gfp_mask)
 608{
 609        int ret;
 610
 611        BUG_ON(!nents);
 612
 613        ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
 614                               gfp_mask, scsi_sg_alloc);
 615        if (unlikely(ret))
 616                __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
 617                                scsi_sg_free);
 618
 619        return ret;
 620}
 621
 622static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
 623{
 624        __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
 625}
 626
 627static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
 628{
 629
 630        if (cmd->sdb.table.nents)
 631                scsi_free_sgtable(&cmd->sdb);
 632
 633        memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 634
 635        if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
 636                struct scsi_data_buffer *bidi_sdb =
 637                        cmd->request->next_rq->special;
 638                scsi_free_sgtable(bidi_sdb);
 639                kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 640                cmd->request->next_rq->special = NULL;
 641        }
 642
 643        if (scsi_prot_sg_count(cmd))
 644                scsi_free_sgtable(cmd->prot_sdb);
 645}
 646
 647/*
 648 * Function:    scsi_release_buffers()
 649 *
 650 * Purpose:     Completion processing for block device I/O requests.
 651 *
 652 * Arguments:   cmd     - command that we are bailing.
 653 *
 654 * Lock status: Assumed that no lock is held upon entry.
 655 *
 656 * Returns:     Nothing
 657 *
 658 * Notes:       In the event that an upper level driver rejects a
 659 *              command, we must release resources allocated during
 660 *              the __init_io() function.  Primarily this would involve
 661 *              the scatter-gather table, and potentially any bounce
 662 *              buffers.
 663 */
 664void scsi_release_buffers(struct scsi_cmnd *cmd)
 665{
 666        __scsi_release_buffers(cmd, 1);
 667}
 668EXPORT_SYMBOL(scsi_release_buffers);
 669
 670/*
 671 * Function:    scsi_io_completion()
 672 *
 673 * Purpose:     Completion processing for block device I/O requests.
 674 *
 675 * Arguments:   cmd   - command that is finished.
 676 *
 677 * Lock status: Assumed that no lock is held upon entry.
 678 *
 679 * Returns:     Nothing
 680 *
 681 * Notes:       This function is matched in terms of capabilities to
 682 *              the function that created the scatter-gather list.
 683 *              In other words, if there are no bounce buffers
 684 *              (the normal case for most drivers), we don't need
 685 *              the logic to deal with cleaning up afterwards.
 686 *
 687 *              We must call scsi_end_request().  This will finish off
 688 *              the specified number of sectors.  If we are done, the
 689 *              command block will be released and the queue function
 690 *              will be goosed.  If we are not done then we have to
 691 *              figure out what to do next:
 692 *
 693 *              a) We can call scsi_requeue_command().  The request
 694 *                 will be unprepared and put back on the queue.  Then
 695 *                 a new command will be created for it.  This should
 696 *                 be used if we made forward progress, or if we want
 697 *                 to switch from READ(10) to READ(6) for example.
 698 *
 699 *              b) We can call scsi_queue_insert().  The request will
 700 *                 be put back on the queue and retried using the same
 701 *                 command as before, possibly after a delay.
 702 *
 703 *              c) We can call blk_end_request() with -EIO to fail
 704 *                 the remainder of the request.
 705 */
 706void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 707{
 708        int result = cmd->result;
 709        struct request_queue *q = cmd->device->request_queue;
 710        struct request *req = cmd->request;
 711        int error = 0;
 712        struct scsi_sense_hdr sshdr;
 713        int sense_valid = 0;
 714        int sense_deferred = 0;
 715        enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 716              ACTION_DELAYED_RETRY} action;
 717        char *description = NULL;
 718
 719        if (result) {
 720                sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 721                if (sense_valid)
 722                        sense_deferred = scsi_sense_is_deferred(&sshdr);
 723        }
 724
 725        if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 726                req->errors = result;
 727                if (result) {
 728                        if (sense_valid && req->sense) {
 729                                /*
 730                                 * SG_IO wants current and deferred errors
 731                                 */
 732                                int len = 8 + cmd->sense_buffer[7];
 733
 734                                if (len > SCSI_SENSE_BUFFERSIZE)
 735                                        len = SCSI_SENSE_BUFFERSIZE;
 736                                memcpy(req->sense, cmd->sense_buffer,  len);
 737                                req->sense_len = len;
 738                        }
 739                        if (!sense_deferred)
 740                                error = -EIO;
 741                }
 742
 743                req->resid_len = scsi_get_resid(cmd);
 744
 745                if (scsi_bidi_cmnd(cmd)) {
 746                        /*
 747                         * Bidi commands Must be complete as a whole,
 748                         * both sides at once.
 749                         */
 750                        req->next_rq->resid_len = scsi_in(cmd)->resid;
 751
 752                        scsi_release_buffers(cmd);
 753                        blk_end_request_all(req, 0);
 754
 755                        scsi_next_command(cmd);
 756                        return;
 757                }
 758        }
 759
 760        /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 761        BUG_ON(blk_bidi_rq(req));
 762
 763        /*
 764         * Next deal with any sectors which we were able to correctly
 765         * handle.
 766         */
 767        SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
 768                                      "%d bytes done.\n",
 769                                      blk_rq_sectors(req), good_bytes));
 770
 771        /*
 772         * Recovered errors need reporting, but they're always treated
 773         * as success, so fiddle the result code here.  For BLOCK_PC
 774         * we already took a copy of the original into rq->errors which
 775         * is what gets returned to the user
 776         */
 777        if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 778                /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 779                 * print since caller wants ATA registers. Only occurs on
 780                 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 781                 */
 782                if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 783                        ;
 784                else if (!(req->cmd_flags & REQ_QUIET))
 785                        scsi_print_sense("", cmd);
 786                result = 0;
 787                /* BLOCK_PC may have set error */
 788                error = 0;
 789        }
 790
 791        /*
 792         * A number of bytes were successfully read.  If there
 793         * are leftovers and there is some kind of error
 794         * (result != 0), retry the rest.
 795         */
 796        if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
 797                return;
 798
 799        error = -EIO;
 800
 801        if (host_byte(result) == DID_RESET) {
 802                /* Third party bus reset or reset for error recovery
 803                 * reasons.  Just retry the command and see what
 804                 * happens.
 805                 */
 806                action = ACTION_RETRY;
 807        } else if (sense_valid && !sense_deferred) {
 808                switch (sshdr.sense_key) {
 809                case UNIT_ATTENTION:
 810                        if (cmd->device->removable) {
 811                                /* Detected disc change.  Set a bit
 812                                 * and quietly refuse further access.
 813                                 */
 814                                cmd->device->changed = 1;
 815                                description = "Media Changed";
 816                                action = ACTION_FAIL;
 817                        } else {
 818                                /* Must have been a power glitch, or a
 819                                 * bus reset.  Could not have been a
 820                                 * media change, so we just retry the
 821                                 * command and see what happens.
 822                                 */
 823                                action = ACTION_RETRY;
 824                        }
 825                        break;
 826                case ILLEGAL_REQUEST:
 827                        /* If we had an ILLEGAL REQUEST returned, then
 828                         * we may have performed an unsupported
 829                         * command.  The only thing this should be
 830                         * would be a ten byte read where only a six
 831                         * byte read was supported.  Also, on a system
 832                         * where READ CAPACITY failed, we may have
 833                         * read past the end of the disk.
 834                         */
 835                        if ((cmd->device->use_10_for_rw &&
 836                            sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 837                            (cmd->cmnd[0] == READ_10 ||
 838                             cmd->cmnd[0] == WRITE_10)) {
 839                                /* This will issue a new 6-byte command. */
 840                                cmd->device->use_10_for_rw = 0;
 841                                action = ACTION_REPREP;
 842                        } else if (sshdr.asc == 0x10) /* DIX */ {
 843                                description = "Host Data Integrity Failure";
 844                                action = ACTION_FAIL;
 845                                error = -EILSEQ;
 846                        } else
 847                                action = ACTION_FAIL;
 848                        break;
 849                case ABORTED_COMMAND:
 850                        action = ACTION_FAIL;
 851                        if (sshdr.asc == 0x10) { /* DIF */
 852                                description = "Target Data Integrity Failure";
 853                                error = -EILSEQ;
 854                        }
 855                        break;
 856                case NOT_READY:
 857                        /* If the device is in the process of becoming
 858                         * ready, or has a temporary blockage, retry.
 859                         */
 860                        if (sshdr.asc == 0x04) {
 861                                switch (sshdr.ascq) {
 862                                case 0x01: /* becoming ready */
 863                                case 0x04: /* format in progress */
 864                                case 0x05: /* rebuild in progress */
 865                                case 0x06: /* recalculation in progress */
 866                                case 0x07: /* operation in progress */
 867                                case 0x08: /* Long write in progress */
 868                                case 0x09: /* self test in progress */
 869                                case 0x14: /* space allocation in progress */
 870                                        action = ACTION_DELAYED_RETRY;
 871                                        break;
 872                                default:
 873                                        description = "Device not ready";
 874                                        action = ACTION_FAIL;
 875                                        break;
 876                                }
 877                        } else {
 878                                description = "Device not ready";
 879                                action = ACTION_FAIL;
 880                        }
 881                        break;
 882                case VOLUME_OVERFLOW:
 883                        /* See SSC3rXX or current. */
 884                        action = ACTION_FAIL;
 885                        break;
 886                default:
 887                        description = "Unhandled sense code";
 888                        action = ACTION_FAIL;
 889                        break;
 890                }
 891        } else {
 892                description = "Unhandled error code";
 893                action = ACTION_FAIL;
 894        }
 895
 896        switch (action) {
 897        case ACTION_FAIL:
 898                /* Give up and fail the remainder of the request */
 899                scsi_release_buffers(cmd);
 900                if (!(req->cmd_flags & REQ_QUIET)) {
 901                        if (description)
 902                                scmd_printk(KERN_INFO, cmd, "%s\n",
 903                                            description);
 904                        scsi_print_result(cmd);
 905                        if (driver_byte(result) & DRIVER_SENSE)
 906                                scsi_print_sense("", cmd);
 907                        scsi_print_command(cmd);
 908                }
 909                if (blk_end_request_err(req, error))
 910                        scsi_requeue_command(q, cmd);
 911                else
 912                        scsi_next_command(cmd);
 913                break;
 914        case ACTION_REPREP:
 915                /* Unprep the request and put it back at the head of the queue.
 916                 * A new command will be prepared and issued.
 917                 */
 918                scsi_release_buffers(cmd);
 919                scsi_requeue_command(q, cmd);
 920                break;
 921        case ACTION_RETRY:
 922                /* Retry the same command immediately */
 923                __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
 924                break;
 925        case ACTION_DELAYED_RETRY:
 926                /* Retry the same command after a delay */
 927                __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
 928                break;
 929        }
 930}
 931
 932static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
 933                             gfp_t gfp_mask)
 934{
 935        int count;
 936
 937        /*
 938         * If sg table allocation fails, requeue request later.
 939         */
 940        if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
 941                                        gfp_mask))) {
 942                return BLKPREP_DEFER;
 943        }
 944
 945        req->buffer = NULL;
 946
 947        /* 
 948         * Next, walk the list, and fill in the addresses and sizes of
 949         * each segment.
 950         */
 951        count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
 952        BUG_ON(count > sdb->table.nents);
 953        sdb->table.nents = count;
 954        sdb->length = blk_rq_bytes(req);
 955        return BLKPREP_OK;
 956}
 957
 958/*
 959 * Function:    scsi_init_io()
 960 *
 961 * Purpose:     SCSI I/O initialize function.
 962 *
 963 * Arguments:   cmd   - Command descriptor we wish to initialize
 964 *
 965 * Returns:     0 on success
 966 *              BLKPREP_DEFER if the failure is retryable
 967 *              BLKPREP_KILL if the failure is fatal
 968 */
 969int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
 970{
 971        struct request *rq = cmd->request;
 972
 973        int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
 974        if (error)
 975                goto err_exit;
 976
 977        if (blk_bidi_rq(rq)) {
 978                struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
 979                        scsi_sdb_cache, GFP_ATOMIC);
 980                if (!bidi_sdb) {
 981                        error = BLKPREP_DEFER;
 982                        goto err_exit;
 983                }
 984
 985                rq->next_rq->special = bidi_sdb;
 986                error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
 987                if (error)
 988                        goto err_exit;
 989        }
 990
 991        if (blk_integrity_rq(rq)) {
 992                struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
 993                int ivecs, count;
 994
 995                BUG_ON(prot_sdb == NULL);
 996                ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
 997
 998                if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
 999                        error = BLKPREP_DEFER;
1000                        goto err_exit;
1001                }
1002
1003                count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1004                                                prot_sdb->table.sgl);
1005                BUG_ON(unlikely(count > ivecs));
1006                BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1007
1008                cmd->prot_sdb = prot_sdb;
1009                cmd->prot_sdb->table.nents = count;
1010        }
1011
1012        return BLKPREP_OK ;
1013
1014err_exit:
1015        scsi_release_buffers(cmd);
1016        cmd->request->special = NULL;
1017        scsi_put_command(cmd);
1018        return error;
1019}
1020EXPORT_SYMBOL(scsi_init_io);
1021
1022static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1023                struct request *req)
1024{
1025        struct scsi_cmnd *cmd;
1026
1027        if (!req->special) {
1028                cmd = scsi_get_command(sdev, GFP_ATOMIC);
1029                if (unlikely(!cmd))
1030                        return NULL;
1031                req->special = cmd;
1032        } else {
1033                cmd = req->special;
1034        }
1035
1036        /* pull a tag out of the request if we have one */
1037        cmd->tag = req->tag;
1038        cmd->request = req;
1039
1040        cmd->cmnd = req->cmd;
1041
1042        return cmd;
1043}
1044
1045int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1046{
1047        struct scsi_cmnd *cmd;
1048        int ret = scsi_prep_state_check(sdev, req);
1049
1050        if (ret != BLKPREP_OK)
1051                return ret;
1052
1053        cmd = scsi_get_cmd_from_req(sdev, req);
1054        if (unlikely(!cmd))
1055                return BLKPREP_DEFER;
1056
1057        /*
1058         * BLOCK_PC requests may transfer data, in which case they must
1059         * a bio attached to them.  Or they might contain a SCSI command
1060         * that does not transfer data, in which case they may optionally
1061         * submit a request without an attached bio.
1062         */
1063        if (req->bio) {
1064                int ret;
1065
1066                BUG_ON(!req->nr_phys_segments);
1067
1068                ret = scsi_init_io(cmd, GFP_ATOMIC);
1069                if (unlikely(ret))
1070                        return ret;
1071        } else {
1072                BUG_ON(blk_rq_bytes(req));
1073
1074                memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1075                req->buffer = NULL;
1076        }
1077
1078        cmd->cmd_len = req->cmd_len;
1079        if (!blk_rq_bytes(req))
1080                cmd->sc_data_direction = DMA_NONE;
1081        else if (rq_data_dir(req) == WRITE)
1082                cmd->sc_data_direction = DMA_TO_DEVICE;
1083        else
1084                cmd->sc_data_direction = DMA_FROM_DEVICE;
1085        
1086        cmd->transfersize = blk_rq_bytes(req);
1087        cmd->allowed = req->retries;
1088        return BLKPREP_OK;
1089}
1090EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1091
1092/*
1093 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1094 * from filesystems that still need to be translated to SCSI CDBs from
1095 * the ULD.
1096 */
1097int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1098{
1099        struct scsi_cmnd *cmd;
1100        int ret = scsi_prep_state_check(sdev, req);
1101
1102        if (ret != BLKPREP_OK)
1103                return ret;
1104
1105        if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1106                         && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1107                ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1108                if (ret != BLKPREP_OK)
1109                        return ret;
1110        }
1111
1112        /*
1113         * Filesystem requests must transfer data.
1114         */
1115        BUG_ON(!req->nr_phys_segments);
1116
1117        cmd = scsi_get_cmd_from_req(sdev, req);
1118        if (unlikely(!cmd))
1119                return BLKPREP_DEFER;
1120
1121        memset(cmd->cmnd, 0, BLK_MAX_CDB);
1122        return scsi_init_io(cmd, GFP_ATOMIC);
1123}
1124EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1125
1126int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1127{
1128        int ret = BLKPREP_OK;
1129
1130        /*
1131         * If the device is not in running state we will reject some
1132         * or all commands.
1133         */
1134        if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1135                switch (sdev->sdev_state) {
1136                case SDEV_OFFLINE:
1137                        /*
1138                         * If the device is offline we refuse to process any
1139                         * commands.  The device must be brought online
1140                         * before trying any recovery commands.
1141                         */
1142                        sdev_printk(KERN_ERR, sdev,
1143                                    "rejecting I/O to offline device\n");
1144                        ret = BLKPREP_KILL;
1145                        break;
1146                case SDEV_DEL:
1147                        /*
1148                         * If the device is fully deleted, we refuse to
1149                         * process any commands as well.
1150                         */
1151                        sdev_printk(KERN_ERR, sdev,
1152                                    "rejecting I/O to dead device\n");
1153                        ret = BLKPREP_KILL;
1154                        break;
1155                case SDEV_QUIESCE:
1156                case SDEV_BLOCK:
1157                case SDEV_CREATED_BLOCK:
1158                        /*
1159                         * If the devices is blocked we defer normal commands.
1160                         */
1161                        if (!(req->cmd_flags & REQ_PREEMPT))
1162                                ret = BLKPREP_DEFER;
1163                        break;
1164                default:
1165                        /*
1166                         * For any other not fully online state we only allow
1167                         * special commands.  In particular any user initiated
1168                         * command is not allowed.
1169                         */
1170                        if (!(req->cmd_flags & REQ_PREEMPT))
1171                                ret = BLKPREP_KILL;
1172                        break;
1173                }
1174        }
1175        return ret;
1176}
1177EXPORT_SYMBOL(scsi_prep_state_check);
1178
1179int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1180{
1181        struct scsi_device *sdev = q->queuedata;
1182
1183        switch (ret) {
1184        case BLKPREP_KILL:
1185                req->errors = DID_NO_CONNECT << 16;
1186                /* release the command and kill it */
1187                if (req->special) {
1188                        struct scsi_cmnd *cmd = req->special;
1189                        scsi_release_buffers(cmd);
1190                        scsi_put_command(cmd);
1191                        req->special = NULL;
1192                }
1193                break;
1194        case BLKPREP_DEFER:
1195                /*
1196                 * If we defer, the blk_peek_request() returns NULL, but the
1197                 * queue must be restarted, so we plug here if no returning
1198                 * command will automatically do that.
1199                 */
1200                if (sdev->device_busy == 0)
1201                        blk_plug_device(q);
1202                break;
1203        default:
1204                req->cmd_flags |= REQ_DONTPREP;
1205        }
1206
1207        return ret;
1208}
1209EXPORT_SYMBOL(scsi_prep_return);
1210
1211int scsi_prep_fn(struct request_queue *q, struct request *req)
1212{
1213        struct scsi_device *sdev = q->queuedata;
1214        int ret = BLKPREP_KILL;
1215
1216        if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1217                ret = scsi_setup_blk_pc_cmnd(sdev, req);
1218        return scsi_prep_return(q, req, ret);
1219}
1220EXPORT_SYMBOL(scsi_prep_fn);
1221
1222/*
1223 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1224 * return 0.
1225 *
1226 * Called with the queue_lock held.
1227 */
1228static inline int scsi_dev_queue_ready(struct request_queue *q,
1229                                  struct scsi_device *sdev)
1230{
1231        if (sdev->device_busy == 0 && sdev->device_blocked) {
1232                /*
1233                 * unblock after device_blocked iterates to zero
1234                 */
1235                if (--sdev->device_blocked == 0) {
1236                        SCSI_LOG_MLQUEUE(3,
1237                                   sdev_printk(KERN_INFO, sdev,
1238                                   "unblocking device at zero depth\n"));
1239                } else {
1240                        blk_plug_device(q);
1241                        return 0;
1242                }
1243        }
1244        if (scsi_device_is_busy(sdev))
1245                return 0;
1246
1247        return 1;
1248}
1249
1250
1251/*
1252 * scsi_target_queue_ready: checks if there we can send commands to target
1253 * @sdev: scsi device on starget to check.
1254 *
1255 * Called with the host lock held.
1256 */
1257static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1258                                           struct scsi_device *sdev)
1259{
1260        struct scsi_target *starget = scsi_target(sdev);
1261
1262        if (starget->single_lun) {
1263                if (starget->starget_sdev_user &&
1264                    starget->starget_sdev_user != sdev)
1265                        return 0;
1266                starget->starget_sdev_user = sdev;
1267        }
1268
1269        if (starget->target_busy == 0 && starget->target_blocked) {
1270                /*
1271                 * unblock after target_blocked iterates to zero
1272                 */
1273                if (--starget->target_blocked == 0) {
1274                        SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1275                                         "unblocking target at zero depth\n"));
1276                } else
1277                        return 0;
1278        }
1279
1280        if (scsi_target_is_busy(starget)) {
1281                if (list_empty(&sdev->starved_entry))
1282                        list_add_tail(&sdev->starved_entry,
1283                                      &shost->starved_list);
1284                return 0;
1285        }
1286
1287        /* We're OK to process the command, so we can't be starved */
1288        if (!list_empty(&sdev->starved_entry))
1289                list_del_init(&sdev->starved_entry);
1290        return 1;
1291}
1292
1293/*
1294 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1295 * return 0. We must end up running the queue again whenever 0 is
1296 * returned, else IO can hang.
1297 *
1298 * Called with host_lock held.
1299 */
1300static inline int scsi_host_queue_ready(struct request_queue *q,
1301                                   struct Scsi_Host *shost,
1302                                   struct scsi_device *sdev)
1303{
1304        if (scsi_host_in_recovery(shost))
1305                return 0;
1306        if (shost->host_busy == 0 && shost->host_blocked) {
1307                /*
1308                 * unblock after host_blocked iterates to zero
1309                 */
1310                if (--shost->host_blocked == 0) {
1311                        SCSI_LOG_MLQUEUE(3,
1312                                printk("scsi%d unblocking host at zero depth\n",
1313                                        shost->host_no));
1314                } else {
1315                        return 0;
1316                }
1317        }
1318        if (scsi_host_is_busy(shost)) {
1319                if (list_empty(&sdev->starved_entry))
1320                        list_add_tail(&sdev->starved_entry, &shost->starved_list);
1321                return 0;
1322        }
1323
1324        /* We're OK to process the command, so we can't be starved */
1325        if (!list_empty(&sdev->starved_entry))
1326                list_del_init(&sdev->starved_entry);
1327
1328        return 1;
1329}
1330
1331/*
1332 * Busy state exporting function for request stacking drivers.
1333 *
1334 * For efficiency, no lock is taken to check the busy state of
1335 * shost/starget/sdev, since the returned value is not guaranteed and
1336 * may be changed after request stacking drivers call the function,
1337 * regardless of taking lock or not.
1338 *
1339 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1340 * (e.g. !sdev), scsi needs to return 'not busy'.
1341 * Otherwise, request stacking drivers may hold requests forever.
1342 */
1343static int scsi_lld_busy(struct request_queue *q)
1344{
1345        struct scsi_device *sdev = q->queuedata;
1346        struct Scsi_Host *shost;
1347        struct scsi_target *starget;
1348
1349        if (!sdev)
1350                return 0;
1351
1352        shost = sdev->host;
1353        starget = scsi_target(sdev);
1354
1355        if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1356            scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1357                return 1;
1358
1359        return 0;
1360}
1361
1362/*
1363 * Kill a request for a dead device
1364 */
1365static void scsi_kill_request(struct request *req, struct request_queue *q)
1366{
1367        struct scsi_cmnd *cmd = req->special;
1368        struct scsi_device *sdev;
1369        struct scsi_target *starget;
1370        struct Scsi_Host *shost;
1371
1372        blk_start_request(req);
1373
1374        sdev = cmd->device;
1375        starget = scsi_target(sdev);
1376        shost = sdev->host;
1377        scsi_init_cmd_errh(cmd);
1378        cmd->result = DID_NO_CONNECT << 16;
1379        atomic_inc(&cmd->device->iorequest_cnt);
1380
1381        /*
1382         * SCSI request completion path will do scsi_device_unbusy(),
1383         * bump busy counts.  To bump the counters, we need to dance
1384         * with the locks as normal issue path does.
1385         */
1386        sdev->device_busy++;
1387        spin_unlock(sdev->request_queue->queue_lock);
1388        spin_lock(shost->host_lock);
1389        shost->host_busy++;
1390        starget->target_busy++;
1391        spin_unlock(shost->host_lock);
1392        spin_lock(sdev->request_queue->queue_lock);
1393
1394        blk_complete_request(req);
1395}
1396
1397static void scsi_softirq_done(struct request *rq)
1398{
1399        struct scsi_cmnd *cmd = rq->special;
1400        unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1401        int disposition;
1402
1403        INIT_LIST_HEAD(&cmd->eh_entry);
1404
1405        atomic_inc(&cmd->device->iodone_cnt);
1406        if (cmd->result)
1407                atomic_inc(&cmd->device->ioerr_cnt);
1408
1409        disposition = scsi_decide_disposition(cmd);
1410        if (disposition != SUCCESS &&
1411            time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1412                sdev_printk(KERN_ERR, cmd->device,
1413                            "timing out command, waited %lus\n",
1414                            wait_for/HZ);
1415                disposition = SUCCESS;
1416        }
1417                        
1418        scsi_log_completion(cmd, disposition);
1419
1420        switch (disposition) {
1421                case SUCCESS:
1422                        scsi_finish_command(cmd);
1423                        break;
1424                case NEEDS_RETRY:
1425                        scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1426                        break;
1427                case ADD_TO_MLQUEUE:
1428                        scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1429                        break;
1430                default:
1431                        if (!scsi_eh_scmd_add(cmd, 0))
1432                                scsi_finish_command(cmd);
1433        }
1434}
1435
1436/*
1437 * Function:    scsi_request_fn()
1438 *
1439 * Purpose:     Main strategy routine for SCSI.
1440 *
1441 * Arguments:   q       - Pointer to actual queue.
1442 *
1443 * Returns:     Nothing
1444 *
1445 * Lock status: IO request lock assumed to be held when called.
1446 */
1447static void scsi_request_fn(struct request_queue *q)
1448{
1449        struct scsi_device *sdev = q->queuedata;
1450        struct Scsi_Host *shost;
1451        struct scsi_cmnd *cmd;
1452        struct request *req;
1453
1454        if (!sdev) {
1455                printk("scsi: killing requests for dead queue\n");
1456                while ((req = blk_peek_request(q)) != NULL)
1457                        scsi_kill_request(req, q);
1458                return;
1459        }
1460
1461        if(!get_device(&sdev->sdev_gendev))
1462                /* We must be tearing the block queue down already */
1463                return;
1464
1465        /*
1466         * To start with, we keep looping until the queue is empty, or until
1467         * the host is no longer able to accept any more requests.
1468         */
1469        shost = sdev->host;
1470        while (!blk_queue_plugged(q)) {
1471                int rtn;
1472                /*
1473                 * get next queueable request.  We do this early to make sure
1474                 * that the request is fully prepared even if we cannot 
1475                 * accept it.
1476                 */
1477                req = blk_peek_request(q);
1478                if (!req || !scsi_dev_queue_ready(q, sdev))
1479                        break;
1480
1481                if (unlikely(!scsi_device_online(sdev))) {
1482                        sdev_printk(KERN_ERR, sdev,
1483                                    "rejecting I/O to offline device\n");
1484                        scsi_kill_request(req, q);
1485                        continue;
1486                }
1487
1488
1489                /*
1490                 * Remove the request from the request list.
1491                 */
1492                if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1493                        blk_start_request(req);
1494                sdev->device_busy++;
1495
1496                spin_unlock(q->queue_lock);
1497                cmd = req->special;
1498                if (unlikely(cmd == NULL)) {
1499                        printk(KERN_CRIT "impossible request in %s.\n"
1500                                         "please mail a stack trace to "
1501                                         "linux-scsi@vger.kernel.org\n",
1502                                         __func__);
1503                        blk_dump_rq_flags(req, "foo");
1504                        BUG();
1505                }
1506                spin_lock(shost->host_lock);
1507
1508                /*
1509                 * We hit this when the driver is using a host wide
1510                 * tag map. For device level tag maps the queue_depth check
1511                 * in the device ready fn would prevent us from trying
1512                 * to allocate a tag. Since the map is a shared host resource
1513                 * we add the dev to the starved list so it eventually gets
1514                 * a run when a tag is freed.
1515                 */
1516                if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1517                        if (list_empty(&sdev->starved_entry))
1518                                list_add_tail(&sdev->starved_entry,
1519                                              &shost->starved_list);
1520                        goto not_ready;
1521                }
1522
1523                if (!scsi_target_queue_ready(shost, sdev))
1524                        goto not_ready;
1525
1526                if (!scsi_host_queue_ready(q, shost, sdev))
1527                        goto not_ready;
1528
1529                scsi_target(sdev)->target_busy++;
1530                shost->host_busy++;
1531
1532                /*
1533                 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1534                 *              take the lock again.
1535                 */
1536                spin_unlock_irq(shost->host_lock);
1537
1538                /*
1539                 * Finally, initialize any error handling parameters, and set up
1540                 * the timers for timeouts.
1541                 */
1542                scsi_init_cmd_errh(cmd);
1543
1544                /*
1545                 * Dispatch the command to the low-level driver.
1546                 */
1547                rtn = scsi_dispatch_cmd(cmd);
1548                spin_lock_irq(q->queue_lock);
1549                if(rtn) {
1550                        /* we're refusing the command; because of
1551                         * the way locks get dropped, we need to 
1552                         * check here if plugging is required */
1553                        if(sdev->device_busy == 0)
1554                                blk_plug_device(q);
1555
1556                        break;
1557                }
1558        }
1559
1560        goto out;
1561
1562 not_ready:
1563        spin_unlock_irq(shost->host_lock);
1564
1565        /*
1566         * lock q, handle tag, requeue req, and decrement device_busy. We
1567         * must return with queue_lock held.
1568         *
1569         * Decrementing device_busy without checking it is OK, as all such
1570         * cases (host limits or settings) should run the queue at some
1571         * later time.
1572         */
1573        spin_lock_irq(q->queue_lock);
1574        blk_requeue_request(q, req);
1575        sdev->device_busy--;
1576        if(sdev->device_busy == 0)
1577                blk_plug_device(q);
1578 out:
1579        /* must be careful here...if we trigger the ->remove() function
1580         * we cannot be holding the q lock */
1581        spin_unlock_irq(q->queue_lock);
1582        put_device(&sdev->sdev_gendev);
1583        spin_lock_irq(q->queue_lock);
1584}
1585
1586u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1587{
1588        struct device *host_dev;
1589        u64 bounce_limit = 0xffffffff;
1590
1591        if (shost->unchecked_isa_dma)
1592                return BLK_BOUNCE_ISA;
1593        /*
1594         * Platforms with virtual-DMA translation
1595         * hardware have no practical limit.
1596         */
1597        if (!PCI_DMA_BUS_IS_PHYS)
1598                return BLK_BOUNCE_ANY;
1599
1600        host_dev = scsi_get_device(shost);
1601        if (host_dev && host_dev->dma_mask)
1602                bounce_limit = *host_dev->dma_mask;
1603
1604        return bounce_limit;
1605}
1606EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1607
1608struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1609                                         request_fn_proc *request_fn)
1610{
1611        struct request_queue *q;
1612        struct device *dev = shost->shost_gendev.parent;
1613
1614        q = blk_init_queue(request_fn, NULL);
1615        if (!q)
1616                return NULL;
1617
1618        /*
1619         * this limit is imposed by hardware restrictions
1620         */
1621        blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1622                                        SCSI_MAX_SG_CHAIN_SEGMENTS));
1623
1624        if (scsi_host_prot_dma(shost)) {
1625                shost->sg_prot_tablesize =
1626                        min_not_zero(shost->sg_prot_tablesize,
1627                                     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1628                BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1629                blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1630        }
1631
1632        blk_queue_max_hw_sectors(q, shost->max_sectors);
1633        blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1634        blk_queue_segment_boundary(q, shost->dma_boundary);
1635        dma_set_seg_boundary(dev, shost->dma_boundary);
1636
1637        blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1638
1639        if (!shost->use_clustering)
1640                q->limits.cluster = 0;
1641
1642        /*
1643         * set a reasonable default alignment on word boundaries: the
1644         * host and device may alter it using
1645         * blk_queue_update_dma_alignment() later.
1646         */
1647        blk_queue_dma_alignment(q, 0x03);
1648
1649        return q;
1650}
1651EXPORT_SYMBOL(__scsi_alloc_queue);
1652
1653struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1654{
1655        struct request_queue *q;
1656
1657        q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1658        if (!q)
1659                return NULL;
1660
1661        blk_queue_prep_rq(q, scsi_prep_fn);
1662        blk_queue_softirq_done(q, scsi_softirq_done);
1663        blk_queue_rq_timed_out(q, scsi_times_out);
1664        blk_queue_lld_busy(q, scsi_lld_busy);
1665        return q;
1666}
1667
1668void scsi_free_queue(struct request_queue *q)
1669{
1670        blk_cleanup_queue(q);
1671}
1672
1673/*
1674 * Function:    scsi_block_requests()
1675 *
1676 * Purpose:     Utility function used by low-level drivers to prevent further
1677 *              commands from being queued to the device.
1678 *
1679 * Arguments:   shost       - Host in question
1680 *
1681 * Returns:     Nothing
1682 *
1683 * Lock status: No locks are assumed held.
1684 *
1685 * Notes:       There is no timer nor any other means by which the requests
1686 *              get unblocked other than the low-level driver calling
1687 *              scsi_unblock_requests().
1688 */
1689void scsi_block_requests(struct Scsi_Host *shost)
1690{
1691        shost->host_self_blocked = 1;
1692}
1693EXPORT_SYMBOL(scsi_block_requests);
1694
1695/*
1696 * Function:    scsi_unblock_requests()
1697 *
1698 * Purpose:     Utility function used by low-level drivers to allow further
1699 *              commands from being queued to the device.
1700 *
1701 * Arguments:   shost       - Host in question
1702 *
1703 * Returns:     Nothing
1704 *
1705 * Lock status: No locks are assumed held.
1706 *
1707 * Notes:       There is no timer nor any other means by which the requests
1708 *              get unblocked other than the low-level driver calling
1709 *              scsi_unblock_requests().
1710 *
1711 *              This is done as an API function so that changes to the
1712 *              internals of the scsi mid-layer won't require wholesale
1713 *              changes to drivers that use this feature.
1714 */
1715void scsi_unblock_requests(struct Scsi_Host *shost)
1716{
1717        shost->host_self_blocked = 0;
1718        scsi_run_host_queues(shost);
1719}
1720EXPORT_SYMBOL(scsi_unblock_requests);
1721
1722int __init scsi_init_queue(void)
1723{
1724        int i;
1725
1726        scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1727                                           sizeof(struct scsi_data_buffer),
1728                                           0, 0, NULL);
1729        if (!scsi_sdb_cache) {
1730                printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1731                return -ENOMEM;
1732        }
1733
1734        for (i = 0; i < SG_MEMPOOL_NR; i++) {
1735                struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1736                int size = sgp->size * sizeof(struct scatterlist);
1737
1738                sgp->slab = kmem_cache_create(sgp->name, size, 0,
1739                                SLAB_HWCACHE_ALIGN, NULL);
1740                if (!sgp->slab) {
1741                        printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1742                                        sgp->name);
1743                        goto cleanup_sdb;
1744                }
1745
1746                sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1747                                                     sgp->slab);
1748                if (!sgp->pool) {
1749                        printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1750                                        sgp->name);
1751                        goto cleanup_sdb;
1752                }
1753        }
1754
1755        return 0;
1756
1757cleanup_sdb:
1758        for (i = 0; i < SG_MEMPOOL_NR; i++) {
1759                struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1760                if (sgp->pool)
1761                        mempool_destroy(sgp->pool);
1762                if (sgp->slab)
1763                        kmem_cache_destroy(sgp->slab);
1764        }
1765        kmem_cache_destroy(scsi_sdb_cache);
1766
1767        return -ENOMEM;
1768}
1769
1770void scsi_exit_queue(void)
1771{
1772        int i;
1773
1774        kmem_cache_destroy(scsi_sdb_cache);
1775
1776        for (i = 0; i < SG_MEMPOOL_NR; i++) {
1777                struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1778                mempool_destroy(sgp->pool);
1779                kmem_cache_destroy(sgp->slab);
1780        }
1781}
1782
1783/**
1784 *      scsi_mode_select - issue a mode select
1785 *      @sdev:  SCSI device to be queried
1786 *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1787 *      @sp:    Save page bit (0 == don't save, 1 == save)
1788 *      @modepage: mode page being requested
1789 *      @buffer: request buffer (may not be smaller than eight bytes)
1790 *      @len:   length of request buffer.
1791 *      @timeout: command timeout
1792 *      @retries: number of retries before failing
1793 *      @data: returns a structure abstracting the mode header data
1794 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1795 *              must be SCSI_SENSE_BUFFERSIZE big.
1796 *
1797 *      Returns zero if successful; negative error number or scsi
1798 *      status on error
1799 *
1800 */
1801int
1802scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1803                 unsigned char *buffer, int len, int timeout, int retries,
1804                 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1805{
1806        unsigned char cmd[10];
1807        unsigned char *real_buffer;
1808        int ret;
1809
1810        memset(cmd, 0, sizeof(cmd));
1811        cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1812
1813        if (sdev->use_10_for_ms) {
1814                if (len > 65535)
1815                        return -EINVAL;
1816                real_buffer = kmalloc(8 + len, GFP_KERNEL);
1817                if (!real_buffer)
1818                        return -ENOMEM;
1819                memcpy(real_buffer + 8, buffer, len);
1820                len += 8;
1821                real_buffer[0] = 0;
1822                real_buffer[1] = 0;
1823                real_buffer[2] = data->medium_type;
1824                real_buffer[3] = data->device_specific;
1825                real_buffer[4] = data->longlba ? 0x01 : 0;
1826                real_buffer[5] = 0;
1827                real_buffer[6] = data->block_descriptor_length >> 8;
1828                real_buffer[7] = data->block_descriptor_length;
1829
1830                cmd[0] = MODE_SELECT_10;
1831                cmd[7] = len >> 8;
1832                cmd[8] = len;
1833        } else {
1834                if (len > 255 || data->block_descriptor_length > 255 ||
1835                    data->longlba)
1836                        return -EINVAL;
1837
1838                real_buffer = kmalloc(4 + len, GFP_KERNEL);
1839                if (!real_buffer)
1840                        return -ENOMEM;
1841                memcpy(real_buffer + 4, buffer, len);
1842                len += 4;
1843                real_buffer[0] = 0;
1844                real_buffer[1] = data->medium_type;
1845                real_buffer[2] = data->device_specific;
1846                real_buffer[3] = data->block_descriptor_length;
1847                
1848
1849                cmd[0] = MODE_SELECT;
1850                cmd[4] = len;
1851        }
1852
1853        ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1854                               sshdr, timeout, retries, NULL);
1855        kfree(real_buffer);
1856        return ret;
1857}
1858EXPORT_SYMBOL_GPL(scsi_mode_select);
1859
1860/**
1861 *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1862 *      @sdev:  SCSI device to be queried
1863 *      @dbd:   set if mode sense will allow block descriptors to be returned
1864 *      @modepage: mode page being requested
1865 *      @buffer: request buffer (may not be smaller than eight bytes)
1866 *      @len:   length of request buffer.
1867 *      @timeout: command timeout
1868 *      @retries: number of retries before failing
1869 *      @data: returns a structure abstracting the mode header data
1870 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1871 *              must be SCSI_SENSE_BUFFERSIZE big.
1872 *
1873 *      Returns zero if unsuccessful, or the header offset (either 4
1874 *      or 8 depending on whether a six or ten byte command was
1875 *      issued) if successful.
1876 */
1877int
1878scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1879                  unsigned char *buffer, int len, int timeout, int retries,
1880                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1881{
1882        unsigned char cmd[12];
1883        int use_10_for_ms;
1884        int header_length;
1885        int result;
1886        struct scsi_sense_hdr my_sshdr;
1887
1888        memset(data, 0, sizeof(*data));
1889        memset(&cmd[0], 0, 12);
1890        cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1891        cmd[2] = modepage;
1892
1893        /* caller might not be interested in sense, but we need it */
1894        if (!sshdr)
1895                sshdr = &my_sshdr;
1896
1897 retry:
1898        use_10_for_ms = sdev->use_10_for_ms;
1899
1900        if (use_10_for_ms) {
1901                if (len < 8)
1902                        len = 8;
1903
1904                cmd[0] = MODE_SENSE_10;
1905                cmd[8] = len;
1906                header_length = 8;
1907        } else {
1908                if (len < 4)
1909                        len = 4;
1910
1911                cmd[0] = MODE_SENSE;
1912                cmd[4] = len;
1913                header_length = 4;
1914        }
1915
1916        memset(buffer, 0, len);
1917
1918        result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1919                                  sshdr, timeout, retries, NULL);
1920
1921        /* This code looks awful: what it's doing is making sure an
1922         * ILLEGAL REQUEST sense return identifies the actual command
1923         * byte as the problem.  MODE_SENSE commands can return
1924         * ILLEGAL REQUEST if the code page isn't supported */
1925
1926        if (use_10_for_ms && !scsi_status_is_good(result) &&
1927            (driver_byte(result) & DRIVER_SENSE)) {
1928                if (scsi_sense_valid(sshdr)) {
1929                        if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1930                            (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1931                                /* 
1932                                 * Invalid command operation code
1933                                 */
1934                                sdev->use_10_for_ms = 0;
1935                                goto retry;
1936                        }
1937                }
1938        }
1939
1940        if(scsi_status_is_good(result)) {
1941                if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1942                             (modepage == 6 || modepage == 8))) {
1943                        /* Initio breakage? */
1944                        header_length = 0;
1945                        data->length = 13;
1946                        data->medium_type = 0;
1947                        data->device_specific = 0;
1948                        data->longlba = 0;
1949                        data->block_descriptor_length = 0;
1950                } else if(use_10_for_ms) {
1951                        data->length = buffer[0]*256 + buffer[1] + 2;
1952                        data->medium_type = buffer[2];
1953                        data->device_specific = buffer[3];
1954                        data->longlba = buffer[4] & 0x01;
1955                        data->block_descriptor_length = buffer[6]*256
1956                                + buffer[7];
1957                } else {
1958                        data->length = buffer[0] + 1;
1959                        data->medium_type = buffer[1];
1960                        data->device_specific = buffer[2];
1961                        data->block_descriptor_length = buffer[3];
1962                }
1963                data->header_length = header_length;
1964        }
1965
1966        return result;
1967}
1968EXPORT_SYMBOL(scsi_mode_sense);
1969
1970/**
1971 *      scsi_test_unit_ready - test if unit is ready
1972 *      @sdev:  scsi device to change the state of.
1973 *      @timeout: command timeout
1974 *      @retries: number of retries before failing
1975 *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1976 *              returning sense. Make sure that this is cleared before passing
1977 *              in.
1978 *
1979 *      Returns zero if unsuccessful or an error if TUR failed.  For
1980 *      removable media, UNIT_ATTENTION sets ->changed flag.
1981 **/
1982int
1983scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1984                     struct scsi_sense_hdr *sshdr_external)
1985{
1986        char cmd[] = {
1987                TEST_UNIT_READY, 0, 0, 0, 0, 0,
1988        };
1989        struct scsi_sense_hdr *sshdr;
1990        int result;
1991
1992        if (!sshdr_external)
1993                sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1994        else
1995                sshdr = sshdr_external;
1996
1997        /* try to eat the UNIT_ATTENTION if there are enough retries */
1998        do {
1999                result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2000                                          timeout, retries, NULL);
2001                if (sdev->removable && scsi_sense_valid(sshdr) &&
2002                    sshdr->sense_key == UNIT_ATTENTION)
2003                        sdev->changed = 1;
2004        } while (scsi_sense_valid(sshdr) &&
2005                 sshdr->sense_key == UNIT_ATTENTION && --retries);
2006
2007        if (!sshdr_external)
2008                kfree(sshdr);
2009        return result;
2010}
2011EXPORT_SYMBOL(scsi_test_unit_ready);
2012
2013/**
2014 *      scsi_device_set_state - Take the given device through the device state model.
2015 *      @sdev:  scsi device to change the state of.
2016 *      @state: state to change to.
2017 *
2018 *      Returns zero if unsuccessful or an error if the requested 
2019 *      transition is illegal.
2020 */
2021int
2022scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2023{
2024        enum scsi_device_state oldstate = sdev->sdev_state;
2025
2026        if (state == oldstate)
2027                return 0;
2028
2029        switch (state) {
2030        case SDEV_CREATED:
2031                switch (oldstate) {
2032                case SDEV_CREATED_BLOCK:
2033                        break;
2034                default:
2035                        goto illegal;
2036                }
2037                break;
2038                        
2039        case SDEV_RUNNING:
2040                switch (oldstate) {
2041                case SDEV_CREATED:
2042                case SDEV_OFFLINE:
2043                case SDEV_QUIESCE:
2044                case SDEV_BLOCK:
2045                        break;
2046                default:
2047                        goto illegal;
2048                }
2049                break;
2050
2051        case SDEV_QUIESCE:
2052                switch (oldstate) {
2053                case SDEV_RUNNING:
2054                case SDEV_OFFLINE:
2055                        break;
2056                default:
2057                        goto illegal;
2058                }
2059                break;
2060
2061        case SDEV_OFFLINE:
2062                switch (oldstate) {
2063                case SDEV_CREATED:
2064                case SDEV_RUNNING:
2065                case SDEV_QUIESCE:
2066                case SDEV_BLOCK:
2067                        break;
2068                default:
2069                        goto illegal;
2070                }
2071                break;
2072
2073        case SDEV_BLOCK:
2074                switch (oldstate) {
2075                case SDEV_RUNNING:
2076                case SDEV_CREATED_BLOCK:
2077                        break;
2078                default:
2079                        goto illegal;
2080                }
2081                break;
2082
2083        case SDEV_CREATED_BLOCK:
2084                switch (oldstate) {
2085                case SDEV_CREATED:
2086                        break;
2087                default:
2088                        goto illegal;
2089                }
2090                break;
2091
2092        case SDEV_CANCEL:
2093                switch (oldstate) {
2094                case SDEV_CREATED:
2095                case SDEV_RUNNING:
2096                case SDEV_QUIESCE:
2097                case SDEV_OFFLINE:
2098                case SDEV_BLOCK:
2099                        break;
2100                default:
2101                        goto illegal;
2102                }
2103                break;
2104
2105        case SDEV_DEL:
2106                switch (oldstate) {
2107                case SDEV_CREATED:
2108                case SDEV_RUNNING:
2109                case SDEV_OFFLINE:
2110                case SDEV_CANCEL:
2111                        break;
2112                default:
2113                        goto illegal;
2114                }
2115                break;
2116
2117        }
2118        sdev->sdev_state = state;
2119        return 0;
2120
2121 illegal:
2122        SCSI_LOG_ERROR_RECOVERY(1, 
2123                                sdev_printk(KERN_ERR, sdev,
2124                                            "Illegal state transition %s->%s\n",
2125                                            scsi_device_state_name(oldstate),
2126                                            scsi_device_state_name(state))
2127                                );
2128        return -EINVAL;
2129}
2130EXPORT_SYMBOL(scsi_device_set_state);
2131
2132/**
2133 *      sdev_evt_emit - emit a single SCSI device uevent
2134 *      @sdev: associated SCSI device
2135 *      @evt: event to emit
2136 *
2137 *      Send a single uevent (scsi_event) to the associated scsi_device.
2138 */
2139static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2140{
2141        int idx = 0;
2142        char *envp[3];
2143
2144        switch (evt->evt_type) {
2145        case SDEV_EVT_MEDIA_CHANGE:
2146                envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2147                break;
2148
2149        default:
2150                /* do nothing */
2151                break;
2152        }
2153
2154        envp[idx++] = NULL;
2155
2156        kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2157}
2158
2159/**
2160 *      sdev_evt_thread - send a uevent for each scsi event
2161 *      @work: work struct for scsi_device
2162 *
2163 *      Dispatch queued events to their associated scsi_device kobjects
2164 *      as uevents.
2165 */
2166void scsi_evt_thread(struct work_struct *work)
2167{
2168        struct scsi_device *sdev;
2169        LIST_HEAD(event_list);
2170
2171        sdev = container_of(work, struct scsi_device, event_work);
2172
2173        while (1) {
2174                struct scsi_event *evt;
2175                struct list_head *this, *tmp;
2176                unsigned long flags;
2177
2178                spin_lock_irqsave(&sdev->list_lock, flags);
2179                list_splice_init(&sdev->event_list, &event_list);
2180                spin_unlock_irqrestore(&sdev->list_lock, flags);
2181
2182                if (list_empty(&event_list))
2183                        break;
2184
2185                list_for_each_safe(this, tmp, &event_list) {
2186                        evt = list_entry(this, struct scsi_event, node);
2187                        list_del(&evt->node);
2188                        scsi_evt_emit(sdev, evt);
2189                        kfree(evt);
2190                }
2191        }
2192}
2193
2194/**
2195 *      sdev_evt_send - send asserted event to uevent thread
2196 *      @sdev: scsi_device event occurred on
2197 *      @evt: event to send
2198 *
2199 *      Assert scsi device event asynchronously.
2200 */
2201void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2202{
2203        unsigned long flags;
2204
2205#if 0
2206        /* FIXME: currently this check eliminates all media change events
2207         * for polled devices.  Need to update to discriminate between AN
2208         * and polled events */
2209        if (!test_bit(evt->evt_type, sdev->supported_events)) {
2210                kfree(evt);
2211                return;
2212        }
2213#endif
2214
2215        spin_lock_irqsave(&sdev->list_lock, flags);
2216        list_add_tail(&evt->node, &sdev->event_list);
2217        schedule_work(&sdev->event_work);
2218        spin_unlock_irqrestore(&sdev->list_lock, flags);
2219}
2220EXPORT_SYMBOL_GPL(sdev_evt_send);
2221
2222/**
2223 *      sdev_evt_alloc - allocate a new scsi event
2224 *      @evt_type: type of event to allocate
2225 *      @gfpflags: GFP flags for allocation
2226 *
2227 *      Allocates and returns a new scsi_event.
2228 */
2229struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2230                                  gfp_t gfpflags)
2231{
2232        struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2233        if (!evt)
2234                return NULL;
2235
2236        evt->evt_type = evt_type;
2237        INIT_LIST_HEAD(&evt->node);
2238
2239        /* evt_type-specific initialization, if any */
2240        switch (evt_type) {
2241        case SDEV_EVT_MEDIA_CHANGE:
2242        default:
2243                /* do nothing */
2244                break;
2245        }
2246
2247        return evt;
2248}
2249EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2250
2251/**
2252 *      sdev_evt_send_simple - send asserted event to uevent thread
2253 *      @sdev: scsi_device event occurred on
2254 *      @evt_type: type of event to send
2255 *      @gfpflags: GFP flags for allocation
2256 *
2257 *      Assert scsi device event asynchronously, given an event type.
2258 */
2259void sdev_evt_send_simple(struct scsi_device *sdev,
2260                          enum scsi_device_event evt_type, gfp_t gfpflags)
2261{
2262        struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2263        if (!evt) {
2264                sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2265                            evt_type);
2266                return;
2267        }
2268
2269        sdev_evt_send(sdev, evt);
2270}
2271EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2272
2273/**
2274 *      scsi_device_quiesce - Block user issued commands.
2275 *      @sdev:  scsi device to quiesce.
2276 *
2277 *      This works by trying to transition to the SDEV_QUIESCE state
2278 *      (which must be a legal transition).  When the device is in this
2279 *      state, only special requests will be accepted, all others will
2280 *      be deferred.  Since special requests may also be requeued requests,
2281 *      a successful return doesn't guarantee the device will be 
2282 *      totally quiescent.
2283 *
2284 *      Must be called with user context, may sleep.
2285 *
2286 *      Returns zero if unsuccessful or an error if not.
2287 */
2288int
2289scsi_device_quiesce(struct scsi_device *sdev)
2290{
2291        int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2292        if (err)
2293                return err;
2294
2295        scsi_run_queue(sdev->request_queue);
2296        while (sdev->device_busy) {
2297                msleep_interruptible(200);
2298                scsi_run_queue(sdev->request_queue);
2299        }
2300        return 0;
2301}
2302EXPORT_SYMBOL(scsi_device_quiesce);
2303
2304/**
2305 *      scsi_device_resume - Restart user issued commands to a quiesced device.
2306 *      @sdev:  scsi device to resume.
2307 *
2308 *      Moves the device from quiesced back to running and restarts the
2309 *      queues.
2310 *
2311 *      Must be called with user context, may sleep.
2312 */
2313void
2314scsi_device_resume(struct scsi_device *sdev)
2315{
2316        if(scsi_device_set_state(sdev, SDEV_RUNNING))
2317                return;
2318        scsi_run_queue(sdev->request_queue);
2319}
2320EXPORT_SYMBOL(scsi_device_resume);
2321
2322static void
2323device_quiesce_fn(struct scsi_device *sdev, void *data)
2324{
2325        scsi_device_quiesce(sdev);
2326}
2327
2328void
2329scsi_target_quiesce(struct scsi_target *starget)
2330{
2331        starget_for_each_device(starget, NULL, device_quiesce_fn);
2332}
2333EXPORT_SYMBOL(scsi_target_quiesce);
2334
2335static void
2336device_resume_fn(struct scsi_device *sdev, void *data)
2337{
2338        scsi_device_resume(sdev);
2339}
2340
2341void
2342scsi_target_resume(struct scsi_target *starget)
2343{
2344        starget_for_each_device(starget, NULL, device_resume_fn);
2345}
2346EXPORT_SYMBOL(scsi_target_resume);
2347
2348/**
2349 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2350 * @sdev:       device to block
2351 *
2352 * Block request made by scsi lld's to temporarily stop all
2353 * scsi commands on the specified device.  Called from interrupt
2354 * or normal process context.
2355 *
2356 * Returns zero if successful or error if not
2357 *
2358 * Notes:       
2359 *      This routine transitions the device to the SDEV_BLOCK state
2360 *      (which must be a legal transition).  When the device is in this
2361 *      state, all commands are deferred until the scsi lld reenables
2362 *      the device with scsi_device_unblock or device_block_tmo fires.
2363 *      This routine assumes the host_lock is held on entry.
2364 */
2365int
2366scsi_internal_device_block(struct scsi_device *sdev)
2367{
2368        struct request_queue *q = sdev->request_queue;
2369        unsigned long flags;
2370        int err = 0;
2371
2372        err = scsi_device_set_state(sdev, SDEV_BLOCK);
2373        if (err) {
2374                err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2375
2376                if (err)
2377                        return err;
2378        }
2379
2380        /* 
2381         * The device has transitioned to SDEV_BLOCK.  Stop the
2382         * block layer from calling the midlayer with this device's
2383         * request queue. 
2384         */
2385        spin_lock_irqsave(q->queue_lock, flags);
2386        blk_stop_queue(q);
2387        spin_unlock_irqrestore(q->queue_lock, flags);
2388
2389        return 0;
2390}
2391EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2392 
2393/**
2394 * scsi_internal_device_unblock - resume a device after a block request
2395 * @sdev:       device to resume
2396 *
2397 * Called by scsi lld's or the midlayer to restart the device queue
2398 * for the previously suspended scsi device.  Called from interrupt or
2399 * normal process context.
2400 *
2401 * Returns zero if successful or error if not.
2402 *
2403 * Notes:       
2404 *      This routine transitions the device to the SDEV_RUNNING state
2405 *      (which must be a legal transition) allowing the midlayer to
2406 *      goose the queue for this device.  This routine assumes the 
2407 *      host_lock is held upon entry.
2408 */
2409int
2410scsi_internal_device_unblock(struct scsi_device *sdev)
2411{
2412        struct request_queue *q = sdev->request_queue; 
2413        unsigned long flags;
2414        
2415        /* 
2416         * Try to transition the scsi device to SDEV_RUNNING
2417         * and goose the device queue if successful.  
2418         */
2419        if (sdev->sdev_state == SDEV_BLOCK)
2420                sdev->sdev_state = SDEV_RUNNING;
2421        else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2422                sdev->sdev_state = SDEV_CREATED;
2423        else if (sdev->sdev_state != SDEV_CANCEL &&
2424                 sdev->sdev_state != SDEV_OFFLINE)
2425                return -EINVAL;
2426
2427        spin_lock_irqsave(q->queue_lock, flags);
2428        blk_start_queue(q);
2429        spin_unlock_irqrestore(q->queue_lock, flags);
2430
2431        return 0;
2432}
2433EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2434
2435static void
2436device_block(struct scsi_device *sdev, void *data)
2437{
2438        scsi_internal_device_block(sdev);
2439}
2440
2441static int
2442target_block(struct device *dev, void *data)
2443{
2444        if (scsi_is_target_device(dev))
2445                starget_for_each_device(to_scsi_target(dev), NULL,
2446                                        device_block);
2447        return 0;
2448}
2449
2450void
2451scsi_target_block(struct device *dev)
2452{
2453        if (scsi_is_target_device(dev))
2454                starget_for_each_device(to_scsi_target(dev), NULL,
2455                                        device_block);
2456        else
2457                device_for_each_child(dev, NULL, target_block);
2458}
2459EXPORT_SYMBOL_GPL(scsi_target_block);
2460
2461static void
2462device_unblock(struct scsi_device *sdev, void *data)
2463{
2464        scsi_internal_device_unblock(sdev);
2465}
2466
2467static int
2468target_unblock(struct device *dev, void *data)
2469{
2470        if (scsi_is_target_device(dev))
2471                starget_for_each_device(to_scsi_target(dev), NULL,
2472                                        device_unblock);
2473        return 0;
2474}
2475
2476void
2477scsi_target_unblock(struct device *dev)
2478{
2479        if (scsi_is_target_device(dev))
2480                starget_for_each_device(to_scsi_target(dev), NULL,
2481                                        device_unblock);
2482        else
2483                device_for_each_child(dev, NULL, target_unblock);
2484}
2485EXPORT_SYMBOL_GPL(scsi_target_unblock);
2486
2487/**
2488 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2489 * @sgl:        scatter-gather list
2490 * @sg_count:   number of segments in sg
2491 * @offset:     offset in bytes into sg, on return offset into the mapped area
2492 * @len:        bytes to map, on return number of bytes mapped
2493 *
2494 * Returns virtual address of the start of the mapped page
2495 */
2496void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2497                          size_t *offset, size_t *len)
2498{
2499        int i;
2500        size_t sg_len = 0, len_complete = 0;
2501        struct scatterlist *sg;
2502        struct page *page;
2503
2504        WARN_ON(!irqs_disabled());
2505
2506        for_each_sg(sgl, sg, sg_count, i) {
2507                len_complete = sg_len; /* Complete sg-entries */
2508                sg_len += sg->length;
2509                if (sg_len > *offset)
2510                        break;
2511        }
2512
2513        if (unlikely(i == sg_count)) {
2514                printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2515                        "elements %d\n",
2516                       __func__, sg_len, *offset, sg_count);
2517                WARN_ON(1);
2518                return NULL;
2519        }
2520
2521        /* Offset starting from the beginning of first page in this sg-entry */
2522        *offset = *offset - len_complete + sg->offset;
2523
2524        /* Assumption: contiguous pages can be accessed as "page + i" */
2525        page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2526        *offset &= ~PAGE_MASK;
2527
2528        /* Bytes in this sg-entry from *offset to the end of the page */
2529        sg_len = PAGE_SIZE - *offset;
2530        if (*len > sg_len)
2531                *len = sg_len;
2532
2533        return kmap_atomic(page, KM_BIO_SRC_IRQ);
2534}
2535EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2536
2537/**
2538 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2539 * @virt:       virtual address to be unmapped
2540 */
2541void scsi_kunmap_atomic_sg(void *virt)
2542{
2543        kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2544}
2545EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2546