linux/drivers/spi/amba-pl022.c
<<
>>
Prefs
   1/*
   2 * drivers/spi/amba-pl022.c
   3 *
   4 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   5 *
   6 * Copyright (C) 2008-2009 ST-Ericsson AB
   7 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   8 *
   9 * Author: Linus Walleij <linus.walleij@stericsson.com>
  10 *
  11 * Initial version inspired by:
  12 *      linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  13 * Initial adoption to PL022 by:
  14 *      Sachin Verma <sachin.verma@st.com>
  15 *
  16 * This program is free software; you can redistribute it and/or modify
  17 * it under the terms of the GNU General Public License as published by
  18 * the Free Software Foundation; either version 2 of the License, or
  19 * (at your option) any later version.
  20 *
  21 * This program is distributed in the hope that it will be useful,
  22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  24 * GNU General Public License for more details.
  25 */
  26
  27/*
  28 * TODO:
  29 * - add timeout on polled transfers
  30 */
  31
  32#include <linux/init.h>
  33#include <linux/module.h>
  34#include <linux/device.h>
  35#include <linux/ioport.h>
  36#include <linux/errno.h>
  37#include <linux/interrupt.h>
  38#include <linux/spi/spi.h>
  39#include <linux/workqueue.h>
  40#include <linux/delay.h>
  41#include <linux/clk.h>
  42#include <linux/err.h>
  43#include <linux/amba/bus.h>
  44#include <linux/amba/pl022.h>
  45#include <linux/io.h>
  46#include <linux/slab.h>
  47#include <linux/dmaengine.h>
  48#include <linux/dma-mapping.h>
  49#include <linux/scatterlist.h>
  50
  51/*
  52 * This macro is used to define some register default values.
  53 * reg is masked with mask, the OR:ed with an (again masked)
  54 * val shifted sb steps to the left.
  55 */
  56#define SSP_WRITE_BITS(reg, val, mask, sb) \
  57 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  58
  59/*
  60 * This macro is also used to define some default values.
  61 * It will just shift val by sb steps to the left and mask
  62 * the result with mask.
  63 */
  64#define GEN_MASK_BITS(val, mask, sb) \
  65 (((val)<<(sb)) & (mask))
  66
  67#define DRIVE_TX                0
  68#define DO_NOT_DRIVE_TX         1
  69
  70#define DO_NOT_QUEUE_DMA        0
  71#define QUEUE_DMA               1
  72
  73#define RX_TRANSFER             1
  74#define TX_TRANSFER             2
  75
  76/*
  77 * Macros to access SSP Registers with their offsets
  78 */
  79#define SSP_CR0(r)      (r + 0x000)
  80#define SSP_CR1(r)      (r + 0x004)
  81#define SSP_DR(r)       (r + 0x008)
  82#define SSP_SR(r)       (r + 0x00C)
  83#define SSP_CPSR(r)     (r + 0x010)
  84#define SSP_IMSC(r)     (r + 0x014)
  85#define SSP_RIS(r)      (r + 0x018)
  86#define SSP_MIS(r)      (r + 0x01C)
  87#define SSP_ICR(r)      (r + 0x020)
  88#define SSP_DMACR(r)    (r + 0x024)
  89#define SSP_ITCR(r)     (r + 0x080)
  90#define SSP_ITIP(r)     (r + 0x084)
  91#define SSP_ITOP(r)     (r + 0x088)
  92#define SSP_TDR(r)      (r + 0x08C)
  93
  94#define SSP_PID0(r)     (r + 0xFE0)
  95#define SSP_PID1(r)     (r + 0xFE4)
  96#define SSP_PID2(r)     (r + 0xFE8)
  97#define SSP_PID3(r)     (r + 0xFEC)
  98
  99#define SSP_CID0(r)     (r + 0xFF0)
 100#define SSP_CID1(r)     (r + 0xFF4)
 101#define SSP_CID2(r)     (r + 0xFF8)
 102#define SSP_CID3(r)     (r + 0xFFC)
 103
 104/*
 105 * SSP Control Register 0  - SSP_CR0
 106 */
 107#define SSP_CR0_MASK_DSS        (0x0FUL << 0)
 108#define SSP_CR0_MASK_FRF        (0x3UL << 4)
 109#define SSP_CR0_MASK_SPO        (0x1UL << 6)
 110#define SSP_CR0_MASK_SPH        (0x1UL << 7)
 111#define SSP_CR0_MASK_SCR        (0xFFUL << 8)
 112
 113/*
 114 * The ST version of this block moves som bits
 115 * in SSP_CR0 and extends it to 32 bits
 116 */
 117#define SSP_CR0_MASK_DSS_ST     (0x1FUL << 0)
 118#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
 119#define SSP_CR0_MASK_CSS_ST     (0x1FUL << 16)
 120#define SSP_CR0_MASK_FRF_ST     (0x3UL << 21)
 121
 122
 123/*
 124 * SSP Control Register 0  - SSP_CR1
 125 */
 126#define SSP_CR1_MASK_LBM        (0x1UL << 0)
 127#define SSP_CR1_MASK_SSE        (0x1UL << 1)
 128#define SSP_CR1_MASK_MS         (0x1UL << 2)
 129#define SSP_CR1_MASK_SOD        (0x1UL << 3)
 130
 131/*
 132 * The ST version of this block adds some bits
 133 * in SSP_CR1
 134 */
 135#define SSP_CR1_MASK_RENDN_ST   (0x1UL << 4)
 136#define SSP_CR1_MASK_TENDN_ST   (0x1UL << 5)
 137#define SSP_CR1_MASK_MWAIT_ST   (0x1UL << 6)
 138#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 139#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 140/* This one is only in the PL023 variant */
 141#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 142
 143/*
 144 * SSP Status Register - SSP_SR
 145 */
 146#define SSP_SR_MASK_TFE         (0x1UL << 0) /* Transmit FIFO empty */
 147#define SSP_SR_MASK_TNF         (0x1UL << 1) /* Transmit FIFO not full */
 148#define SSP_SR_MASK_RNE         (0x1UL << 2) /* Receive FIFO not empty */
 149#define SSP_SR_MASK_RFF         (0x1UL << 3) /* Receive FIFO full */
 150#define SSP_SR_MASK_BSY         (0x1UL << 4) /* Busy Flag */
 151
 152/*
 153 * SSP Clock Prescale Register  - SSP_CPSR
 154 */
 155#define SSP_CPSR_MASK_CPSDVSR   (0xFFUL << 0)
 156
 157/*
 158 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 159 */
 160#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 161#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 162#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 163#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 164
 165/*
 166 * SSP Raw Interrupt Status Register - SSP_RIS
 167 */
 168/* Receive Overrun Raw Interrupt status */
 169#define SSP_RIS_MASK_RORRIS             (0x1UL << 0)
 170/* Receive Timeout Raw Interrupt status */
 171#define SSP_RIS_MASK_RTRIS              (0x1UL << 1)
 172/* Receive FIFO Raw Interrupt status */
 173#define SSP_RIS_MASK_RXRIS              (0x1UL << 2)
 174/* Transmit FIFO Raw Interrupt status */
 175#define SSP_RIS_MASK_TXRIS              (0x1UL << 3)
 176
 177/*
 178 * SSP Masked Interrupt Status Register - SSP_MIS
 179 */
 180/* Receive Overrun Masked Interrupt status */
 181#define SSP_MIS_MASK_RORMIS             (0x1UL << 0)
 182/* Receive Timeout Masked Interrupt status */
 183#define SSP_MIS_MASK_RTMIS              (0x1UL << 1)
 184/* Receive FIFO Masked Interrupt status */
 185#define SSP_MIS_MASK_RXMIS              (0x1UL << 2)
 186/* Transmit FIFO Masked Interrupt status */
 187#define SSP_MIS_MASK_TXMIS              (0x1UL << 3)
 188
 189/*
 190 * SSP Interrupt Clear Register - SSP_ICR
 191 */
 192/* Receive Overrun Raw Clear Interrupt bit */
 193#define SSP_ICR_MASK_RORIC              (0x1UL << 0)
 194/* Receive Timeout Clear Interrupt bit */
 195#define SSP_ICR_MASK_RTIC               (0x1UL << 1)
 196
 197/*
 198 * SSP DMA Control Register - SSP_DMACR
 199 */
 200/* Receive DMA Enable bit */
 201#define SSP_DMACR_MASK_RXDMAE           (0x1UL << 0)
 202/* Transmit DMA Enable bit */
 203#define SSP_DMACR_MASK_TXDMAE           (0x1UL << 1)
 204
 205/*
 206 * SSP Integration Test control Register - SSP_ITCR
 207 */
 208#define SSP_ITCR_MASK_ITEN              (0x1UL << 0)
 209#define SSP_ITCR_MASK_TESTFIFO          (0x1UL << 1)
 210
 211/*
 212 * SSP Integration Test Input Register - SSP_ITIP
 213 */
 214#define ITIP_MASK_SSPRXD                 (0x1UL << 0)
 215#define ITIP_MASK_SSPFSSIN               (0x1UL << 1)
 216#define ITIP_MASK_SSPCLKIN               (0x1UL << 2)
 217#define ITIP_MASK_RXDMAC                 (0x1UL << 3)
 218#define ITIP_MASK_TXDMAC                 (0x1UL << 4)
 219#define ITIP_MASK_SSPTXDIN               (0x1UL << 5)
 220
 221/*
 222 * SSP Integration Test output Register - SSP_ITOP
 223 */
 224#define ITOP_MASK_SSPTXD                 (0x1UL << 0)
 225#define ITOP_MASK_SSPFSSOUT              (0x1UL << 1)
 226#define ITOP_MASK_SSPCLKOUT              (0x1UL << 2)
 227#define ITOP_MASK_SSPOEn                 (0x1UL << 3)
 228#define ITOP_MASK_SSPCTLOEn              (0x1UL << 4)
 229#define ITOP_MASK_RORINTR                (0x1UL << 5)
 230#define ITOP_MASK_RTINTR                 (0x1UL << 6)
 231#define ITOP_MASK_RXINTR                 (0x1UL << 7)
 232#define ITOP_MASK_TXINTR                 (0x1UL << 8)
 233#define ITOP_MASK_INTR                   (0x1UL << 9)
 234#define ITOP_MASK_RXDMABREQ              (0x1UL << 10)
 235#define ITOP_MASK_RXDMASREQ              (0x1UL << 11)
 236#define ITOP_MASK_TXDMABREQ              (0x1UL << 12)
 237#define ITOP_MASK_TXDMASREQ              (0x1UL << 13)
 238
 239/*
 240 * SSP Test Data Register - SSP_TDR
 241 */
 242#define TDR_MASK_TESTDATA               (0xFFFFFFFF)
 243
 244/*
 245 * Message State
 246 * we use the spi_message.state (void *) pointer to
 247 * hold a single state value, that's why all this
 248 * (void *) casting is done here.
 249 */
 250#define STATE_START                     ((void *) 0)
 251#define STATE_RUNNING                   ((void *) 1)
 252#define STATE_DONE                      ((void *) 2)
 253#define STATE_ERROR                     ((void *) -1)
 254
 255/*
 256 * SSP State - Whether Enabled or Disabled
 257 */
 258#define SSP_DISABLED                    (0)
 259#define SSP_ENABLED                     (1)
 260
 261/*
 262 * SSP DMA State - Whether DMA Enabled or Disabled
 263 */
 264#define SSP_DMA_DISABLED                (0)
 265#define SSP_DMA_ENABLED                 (1)
 266
 267/*
 268 * SSP Clock Defaults
 269 */
 270#define SSP_DEFAULT_CLKRATE 0x2
 271#define SSP_DEFAULT_PRESCALE 0x40
 272
 273/*
 274 * SSP Clock Parameter ranges
 275 */
 276#define CPSDVR_MIN 0x02
 277#define CPSDVR_MAX 0xFE
 278#define SCR_MIN 0x00
 279#define SCR_MAX 0xFF
 280
 281/*
 282 * SSP Interrupt related Macros
 283 */
 284#define DEFAULT_SSP_REG_IMSC  0x0UL
 285#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 286#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
 287
 288#define CLEAR_ALL_INTERRUPTS  0x3
 289
 290
 291/*
 292 * The type of reading going on on this chip
 293 */
 294enum ssp_reading {
 295        READING_NULL,
 296        READING_U8,
 297        READING_U16,
 298        READING_U32
 299};
 300
 301/**
 302 * The type of writing going on on this chip
 303 */
 304enum ssp_writing {
 305        WRITING_NULL,
 306        WRITING_U8,
 307        WRITING_U16,
 308        WRITING_U32
 309};
 310
 311/**
 312 * struct vendor_data - vendor-specific config parameters
 313 * for PL022 derivates
 314 * @fifodepth: depth of FIFOs (both)
 315 * @max_bpw: maximum number of bits per word
 316 * @unidir: supports unidirection transfers
 317 * @extended_cr: 32 bit wide control register 0 with extra
 318 * features and extra features in CR1 as found in the ST variants
 319 * @pl023: supports a subset of the ST extensions called "PL023"
 320 */
 321struct vendor_data {
 322        int fifodepth;
 323        int max_bpw;
 324        bool unidir;
 325        bool extended_cr;
 326        bool pl023;
 327};
 328
 329/**
 330 * struct pl022 - This is the private SSP driver data structure
 331 * @adev: AMBA device model hookup
 332 * @vendor: Vendor data for the IP block
 333 * @phybase: The physical memory where the SSP device resides
 334 * @virtbase: The virtual memory where the SSP is mapped
 335 * @master: SPI framework hookup
 336 * @master_info: controller-specific data from machine setup
 337 * @regs: SSP controller register's virtual address
 338 * @pump_messages: Work struct for scheduling work to the workqueue
 339 * @lock: spinlock to syncronise access to driver data
 340 * @workqueue: a workqueue on which any spi_message request is queued
 341 * @busy: workqueue is busy
 342 * @running: workqueue is running
 343 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 344 * @cur_msg: Pointer to current spi_message being processed
 345 * @cur_transfer: Pointer to current spi_transfer
 346 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 347 * @tx: current position in TX buffer to be read
 348 * @tx_end: end position in TX buffer to be read
 349 * @rx: current position in RX buffer to be written
 350 * @rx_end: end position in RX buffer to be written
 351 * @readingtype: the type of read currently going on
 352 * @writingtype: the type or write currently going on
 353 */
 354struct pl022 {
 355        struct amba_device              *adev;
 356        struct vendor_data              *vendor;
 357        resource_size_t                 phybase;
 358        void __iomem                    *virtbase;
 359        struct clk                      *clk;
 360        struct spi_master               *master;
 361        struct pl022_ssp_controller     *master_info;
 362        /* Driver message queue */
 363        struct workqueue_struct         *workqueue;
 364        struct work_struct              pump_messages;
 365        spinlock_t                      queue_lock;
 366        struct list_head                queue;
 367        bool                            busy;
 368        bool                            running;
 369        /* Message transfer pump */
 370        struct tasklet_struct           pump_transfers;
 371        struct spi_message              *cur_msg;
 372        struct spi_transfer             *cur_transfer;
 373        struct chip_data                *cur_chip;
 374        void                            *tx;
 375        void                            *tx_end;
 376        void                            *rx;
 377        void                            *rx_end;
 378        enum ssp_reading                read;
 379        enum ssp_writing                write;
 380        u32                             exp_fifo_level;
 381        /* DMA settings */
 382#ifdef CONFIG_DMA_ENGINE
 383        struct dma_chan                 *dma_rx_channel;
 384        struct dma_chan                 *dma_tx_channel;
 385        struct sg_table                 sgt_rx;
 386        struct sg_table                 sgt_tx;
 387        char                            *dummypage;
 388#endif
 389};
 390
 391/**
 392 * struct chip_data - To maintain runtime state of SSP for each client chip
 393 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 394 *       register is 32 bits wide rather than just 16
 395 * @cr1: Value of control register CR1 of SSP
 396 * @dmacr: Value of DMA control Register of SSP
 397 * @cpsr: Value of Clock prescale register
 398 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 399 * @enable_dma: Whether to enable DMA or not
 400 * @write: function ptr to be used to write when doing xfer for this chip
 401 * @read: function ptr to be used to read when doing xfer for this chip
 402 * @cs_control: chip select callback provided by chip
 403 * @xfer_type: polling/interrupt/DMA
 404 *
 405 * Runtime state of the SSP controller, maintained per chip,
 406 * This would be set according to the current message that would be served
 407 */
 408struct chip_data {
 409        u32 cr0;
 410        u16 cr1;
 411        u16 dmacr;
 412        u16 cpsr;
 413        u8 n_bytes;
 414        bool enable_dma;
 415        enum ssp_reading read;
 416        enum ssp_writing write;
 417        void (*cs_control) (u32 command);
 418        int xfer_type;
 419};
 420
 421/**
 422 * null_cs_control - Dummy chip select function
 423 * @command: select/delect the chip
 424 *
 425 * If no chip select function is provided by client this is used as dummy
 426 * chip select
 427 */
 428static void null_cs_control(u32 command)
 429{
 430        pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
 431}
 432
 433/**
 434 * giveback - current spi_message is over, schedule next message and call
 435 * callback of this message. Assumes that caller already
 436 * set message->status; dma and pio irqs are blocked
 437 * @pl022: SSP driver private data structure
 438 */
 439static void giveback(struct pl022 *pl022)
 440{
 441        struct spi_transfer *last_transfer;
 442        unsigned long flags;
 443        struct spi_message *msg;
 444        void (*curr_cs_control) (u32 command);
 445
 446        /*
 447         * This local reference to the chip select function
 448         * is needed because we set curr_chip to NULL
 449         * as a step toward termininating the message.
 450         */
 451        curr_cs_control = pl022->cur_chip->cs_control;
 452        spin_lock_irqsave(&pl022->queue_lock, flags);
 453        msg = pl022->cur_msg;
 454        pl022->cur_msg = NULL;
 455        pl022->cur_transfer = NULL;
 456        pl022->cur_chip = NULL;
 457        queue_work(pl022->workqueue, &pl022->pump_messages);
 458        spin_unlock_irqrestore(&pl022->queue_lock, flags);
 459
 460        last_transfer = list_entry(msg->transfers.prev,
 461                                        struct spi_transfer,
 462                                        transfer_list);
 463
 464        /* Delay if requested before any change in chip select */
 465        if (last_transfer->delay_usecs)
 466                /*
 467                 * FIXME: This runs in interrupt context.
 468                 * Is this really smart?
 469                 */
 470                udelay(last_transfer->delay_usecs);
 471
 472        /*
 473         * Drop chip select UNLESS cs_change is true or we are returning
 474         * a message with an error, or next message is for another chip
 475         */
 476        if (!last_transfer->cs_change)
 477                curr_cs_control(SSP_CHIP_DESELECT);
 478        else {
 479                struct spi_message *next_msg;
 480
 481                /* Holding of cs was hinted, but we need to make sure
 482                 * the next message is for the same chip.  Don't waste
 483                 * time with the following tests unless this was hinted.
 484                 *
 485                 * We cannot postpone this until pump_messages, because
 486                 * after calling msg->complete (below) the driver that
 487                 * sent the current message could be unloaded, which
 488                 * could invalidate the cs_control() callback...
 489                 */
 490
 491                /* get a pointer to the next message, if any */
 492                spin_lock_irqsave(&pl022->queue_lock, flags);
 493                if (list_empty(&pl022->queue))
 494                        next_msg = NULL;
 495                else
 496                        next_msg = list_entry(pl022->queue.next,
 497                                        struct spi_message, queue);
 498                spin_unlock_irqrestore(&pl022->queue_lock, flags);
 499
 500                /* see if the next and current messages point
 501                 * to the same chip
 502                 */
 503                if (next_msg && next_msg->spi != msg->spi)
 504                        next_msg = NULL;
 505                if (!next_msg || msg->state == STATE_ERROR)
 506                        curr_cs_control(SSP_CHIP_DESELECT);
 507        }
 508        msg->state = NULL;
 509        if (msg->complete)
 510                msg->complete(msg->context);
 511        /* This message is completed, so let's turn off the clocks! */
 512        clk_disable(pl022->clk);
 513        amba_pclk_disable(pl022->adev);
 514}
 515
 516/**
 517 * flush - flush the FIFO to reach a clean state
 518 * @pl022: SSP driver private data structure
 519 */
 520static int flush(struct pl022 *pl022)
 521{
 522        unsigned long limit = loops_per_jiffy << 1;
 523
 524        dev_dbg(&pl022->adev->dev, "flush\n");
 525        do {
 526                while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 527                        readw(SSP_DR(pl022->virtbase));
 528        } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 529
 530        pl022->exp_fifo_level = 0;
 531
 532        return limit;
 533}
 534
 535/**
 536 * restore_state - Load configuration of current chip
 537 * @pl022: SSP driver private data structure
 538 */
 539static void restore_state(struct pl022 *pl022)
 540{
 541        struct chip_data *chip = pl022->cur_chip;
 542
 543        if (pl022->vendor->extended_cr)
 544                writel(chip->cr0, SSP_CR0(pl022->virtbase));
 545        else
 546                writew(chip->cr0, SSP_CR0(pl022->virtbase));
 547        writew(chip->cr1, SSP_CR1(pl022->virtbase));
 548        writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 549        writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 550        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 551        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 552}
 553
 554/*
 555 * Default SSP Register Values
 556 */
 557#define DEFAULT_SSP_REG_CR0 ( \
 558        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)    | \
 559        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 560        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 561        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 562        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 563)
 564
 565/* ST versions have slightly different bit layout */
 566#define DEFAULT_SSP_REG_CR0_ST ( \
 567        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 568        GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 569        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 570        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 571        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 572        GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)      | \
 573        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 574)
 575
 576/* The PL023 version is slightly different again */
 577#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 578        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 579        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 580        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 581        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 582)
 583
 584#define DEFAULT_SSP_REG_CR1 ( \
 585        GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 586        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 587        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 588        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 589)
 590
 591/* ST versions extend this register to use all 16 bits */
 592#define DEFAULT_SSP_REG_CR1_ST ( \
 593        DEFAULT_SSP_REG_CR1 | \
 594        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 595        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 596        GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 597        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 598        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 599)
 600
 601/*
 602 * The PL023 variant has further differences: no loopback mode, no microwire
 603 * support, and a new clock feedback delay setting.
 604 */
 605#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 606        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 607        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 608        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 609        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 610        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 611        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 612        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 613        GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 614)
 615
 616#define DEFAULT_SSP_REG_CPSR ( \
 617        GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 618)
 619
 620#define DEFAULT_SSP_REG_DMACR (\
 621        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 622        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 623)
 624
 625/**
 626 * load_ssp_default_config - Load default configuration for SSP
 627 * @pl022: SSP driver private data structure
 628 */
 629static void load_ssp_default_config(struct pl022 *pl022)
 630{
 631        if (pl022->vendor->pl023) {
 632                writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 633                writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 634        } else if (pl022->vendor->extended_cr) {
 635                writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 636                writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 637        } else {
 638                writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 639                writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 640        }
 641        writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 642        writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 643        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 644        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 645}
 646
 647/**
 648 * This will write to TX and read from RX according to the parameters
 649 * set in pl022.
 650 */
 651static void readwriter(struct pl022 *pl022)
 652{
 653
 654        /*
 655         * The FIFO depth is different inbetween primecell variants.
 656         * I believe filling in too much in the FIFO might cause
 657         * errons in 8bit wide transfers on ARM variants (just 8 words
 658         * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 659         *
 660         * To prevent this issue, the TX FIFO is only filled to the
 661         * unused RX FIFO fill length, regardless of what the TX
 662         * FIFO status flag indicates.
 663         */
 664        dev_dbg(&pl022->adev->dev,
 665                "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 666                __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 667
 668        /* Read as much as you can */
 669        while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 670               && (pl022->rx < pl022->rx_end)) {
 671                switch (pl022->read) {
 672                case READING_NULL:
 673                        readw(SSP_DR(pl022->virtbase));
 674                        break;
 675                case READING_U8:
 676                        *(u8 *) (pl022->rx) =
 677                                readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 678                        break;
 679                case READING_U16:
 680                        *(u16 *) (pl022->rx) =
 681                                (u16) readw(SSP_DR(pl022->virtbase));
 682                        break;
 683                case READING_U32:
 684                        *(u32 *) (pl022->rx) =
 685                                readl(SSP_DR(pl022->virtbase));
 686                        break;
 687                }
 688                pl022->rx += (pl022->cur_chip->n_bytes);
 689                pl022->exp_fifo_level--;
 690        }
 691        /*
 692         * Write as much as possible up to the RX FIFO size
 693         */
 694        while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 695               && (pl022->tx < pl022->tx_end)) {
 696                switch (pl022->write) {
 697                case WRITING_NULL:
 698                        writew(0x0, SSP_DR(pl022->virtbase));
 699                        break;
 700                case WRITING_U8:
 701                        writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 702                        break;
 703                case WRITING_U16:
 704                        writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 705                        break;
 706                case WRITING_U32:
 707                        writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 708                        break;
 709                }
 710                pl022->tx += (pl022->cur_chip->n_bytes);
 711                pl022->exp_fifo_level++;
 712                /*
 713                 * This inner reader takes care of things appearing in the RX
 714                 * FIFO as we're transmitting. This will happen a lot since the
 715                 * clock starts running when you put things into the TX FIFO,
 716                 * and then things are continously clocked into the RX FIFO.
 717                 */
 718                while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 719                       && (pl022->rx < pl022->rx_end)) {
 720                        switch (pl022->read) {
 721                        case READING_NULL:
 722                                readw(SSP_DR(pl022->virtbase));
 723                                break;
 724                        case READING_U8:
 725                                *(u8 *) (pl022->rx) =
 726                                        readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 727                                break;
 728                        case READING_U16:
 729                                *(u16 *) (pl022->rx) =
 730                                        (u16) readw(SSP_DR(pl022->virtbase));
 731                                break;
 732                        case READING_U32:
 733                                *(u32 *) (pl022->rx) =
 734                                        readl(SSP_DR(pl022->virtbase));
 735                                break;
 736                        }
 737                        pl022->rx += (pl022->cur_chip->n_bytes);
 738                        pl022->exp_fifo_level--;
 739                }
 740        }
 741        /*
 742         * When we exit here the TX FIFO should be full and the RX FIFO
 743         * should be empty
 744         */
 745}
 746
 747
 748/**
 749 * next_transfer - Move to the Next transfer in the current spi message
 750 * @pl022: SSP driver private data structure
 751 *
 752 * This function moves though the linked list of spi transfers in the
 753 * current spi message and returns with the state of current spi
 754 * message i.e whether its last transfer is done(STATE_DONE) or
 755 * Next transfer is ready(STATE_RUNNING)
 756 */
 757static void *next_transfer(struct pl022 *pl022)
 758{
 759        struct spi_message *msg = pl022->cur_msg;
 760        struct spi_transfer *trans = pl022->cur_transfer;
 761
 762        /* Move to next transfer */
 763        if (trans->transfer_list.next != &msg->transfers) {
 764                pl022->cur_transfer =
 765                    list_entry(trans->transfer_list.next,
 766                               struct spi_transfer, transfer_list);
 767                return STATE_RUNNING;
 768        }
 769        return STATE_DONE;
 770}
 771
 772/*
 773 * This DMA functionality is only compiled in if we have
 774 * access to the generic DMA devices/DMA engine.
 775 */
 776#ifdef CONFIG_DMA_ENGINE
 777static void unmap_free_dma_scatter(struct pl022 *pl022)
 778{
 779        /* Unmap and free the SG tables */
 780        dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 781                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 782        dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 783                     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 784        sg_free_table(&pl022->sgt_rx);
 785        sg_free_table(&pl022->sgt_tx);
 786}
 787
 788static void dma_callback(void *data)
 789{
 790        struct pl022 *pl022 = data;
 791        struct spi_message *msg = pl022->cur_msg;
 792
 793        BUG_ON(!pl022->sgt_rx.sgl);
 794
 795#ifdef VERBOSE_DEBUG
 796        /*
 797         * Optionally dump out buffers to inspect contents, this is
 798         * good if you want to convince yourself that the loopback
 799         * read/write contents are the same, when adopting to a new
 800         * DMA engine.
 801         */
 802        {
 803                struct scatterlist *sg;
 804                unsigned int i;
 805
 806                dma_sync_sg_for_cpu(&pl022->adev->dev,
 807                                    pl022->sgt_rx.sgl,
 808                                    pl022->sgt_rx.nents,
 809                                    DMA_FROM_DEVICE);
 810
 811                for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 812                        dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 813                        print_hex_dump(KERN_ERR, "SPI RX: ",
 814                                       DUMP_PREFIX_OFFSET,
 815                                       16,
 816                                       1,
 817                                       sg_virt(sg),
 818                                       sg_dma_len(sg),
 819                                       1);
 820                }
 821                for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 822                        dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 823                        print_hex_dump(KERN_ERR, "SPI TX: ",
 824                                       DUMP_PREFIX_OFFSET,
 825                                       16,
 826                                       1,
 827                                       sg_virt(sg),
 828                                       sg_dma_len(sg),
 829                                       1);
 830                }
 831        }
 832#endif
 833
 834        unmap_free_dma_scatter(pl022);
 835
 836        /* Update total bytes transfered */
 837        msg->actual_length += pl022->cur_transfer->len;
 838        if (pl022->cur_transfer->cs_change)
 839                pl022->cur_chip->
 840                        cs_control(SSP_CHIP_DESELECT);
 841
 842        /* Move to next transfer */
 843        msg->state = next_transfer(pl022);
 844        tasklet_schedule(&pl022->pump_transfers);
 845}
 846
 847static void setup_dma_scatter(struct pl022 *pl022,
 848                              void *buffer,
 849                              unsigned int length,
 850                              struct sg_table *sgtab)
 851{
 852        struct scatterlist *sg;
 853        int bytesleft = length;
 854        void *bufp = buffer;
 855        int mapbytes;
 856        int i;
 857
 858        if (buffer) {
 859                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 860                        /*
 861                         * If there are less bytes left than what fits
 862                         * in the current page (plus page alignment offset)
 863                         * we just feed in this, else we stuff in as much
 864                         * as we can.
 865                         */
 866                        if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 867                                mapbytes = bytesleft;
 868                        else
 869                                mapbytes = PAGE_SIZE - offset_in_page(bufp);
 870                        sg_set_page(sg, virt_to_page(bufp),
 871                                    mapbytes, offset_in_page(bufp));
 872                        bufp += mapbytes;
 873                        bytesleft -= mapbytes;
 874                        dev_dbg(&pl022->adev->dev,
 875                                "set RX/TX target page @ %p, %d bytes, %d left\n",
 876                                bufp, mapbytes, bytesleft);
 877                }
 878        } else {
 879                /* Map the dummy buffer on every page */
 880                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 881                        if (bytesleft < PAGE_SIZE)
 882                                mapbytes = bytesleft;
 883                        else
 884                                mapbytes = PAGE_SIZE;
 885                        sg_set_page(sg, virt_to_page(pl022->dummypage),
 886                                    mapbytes, 0);
 887                        bytesleft -= mapbytes;
 888                        dev_dbg(&pl022->adev->dev,
 889                                "set RX/TX to dummy page %d bytes, %d left\n",
 890                                mapbytes, bytesleft);
 891
 892                }
 893        }
 894        BUG_ON(bytesleft);
 895}
 896
 897/**
 898 * configure_dma - configures the channels for the next transfer
 899 * @pl022: SSP driver's private data structure
 900 */
 901static int configure_dma(struct pl022 *pl022)
 902{
 903        struct dma_slave_config rx_conf = {
 904                .src_addr = SSP_DR(pl022->phybase),
 905                .direction = DMA_FROM_DEVICE,
 906                .src_maxburst = pl022->vendor->fifodepth >> 1,
 907        };
 908        struct dma_slave_config tx_conf = {
 909                .dst_addr = SSP_DR(pl022->phybase),
 910                .direction = DMA_TO_DEVICE,
 911                .dst_maxburst = pl022->vendor->fifodepth >> 1,
 912        };
 913        unsigned int pages;
 914        int ret;
 915        int rx_sglen, tx_sglen;
 916        struct dma_chan *rxchan = pl022->dma_rx_channel;
 917        struct dma_chan *txchan = pl022->dma_tx_channel;
 918        struct dma_async_tx_descriptor *rxdesc;
 919        struct dma_async_tx_descriptor *txdesc;
 920        dma_cookie_t cookie;
 921
 922        /* Check that the channels are available */
 923        if (!rxchan || !txchan)
 924                return -ENODEV;
 925
 926        switch (pl022->read) {
 927        case READING_NULL:
 928                /* Use the same as for writing */
 929                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 930                break;
 931        case READING_U8:
 932                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 933                break;
 934        case READING_U16:
 935                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 936                break;
 937        case READING_U32:
 938                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 939                break;
 940        }
 941
 942        switch (pl022->write) {
 943        case WRITING_NULL:
 944                /* Use the same as for reading */
 945                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 946                break;
 947        case WRITING_U8:
 948                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 949                break;
 950        case WRITING_U16:
 951                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 952                break;
 953        case WRITING_U32:
 954                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 955                break;
 956        }
 957
 958        /* SPI pecularity: we need to read and write the same width */
 959        if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
 960                rx_conf.src_addr_width = tx_conf.dst_addr_width;
 961        if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
 962                tx_conf.dst_addr_width = rx_conf.src_addr_width;
 963        BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
 964
 965        rxchan->device->device_control(rxchan, DMA_SLAVE_CONFIG,
 966                                       (unsigned long) &rx_conf);
 967        txchan->device->device_control(txchan, DMA_SLAVE_CONFIG,
 968                                       (unsigned long) &tx_conf);
 969
 970        /* Create sglists for the transfers */
 971        pages = (pl022->cur_transfer->len >> PAGE_SHIFT) + 1;
 972        dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
 973
 974        ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_KERNEL);
 975        if (ret)
 976                goto err_alloc_rx_sg;
 977
 978        ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_KERNEL);
 979        if (ret)
 980                goto err_alloc_tx_sg;
 981
 982        /* Fill in the scatterlists for the RX+TX buffers */
 983        setup_dma_scatter(pl022, pl022->rx,
 984                          pl022->cur_transfer->len, &pl022->sgt_rx);
 985        setup_dma_scatter(pl022, pl022->tx,
 986                          pl022->cur_transfer->len, &pl022->sgt_tx);
 987
 988        /* Map DMA buffers */
 989        rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
 990                           pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 991        if (!rx_sglen)
 992                goto err_rx_sgmap;
 993
 994        tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
 995                           pl022->sgt_tx.nents, DMA_TO_DEVICE);
 996        if (!tx_sglen)
 997                goto err_tx_sgmap;
 998
 999        /* Send both scatterlists */
1000        rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1001                                      pl022->sgt_rx.sgl,
1002                                      rx_sglen,
1003                                      DMA_FROM_DEVICE,
1004                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1005        if (!rxdesc)
1006                goto err_rxdesc;
1007
1008        txdesc = txchan->device->device_prep_slave_sg(txchan,
1009                                      pl022->sgt_tx.sgl,
1010                                      tx_sglen,
1011                                      DMA_TO_DEVICE,
1012                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1013        if (!txdesc)
1014                goto err_txdesc;
1015
1016        /* Put the callback on the RX transfer only, that should finish last */
1017        rxdesc->callback = dma_callback;
1018        rxdesc->callback_param = pl022;
1019
1020        /* Submit and fire RX and TX with TX last so we're ready to read! */
1021        cookie = rxdesc->tx_submit(rxdesc);
1022        if (dma_submit_error(cookie))
1023                goto err_submit_rx;
1024        cookie = txdesc->tx_submit(txdesc);
1025        if (dma_submit_error(cookie))
1026                goto err_submit_tx;
1027        rxchan->device->device_issue_pending(rxchan);
1028        txchan->device->device_issue_pending(txchan);
1029
1030        return 0;
1031
1032err_submit_tx:
1033err_submit_rx:
1034err_txdesc:
1035        txchan->device->device_control(txchan, DMA_TERMINATE_ALL, 0);
1036err_rxdesc:
1037        rxchan->device->device_control(rxchan, DMA_TERMINATE_ALL, 0);
1038        dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1039                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1040err_tx_sgmap:
1041        dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1042                     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1043err_rx_sgmap:
1044        sg_free_table(&pl022->sgt_tx);
1045err_alloc_tx_sg:
1046        sg_free_table(&pl022->sgt_rx);
1047err_alloc_rx_sg:
1048        return -ENOMEM;
1049}
1050
1051static int __init pl022_dma_probe(struct pl022 *pl022)
1052{
1053        dma_cap_mask_t mask;
1054
1055        /* Try to acquire a generic DMA engine slave channel */
1056        dma_cap_zero(mask);
1057        dma_cap_set(DMA_SLAVE, mask);
1058        /*
1059         * We need both RX and TX channels to do DMA, else do none
1060         * of them.
1061         */
1062        pl022->dma_rx_channel = dma_request_channel(mask,
1063                                            pl022->master_info->dma_filter,
1064                                            pl022->master_info->dma_rx_param);
1065        if (!pl022->dma_rx_channel) {
1066                dev_err(&pl022->adev->dev, "no RX DMA channel!\n");
1067                goto err_no_rxchan;
1068        }
1069
1070        pl022->dma_tx_channel = dma_request_channel(mask,
1071                                            pl022->master_info->dma_filter,
1072                                            pl022->master_info->dma_tx_param);
1073        if (!pl022->dma_tx_channel) {
1074                dev_err(&pl022->adev->dev, "no TX DMA channel!\n");
1075                goto err_no_txchan;
1076        }
1077
1078        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1079        if (!pl022->dummypage) {
1080                dev_err(&pl022->adev->dev, "no DMA dummypage!\n");
1081                goto err_no_dummypage;
1082        }
1083
1084        dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1085                 dma_chan_name(pl022->dma_rx_channel),
1086                 dma_chan_name(pl022->dma_tx_channel));
1087
1088        return 0;
1089
1090err_no_dummypage:
1091        dma_release_channel(pl022->dma_tx_channel);
1092err_no_txchan:
1093        dma_release_channel(pl022->dma_rx_channel);
1094        pl022->dma_rx_channel = NULL;
1095err_no_rxchan:
1096        return -ENODEV;
1097}
1098
1099static void terminate_dma(struct pl022 *pl022)
1100{
1101        struct dma_chan *rxchan = pl022->dma_rx_channel;
1102        struct dma_chan *txchan = pl022->dma_tx_channel;
1103
1104        rxchan->device->device_control(rxchan, DMA_TERMINATE_ALL, 0);
1105        txchan->device->device_control(txchan, DMA_TERMINATE_ALL, 0);
1106        unmap_free_dma_scatter(pl022);
1107}
1108
1109static void pl022_dma_remove(struct pl022 *pl022)
1110{
1111        if (pl022->busy)
1112                terminate_dma(pl022);
1113        if (pl022->dma_tx_channel)
1114                dma_release_channel(pl022->dma_tx_channel);
1115        if (pl022->dma_rx_channel)
1116                dma_release_channel(pl022->dma_rx_channel);
1117        kfree(pl022->dummypage);
1118}
1119
1120#else
1121static inline int configure_dma(struct pl022 *pl022)
1122{
1123        return -ENODEV;
1124}
1125
1126static inline int pl022_dma_probe(struct pl022 *pl022)
1127{
1128        return 0;
1129}
1130
1131static inline void pl022_dma_remove(struct pl022 *pl022)
1132{
1133}
1134#endif
1135
1136/**
1137 * pl022_interrupt_handler - Interrupt handler for SSP controller
1138 *
1139 * This function handles interrupts generated for an interrupt based transfer.
1140 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1141 * current message's state as STATE_ERROR and schedule the tasklet
1142 * pump_transfers which will do the postprocessing of the current message by
1143 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1144 * more data, and writes data in TX FIFO till it is not full. If we complete
1145 * the transfer we move to the next transfer and schedule the tasklet.
1146 */
1147static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1148{
1149        struct pl022 *pl022 = dev_id;
1150        struct spi_message *msg = pl022->cur_msg;
1151        u16 irq_status = 0;
1152        u16 flag = 0;
1153
1154        if (unlikely(!msg)) {
1155                dev_err(&pl022->adev->dev,
1156                        "bad message state in interrupt handler");
1157                /* Never fail */
1158                return IRQ_HANDLED;
1159        }
1160
1161        /* Read the Interrupt Status Register */
1162        irq_status = readw(SSP_MIS(pl022->virtbase));
1163
1164        if (unlikely(!irq_status))
1165                return IRQ_NONE;
1166
1167        /*
1168         * This handles the FIFO interrupts, the timeout
1169         * interrupts are flatly ignored, they cannot be
1170         * trusted.
1171         */
1172        if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1173                /*
1174                 * Overrun interrupt - bail out since our Data has been
1175                 * corrupted
1176                 */
1177                dev_err(&pl022->adev->dev, "FIFO overrun\n");
1178                if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1179                        dev_err(&pl022->adev->dev,
1180                                "RXFIFO is full\n");
1181                if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1182                        dev_err(&pl022->adev->dev,
1183                                "TXFIFO is full\n");
1184
1185                /*
1186                 * Disable and clear interrupts, disable SSP,
1187                 * mark message with bad status so it can be
1188                 * retried.
1189                 */
1190                writew(DISABLE_ALL_INTERRUPTS,
1191                       SSP_IMSC(pl022->virtbase));
1192                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1193                writew((readw(SSP_CR1(pl022->virtbase)) &
1194                        (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1195                msg->state = STATE_ERROR;
1196
1197                /* Schedule message queue handler */
1198                tasklet_schedule(&pl022->pump_transfers);
1199                return IRQ_HANDLED;
1200        }
1201
1202        readwriter(pl022);
1203
1204        if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1205                flag = 1;
1206                /* Disable Transmit interrupt */
1207                writew(readw(SSP_IMSC(pl022->virtbase)) &
1208                       (~SSP_IMSC_MASK_TXIM),
1209                       SSP_IMSC(pl022->virtbase));
1210        }
1211
1212        /*
1213         * Since all transactions must write as much as shall be read,
1214         * we can conclude the entire transaction once RX is complete.
1215         * At this point, all TX will always be finished.
1216         */
1217        if (pl022->rx >= pl022->rx_end) {
1218                writew(DISABLE_ALL_INTERRUPTS,
1219                       SSP_IMSC(pl022->virtbase));
1220                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1221                if (unlikely(pl022->rx > pl022->rx_end)) {
1222                        dev_warn(&pl022->adev->dev, "read %u surplus "
1223                                 "bytes (did you request an odd "
1224                                 "number of bytes on a 16bit bus?)\n",
1225                                 (u32) (pl022->rx - pl022->rx_end));
1226                }
1227                /* Update total bytes transfered */
1228                msg->actual_length += pl022->cur_transfer->len;
1229                if (pl022->cur_transfer->cs_change)
1230                        pl022->cur_chip->
1231                                cs_control(SSP_CHIP_DESELECT);
1232                /* Move to next transfer */
1233                msg->state = next_transfer(pl022);
1234                tasklet_schedule(&pl022->pump_transfers);
1235                return IRQ_HANDLED;
1236        }
1237
1238        return IRQ_HANDLED;
1239}
1240
1241/**
1242 * This sets up the pointers to memory for the next message to
1243 * send out on the SPI bus.
1244 */
1245static int set_up_next_transfer(struct pl022 *pl022,
1246                                struct spi_transfer *transfer)
1247{
1248        int residue;
1249
1250        /* Sanity check the message for this bus width */
1251        residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1252        if (unlikely(residue != 0)) {
1253                dev_err(&pl022->adev->dev,
1254                        "message of %u bytes to transmit but the current "
1255                        "chip bus has a data width of %u bytes!\n",
1256                        pl022->cur_transfer->len,
1257                        pl022->cur_chip->n_bytes);
1258                dev_err(&pl022->adev->dev, "skipping this message\n");
1259                return -EIO;
1260        }
1261        pl022->tx = (void *)transfer->tx_buf;
1262        pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1263        pl022->rx = (void *)transfer->rx_buf;
1264        pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1265        pl022->write =
1266            pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1267        pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1268        return 0;
1269}
1270
1271/**
1272 * pump_transfers - Tasklet function which schedules next transfer
1273 * when running in interrupt or DMA transfer mode.
1274 * @data: SSP driver private data structure
1275 *
1276 */
1277static void pump_transfers(unsigned long data)
1278{
1279        struct pl022 *pl022 = (struct pl022 *) data;
1280        struct spi_message *message = NULL;
1281        struct spi_transfer *transfer = NULL;
1282        struct spi_transfer *previous = NULL;
1283
1284        /* Get current state information */
1285        message = pl022->cur_msg;
1286        transfer = pl022->cur_transfer;
1287
1288        /* Handle for abort */
1289        if (message->state == STATE_ERROR) {
1290                message->status = -EIO;
1291                giveback(pl022);
1292                return;
1293        }
1294
1295        /* Handle end of message */
1296        if (message->state == STATE_DONE) {
1297                message->status = 0;
1298                giveback(pl022);
1299                return;
1300        }
1301
1302        /* Delay if requested at end of transfer before CS change */
1303        if (message->state == STATE_RUNNING) {
1304                previous = list_entry(transfer->transfer_list.prev,
1305                                        struct spi_transfer,
1306                                        transfer_list);
1307                if (previous->delay_usecs)
1308                        /*
1309                         * FIXME: This runs in interrupt context.
1310                         * Is this really smart?
1311                         */
1312                        udelay(previous->delay_usecs);
1313
1314                /* Drop chip select only if cs_change is requested */
1315                if (previous->cs_change)
1316                        pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1317        } else {
1318                /* STATE_START */
1319                message->state = STATE_RUNNING;
1320        }
1321
1322        if (set_up_next_transfer(pl022, transfer)) {
1323                message->state = STATE_ERROR;
1324                message->status = -EIO;
1325                giveback(pl022);
1326                return;
1327        }
1328        /* Flush the FIFOs and let's go! */
1329        flush(pl022);
1330
1331        if (pl022->cur_chip->enable_dma) {
1332                if (configure_dma(pl022)) {
1333                        dev_dbg(&pl022->adev->dev,
1334                                "configuration of DMA failed, fall back to interrupt mode\n");
1335                        goto err_config_dma;
1336                }
1337                return;
1338        }
1339
1340err_config_dma:
1341        writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1342}
1343
1344static void do_interrupt_dma_transfer(struct pl022 *pl022)
1345{
1346        u32 irqflags = ENABLE_ALL_INTERRUPTS;
1347
1348        /* Enable target chip */
1349        pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1350        if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1351                /* Error path */
1352                pl022->cur_msg->state = STATE_ERROR;
1353                pl022->cur_msg->status = -EIO;
1354                giveback(pl022);
1355                return;
1356        }
1357        /* If we're using DMA, set up DMA here */
1358        if (pl022->cur_chip->enable_dma) {
1359                /* Configure DMA transfer */
1360                if (configure_dma(pl022)) {
1361                        dev_dbg(&pl022->adev->dev,
1362                                "configuration of DMA failed, fall back to interrupt mode\n");
1363                        goto err_config_dma;
1364                }
1365                /* Disable interrupts in DMA mode, IRQ from DMA controller */
1366                irqflags = DISABLE_ALL_INTERRUPTS;
1367        }
1368err_config_dma:
1369        /* Enable SSP, turn on interrupts */
1370        writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1371               SSP_CR1(pl022->virtbase));
1372        writew(irqflags, SSP_IMSC(pl022->virtbase));
1373}
1374
1375static void do_polling_transfer(struct pl022 *pl022)
1376{
1377        struct spi_message *message = NULL;
1378        struct spi_transfer *transfer = NULL;
1379        struct spi_transfer *previous = NULL;
1380        struct chip_data *chip;
1381
1382        chip = pl022->cur_chip;
1383        message = pl022->cur_msg;
1384
1385        while (message->state != STATE_DONE) {
1386                /* Handle for abort */
1387                if (message->state == STATE_ERROR)
1388                        break;
1389                transfer = pl022->cur_transfer;
1390
1391                /* Delay if requested at end of transfer */
1392                if (message->state == STATE_RUNNING) {
1393                        previous =
1394                            list_entry(transfer->transfer_list.prev,
1395                                       struct spi_transfer, transfer_list);
1396                        if (previous->delay_usecs)
1397                                udelay(previous->delay_usecs);
1398                        if (previous->cs_change)
1399                                pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1400                } else {
1401                        /* STATE_START */
1402                        message->state = STATE_RUNNING;
1403                        pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1404                }
1405
1406                /* Configuration Changing Per Transfer */
1407                if (set_up_next_transfer(pl022, transfer)) {
1408                        /* Error path */
1409                        message->state = STATE_ERROR;
1410                        break;
1411                }
1412                /* Flush FIFOs and enable SSP */
1413                flush(pl022);
1414                writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1415                       SSP_CR1(pl022->virtbase));
1416
1417                dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1418                /* FIXME: insert a timeout so we don't hang here indefinately */
1419                while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end)
1420                        readwriter(pl022);
1421
1422                /* Update total byte transfered */
1423                message->actual_length += pl022->cur_transfer->len;
1424                if (pl022->cur_transfer->cs_change)
1425                        pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1426                /* Move to next transfer */
1427                message->state = next_transfer(pl022);
1428        }
1429
1430        /* Handle end of message */
1431        if (message->state == STATE_DONE)
1432                message->status = 0;
1433        else
1434                message->status = -EIO;
1435
1436        giveback(pl022);
1437        return;
1438}
1439
1440/**
1441 * pump_messages - Workqueue function which processes spi message queue
1442 * @data: pointer to private data of SSP driver
1443 *
1444 * This function checks if there is any spi message in the queue that
1445 * needs processing and delegate control to appropriate function
1446 * do_polling_transfer()/do_interrupt_dma_transfer()
1447 * based on the kind of the transfer
1448 *
1449 */
1450static void pump_messages(struct work_struct *work)
1451{
1452        struct pl022 *pl022 =
1453                container_of(work, struct pl022, pump_messages);
1454        unsigned long flags;
1455
1456        /* Lock queue and check for queue work */
1457        spin_lock_irqsave(&pl022->queue_lock, flags);
1458        if (list_empty(&pl022->queue) || !pl022->running) {
1459                pl022->busy = false;
1460                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1461                return;
1462        }
1463        /* Make sure we are not already running a message */
1464        if (pl022->cur_msg) {
1465                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1466                return;
1467        }
1468        /* Extract head of queue */
1469        pl022->cur_msg =
1470            list_entry(pl022->queue.next, struct spi_message, queue);
1471
1472        list_del_init(&pl022->cur_msg->queue);
1473        pl022->busy = true;
1474        spin_unlock_irqrestore(&pl022->queue_lock, flags);
1475
1476        /* Initial message state */
1477        pl022->cur_msg->state = STATE_START;
1478        pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1479                                            struct spi_transfer,
1480                                            transfer_list);
1481
1482        /* Setup the SPI using the per chip configuration */
1483        pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1484        /*
1485         * We enable the clocks here, then the clocks will be disabled when
1486         * giveback() is called in each method (poll/interrupt/DMA)
1487         */
1488        amba_pclk_enable(pl022->adev);
1489        clk_enable(pl022->clk);
1490        restore_state(pl022);
1491        flush(pl022);
1492
1493        if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1494                do_polling_transfer(pl022);
1495        else
1496                do_interrupt_dma_transfer(pl022);
1497}
1498
1499
1500static int __init init_queue(struct pl022 *pl022)
1501{
1502        INIT_LIST_HEAD(&pl022->queue);
1503        spin_lock_init(&pl022->queue_lock);
1504
1505        pl022->running = false;
1506        pl022->busy = false;
1507
1508        tasklet_init(&pl022->pump_transfers,
1509                        pump_transfers, (unsigned long)pl022);
1510
1511        INIT_WORK(&pl022->pump_messages, pump_messages);
1512        pl022->workqueue = create_singlethread_workqueue(
1513                                        dev_name(pl022->master->dev.parent));
1514        if (pl022->workqueue == NULL)
1515                return -EBUSY;
1516
1517        return 0;
1518}
1519
1520
1521static int start_queue(struct pl022 *pl022)
1522{
1523        unsigned long flags;
1524
1525        spin_lock_irqsave(&pl022->queue_lock, flags);
1526
1527        if (pl022->running || pl022->busy) {
1528                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1529                return -EBUSY;
1530        }
1531
1532        pl022->running = true;
1533        pl022->cur_msg = NULL;
1534        pl022->cur_transfer = NULL;
1535        pl022->cur_chip = NULL;
1536        spin_unlock_irqrestore(&pl022->queue_lock, flags);
1537
1538        queue_work(pl022->workqueue, &pl022->pump_messages);
1539
1540        return 0;
1541}
1542
1543
1544static int stop_queue(struct pl022 *pl022)
1545{
1546        unsigned long flags;
1547        unsigned limit = 500;
1548        int status = 0;
1549
1550        spin_lock_irqsave(&pl022->queue_lock, flags);
1551
1552        /* This is a bit lame, but is optimized for the common execution path.
1553         * A wait_queue on the pl022->busy could be used, but then the common
1554         * execution path (pump_messages) would be required to call wake_up or
1555         * friends on every SPI message. Do this instead */
1556        while (!list_empty(&pl022->queue) && pl022->busy && limit--) {
1557                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1558                msleep(10);
1559                spin_lock_irqsave(&pl022->queue_lock, flags);
1560        }
1561
1562        if (!list_empty(&pl022->queue) || pl022->busy)
1563                status = -EBUSY;
1564        else
1565                pl022->running = false;
1566
1567        spin_unlock_irqrestore(&pl022->queue_lock, flags);
1568
1569        return status;
1570}
1571
1572static int destroy_queue(struct pl022 *pl022)
1573{
1574        int status;
1575
1576        status = stop_queue(pl022);
1577        /* we are unloading the module or failing to load (only two calls
1578         * to this routine), and neither call can handle a return value.
1579         * However, destroy_workqueue calls flush_workqueue, and that will
1580         * block until all work is done.  If the reason that stop_queue
1581         * timed out is that the work will never finish, then it does no
1582         * good to call destroy_workqueue, so return anyway. */
1583        if (status != 0)
1584                return status;
1585
1586        destroy_workqueue(pl022->workqueue);
1587
1588        return 0;
1589}
1590
1591static int verify_controller_parameters(struct pl022 *pl022,
1592                                struct pl022_config_chip const *chip_info)
1593{
1594        if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1595            || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1596                dev_err(&pl022->adev->dev,
1597                        "interface is configured incorrectly\n");
1598                return -EINVAL;
1599        }
1600        if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1601            (!pl022->vendor->unidir)) {
1602                dev_err(&pl022->adev->dev,
1603                        "unidirectional mode not supported in this "
1604                        "hardware version\n");
1605                return -EINVAL;
1606        }
1607        if ((chip_info->hierarchy != SSP_MASTER)
1608            && (chip_info->hierarchy != SSP_SLAVE)) {
1609                dev_err(&pl022->adev->dev,
1610                        "hierarchy is configured incorrectly\n");
1611                return -EINVAL;
1612        }
1613        if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1614            && (chip_info->com_mode != DMA_TRANSFER)
1615            && (chip_info->com_mode != POLLING_TRANSFER)) {
1616                dev_err(&pl022->adev->dev,
1617                        "Communication mode is configured incorrectly\n");
1618                return -EINVAL;
1619        }
1620        if ((chip_info->rx_lev_trig < SSP_RX_1_OR_MORE_ELEM)
1621            || (chip_info->rx_lev_trig > SSP_RX_32_OR_MORE_ELEM)) {
1622                dev_err(&pl022->adev->dev,
1623                        "RX FIFO Trigger Level is configured incorrectly\n");
1624                return -EINVAL;
1625        }
1626        if ((chip_info->tx_lev_trig < SSP_TX_1_OR_MORE_EMPTY_LOC)
1627            || (chip_info->tx_lev_trig > SSP_TX_32_OR_MORE_EMPTY_LOC)) {
1628                dev_err(&pl022->adev->dev,
1629                        "TX FIFO Trigger Level is configured incorrectly\n");
1630                return -EINVAL;
1631        }
1632        if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1633                if ((chip_info->ctrl_len < SSP_BITS_4)
1634                    || (chip_info->ctrl_len > SSP_BITS_32)) {
1635                        dev_err(&pl022->adev->dev,
1636                                "CTRL LEN is configured incorrectly\n");
1637                        return -EINVAL;
1638                }
1639                if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1640                    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1641                        dev_err(&pl022->adev->dev,
1642                                "Wait State is configured incorrectly\n");
1643                        return -EINVAL;
1644                }
1645                /* Half duplex is only available in the ST Micro version */
1646                if (pl022->vendor->extended_cr) {
1647                        if ((chip_info->duplex !=
1648                             SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1649                            && (chip_info->duplex !=
1650                                SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1651                                dev_err(&pl022->adev->dev,
1652                                        "Microwire duplex mode is configured incorrectly\n");
1653                                return -EINVAL;
1654                        }
1655                } else {
1656                        if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1657                                dev_err(&pl022->adev->dev,
1658                                        "Microwire half duplex mode requested,"
1659                                        " but this is only available in the"
1660                                        " ST version of PL022\n");
1661                        return -EINVAL;
1662                }
1663        }
1664        return 0;
1665}
1666
1667/**
1668 * pl022_transfer - transfer function registered to SPI master framework
1669 * @spi: spi device which is requesting transfer
1670 * @msg: spi message which is to handled is queued to driver queue
1671 *
1672 * This function is registered to the SPI framework for this SPI master
1673 * controller. It will queue the spi_message in the queue of driver if
1674 * the queue is not stopped and return.
1675 */
1676static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1677{
1678        struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1679        unsigned long flags;
1680
1681        spin_lock_irqsave(&pl022->queue_lock, flags);
1682
1683        if (!pl022->running) {
1684                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1685                return -ESHUTDOWN;
1686        }
1687        msg->actual_length = 0;
1688        msg->status = -EINPROGRESS;
1689        msg->state = STATE_START;
1690
1691        list_add_tail(&msg->queue, &pl022->queue);
1692        if (pl022->running && !pl022->busy)
1693                queue_work(pl022->workqueue, &pl022->pump_messages);
1694
1695        spin_unlock_irqrestore(&pl022->queue_lock, flags);
1696        return 0;
1697}
1698
1699static int calculate_effective_freq(struct pl022 *pl022,
1700                                    int freq,
1701                                    struct ssp_clock_params *clk_freq)
1702{
1703        /* Lets calculate the frequency parameters */
1704        u16 cpsdvsr = 2;
1705        u16 scr = 0;
1706        bool freq_found = false;
1707        u32 rate;
1708        u32 max_tclk;
1709        u32 min_tclk;
1710
1711        rate = clk_get_rate(pl022->clk);
1712        /* cpsdvscr = 2 & scr 0 */
1713        max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
1714        /* cpsdvsr = 254 & scr = 255 */
1715        min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
1716
1717        if ((freq <= max_tclk) && (freq >= min_tclk)) {
1718                while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
1719                        while (scr <= SCR_MAX && !freq_found) {
1720                                if ((rate /
1721                                     (cpsdvsr * (1 + scr))) > freq)
1722                                        scr += 1;
1723                                else {
1724                                        /*
1725                                         * This bool is made true when
1726                                         * effective frequency >=
1727                                         * target frequency is found
1728                                         */
1729                                        freq_found = true;
1730                                        if ((rate /
1731                                             (cpsdvsr * (1 + scr))) != freq) {
1732                                                if (scr == SCR_MIN) {
1733                                                        cpsdvsr -= 2;
1734                                                        scr = SCR_MAX;
1735                                                } else
1736                                                        scr -= 1;
1737                                        }
1738                                }
1739                        }
1740                        if (!freq_found) {
1741                                cpsdvsr += 2;
1742                                scr = SCR_MIN;
1743                        }
1744                }
1745                if (cpsdvsr != 0) {
1746                        dev_dbg(&pl022->adev->dev,
1747                                "SSP Effective Frequency is %u\n",
1748                                (rate / (cpsdvsr * (1 + scr))));
1749                        clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
1750                        clk_freq->scr = (u8) (scr & 0xFF);
1751                        dev_dbg(&pl022->adev->dev,
1752                                "SSP cpsdvsr = %d, scr = %d\n",
1753                                clk_freq->cpsdvsr, clk_freq->scr);
1754                }
1755        } else {
1756                dev_err(&pl022->adev->dev,
1757                        "controller data is incorrect: out of range frequency");
1758                return -EINVAL;
1759        }
1760        return 0;
1761}
1762
1763
1764/*
1765 * A piece of default chip info unless the platform
1766 * supplies it.
1767 */
1768static const struct pl022_config_chip pl022_default_chip_info = {
1769        .com_mode = POLLING_TRANSFER,
1770        .iface = SSP_INTERFACE_MOTOROLA_SPI,
1771        .hierarchy = SSP_SLAVE,
1772        .slave_tx_disable = DO_NOT_DRIVE_TX,
1773        .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1774        .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1775        .ctrl_len = SSP_BITS_8,
1776        .wait_state = SSP_MWIRE_WAIT_ZERO,
1777        .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1778        .cs_control = null_cs_control,
1779};
1780
1781
1782/**
1783 * pl022_setup - setup function registered to SPI master framework
1784 * @spi: spi device which is requesting setup
1785 *
1786 * This function is registered to the SPI framework for this SPI master
1787 * controller. If it is the first time when setup is called by this device,
1788 * this function will initialize the runtime state for this chip and save
1789 * the same in the device structure. Else it will update the runtime info
1790 * with the updated chip info. Nothing is really being written to the
1791 * controller hardware here, that is not done until the actual transfer
1792 * commence.
1793 */
1794static int pl022_setup(struct spi_device *spi)
1795{
1796        struct pl022_config_chip const *chip_info;
1797        struct chip_data *chip;
1798        struct ssp_clock_params clk_freq = {0, };
1799        int status = 0;
1800        struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1801        unsigned int bits = spi->bits_per_word;
1802        u32 tmp;
1803
1804        if (!spi->max_speed_hz)
1805                return -EINVAL;
1806
1807        /* Get controller_state if one is supplied */
1808        chip = spi_get_ctldata(spi);
1809
1810        if (chip == NULL) {
1811                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1812                if (!chip) {
1813                        dev_err(&spi->dev,
1814                                "cannot allocate controller state\n");
1815                        return -ENOMEM;
1816                }
1817                dev_dbg(&spi->dev,
1818                        "allocated memory for controller's runtime state\n");
1819        }
1820
1821        /* Get controller data if one is supplied */
1822        chip_info = spi->controller_data;
1823
1824        if (chip_info == NULL) {
1825                chip_info = &pl022_default_chip_info;
1826                /* spi_board_info.controller_data not is supplied */
1827                dev_dbg(&spi->dev,
1828                        "using default controller_data settings\n");
1829        } else
1830                dev_dbg(&spi->dev,
1831                        "using user supplied controller_data settings\n");
1832
1833        /*
1834         * We can override with custom divisors, else we use the board
1835         * frequency setting
1836         */
1837        if ((0 == chip_info->clk_freq.cpsdvsr)
1838            && (0 == chip_info->clk_freq.scr)) {
1839                status = calculate_effective_freq(pl022,
1840                                                  spi->max_speed_hz,
1841                                                  &clk_freq);
1842                if (status < 0)
1843                        goto err_config_params;
1844        } else {
1845                memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1846                if ((clk_freq.cpsdvsr % 2) != 0)
1847                        clk_freq.cpsdvsr =
1848                                clk_freq.cpsdvsr - 1;
1849        }
1850        if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1851            || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1852                dev_err(&spi->dev,
1853                        "cpsdvsr is configured incorrectly\n");
1854                goto err_config_params;
1855        }
1856
1857
1858        status = verify_controller_parameters(pl022, chip_info);
1859        if (status) {
1860                dev_err(&spi->dev, "controller data is incorrect");
1861                goto err_config_params;
1862        }
1863
1864        /* Now set controller state based on controller data */
1865        chip->xfer_type = chip_info->com_mode;
1866        if (!chip_info->cs_control) {
1867                chip->cs_control = null_cs_control;
1868                dev_warn(&spi->dev,
1869                         "chip select function is NULL for this chip\n");
1870        } else
1871                chip->cs_control = chip_info->cs_control;
1872
1873        if (bits <= 3) {
1874                /* PL022 doesn't support less than 4-bits */
1875                status = -ENOTSUPP;
1876                goto err_config_params;
1877        } else if (bits <= 8) {
1878                dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1879                chip->n_bytes = 1;
1880                chip->read = READING_U8;
1881                chip->write = WRITING_U8;
1882        } else if (bits <= 16) {
1883                dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1884                chip->n_bytes = 2;
1885                chip->read = READING_U16;
1886                chip->write = WRITING_U16;
1887        } else {
1888                if (pl022->vendor->max_bpw >= 32) {
1889                        dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1890                        chip->n_bytes = 4;
1891                        chip->read = READING_U32;
1892                        chip->write = WRITING_U32;
1893                } else {
1894                        dev_err(&spi->dev,
1895                                "illegal data size for this controller!\n");
1896                        dev_err(&spi->dev,
1897                                "a standard pl022 can only handle "
1898                                "1 <= n <= 16 bit words\n");
1899                        status = -ENOTSUPP;
1900                        goto err_config_params;
1901                }
1902        }
1903
1904        /* Now Initialize all register settings required for this chip */
1905        chip->cr0 = 0;
1906        chip->cr1 = 0;
1907        chip->dmacr = 0;
1908        chip->cpsr = 0;
1909        if ((chip_info->com_mode == DMA_TRANSFER)
1910            && ((pl022->master_info)->enable_dma)) {
1911                chip->enable_dma = true;
1912                dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1913                if (status < 0)
1914                        goto err_config_params;
1915                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1916                               SSP_DMACR_MASK_RXDMAE, 0);
1917                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1918                               SSP_DMACR_MASK_TXDMAE, 1);
1919        } else {
1920                chip->enable_dma = false;
1921                dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1922                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1923                               SSP_DMACR_MASK_RXDMAE, 0);
1924                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1925                               SSP_DMACR_MASK_TXDMAE, 1);
1926        }
1927
1928        chip->cpsr = clk_freq.cpsdvsr;
1929
1930        /* Special setup for the ST micro extended control registers */
1931        if (pl022->vendor->extended_cr) {
1932                u32 etx;
1933
1934                if (pl022->vendor->pl023) {
1935                        /* These bits are only in the PL023 */
1936                        SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1937                                       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1938                } else {
1939                        /* These bits are in the PL022 but not PL023 */
1940                        SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1941                                       SSP_CR0_MASK_HALFDUP_ST, 5);
1942                        SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1943                                       SSP_CR0_MASK_CSS_ST, 16);
1944                        SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1945                                       SSP_CR0_MASK_FRF_ST, 21);
1946                        SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1947                                       SSP_CR1_MASK_MWAIT_ST, 6);
1948                }
1949                SSP_WRITE_BITS(chip->cr0, bits - 1,
1950                               SSP_CR0_MASK_DSS_ST, 0);
1951
1952                if (spi->mode & SPI_LSB_FIRST) {
1953                        tmp = SSP_RX_LSB;
1954                        etx = SSP_TX_LSB;
1955                } else {
1956                        tmp = SSP_RX_MSB;
1957                        etx = SSP_TX_MSB;
1958                }
1959                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1960                SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1961                SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1962                               SSP_CR1_MASK_RXIFLSEL_ST, 7);
1963                SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1964                               SSP_CR1_MASK_TXIFLSEL_ST, 10);
1965        } else {
1966                SSP_WRITE_BITS(chip->cr0, bits - 1,
1967                               SSP_CR0_MASK_DSS, 0);
1968                SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1969                               SSP_CR0_MASK_FRF, 4);
1970        }
1971
1972        /* Stuff that is common for all versions */
1973        if (spi->mode & SPI_CPOL)
1974                tmp = SSP_CLK_POL_IDLE_HIGH;
1975        else
1976                tmp = SSP_CLK_POL_IDLE_LOW;
1977        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1978
1979        if (spi->mode & SPI_CPHA)
1980                tmp = SSP_CLK_SECOND_EDGE;
1981        else
1982                tmp = SSP_CLK_FIRST_EDGE;
1983        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1984
1985        SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1986        /* Loopback is available on all versions except PL023 */
1987        if (!pl022->vendor->pl023) {
1988                if (spi->mode & SPI_LOOP)
1989                        tmp = LOOPBACK_ENABLED;
1990                else
1991                        tmp = LOOPBACK_DISABLED;
1992                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1993        }
1994        SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1995        SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1996        SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);
1997
1998        /* Save controller_state */
1999        spi_set_ctldata(spi, chip);
2000        return status;
2001 err_config_params:
2002        spi_set_ctldata(spi, NULL);
2003        kfree(chip);
2004        return status;
2005}
2006
2007/**
2008 * pl022_cleanup - cleanup function registered to SPI master framework
2009 * @spi: spi device which is requesting cleanup
2010 *
2011 * This function is registered to the SPI framework for this SPI master
2012 * controller. It will free the runtime state of chip.
2013 */
2014static void pl022_cleanup(struct spi_device *spi)
2015{
2016        struct chip_data *chip = spi_get_ctldata(spi);
2017
2018        spi_set_ctldata(spi, NULL);
2019        kfree(chip);
2020}
2021
2022
2023static int __devinit
2024pl022_probe(struct amba_device *adev, struct amba_id *id)
2025{
2026        struct device *dev = &adev->dev;
2027        struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2028        struct spi_master *master;
2029        struct pl022 *pl022 = NULL;     /*Data for this driver */
2030        int status = 0;
2031
2032        dev_info(&adev->dev,
2033                 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2034        if (platform_info == NULL) {
2035                dev_err(&adev->dev, "probe - no platform data supplied\n");
2036                status = -ENODEV;
2037                goto err_no_pdata;
2038        }
2039
2040        /* Allocate master with space for data */
2041        master = spi_alloc_master(dev, sizeof(struct pl022));
2042        if (master == NULL) {
2043                dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2044                status = -ENOMEM;
2045                goto err_no_master;
2046        }
2047
2048        pl022 = spi_master_get_devdata(master);
2049        pl022->master = master;
2050        pl022->master_info = platform_info;
2051        pl022->adev = adev;
2052        pl022->vendor = id->data;
2053
2054        /*
2055         * Bus Number Which has been Assigned to this SSP controller
2056         * on this board
2057         */
2058        master->bus_num = platform_info->bus_id;
2059        master->num_chipselect = platform_info->num_chipselect;
2060        master->cleanup = pl022_cleanup;
2061        master->setup = pl022_setup;
2062        master->transfer = pl022_transfer;
2063
2064        /*
2065         * Supports mode 0-3, loopback, and active low CS. Transfers are
2066         * always MS bit first on the original pl022.
2067         */
2068        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2069        if (pl022->vendor->extended_cr)
2070                master->mode_bits |= SPI_LSB_FIRST;
2071
2072        dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2073
2074        status = amba_request_regions(adev, NULL);
2075        if (status)
2076                goto err_no_ioregion;
2077
2078        pl022->phybase = adev->res.start;
2079        pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2080        if (pl022->virtbase == NULL) {
2081                status = -ENOMEM;
2082                goto err_no_ioremap;
2083        }
2084        printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2085               adev->res.start, pl022->virtbase);
2086
2087        pl022->clk = clk_get(&adev->dev, NULL);
2088        if (IS_ERR(pl022->clk)) {
2089                status = PTR_ERR(pl022->clk);
2090                dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2091                goto err_no_clk;
2092        }
2093
2094        /* Disable SSP */
2095        writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2096               SSP_CR1(pl022->virtbase));
2097        load_ssp_default_config(pl022);
2098
2099        status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2100                             pl022);
2101        if (status < 0) {
2102                dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2103                goto err_no_irq;
2104        }
2105
2106        /* Get DMA channels */
2107        if (platform_info->enable_dma) {
2108                status = pl022_dma_probe(pl022);
2109                if (status != 0)
2110                        goto err_no_dma;
2111        }
2112
2113        /* Initialize and start queue */
2114        status = init_queue(pl022);
2115        if (status != 0) {
2116                dev_err(&adev->dev, "probe - problem initializing queue\n");
2117                goto err_init_queue;
2118        }
2119        status = start_queue(pl022);
2120        if (status != 0) {
2121                dev_err(&adev->dev, "probe - problem starting queue\n");
2122                goto err_start_queue;
2123        }
2124        /* Register with the SPI framework */
2125        amba_set_drvdata(adev, pl022);
2126        status = spi_register_master(master);
2127        if (status != 0) {
2128                dev_err(&adev->dev,
2129                        "probe - problem registering spi master\n");
2130                goto err_spi_register;
2131        }
2132        dev_dbg(dev, "probe succeded\n");
2133        /* Disable the silicon block pclk and clock it when needed */
2134        amba_pclk_disable(adev);
2135        return 0;
2136
2137 err_spi_register:
2138 err_start_queue:
2139 err_init_queue:
2140        destroy_queue(pl022);
2141        pl022_dma_remove(pl022);
2142 err_no_dma:
2143        free_irq(adev->irq[0], pl022);
2144 err_no_irq:
2145        clk_put(pl022->clk);
2146 err_no_clk:
2147        iounmap(pl022->virtbase);
2148 err_no_ioremap:
2149        amba_release_regions(adev);
2150 err_no_ioregion:
2151        spi_master_put(master);
2152 err_no_master:
2153 err_no_pdata:
2154        return status;
2155}
2156
2157static int __devexit
2158pl022_remove(struct amba_device *adev)
2159{
2160        struct pl022 *pl022 = amba_get_drvdata(adev);
2161        int status = 0;
2162        if (!pl022)
2163                return 0;
2164
2165        /* Remove the queue */
2166        status = destroy_queue(pl022);
2167        if (status != 0) {
2168                dev_err(&adev->dev,
2169                        "queue remove failed (%d)\n", status);
2170                return status;
2171        }
2172        load_ssp_default_config(pl022);
2173        pl022_dma_remove(pl022);
2174        free_irq(adev->irq[0], pl022);
2175        clk_disable(pl022->clk);
2176        clk_put(pl022->clk);
2177        iounmap(pl022->virtbase);
2178        amba_release_regions(adev);
2179        tasklet_disable(&pl022->pump_transfers);
2180        spi_unregister_master(pl022->master);
2181        spi_master_put(pl022->master);
2182        amba_set_drvdata(adev, NULL);
2183        dev_dbg(&adev->dev, "remove succeded\n");
2184        return 0;
2185}
2186
2187#ifdef CONFIG_PM
2188static int pl022_suspend(struct amba_device *adev, pm_message_t state)
2189{
2190        struct pl022 *pl022 = amba_get_drvdata(adev);
2191        int status = 0;
2192
2193        status = stop_queue(pl022);
2194        if (status) {
2195                dev_warn(&adev->dev, "suspend cannot stop queue\n");
2196                return status;
2197        }
2198
2199        amba_pclk_enable(adev);
2200        load_ssp_default_config(pl022);
2201        amba_pclk_disable(adev);
2202        dev_dbg(&adev->dev, "suspended\n");
2203        return 0;
2204}
2205
2206static int pl022_resume(struct amba_device *adev)
2207{
2208        struct pl022 *pl022 = amba_get_drvdata(adev);
2209        int status = 0;
2210
2211        /* Start the queue running */
2212        status = start_queue(pl022);
2213        if (status)
2214                dev_err(&adev->dev, "problem starting queue (%d)\n", status);
2215        else
2216                dev_dbg(&adev->dev, "resumed\n");
2217
2218        return status;
2219}
2220#else
2221#define pl022_suspend NULL
2222#define pl022_resume NULL
2223#endif  /* CONFIG_PM */
2224
2225static struct vendor_data vendor_arm = {
2226        .fifodepth = 8,
2227        .max_bpw = 16,
2228        .unidir = false,
2229        .extended_cr = false,
2230        .pl023 = false,
2231};
2232
2233
2234static struct vendor_data vendor_st = {
2235        .fifodepth = 32,
2236        .max_bpw = 32,
2237        .unidir = false,
2238        .extended_cr = true,
2239        .pl023 = false,
2240};
2241
2242static struct vendor_data vendor_st_pl023 = {
2243        .fifodepth = 32,
2244        .max_bpw = 32,
2245        .unidir = false,
2246        .extended_cr = true,
2247        .pl023 = true,
2248};
2249
2250static struct amba_id pl022_ids[] = {
2251        {
2252                /*
2253                 * ARM PL022 variant, this has a 16bit wide
2254                 * and 8 locations deep TX/RX FIFO
2255                 */
2256                .id     = 0x00041022,
2257                .mask   = 0x000fffff,
2258                .data   = &vendor_arm,
2259        },
2260        {
2261                /*
2262                 * ST Micro derivative, this has 32bit wide
2263                 * and 32 locations deep TX/RX FIFO
2264                 */
2265                .id     = 0x01080022,
2266                .mask   = 0xffffffff,
2267                .data   = &vendor_st,
2268        },
2269        {
2270                /*
2271                 * ST-Ericsson derivative "PL023" (this is not
2272                 * an official ARM number), this is a PL022 SSP block
2273                 * stripped to SPI mode only, it has 32bit wide
2274                 * and 32 locations deep TX/RX FIFO but no extended
2275                 * CR0/CR1 register
2276                 */
2277                .id     = 0x00080023,
2278                .mask   = 0xffffffff,
2279                .data   = &vendor_st_pl023,
2280        },
2281        { 0, 0 },
2282};
2283
2284static struct amba_driver pl022_driver = {
2285        .drv = {
2286                .name   = "ssp-pl022",
2287        },
2288        .id_table       = pl022_ids,
2289        .probe          = pl022_probe,
2290        .remove         = __devexit_p(pl022_remove),
2291        .suspend        = pl022_suspend,
2292        .resume         = pl022_resume,
2293};
2294
2295
2296static int __init pl022_init(void)
2297{
2298        return amba_driver_register(&pl022_driver);
2299}
2300
2301subsys_initcall(pl022_init);
2302
2303static void __exit pl022_exit(void)
2304{
2305        amba_driver_unregister(&pl022_driver);
2306}
2307
2308module_exit(pl022_exit);
2309
2310MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2311MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2312MODULE_LICENSE("GPL");
2313