linux/drivers/staging/lirc/lirc_serial.c
<<
>>
Prefs
   1/*
   2 * lirc_serial.c
   3 *
   4 * lirc_serial - Device driver that records pulse- and pause-lengths
   5 *             (space-lengths) between DDCD event on a serial port.
   6 *
   7 * Copyright (C) 1996,97 Ralph Metzler <rjkm@thp.uni-koeln.de>
   8 * Copyright (C) 1998 Trent Piepho <xyzzy@u.washington.edu>
   9 * Copyright (C) 1998 Ben Pfaff <blp@gnu.org>
  10 * Copyright (C) 1999 Christoph Bartelmus <lirc@bartelmus.de>
  11 * Copyright (C) 2007 Andrei Tanas <andrei@tanas.ca> (suspend/resume support)
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2 of the License, or
  15 *  (at your option) any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; if not, write to the Free Software
  24 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  25 *
  26 */
  27
  28/*
  29 * Steve's changes to improve transmission fidelity:
  30 *   - for systems with the rdtsc instruction and the clock counter, a
  31 *     send_pule that times the pulses directly using the counter.
  32 *     This means that the LIRC_SERIAL_TRANSMITTER_LATENCY fudge is
  33 *     not needed. Measurement shows very stable waveform, even where
  34 *     PCI activity slows the access to the UART, which trips up other
  35 *     versions.
  36 *   - For other system, non-integer-microsecond pulse/space lengths,
  37 *     done using fixed point binary. So, much more accurate carrier
  38 *     frequency.
  39 *   - fine tuned transmitter latency, taking advantage of fractional
  40 *     microseconds in previous change
  41 *   - Fixed bug in the way transmitter latency was accounted for by
  42 *     tuning the pulse lengths down - the send_pulse routine ignored
  43 *     this overhead as it timed the overall pulse length - so the
  44 *     pulse frequency was right but overall pulse length was too
  45 *     long. Fixed by accounting for latency on each pulse/space
  46 *     iteration.
  47 *
  48 * Steve Davies <steve@daviesfam.org>  July 2001
  49 */
  50
  51#include <linux/module.h>
  52#include <linux/errno.h>
  53#include <linux/signal.h>
  54#include <linux/sched.h>
  55#include <linux/fs.h>
  56#include <linux/interrupt.h>
  57#include <linux/ioport.h>
  58#include <linux/kernel.h>
  59#include <linux/serial_reg.h>
  60#include <linux/time.h>
  61#include <linux/string.h>
  62#include <linux/types.h>
  63#include <linux/wait.h>
  64#include <linux/mm.h>
  65#include <linux/delay.h>
  66#include <linux/poll.h>
  67#include <linux/platform_device.h>
  68
  69#include <asm/system.h>
  70#include <linux/io.h>
  71#include <linux/irq.h>
  72#include <linux/fcntl.h>
  73#include <linux/spinlock.h>
  74
  75#ifdef CONFIG_LIRC_SERIAL_NSLU2
  76#include <asm/hardware.h>
  77#endif
  78/* From Intel IXP42X Developer's Manual (#252480-005): */
  79/* ftp://download.intel.com/design/network/manuals/25248005.pdf */
  80#define UART_IE_IXP42X_UUE   0x40 /* IXP42X UART Unit enable */
  81#define UART_IE_IXP42X_RTOIE 0x10 /* IXP42X Receiver Data Timeout int.enable */
  82
  83#include <media/lirc.h>
  84#include <media/lirc_dev.h>
  85
  86#define LIRC_DRIVER_NAME "lirc_serial"
  87
  88struct lirc_serial {
  89        int signal_pin;
  90        int signal_pin_change;
  91        u8 on;
  92        u8 off;
  93        long (*send_pulse)(unsigned long length);
  94        void (*send_space)(long length);
  95        int features;
  96        spinlock_t lock;
  97};
  98
  99#define LIRC_HOMEBREW           0
 100#define LIRC_IRDEO              1
 101#define LIRC_IRDEO_REMOTE       2
 102#define LIRC_ANIMAX             3
 103#define LIRC_IGOR               4
 104#define LIRC_NSLU2              5
 105
 106/*** module parameters ***/
 107static int type;
 108static int io;
 109static int irq;
 110static int iommap;
 111static int ioshift;
 112static int softcarrier = 1;
 113static int share_irq;
 114static int debug;
 115static int sense = -1;  /* -1 = auto, 0 = active high, 1 = active low */
 116static int txsense;     /* 0 = active high, 1 = active low */
 117
 118#define dprintk(fmt, args...)                                   \
 119        do {                                                    \
 120                if (debug)                                      \
 121                        printk(KERN_DEBUG LIRC_DRIVER_NAME ": " \
 122                               fmt, ## args);                   \
 123        } while (0)
 124
 125/* forward declarations */
 126static long send_pulse_irdeo(unsigned long length);
 127static long send_pulse_homebrew(unsigned long length);
 128static void send_space_irdeo(long length);
 129static void send_space_homebrew(long length);
 130
 131static struct lirc_serial hardware[] = {
 132        [LIRC_HOMEBREW] = {
 133                .signal_pin        = UART_MSR_DCD,
 134                .signal_pin_change = UART_MSR_DDCD,
 135                .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
 136                .off = (UART_MCR_RTS | UART_MCR_OUT2),
 137                .send_pulse = send_pulse_homebrew,
 138                .send_space = send_space_homebrew,
 139#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
 140                .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
 141                                LIRC_CAN_SET_SEND_CARRIER |
 142                                LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
 143#else
 144                .features    = LIRC_CAN_REC_MODE2
 145#endif
 146        },
 147
 148        [LIRC_IRDEO] = {
 149                .signal_pin        = UART_MSR_DSR,
 150                .signal_pin_change = UART_MSR_DDSR,
 151                .on  = UART_MCR_OUT2,
 152                .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
 153                .send_pulse  = send_pulse_irdeo,
 154                .send_space  = send_space_irdeo,
 155                .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
 156                                LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
 157        },
 158
 159        [LIRC_IRDEO_REMOTE] = {
 160                .signal_pin        = UART_MSR_DSR,
 161                .signal_pin_change = UART_MSR_DDSR,
 162                .on  = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
 163                .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
 164                .send_pulse  = send_pulse_irdeo,
 165                .send_space  = send_space_irdeo,
 166                .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
 167                                LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
 168        },
 169
 170        [LIRC_ANIMAX] = {
 171                .signal_pin        = UART_MSR_DCD,
 172                .signal_pin_change = UART_MSR_DDCD,
 173                .on  = 0,
 174                .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
 175                .send_pulse = NULL,
 176                .send_space = NULL,
 177                .features   = LIRC_CAN_REC_MODE2
 178        },
 179
 180        [LIRC_IGOR] = {
 181                .signal_pin        = UART_MSR_DSR,
 182                .signal_pin_change = UART_MSR_DDSR,
 183                .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
 184                .off = (UART_MCR_RTS | UART_MCR_OUT2),
 185                .send_pulse = send_pulse_homebrew,
 186                .send_space = send_space_homebrew,
 187#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
 188                .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
 189                                LIRC_CAN_SET_SEND_CARRIER |
 190                                LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
 191#else
 192                .features    = LIRC_CAN_REC_MODE2
 193#endif
 194        },
 195
 196#ifdef CONFIG_LIRC_SERIAL_NSLU2
 197        /*
 198         * Modified Linksys Network Storage Link USB 2.0 (NSLU2):
 199         * We receive on CTS of the 2nd serial port (R142,LHS), we
 200         * transmit with a IR diode between GPIO[1] (green status LED),
 201         * and ground (Matthias Goebl <matthias.goebl@goebl.net>).
 202         * See also http://www.nslu2-linux.org for this device
 203         */
 204        [LIRC_NSLU2] = {
 205                .signal_pin        = UART_MSR_CTS,
 206                .signal_pin_change = UART_MSR_DCTS,
 207                .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
 208                .off = (UART_MCR_RTS | UART_MCR_OUT2),
 209                .send_pulse = send_pulse_homebrew,
 210                .send_space = send_space_homebrew,
 211#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
 212                .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
 213                                LIRC_CAN_SET_SEND_CARRIER |
 214                                LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
 215#else
 216                .features    = LIRC_CAN_REC_MODE2
 217#endif
 218        },
 219#endif
 220
 221};
 222
 223#define RS_ISR_PASS_LIMIT 256
 224
 225/*
 226 * A long pulse code from a remote might take up to 300 bytes.  The
 227 * daemon should read the bytes as soon as they are generated, so take
 228 * the number of keys you think you can push before the daemon runs
 229 * and multiply by 300.  The driver will warn you if you overrun this
 230 * buffer.  If you have a slow computer or non-busmastering IDE disks,
 231 * maybe you will need to increase this.
 232 */
 233
 234/* This MUST be a power of two!  It has to be larger than 1 as well. */
 235
 236#define RBUF_LEN 256
 237
 238static struct timeval lasttv = {0, 0};
 239
 240static struct lirc_buffer rbuf;
 241
 242static unsigned int freq = 38000;
 243static unsigned int duty_cycle = 50;
 244
 245/* Initialized in init_timing_params() */
 246static unsigned long period;
 247static unsigned long pulse_width;
 248static unsigned long space_width;
 249
 250#if defined(__i386__)
 251/*
 252 * From:
 253 * Linux I/O port programming mini-HOWTO
 254 * Author: Riku Saikkonen <Riku.Saikkonen@hut.fi>
 255 * v, 28 December 1997
 256 *
 257 * [...]
 258 * Actually, a port I/O instruction on most ports in the 0-0x3ff range
 259 * takes almost exactly 1 microsecond, so if you're, for example, using
 260 * the parallel port directly, just do additional inb()s from that port
 261 * to delay.
 262 * [...]
 263 */
 264/* transmitter latency 1.5625us 0x1.90 - this figure arrived at from
 265 * comment above plus trimming to match actual measured frequency.
 266 * This will be sensitive to cpu speed, though hopefully most of the 1.5us
 267 * is spent in the uart access.  Still - for reference test machine was a
 268 * 1.13GHz Athlon system - Steve
 269 */
 270
 271/*
 272 * changed from 400 to 450 as this works better on slower machines;
 273 * faster machines will use the rdtsc code anyway
 274 */
 275#define LIRC_SERIAL_TRANSMITTER_LATENCY 450
 276
 277#else
 278
 279/* does anybody have information on other platforms ? */
 280/* 256 = 1<<8 */
 281#define LIRC_SERIAL_TRANSMITTER_LATENCY 256
 282
 283#endif  /* __i386__ */
 284/*
 285 * FIXME: should we be using hrtimers instead of this
 286 * LIRC_SERIAL_TRANSMITTER_LATENCY nonsense?
 287 */
 288
 289/* fetch serial input packet (1 byte) from register offset */
 290static u8 sinp(int offset)
 291{
 292        if (iommap != 0)
 293                /* the register is memory-mapped */
 294                offset <<= ioshift;
 295
 296        return inb(io + offset);
 297}
 298
 299/* write serial output packet (1 byte) of value to register offset */
 300static void soutp(int offset, u8 value)
 301{
 302        if (iommap != 0)
 303                /* the register is memory-mapped */
 304                offset <<= ioshift;
 305
 306        outb(value, io + offset);
 307}
 308
 309static void on(void)
 310{
 311#ifdef CONFIG_LIRC_SERIAL_NSLU2
 312        /*
 313         * On NSLU2, we put the transmit diode between the output of the green
 314         * status LED and ground
 315         */
 316        if (type == LIRC_NSLU2) {
 317                gpio_line_set(NSLU2_LED_GRN, IXP4XX_GPIO_LOW);
 318                return;
 319        }
 320#endif
 321        if (txsense)
 322                soutp(UART_MCR, hardware[type].off);
 323        else
 324                soutp(UART_MCR, hardware[type].on);
 325}
 326
 327static void off(void)
 328{
 329#ifdef CONFIG_LIRC_SERIAL_NSLU2
 330        if (type == LIRC_NSLU2) {
 331                gpio_line_set(NSLU2_LED_GRN, IXP4XX_GPIO_HIGH);
 332                return;
 333        }
 334#endif
 335        if (txsense)
 336                soutp(UART_MCR, hardware[type].on);
 337        else
 338                soutp(UART_MCR, hardware[type].off);
 339}
 340
 341#ifndef MAX_UDELAY_MS
 342#define MAX_UDELAY_US 5000
 343#else
 344#define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
 345#endif
 346
 347static void safe_udelay(unsigned long usecs)
 348{
 349        while (usecs > MAX_UDELAY_US) {
 350                udelay(MAX_UDELAY_US);
 351                usecs -= MAX_UDELAY_US;
 352        }
 353        udelay(usecs);
 354}
 355
 356#ifdef USE_RDTSC
 357/*
 358 * This is an overflow/precision juggle, complicated in that we can't
 359 * do long long divide in the kernel
 360 */
 361
 362/*
 363 * When we use the rdtsc instruction to measure clocks, we keep the
 364 * pulse and space widths as clock cycles.  As this is CPU speed
 365 * dependent, the widths must be calculated in init_port and ioctl
 366 * time
 367 */
 368
 369/* So send_pulse can quickly convert microseconds to clocks */
 370static unsigned long conv_us_to_clocks;
 371
 372static int init_timing_params(unsigned int new_duty_cycle,
 373                unsigned int new_freq)
 374{
 375        __u64 loops_per_sec, work;
 376
 377        duty_cycle = new_duty_cycle;
 378        freq = new_freq;
 379
 380        loops_per_sec = __this_cpu_read(cpu.info.loops_per_jiffy);
 381        loops_per_sec *= HZ;
 382
 383        /* How many clocks in a microsecond?, avoiding long long divide */
 384        work = loops_per_sec;
 385        work *= 4295;  /* 4295 = 2^32 / 1e6 */
 386        conv_us_to_clocks = (work >> 32);
 387
 388        /*
 389         * Carrier period in clocks, approach good up to 32GHz clock,
 390         * gets carrier frequency within 8Hz
 391         */
 392        period = loops_per_sec >> 3;
 393        period /= (freq >> 3);
 394
 395        /* Derive pulse and space from the period */
 396        pulse_width = period * duty_cycle / 100;
 397        space_width = period - pulse_width;
 398        dprintk("in init_timing_params, freq=%d, duty_cycle=%d, "
 399                "clk/jiffy=%ld, pulse=%ld, space=%ld, "
 400                "conv_us_to_clocks=%ld\n",
 401                freq, duty_cycle, __this_cpu_read(cpu_info.loops_per_jiffy),
 402                pulse_width, space_width, conv_us_to_clocks);
 403        return 0;
 404}
 405#else /* ! USE_RDTSC */
 406static int init_timing_params(unsigned int new_duty_cycle,
 407                unsigned int new_freq)
 408{
 409/*
 410 * period, pulse/space width are kept with 8 binary places -
 411 * IE multiplied by 256.
 412 */
 413        if (256 * 1000000L / new_freq * new_duty_cycle / 100 <=
 414            LIRC_SERIAL_TRANSMITTER_LATENCY)
 415                return -EINVAL;
 416        if (256 * 1000000L / new_freq * (100 - new_duty_cycle) / 100 <=
 417            LIRC_SERIAL_TRANSMITTER_LATENCY)
 418                return -EINVAL;
 419        duty_cycle = new_duty_cycle;
 420        freq = new_freq;
 421        period = 256 * 1000000L / freq;
 422        pulse_width = period * duty_cycle / 100;
 423        space_width = period - pulse_width;
 424        dprintk("in init_timing_params, freq=%d pulse=%ld, "
 425                "space=%ld\n", freq, pulse_width, space_width);
 426        return 0;
 427}
 428#endif /* USE_RDTSC */
 429
 430
 431/* return value: space length delta */
 432
 433static long send_pulse_irdeo(unsigned long length)
 434{
 435        long rawbits, ret;
 436        int i;
 437        unsigned char output;
 438        unsigned char chunk, shifted;
 439
 440        /* how many bits have to be sent ? */
 441        rawbits = length * 1152 / 10000;
 442        if (duty_cycle > 50)
 443                chunk = 3;
 444        else
 445                chunk = 1;
 446        for (i = 0, output = 0x7f; rawbits > 0; rawbits -= 3) {
 447                shifted = chunk << (i * 3);
 448                shifted >>= 1;
 449                output &= (~shifted);
 450                i++;
 451                if (i == 3) {
 452                        soutp(UART_TX, output);
 453                        while (!(sinp(UART_LSR) & UART_LSR_THRE))
 454                                ;
 455                        output = 0x7f;
 456                        i = 0;
 457                }
 458        }
 459        if (i != 0) {
 460                soutp(UART_TX, output);
 461                while (!(sinp(UART_LSR) & UART_LSR_TEMT))
 462                        ;
 463        }
 464
 465        if (i == 0)
 466                ret = (-rawbits) * 10000 / 1152;
 467        else
 468                ret = (3 - i) * 3 * 10000 / 1152 + (-rawbits) * 10000 / 1152;
 469
 470        return ret;
 471}
 472
 473#ifdef USE_RDTSC
 474/* Version that uses Pentium rdtsc instruction to measure clocks */
 475
 476/*
 477 * This version does sub-microsecond timing using rdtsc instruction,
 478 * and does away with the fudged LIRC_SERIAL_TRANSMITTER_LATENCY
 479 * Implicitly i586 architecture...  - Steve
 480 */
 481
 482static long send_pulse_homebrew_softcarrier(unsigned long length)
 483{
 484        int flag;
 485        unsigned long target, start, now;
 486
 487        /* Get going quick as we can */
 488        rdtscl(start);
 489        on();
 490        /* Convert length from microseconds to clocks */
 491        length *= conv_us_to_clocks;
 492        /* And loop till time is up - flipping at right intervals */
 493        now = start;
 494        target = pulse_width;
 495        flag = 1;
 496        /*
 497         * FIXME: This looks like a hard busy wait, without even an occasional,
 498         * polite, cpu_relax() call.  There's got to be a better way?
 499         *
 500         * The i2c code has the result of a lot of bit-banging work, I wonder if
 501         * there's something there which could be helpful here.
 502         */
 503        while ((now - start) < length) {
 504                /* Delay till flip time */
 505                do {
 506                        rdtscl(now);
 507                } while ((now - start) < target);
 508
 509                /* flip */
 510                if (flag) {
 511                        rdtscl(now);
 512                        off();
 513                        target += space_width;
 514                } else {
 515                        rdtscl(now); on();
 516                        target += pulse_width;
 517                }
 518                flag = !flag;
 519        }
 520        rdtscl(now);
 521        return ((now - start) - length) / conv_us_to_clocks;
 522}
 523#else /* ! USE_RDTSC */
 524/* Version using udelay() */
 525
 526/*
 527 * here we use fixed point arithmetic, with 8
 528 * fractional bits.  that gets us within 0.1% or so of the right average
 529 * frequency, albeit with some jitter in pulse length - Steve
 530 */
 531
 532/* To match 8 fractional bits used for pulse/space length */
 533
 534static long send_pulse_homebrew_softcarrier(unsigned long length)
 535{
 536        int flag;
 537        unsigned long actual, target, d;
 538        length <<= 8;
 539
 540        actual = 0; target = 0; flag = 0;
 541        while (actual < length) {
 542                if (flag) {
 543                        off();
 544                        target += space_width;
 545                } else {
 546                        on();
 547                        target += pulse_width;
 548                }
 549                d = (target - actual -
 550                     LIRC_SERIAL_TRANSMITTER_LATENCY + 128) >> 8;
 551                /*
 552                 * Note - we've checked in ioctl that the pulse/space
 553                 * widths are big enough so that d is > 0
 554                 */
 555                udelay(d);
 556                actual += (d << 8) + LIRC_SERIAL_TRANSMITTER_LATENCY;
 557                flag = !flag;
 558        }
 559        return (actual-length) >> 8;
 560}
 561#endif /* USE_RDTSC */
 562
 563static long send_pulse_homebrew(unsigned long length)
 564{
 565        if (length <= 0)
 566                return 0;
 567
 568        if (softcarrier)
 569                return send_pulse_homebrew_softcarrier(length);
 570        else {
 571                on();
 572                safe_udelay(length);
 573                return 0;
 574        }
 575}
 576
 577static void send_space_irdeo(long length)
 578{
 579        if (length <= 0)
 580                return;
 581
 582        safe_udelay(length);
 583}
 584
 585static void send_space_homebrew(long length)
 586{
 587        off();
 588        if (length <= 0)
 589                return;
 590        safe_udelay(length);
 591}
 592
 593static void rbwrite(int l)
 594{
 595        if (lirc_buffer_full(&rbuf)) {
 596                /* no new signals will be accepted */
 597                dprintk("Buffer overrun\n");
 598                return;
 599        }
 600        lirc_buffer_write(&rbuf, (void *)&l);
 601}
 602
 603static void frbwrite(int l)
 604{
 605        /* simple noise filter */
 606        static int pulse, space;
 607        static unsigned int ptr;
 608
 609        if (ptr > 0 && (l & PULSE_BIT)) {
 610                pulse += l & PULSE_MASK;
 611                if (pulse > 250) {
 612                        rbwrite(space);
 613                        rbwrite(pulse | PULSE_BIT);
 614                        ptr = 0;
 615                        pulse = 0;
 616                }
 617                return;
 618        }
 619        if (!(l & PULSE_BIT)) {
 620                if (ptr == 0) {
 621                        if (l > 20000) {
 622                                space = l;
 623                                ptr++;
 624                                return;
 625                        }
 626                } else {
 627                        if (l > 20000) {
 628                                space += pulse;
 629                                if (space > PULSE_MASK)
 630                                        space = PULSE_MASK;
 631                                space += l;
 632                                if (space > PULSE_MASK)
 633                                        space = PULSE_MASK;
 634                                pulse = 0;
 635                                return;
 636                        }
 637                        rbwrite(space);
 638                        rbwrite(pulse | PULSE_BIT);
 639                        ptr = 0;
 640                        pulse = 0;
 641                }
 642        }
 643        rbwrite(l);
 644}
 645
 646static irqreturn_t irq_handler(int i, void *blah)
 647{
 648        struct timeval tv;
 649        int counter, dcd;
 650        u8 status;
 651        long deltv;
 652        int data;
 653        static int last_dcd = -1;
 654
 655        if ((sinp(UART_IIR) & UART_IIR_NO_INT)) {
 656                /* not our interrupt */
 657                return IRQ_NONE;
 658        }
 659
 660        counter = 0;
 661        do {
 662                counter++;
 663                status = sinp(UART_MSR);
 664                if (counter > RS_ISR_PASS_LIMIT) {
 665                        printk(KERN_WARNING LIRC_DRIVER_NAME ": AIEEEE: "
 666                               "We're caught!\n");
 667                        break;
 668                }
 669                if ((status & hardware[type].signal_pin_change)
 670                    && sense != -1) {
 671                        /* get current time */
 672                        do_gettimeofday(&tv);
 673
 674                        /* New mode, written by Trent Piepho
 675                           <xyzzy@u.washington.edu>. */
 676
 677                        /*
 678                         * The old format was not very portable.
 679                         * We now use an int to pass pulses
 680                         * and spaces to user space.
 681                         *
 682                         * If PULSE_BIT is set a pulse has been
 683                         * received, otherwise a space has been
 684                         * received.  The driver needs to know if your
 685                         * receiver is active high or active low, or
 686                         * the space/pulse sense could be
 687                         * inverted. The bits denoted by PULSE_MASK are
 688                         * the length in microseconds. Lengths greater
 689                         * than or equal to 16 seconds are clamped to
 690                         * PULSE_MASK.  All other bits are unused.
 691                         * This is a much simpler interface for user
 692                         * programs, as well as eliminating "out of
 693                         * phase" errors with space/pulse
 694                         * autodetection.
 695                         */
 696
 697                        /* calc time since last interrupt in microseconds */
 698                        dcd = (status & hardware[type].signal_pin) ? 1 : 0;
 699
 700                        if (dcd == last_dcd) {
 701                                printk(KERN_WARNING LIRC_DRIVER_NAME
 702                                ": ignoring spike: %d %d %lx %lx %lx %lx\n",
 703                                dcd, sense,
 704                                tv.tv_sec, lasttv.tv_sec,
 705                                tv.tv_usec, lasttv.tv_usec);
 706                                continue;
 707                        }
 708
 709                        deltv = tv.tv_sec-lasttv.tv_sec;
 710                        if (tv.tv_sec < lasttv.tv_sec ||
 711                            (tv.tv_sec == lasttv.tv_sec &&
 712                             tv.tv_usec < lasttv.tv_usec)) {
 713                                printk(KERN_WARNING LIRC_DRIVER_NAME
 714                                       ": AIEEEE: your clock just jumped "
 715                                       "backwards\n");
 716                                printk(KERN_WARNING LIRC_DRIVER_NAME
 717                                       ": %d %d %lx %lx %lx %lx\n",
 718                                       dcd, sense,
 719                                       tv.tv_sec, lasttv.tv_sec,
 720                                       tv.tv_usec, lasttv.tv_usec);
 721                                data = PULSE_MASK;
 722                        } else if (deltv > 15) {
 723                                data = PULSE_MASK; /* really long time */
 724                                if (!(dcd^sense)) {
 725                                        /* sanity check */
 726                                        printk(KERN_WARNING LIRC_DRIVER_NAME
 727                                               ": AIEEEE: "
 728                                               "%d %d %lx %lx %lx %lx\n",
 729                                               dcd, sense,
 730                                               tv.tv_sec, lasttv.tv_sec,
 731                                               tv.tv_usec, lasttv.tv_usec);
 732                                        /*
 733                                         * detecting pulse while this
 734                                         * MUST be a space!
 735                                         */
 736                                        sense = sense ? 0 : 1;
 737                                }
 738                        } else
 739                                data = (int) (deltv*1000000 +
 740                                               tv.tv_usec -
 741                                               lasttv.tv_usec);
 742                        frbwrite(dcd^sense ? data : (data|PULSE_BIT));
 743                        lasttv = tv;
 744                        last_dcd = dcd;
 745                        wake_up_interruptible(&rbuf.wait_poll);
 746                }
 747        } while (!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */
 748        return IRQ_HANDLED;
 749}
 750
 751
 752static int hardware_init_port(void)
 753{
 754        u8 scratch, scratch2, scratch3;
 755
 756        /*
 757         * This is a simple port existence test, borrowed from the autoconfig
 758         * function in drivers/serial/8250.c
 759         */
 760        scratch = sinp(UART_IER);
 761        soutp(UART_IER, 0);
 762#ifdef __i386__
 763        outb(0xff, 0x080);
 764#endif
 765        scratch2 = sinp(UART_IER) & 0x0f;
 766        soutp(UART_IER, 0x0f);
 767#ifdef __i386__
 768        outb(0x00, 0x080);
 769#endif
 770        scratch3 = sinp(UART_IER) & 0x0f;
 771        soutp(UART_IER, scratch);
 772        if (scratch2 != 0 || scratch3 != 0x0f) {
 773                /* we fail, there's nothing here */
 774                printk(KERN_ERR LIRC_DRIVER_NAME ": port existence test "
 775                       "failed, cannot continue\n");
 776                return -EINVAL;
 777        }
 778
 779
 780
 781        /* Set DLAB 0. */
 782        soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
 783
 784        /* First of all, disable all interrupts */
 785        soutp(UART_IER, sinp(UART_IER) &
 786              (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
 787
 788        /* Clear registers. */
 789        sinp(UART_LSR);
 790        sinp(UART_RX);
 791        sinp(UART_IIR);
 792        sinp(UART_MSR);
 793
 794#ifdef CONFIG_LIRC_SERIAL_NSLU2
 795        if (type == LIRC_NSLU2) {
 796                /* Setup NSLU2 UART */
 797
 798                /* Enable UART */
 799                soutp(UART_IER, sinp(UART_IER) | UART_IE_IXP42X_UUE);
 800                /* Disable Receiver data Time out interrupt */
 801                soutp(UART_IER, sinp(UART_IER) & ~UART_IE_IXP42X_RTOIE);
 802                /* set out2 = interrupt unmask; off() doesn't set MCR
 803                   on NSLU2 */
 804                soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
 805        }
 806#endif
 807
 808        /* Set line for power source */
 809        off();
 810
 811        /* Clear registers again to be sure. */
 812        sinp(UART_LSR);
 813        sinp(UART_RX);
 814        sinp(UART_IIR);
 815        sinp(UART_MSR);
 816
 817        switch (type) {
 818        case LIRC_IRDEO:
 819        case LIRC_IRDEO_REMOTE:
 820                /* setup port to 7N1 @ 115200 Baud */
 821                /* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */
 822
 823                /* Set DLAB 1. */
 824                soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
 825                /* Set divisor to 1 => 115200 Baud */
 826                soutp(UART_DLM, 0);
 827                soutp(UART_DLL, 1);
 828                /* Set DLAB 0 +  7N1 */
 829                soutp(UART_LCR, UART_LCR_WLEN7);
 830                /* THR interrupt already disabled at this point */
 831                break;
 832        default:
 833                break;
 834        }
 835
 836        return 0;
 837}
 838
 839static int init_port(void)
 840{
 841        int i, nlow, nhigh;
 842
 843        /* Reserve io region. */
 844        /*
 845         * Future MMAP-Developers: Attention!
 846         * For memory mapped I/O you *might* need to use ioremap() first,
 847         * for the NSLU2 it's done in boot code.
 848         */
 849        if (((iommap != 0)
 850             && (request_mem_region(iommap, 8 << ioshift,
 851                                    LIRC_DRIVER_NAME) == NULL))
 852           || ((iommap == 0)
 853               && (request_region(io, 8, LIRC_DRIVER_NAME) == NULL))) {
 854                printk(KERN_ERR  LIRC_DRIVER_NAME
 855                       ": port %04x already in use\n", io);
 856                printk(KERN_WARNING LIRC_DRIVER_NAME
 857                       ": use 'setserial /dev/ttySX uart none'\n");
 858                printk(KERN_WARNING LIRC_DRIVER_NAME
 859                       ": or compile the serial port driver as module and\n");
 860                printk(KERN_WARNING LIRC_DRIVER_NAME
 861                       ": make sure this module is loaded first\n");
 862                return -EBUSY;
 863        }
 864
 865        if (hardware_init_port() < 0)
 866                return -EINVAL;
 867
 868        /* Initialize pulse/space widths */
 869        init_timing_params(duty_cycle, freq);
 870
 871        /* If pin is high, then this must be an active low receiver. */
 872        if (sense == -1) {
 873                /* wait 1/2 sec for the power supply */
 874                msleep(500);
 875
 876                /*
 877                 * probe 9 times every 0.04s, collect "votes" for
 878                 * active high/low
 879                 */
 880                nlow = 0;
 881                nhigh = 0;
 882                for (i = 0; i < 9; i++) {
 883                        if (sinp(UART_MSR) & hardware[type].signal_pin)
 884                                nlow++;
 885                        else
 886                                nhigh++;
 887                        msleep(40);
 888                }
 889                sense = (nlow >= nhigh ? 1 : 0);
 890                printk(KERN_INFO LIRC_DRIVER_NAME  ": auto-detected active "
 891                       "%s receiver\n", sense ? "low" : "high");
 892        } else
 893                printk(KERN_INFO LIRC_DRIVER_NAME  ": Manually using active "
 894                       "%s receiver\n", sense ? "low" : "high");
 895
 896        return 0;
 897}
 898
 899static int set_use_inc(void *data)
 900{
 901        int result;
 902        unsigned long flags;
 903
 904        /* initialize timestamp */
 905        do_gettimeofday(&lasttv);
 906
 907        result = request_irq(irq, irq_handler,
 908                             IRQF_DISABLED | (share_irq ? IRQF_SHARED : 0),
 909                             LIRC_DRIVER_NAME, (void *)&hardware);
 910
 911        switch (result) {
 912        case -EBUSY:
 913                printk(KERN_ERR LIRC_DRIVER_NAME ": IRQ %d busy\n", irq);
 914                return -EBUSY;
 915        case -EINVAL:
 916                printk(KERN_ERR LIRC_DRIVER_NAME
 917                       ": Bad irq number or handler\n");
 918                return -EINVAL;
 919        default:
 920                dprintk("Interrupt %d, port %04x obtained\n", irq, io);
 921                break;
 922        };
 923
 924        spin_lock_irqsave(&hardware[type].lock, flags);
 925
 926        /* Set DLAB 0. */
 927        soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
 928
 929        soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
 930
 931        spin_unlock_irqrestore(&hardware[type].lock, flags);
 932
 933        return 0;
 934}
 935
 936static void set_use_dec(void *data)
 937{       unsigned long flags;
 938
 939        spin_lock_irqsave(&hardware[type].lock, flags);
 940
 941        /* Set DLAB 0. */
 942        soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
 943
 944        /* First of all, disable all interrupts */
 945        soutp(UART_IER, sinp(UART_IER) &
 946              (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
 947        spin_unlock_irqrestore(&hardware[type].lock, flags);
 948
 949        free_irq(irq, (void *)&hardware);
 950
 951        dprintk("freed IRQ %d\n", irq);
 952}
 953
 954static ssize_t lirc_write(struct file *file, const char *buf,
 955                         size_t n, loff_t *ppos)
 956{
 957        int i, count;
 958        unsigned long flags;
 959        long delta = 0;
 960        int *wbuf;
 961
 962        if (!(hardware[type].features & LIRC_CAN_SEND_PULSE))
 963                return -EBADF;
 964
 965        count = n / sizeof(int);
 966        if (n % sizeof(int) || count % 2 == 0)
 967                return -EINVAL;
 968        wbuf = memdup_user(buf, n);
 969        if (IS_ERR(wbuf))
 970                return PTR_ERR(wbuf);
 971        spin_lock_irqsave(&hardware[type].lock, flags);
 972        if (type == LIRC_IRDEO) {
 973                /* DTR, RTS down */
 974                on();
 975        }
 976        for (i = 0; i < count; i++) {
 977                if (i%2)
 978                        hardware[type].send_space(wbuf[i] - delta);
 979                else
 980                        delta = hardware[type].send_pulse(wbuf[i]);
 981        }
 982        off();
 983        spin_unlock_irqrestore(&hardware[type].lock, flags);
 984        kfree(wbuf);
 985        return n;
 986}
 987
 988static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
 989{
 990        int result;
 991        __u32 value;
 992
 993        switch (cmd) {
 994        case LIRC_GET_SEND_MODE:
 995                if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
 996                        return -ENOIOCTLCMD;
 997
 998                result = put_user(LIRC_SEND2MODE
 999                                  (hardware[type].features&LIRC_CAN_SEND_MASK),
1000                                  (__u32 *) arg);
1001                if (result)
1002                        return result;
1003                break;
1004
1005        case LIRC_SET_SEND_MODE:
1006                if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
1007                        return -ENOIOCTLCMD;
1008
1009                result = get_user(value, (__u32 *) arg);
1010                if (result)
1011                        return result;
1012                /* only LIRC_MODE_PULSE supported */
1013                if (value != LIRC_MODE_PULSE)
1014                        return -ENOSYS;
1015                break;
1016
1017        case LIRC_GET_LENGTH:
1018                return -ENOSYS;
1019                break;
1020
1021        case LIRC_SET_SEND_DUTY_CYCLE:
1022                dprintk("SET_SEND_DUTY_CYCLE\n");
1023                if (!(hardware[type].features&LIRC_CAN_SET_SEND_DUTY_CYCLE))
1024                        return -ENOIOCTLCMD;
1025
1026                result = get_user(value, (__u32 *) arg);
1027                if (result)
1028                        return result;
1029                if (value <= 0 || value > 100)
1030                        return -EINVAL;
1031                return init_timing_params(value, freq);
1032                break;
1033
1034        case LIRC_SET_SEND_CARRIER:
1035                dprintk("SET_SEND_CARRIER\n");
1036                if (!(hardware[type].features&LIRC_CAN_SET_SEND_CARRIER))
1037                        return -ENOIOCTLCMD;
1038
1039                result = get_user(value, (__u32 *) arg);
1040                if (result)
1041                        return result;
1042                if (value > 500000 || value < 20000)
1043                        return -EINVAL;
1044                return init_timing_params(duty_cycle, value);
1045                break;
1046
1047        default:
1048                return lirc_dev_fop_ioctl(filep, cmd, arg);
1049        }
1050        return 0;
1051}
1052
1053static const struct file_operations lirc_fops = {
1054        .owner          = THIS_MODULE,
1055        .write          = lirc_write,
1056        .unlocked_ioctl = lirc_ioctl,
1057#ifdef CONFIG_COMPAT
1058        .compat_ioctl   = lirc_ioctl,
1059#endif
1060        .read           = lirc_dev_fop_read,
1061        .poll           = lirc_dev_fop_poll,
1062        .open           = lirc_dev_fop_open,
1063        .release        = lirc_dev_fop_close,
1064        .llseek         = no_llseek,
1065};
1066
1067static struct lirc_driver driver = {
1068        .name           = LIRC_DRIVER_NAME,
1069        .minor          = -1,
1070        .code_length    = 1,
1071        .sample_rate    = 0,
1072        .data           = NULL,
1073        .add_to_buf     = NULL,
1074        .rbuf           = &rbuf,
1075        .set_use_inc    = set_use_inc,
1076        .set_use_dec    = set_use_dec,
1077        .fops           = &lirc_fops,
1078        .dev            = NULL,
1079        .owner          = THIS_MODULE,
1080};
1081
1082static struct platform_device *lirc_serial_dev;
1083
1084static int __devinit lirc_serial_probe(struct platform_device *dev)
1085{
1086        return 0;
1087}
1088
1089static int __devexit lirc_serial_remove(struct platform_device *dev)
1090{
1091        return 0;
1092}
1093
1094static int lirc_serial_suspend(struct platform_device *dev,
1095                               pm_message_t state)
1096{
1097        /* Set DLAB 0. */
1098        soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
1099
1100        /* Disable all interrupts */
1101        soutp(UART_IER, sinp(UART_IER) &
1102              (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
1103
1104        /* Clear registers. */
1105        sinp(UART_LSR);
1106        sinp(UART_RX);
1107        sinp(UART_IIR);
1108        sinp(UART_MSR);
1109
1110        return 0;
1111}
1112
1113/* twisty maze... need a forward-declaration here... */
1114static void lirc_serial_exit(void);
1115
1116static int lirc_serial_resume(struct platform_device *dev)
1117{
1118        unsigned long flags;
1119
1120        if (hardware_init_port() < 0) {
1121                lirc_serial_exit();
1122                return -EINVAL;
1123        }
1124
1125        spin_lock_irqsave(&hardware[type].lock, flags);
1126        /* Enable Interrupt */
1127        do_gettimeofday(&lasttv);
1128        soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
1129        off();
1130
1131        lirc_buffer_clear(&rbuf);
1132
1133        spin_unlock_irqrestore(&hardware[type].lock, flags);
1134
1135        return 0;
1136}
1137
1138static struct platform_driver lirc_serial_driver = {
1139        .probe          = lirc_serial_probe,
1140        .remove         = __devexit_p(lirc_serial_remove),
1141        .suspend        = lirc_serial_suspend,
1142        .resume         = lirc_serial_resume,
1143        .driver         = {
1144                .name   = "lirc_serial",
1145                .owner  = THIS_MODULE,
1146        },
1147};
1148
1149static int __init lirc_serial_init(void)
1150{
1151        int result;
1152
1153        /* Init read buffer. */
1154        result = lirc_buffer_init(&rbuf, sizeof(int), RBUF_LEN);
1155        if (result < 0)
1156                return -ENOMEM;
1157
1158        result = platform_driver_register(&lirc_serial_driver);
1159        if (result) {
1160                printk("lirc register returned %d\n", result);
1161                goto exit_buffer_free;
1162        }
1163
1164        lirc_serial_dev = platform_device_alloc("lirc_serial", 0);
1165        if (!lirc_serial_dev) {
1166                result = -ENOMEM;
1167                goto exit_driver_unregister;
1168        }
1169
1170        result = platform_device_add(lirc_serial_dev);
1171        if (result)
1172                goto exit_device_put;
1173
1174        return 0;
1175
1176exit_device_put:
1177        platform_device_put(lirc_serial_dev);
1178exit_driver_unregister:
1179        platform_driver_unregister(&lirc_serial_driver);
1180exit_buffer_free:
1181        lirc_buffer_free(&rbuf);
1182        return result;
1183}
1184
1185static void lirc_serial_exit(void)
1186{
1187        platform_device_unregister(lirc_serial_dev);
1188        platform_driver_unregister(&lirc_serial_driver);
1189        lirc_buffer_free(&rbuf);
1190}
1191
1192static int __init lirc_serial_init_module(void)
1193{
1194        int result;
1195
1196        result = lirc_serial_init();
1197        if (result)
1198                return result;
1199
1200        switch (type) {
1201        case LIRC_HOMEBREW:
1202        case LIRC_IRDEO:
1203        case LIRC_IRDEO_REMOTE:
1204        case LIRC_ANIMAX:
1205        case LIRC_IGOR:
1206                /* if nothing specified, use ttyS0/com1 and irq 4 */
1207                io = io ? io : 0x3f8;
1208                irq = irq ? irq : 4;
1209                break;
1210#ifdef CONFIG_LIRC_SERIAL_NSLU2
1211        case LIRC_NSLU2:
1212                io = io ? io : IRQ_IXP4XX_UART2;
1213                irq = irq ? irq : (IXP4XX_UART2_BASE_VIRT + REG_OFFSET);
1214                iommap = iommap ? iommap : IXP4XX_UART2_BASE_PHYS;
1215                ioshift = ioshift ? ioshift : 2;
1216                break;
1217#endif
1218        default:
1219                result = -EINVAL;
1220                goto exit_serial_exit;
1221        }
1222        if (!softcarrier) {
1223                switch (type) {
1224                case LIRC_HOMEBREW:
1225                case LIRC_IGOR:
1226#ifdef CONFIG_LIRC_SERIAL_NSLU2
1227                case LIRC_NSLU2:
1228#endif
1229                        hardware[type].features &=
1230                                ~(LIRC_CAN_SET_SEND_DUTY_CYCLE|
1231                                  LIRC_CAN_SET_SEND_CARRIER);
1232                        break;
1233                }
1234        }
1235
1236        result = init_port();
1237        if (result < 0)
1238                goto exit_serial_exit;
1239        driver.features = hardware[type].features;
1240        driver.dev = &lirc_serial_dev->dev;
1241        driver.minor = lirc_register_driver(&driver);
1242        if (driver.minor < 0) {
1243                printk(KERN_ERR  LIRC_DRIVER_NAME
1244                       ": register_chrdev failed!\n");
1245                result = -EIO;
1246                goto exit_release;
1247        }
1248        return 0;
1249exit_release:
1250        release_region(io, 8);
1251exit_serial_exit:
1252        lirc_serial_exit();
1253        return result;
1254}
1255
1256static void __exit lirc_serial_exit_module(void)
1257{
1258        lirc_serial_exit();
1259        if (iommap != 0)
1260                release_mem_region(iommap, 8 << ioshift);
1261        else
1262                release_region(io, 8);
1263        lirc_unregister_driver(driver.minor);
1264        dprintk("cleaned up module\n");
1265}
1266
1267
1268module_init(lirc_serial_init_module);
1269module_exit(lirc_serial_exit_module);
1270
1271MODULE_DESCRIPTION("Infra-red receiver driver for serial ports.");
1272MODULE_AUTHOR("Ralph Metzler, Trent Piepho, Ben Pfaff, "
1273              "Christoph Bartelmus, Andrei Tanas");
1274MODULE_LICENSE("GPL");
1275
1276module_param(type, int, S_IRUGO);
1277MODULE_PARM_DESC(type, "Hardware type (0 = home-brew, 1 = IRdeo,"
1278                 " 2 = IRdeo Remote, 3 = AnimaX, 4 = IgorPlug,"
1279                 " 5 = NSLU2 RX:CTS2/TX:GreenLED)");
1280
1281module_param(io, int, S_IRUGO);
1282MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
1283
1284/* some architectures (e.g. intel xscale) have memory mapped registers */
1285module_param(iommap, bool, S_IRUGO);
1286MODULE_PARM_DESC(iommap, "physical base for memory mapped I/O"
1287                " (0 = no memory mapped io)");
1288
1289/*
1290 * some architectures (e.g. intel xscale) align the 8bit serial registers
1291 * on 32bit word boundaries.
1292 * See linux-kernel/serial/8250.c serial_in()/out()
1293 */
1294module_param(ioshift, int, S_IRUGO);
1295MODULE_PARM_DESC(ioshift, "shift I/O register offset (0 = no shift)");
1296
1297module_param(irq, int, S_IRUGO);
1298MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
1299
1300module_param(share_irq, bool, S_IRUGO);
1301MODULE_PARM_DESC(share_irq, "Share interrupts (0 = off, 1 = on)");
1302
1303module_param(sense, bool, S_IRUGO);
1304MODULE_PARM_DESC(sense, "Override autodetection of IR receiver circuit"
1305                 " (0 = active high, 1 = active low )");
1306
1307#ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
1308module_param(txsense, bool, S_IRUGO);
1309MODULE_PARM_DESC(txsense, "Sense of transmitter circuit"
1310                 " (0 = active high, 1 = active low )");
1311#endif
1312
1313module_param(softcarrier, bool, S_IRUGO);
1314MODULE_PARM_DESC(softcarrier, "Software carrier (0 = off, 1 = on, default on)");
1315
1316module_param(debug, bool, S_IRUGO | S_IWUSR);
1317MODULE_PARM_DESC(debug, "Enable debugging messages");
1318