linux/drivers/staging/rtl8192u/ieee80211/aes.c
<<
>>
Prefs
   1/*
   2 * Cryptographic API.
   3 *
   4 * AES Cipher Algorithm.
   5 *
   6 * Based on Brian Gladman's code.
   7 *
   8 * Linux developers:
   9 *  Alexander Kjeldaas <astor@fast.no>
  10 *  Herbert Valerio Riedel <hvr@hvrlab.org>
  11 *  Kyle McMartin <kyle@debian.org>
  12 *  Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2 of the License, or
  17 * (at your option) any later version.
  18 *
  19 * ---------------------------------------------------------------------------
  20 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
  21 * All rights reserved.
  22 *
  23 * LICENSE TERMS
  24 *
  25 * The free distribution and use of this software in both source and binary
  26 * form is allowed (with or without changes) provided that:
  27 *
  28 *   1. distributions of this source code include the above copyright
  29 *      notice, this list of conditions and the following disclaimer;
  30 *
  31 *   2. distributions in binary form include the above copyright
  32 *      notice, this list of conditions and the following disclaimer
  33 *      in the documentation and/or other associated materials;
  34 *
  35 *   3. the copyright holder's name is not used to endorse products
  36 *      built using this software without specific written permission.
  37 *
  38 * ALTERNATIVELY, provided that this notice is retained in full, this product
  39 * may be distributed under the terms of the GNU General Public License (GPL),
  40 * in which case the provisions of the GPL apply INSTEAD OF those given above.
  41 *
  42 * DISCLAIMER
  43 *
  44 * This software is provided 'as is' with no explicit or implied warranties
  45 * in respect of its properties, including, but not limited to, correctness
  46 * and/or fitness for purpose.
  47 * ---------------------------------------------------------------------------
  48 */
  49
  50/* Some changes from the Gladman version:
  51    s/RIJNDAEL(e_key)/E_KEY/g
  52    s/RIJNDAEL(d_key)/D_KEY/g
  53*/
  54
  55#include <linux/module.h>
  56#include <linux/init.h>
  57#include <linux/types.h>
  58#include <linux/errno.h>
  59//#include <linux/crypto.h>
  60#include "rtl_crypto.h"
  61#include <asm/byteorder.h>
  62
  63#define AES_MIN_KEY_SIZE        16
  64#define AES_MAX_KEY_SIZE        32
  65
  66#define AES_BLOCK_SIZE          16
  67
  68static inline
  69u32 generic_rotr32 (const u32 x, const unsigned bits)
  70{
  71        const unsigned n = bits % 32;
  72        return (x >> n) | (x << (32 - n));
  73}
  74
  75static inline
  76u32 generic_rotl32 (const u32 x, const unsigned bits)
  77{
  78        const unsigned n = bits % 32;
  79        return (x << n) | (x >> (32 - n));
  80}
  81
  82#define rotl generic_rotl32
  83#define rotr generic_rotr32
  84
  85/*
  86 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
  87 */
  88inline static u8
  89byte(const u32 x, const unsigned n)
  90{
  91        return x >> (n << 3);
  92}
  93
  94#define u32_in(x) le32_to_cpu(*(const u32 *)(x))
  95#define u32_out(to, from) (*(u32 *)(to) = cpu_to_le32(from))
  96
  97struct aes_ctx {
  98        int key_length;
  99        u32 E[60];
 100        u32 D[60];
 101};
 102
 103#define E_KEY ctx->E
 104#define D_KEY ctx->D
 105
 106static u8 pow_tab[256] __initdata;
 107static u8 log_tab[256] __initdata;
 108static u8 sbx_tab[256] __initdata;
 109static u8 isb_tab[256] __initdata;
 110static u32 rco_tab[10];
 111static u32 ft_tab[4][256];
 112static u32 it_tab[4][256];
 113
 114static u32 fl_tab[4][256];
 115static u32 il_tab[4][256];
 116
 117static inline u8 __init
 118f_mult (u8 a, u8 b)
 119{
 120        u8 aa = log_tab[a], cc = aa + log_tab[b];
 121
 122        return pow_tab[cc + (cc < aa ? 1 : 0)];
 123}
 124
 125#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
 126
 127#define f_rn(bo, bi, n, k)                                      \
 128    bo[n] =  ft_tab[0][byte(bi[n],0)] ^                         \
 129             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^               \
 130             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
 131             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
 132
 133#define i_rn(bo, bi, n, k)                                      \
 134    bo[n] =  it_tab[0][byte(bi[n],0)] ^                         \
 135             it_tab[1][byte(bi[(n + 3) & 3],1)] ^               \
 136             it_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
 137             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
 138
 139#define ls_box(x)                               \
 140    ( fl_tab[0][byte(x, 0)] ^                   \
 141      fl_tab[1][byte(x, 1)] ^                   \
 142      fl_tab[2][byte(x, 2)] ^                   \
 143      fl_tab[3][byte(x, 3)] )
 144
 145#define f_rl(bo, bi, n, k)                                      \
 146    bo[n] =  fl_tab[0][byte(bi[n],0)] ^                         \
 147             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^               \
 148             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
 149             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
 150
 151#define i_rl(bo, bi, n, k)                                      \
 152    bo[n] =  il_tab[0][byte(bi[n],0)] ^                         \
 153             il_tab[1][byte(bi[(n + 3) & 3],1)] ^               \
 154             il_tab[2][byte(bi[(n + 2) & 3],2)] ^               \
 155             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
 156
 157static void __init
 158gen_tabs (void)
 159{
 160        u32 i, t;
 161        u8 p, q;
 162
 163        /* log and power tables for GF(2**8) finite field with
 164           0x011b as modular polynomial - the simplest primitive
 165           root is 0x03, used here to generate the tables */
 166
 167        for (i = 0, p = 1; i < 256; ++i) {
 168                pow_tab[i] = (u8) p;
 169                log_tab[p] = (u8) i;
 170
 171                p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
 172        }
 173
 174        log_tab[1] = 0;
 175
 176        for (i = 0, p = 1; i < 10; ++i) {
 177                rco_tab[i] = p;
 178
 179                p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
 180        }
 181
 182        for (i = 0; i < 256; ++i) {
 183                p = (i ? pow_tab[255 - log_tab[i]] : 0);
 184                q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
 185                p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
 186                sbx_tab[i] = p;
 187                isb_tab[p] = (u8) i;
 188        }
 189
 190        for (i = 0; i < 256; ++i) {
 191                p = sbx_tab[i];
 192
 193                t = p;
 194                fl_tab[0][i] = t;
 195                fl_tab[1][i] = rotl (t, 8);
 196                fl_tab[2][i] = rotl (t, 16);
 197                fl_tab[3][i] = rotl (t, 24);
 198
 199                t = ((u32) ff_mult (2, p)) |
 200                    ((u32) p << 8) |
 201                    ((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
 202
 203                ft_tab[0][i] = t;
 204                ft_tab[1][i] = rotl (t, 8);
 205                ft_tab[2][i] = rotl (t, 16);
 206                ft_tab[3][i] = rotl (t, 24);
 207
 208                p = isb_tab[i];
 209
 210                t = p;
 211                il_tab[0][i] = t;
 212                il_tab[1][i] = rotl (t, 8);
 213                il_tab[2][i] = rotl (t, 16);
 214                il_tab[3][i] = rotl (t, 24);
 215
 216                t = ((u32) ff_mult (14, p)) |
 217                    ((u32) ff_mult (9, p) << 8) |
 218                    ((u32) ff_mult (13, p) << 16) |
 219                    ((u32) ff_mult (11, p) << 24);
 220
 221                it_tab[0][i] = t;
 222                it_tab[1][i] = rotl (t, 8);
 223                it_tab[2][i] = rotl (t, 16);
 224                it_tab[3][i] = rotl (t, 24);
 225        }
 226}
 227
 228#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
 229
 230#define imix_col(y,x)       \
 231    u   = star_x(x);        \
 232    v   = star_x(u);        \
 233    w   = star_x(v);        \
 234    t   = w ^ (x);          \
 235   (y)  = u ^ v ^ w;        \
 236   (y) ^= rotr(u ^ t,  8) ^ \
 237          rotr(v ^ t, 16) ^ \
 238          rotr(t,24)
 239
 240/* initialise the key schedule from the user supplied key */
 241
 242#define loop4(i)                                    \
 243{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
 244    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
 245    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
 246    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
 247    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
 248}
 249
 250#define loop6(i)                                    \
 251{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
 252    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
 253    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
 254    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
 255    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
 256    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
 257    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
 258}
 259
 260#define loop8(i)                                    \
 261{   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
 262    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
 263    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
 264    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
 265    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
 266    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
 267    E_KEY[8 * i + 12] = t;                \
 268    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
 269    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
 270    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
 271}
 272
 273static int
 274aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags)
 275{
 276        struct aes_ctx *ctx = ctx_arg;
 277        u32 i, t, u, v, w;
 278
 279        if (key_len != 16 && key_len != 24 && key_len != 32) {
 280                *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
 281                return -EINVAL;
 282        }
 283
 284        ctx->key_length = key_len;
 285
 286        E_KEY[0] = u32_in (in_key);
 287        E_KEY[1] = u32_in (in_key + 4);
 288        E_KEY[2] = u32_in (in_key + 8);
 289        E_KEY[3] = u32_in (in_key + 12);
 290
 291        switch (key_len) {
 292        case 16:
 293                t = E_KEY[3];
 294                for (i = 0; i < 10; ++i)
 295                        loop4 (i);
 296                break;
 297
 298        case 24:
 299                E_KEY[4] = u32_in (in_key + 16);
 300                t = E_KEY[5] = u32_in (in_key + 20);
 301                for (i = 0; i < 8; ++i)
 302                        loop6 (i);
 303                break;
 304
 305        case 32:
 306                E_KEY[4] = u32_in (in_key + 16);
 307                E_KEY[5] = u32_in (in_key + 20);
 308                E_KEY[6] = u32_in (in_key + 24);
 309                t = E_KEY[7] = u32_in (in_key + 28);
 310                for (i = 0; i < 7; ++i)
 311                        loop8 (i);
 312                break;
 313        }
 314
 315        D_KEY[0] = E_KEY[0];
 316        D_KEY[1] = E_KEY[1];
 317        D_KEY[2] = E_KEY[2];
 318        D_KEY[3] = E_KEY[3];
 319
 320        for (i = 4; i < key_len + 24; ++i) {
 321                imix_col (D_KEY[i], E_KEY[i]);
 322        }
 323
 324        return 0;
 325}
 326
 327/* encrypt a block of text */
 328
 329#define f_nround(bo, bi, k) \
 330    f_rn(bo, bi, 0, k);     \
 331    f_rn(bo, bi, 1, k);     \
 332    f_rn(bo, bi, 2, k);     \
 333    f_rn(bo, bi, 3, k);     \
 334    k += 4
 335
 336#define f_lround(bo, bi, k) \
 337    f_rl(bo, bi, 0, k);     \
 338    f_rl(bo, bi, 1, k);     \
 339    f_rl(bo, bi, 2, k);     \
 340    f_rl(bo, bi, 3, k)
 341
 342static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in)
 343{
 344        const struct aes_ctx *ctx = ctx_arg;
 345        u32 b0[4], b1[4];
 346        const u32 *kp = E_KEY + 4;
 347
 348        b0[0] = u32_in (in) ^ E_KEY[0];
 349        b0[1] = u32_in (in + 4) ^ E_KEY[1];
 350        b0[2] = u32_in (in + 8) ^ E_KEY[2];
 351        b0[3] = u32_in (in + 12) ^ E_KEY[3];
 352
 353        if (ctx->key_length > 24) {
 354                f_nround (b1, b0, kp);
 355                f_nround (b0, b1, kp);
 356        }
 357
 358        if (ctx->key_length > 16) {
 359                f_nround (b1, b0, kp);
 360                f_nround (b0, b1, kp);
 361        }
 362
 363        f_nround (b1, b0, kp);
 364        f_nround (b0, b1, kp);
 365        f_nround (b1, b0, kp);
 366        f_nround (b0, b1, kp);
 367        f_nround (b1, b0, kp);
 368        f_nround (b0, b1, kp);
 369        f_nround (b1, b0, kp);
 370        f_nround (b0, b1, kp);
 371        f_nround (b1, b0, kp);
 372        f_lround (b0, b1, kp);
 373
 374        u32_out (out, b0[0]);
 375        u32_out (out + 4, b0[1]);
 376        u32_out (out + 8, b0[2]);
 377        u32_out (out + 12, b0[3]);
 378}
 379
 380/* decrypt a block of text */
 381
 382#define i_nround(bo, bi, k) \
 383    i_rn(bo, bi, 0, k);     \
 384    i_rn(bo, bi, 1, k);     \
 385    i_rn(bo, bi, 2, k);     \
 386    i_rn(bo, bi, 3, k);     \
 387    k -= 4
 388
 389#define i_lround(bo, bi, k) \
 390    i_rl(bo, bi, 0, k);     \
 391    i_rl(bo, bi, 1, k);     \
 392    i_rl(bo, bi, 2, k);     \
 393    i_rl(bo, bi, 3, k)
 394
 395static void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in)
 396{
 397        const struct aes_ctx *ctx = ctx_arg;
 398        u32 b0[4], b1[4];
 399        const int key_len = ctx->key_length;
 400        const u32 *kp = D_KEY + key_len + 20;
 401
 402        b0[0] = u32_in (in) ^ E_KEY[key_len + 24];
 403        b0[1] = u32_in (in + 4) ^ E_KEY[key_len + 25];
 404        b0[2] = u32_in (in + 8) ^ E_KEY[key_len + 26];
 405        b0[3] = u32_in (in + 12) ^ E_KEY[key_len + 27];
 406
 407        if (key_len > 24) {
 408                i_nround (b1, b0, kp);
 409                i_nround (b0, b1, kp);
 410        }
 411
 412        if (key_len > 16) {
 413                i_nround (b1, b0, kp);
 414                i_nround (b0, b1, kp);
 415        }
 416
 417        i_nround (b1, b0, kp);
 418        i_nround (b0, b1, kp);
 419        i_nround (b1, b0, kp);
 420        i_nround (b0, b1, kp);
 421        i_nround (b1, b0, kp);
 422        i_nround (b0, b1, kp);
 423        i_nround (b1, b0, kp);
 424        i_nround (b0, b1, kp);
 425        i_nround (b1, b0, kp);
 426        i_lround (b0, b1, kp);
 427
 428        u32_out (out, b0[0]);
 429        u32_out (out + 4, b0[1]);
 430        u32_out (out + 8, b0[2]);
 431        u32_out (out + 12, b0[3]);
 432}
 433
 434
 435static struct crypto_alg aes_alg = {
 436        .cra_name               =       "aes",
 437        .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
 438        .cra_blocksize          =       AES_BLOCK_SIZE,
 439        .cra_ctxsize            =       sizeof(struct aes_ctx),
 440        .cra_module             =       THIS_MODULE,
 441        .cra_list               =       LIST_HEAD_INIT(aes_alg.cra_list),
 442        .cra_u                  =       {
 443                .cipher = {
 444                        .cia_min_keysize        =       AES_MIN_KEY_SIZE,
 445                        .cia_max_keysize        =       AES_MAX_KEY_SIZE,
 446                        .cia_setkey             =       aes_set_key,
 447                        .cia_encrypt            =       aes_encrypt,
 448                        .cia_decrypt            =       aes_decrypt
 449                }
 450        }
 451};
 452
 453static int __init aes_init(void)
 454{
 455        gen_tabs();
 456        return crypto_register_alg(&aes_alg);
 457}
 458
 459static void __exit aes_fini(void)
 460{
 461        crypto_unregister_alg(&aes_alg);
 462}
 463
 464module_init(aes_init);
 465module_exit(aes_fini);
 466
 467MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
 468MODULE_LICENSE("Dual BSD/GPL");
 469
 470