linux/drivers/tty/tty_io.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/char/tty_io.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   9 * or rs-channels. It also implements echoing, cooked mode etc.
  10 *
  11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  12 *
  13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  14 * tty_struct and tty_queue structures.  Previously there was an array
  15 * of 256 tty_struct's which was statically allocated, and the
  16 * tty_queue structures were allocated at boot time.  Both are now
  17 * dynamically allocated only when the tty is open.
  18 *
  19 * Also restructured routines so that there is more of a separation
  20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  21 * the low-level tty routines (serial.c, pty.c, console.c).  This
  22 * makes for cleaner and more compact code.  -TYT, 9/17/92
  23 *
  24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  25 * which can be dynamically activated and de-activated by the line
  26 * discipline handling modules (like SLIP).
  27 *
  28 * NOTE: pay no attention to the line discipline code (yet); its
  29 * interface is still subject to change in this version...
  30 * -- TYT, 1/31/92
  31 *
  32 * Added functionality to the OPOST tty handling.  No delays, but all
  33 * other bits should be there.
  34 *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  35 *
  36 * Rewrote canonical mode and added more termios flags.
  37 *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  38 *
  39 * Reorganized FASYNC support so mouse code can share it.
  40 *      -- ctm@ardi.com, 9Sep95
  41 *
  42 * New TIOCLINUX variants added.
  43 *      -- mj@k332.feld.cvut.cz, 19-Nov-95
  44 *
  45 * Restrict vt switching via ioctl()
  46 *      -- grif@cs.ucr.edu, 5-Dec-95
  47 *
  48 * Move console and virtual terminal code to more appropriate files,
  49 * implement CONFIG_VT and generalize console device interface.
  50 *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  51 *
  52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  53 *      -- Bill Hawes <whawes@star.net>, June 97
  54 *
  55 * Added devfs support.
  56 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  57 *
  58 * Added support for a Unix98-style ptmx device.
  59 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  60 *
  61 * Reduced memory usage for older ARM systems
  62 *      -- Russell King <rmk@arm.linux.org.uk>
  63 *
  64 * Move do_SAK() into process context.  Less stack use in devfs functions.
  65 * alloc_tty_struct() always uses kmalloc()
  66 *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  67 */
  68
  69#include <linux/types.h>
  70#include <linux/major.h>
  71#include <linux/errno.h>
  72#include <linux/signal.h>
  73#include <linux/fcntl.h>
  74#include <linux/sched.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/proc_fs.h>
  91#include <linux/init.h>
  92#include <linux/module.h>
  93#include <linux/smp_lock.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100
 101#include <linux/uaccess.h>
 102#include <asm/system.h>
 103
 104#include <linux/kbd_kern.h>
 105#include <linux/vt_kern.h>
 106#include <linux/selection.h>
 107
 108#include <linux/kmod.h>
 109#include <linux/nsproxy.h>
 110
 111#undef TTY_DEBUG_HANGUP
 112
 113#define TTY_PARANOIA_CHECK 1
 114#define CHECK_TTY_COUNT 1
 115
 116struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
 117        .c_iflag = ICRNL | IXON,
 118        .c_oflag = OPOST | ONLCR,
 119        .c_cflag = B38400 | CS8 | CREAD | HUPCL,
 120        .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 121                   ECHOCTL | ECHOKE | IEXTEN,
 122        .c_cc = INIT_C_CC,
 123        .c_ispeed = 38400,
 124        .c_ospeed = 38400
 125};
 126
 127EXPORT_SYMBOL(tty_std_termios);
 128
 129/* This list gets poked at by procfs and various bits of boot up code. This
 130   could do with some rationalisation such as pulling the tty proc function
 131   into this file */
 132
 133LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
 134
 135/* Mutex to protect creating and releasing a tty. This is shared with
 136   vt.c for deeply disgusting hack reasons */
 137DEFINE_MUTEX(tty_mutex);
 138EXPORT_SYMBOL(tty_mutex);
 139
 140/* Spinlock to protect the tty->tty_files list */
 141DEFINE_SPINLOCK(tty_files_lock);
 142
 143static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 144static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 145ssize_t redirected_tty_write(struct file *, const char __user *,
 146                                                        size_t, loff_t *);
 147static unsigned int tty_poll(struct file *, poll_table *);
 148static int tty_open(struct inode *, struct file *);
 149long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 150#ifdef CONFIG_COMPAT
 151static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 152                                unsigned long arg);
 153#else
 154#define tty_compat_ioctl NULL
 155#endif
 156static int __tty_fasync(int fd, struct file *filp, int on);
 157static int tty_fasync(int fd, struct file *filp, int on);
 158static void release_tty(struct tty_struct *tty, int idx);
 159static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 160static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 161
 162/**
 163 *      alloc_tty_struct        -       allocate a tty object
 164 *
 165 *      Return a new empty tty structure. The data fields have not
 166 *      been initialized in any way but has been zeroed
 167 *
 168 *      Locking: none
 169 */
 170
 171struct tty_struct *alloc_tty_struct(void)
 172{
 173        return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 174}
 175
 176/**
 177 *      free_tty_struct         -       free a disused tty
 178 *      @tty: tty struct to free
 179 *
 180 *      Free the write buffers, tty queue and tty memory itself.
 181 *
 182 *      Locking: none. Must be called after tty is definitely unused
 183 */
 184
 185void free_tty_struct(struct tty_struct *tty)
 186{
 187        if (tty->dev)
 188                put_device(tty->dev);
 189        kfree(tty->write_buf);
 190        tty_buffer_free_all(tty);
 191        kfree(tty);
 192}
 193
 194static inline struct tty_struct *file_tty(struct file *file)
 195{
 196        return ((struct tty_file_private *)file->private_data)->tty;
 197}
 198
 199/* Associate a new file with the tty structure */
 200int tty_add_file(struct tty_struct *tty, struct file *file)
 201{
 202        struct tty_file_private *priv;
 203
 204        priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 205        if (!priv)
 206                return -ENOMEM;
 207
 208        priv->tty = tty;
 209        priv->file = file;
 210        file->private_data = priv;
 211
 212        spin_lock(&tty_files_lock);
 213        list_add(&priv->list, &tty->tty_files);
 214        spin_unlock(&tty_files_lock);
 215
 216        return 0;
 217}
 218
 219/* Delete file from its tty */
 220void tty_del_file(struct file *file)
 221{
 222        struct tty_file_private *priv = file->private_data;
 223
 224        spin_lock(&tty_files_lock);
 225        list_del(&priv->list);
 226        spin_unlock(&tty_files_lock);
 227        file->private_data = NULL;
 228        kfree(priv);
 229}
 230
 231
 232#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 233
 234/**
 235 *      tty_name        -       return tty naming
 236 *      @tty: tty structure
 237 *      @buf: buffer for output
 238 *
 239 *      Convert a tty structure into a name. The name reflects the kernel
 240 *      naming policy and if udev is in use may not reflect user space
 241 *
 242 *      Locking: none
 243 */
 244
 245char *tty_name(struct tty_struct *tty, char *buf)
 246{
 247        if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 248                strcpy(buf, "NULL tty");
 249        else
 250                strcpy(buf, tty->name);
 251        return buf;
 252}
 253
 254EXPORT_SYMBOL(tty_name);
 255
 256int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 257                              const char *routine)
 258{
 259#ifdef TTY_PARANOIA_CHECK
 260        if (!tty) {
 261                printk(KERN_WARNING
 262                        "null TTY for (%d:%d) in %s\n",
 263                        imajor(inode), iminor(inode), routine);
 264                return 1;
 265        }
 266        if (tty->magic != TTY_MAGIC) {
 267                printk(KERN_WARNING
 268                        "bad magic number for tty struct (%d:%d) in %s\n",
 269                        imajor(inode), iminor(inode), routine);
 270                return 1;
 271        }
 272#endif
 273        return 0;
 274}
 275
 276static int check_tty_count(struct tty_struct *tty, const char *routine)
 277{
 278#ifdef CHECK_TTY_COUNT
 279        struct list_head *p;
 280        int count = 0;
 281
 282        spin_lock(&tty_files_lock);
 283        list_for_each(p, &tty->tty_files) {
 284                count++;
 285        }
 286        spin_unlock(&tty_files_lock);
 287        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 288            tty->driver->subtype == PTY_TYPE_SLAVE &&
 289            tty->link && tty->link->count)
 290                count++;
 291        if (tty->count != count) {
 292                printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 293                                    "!= #fd's(%d) in %s\n",
 294                       tty->name, tty->count, count, routine);
 295                return count;
 296        }
 297#endif
 298        return 0;
 299}
 300
 301/**
 302 *      get_tty_driver          -       find device of a tty
 303 *      @dev_t: device identifier
 304 *      @index: returns the index of the tty
 305 *
 306 *      This routine returns a tty driver structure, given a device number
 307 *      and also passes back the index number.
 308 *
 309 *      Locking: caller must hold tty_mutex
 310 */
 311
 312static struct tty_driver *get_tty_driver(dev_t device, int *index)
 313{
 314        struct tty_driver *p;
 315
 316        list_for_each_entry(p, &tty_drivers, tty_drivers) {
 317                dev_t base = MKDEV(p->major, p->minor_start);
 318                if (device < base || device >= base + p->num)
 319                        continue;
 320                *index = device - base;
 321                return tty_driver_kref_get(p);
 322        }
 323        return NULL;
 324}
 325
 326#ifdef CONFIG_CONSOLE_POLL
 327
 328/**
 329 *      tty_find_polling_driver -       find device of a polled tty
 330 *      @name: name string to match
 331 *      @line: pointer to resulting tty line nr
 332 *
 333 *      This routine returns a tty driver structure, given a name
 334 *      and the condition that the tty driver is capable of polled
 335 *      operation.
 336 */
 337struct tty_driver *tty_find_polling_driver(char *name, int *line)
 338{
 339        struct tty_driver *p, *res = NULL;
 340        int tty_line = 0;
 341        int len;
 342        char *str, *stp;
 343
 344        for (str = name; *str; str++)
 345                if ((*str >= '0' && *str <= '9') || *str == ',')
 346                        break;
 347        if (!*str)
 348                return NULL;
 349
 350        len = str - name;
 351        tty_line = simple_strtoul(str, &str, 10);
 352
 353        mutex_lock(&tty_mutex);
 354        /* Search through the tty devices to look for a match */
 355        list_for_each_entry(p, &tty_drivers, tty_drivers) {
 356                if (strncmp(name, p->name, len) != 0)
 357                        continue;
 358                stp = str;
 359                if (*stp == ',')
 360                        stp++;
 361                if (*stp == '\0')
 362                        stp = NULL;
 363
 364                if (tty_line >= 0 && tty_line < p->num && p->ops &&
 365                    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 366                        res = tty_driver_kref_get(p);
 367                        *line = tty_line;
 368                        break;
 369                }
 370        }
 371        mutex_unlock(&tty_mutex);
 372
 373        return res;
 374}
 375EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 376#endif
 377
 378/**
 379 *      tty_check_change        -       check for POSIX terminal changes
 380 *      @tty: tty to check
 381 *
 382 *      If we try to write to, or set the state of, a terminal and we're
 383 *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
 384 *      ignored, go ahead and perform the operation.  (POSIX 7.2)
 385 *
 386 *      Locking: ctrl_lock
 387 */
 388
 389int tty_check_change(struct tty_struct *tty)
 390{
 391        unsigned long flags;
 392        int ret = 0;
 393
 394        if (current->signal->tty != tty)
 395                return 0;
 396
 397        spin_lock_irqsave(&tty->ctrl_lock, flags);
 398
 399        if (!tty->pgrp) {
 400                printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 401                goto out_unlock;
 402        }
 403        if (task_pgrp(current) == tty->pgrp)
 404                goto out_unlock;
 405        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 406        if (is_ignored(SIGTTOU))
 407                goto out;
 408        if (is_current_pgrp_orphaned()) {
 409                ret = -EIO;
 410                goto out;
 411        }
 412        kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 413        set_thread_flag(TIF_SIGPENDING);
 414        ret = -ERESTARTSYS;
 415out:
 416        return ret;
 417out_unlock:
 418        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 419        return ret;
 420}
 421
 422EXPORT_SYMBOL(tty_check_change);
 423
 424static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 425                                size_t count, loff_t *ppos)
 426{
 427        return 0;
 428}
 429
 430static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 431                                 size_t count, loff_t *ppos)
 432{
 433        return -EIO;
 434}
 435
 436/* No kernel lock held - none needed ;) */
 437static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 438{
 439        return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 440}
 441
 442static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 443                unsigned long arg)
 444{
 445        return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 446}
 447
 448static long hung_up_tty_compat_ioctl(struct file *file,
 449                                     unsigned int cmd, unsigned long arg)
 450{
 451        return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 452}
 453
 454static const struct file_operations tty_fops = {
 455        .llseek         = no_llseek,
 456        .read           = tty_read,
 457        .write          = tty_write,
 458        .poll           = tty_poll,
 459        .unlocked_ioctl = tty_ioctl,
 460        .compat_ioctl   = tty_compat_ioctl,
 461        .open           = tty_open,
 462        .release        = tty_release,
 463        .fasync         = tty_fasync,
 464};
 465
 466static const struct file_operations console_fops = {
 467        .llseek         = no_llseek,
 468        .read           = tty_read,
 469        .write          = redirected_tty_write,
 470        .poll           = tty_poll,
 471        .unlocked_ioctl = tty_ioctl,
 472        .compat_ioctl   = tty_compat_ioctl,
 473        .open           = tty_open,
 474        .release        = tty_release,
 475        .fasync         = tty_fasync,
 476};
 477
 478static const struct file_operations hung_up_tty_fops = {
 479        .llseek         = no_llseek,
 480        .read           = hung_up_tty_read,
 481        .write          = hung_up_tty_write,
 482        .poll           = hung_up_tty_poll,
 483        .unlocked_ioctl = hung_up_tty_ioctl,
 484        .compat_ioctl   = hung_up_tty_compat_ioctl,
 485        .release        = tty_release,
 486};
 487
 488static DEFINE_SPINLOCK(redirect_lock);
 489static struct file *redirect;
 490
 491/**
 492 *      tty_wakeup      -       request more data
 493 *      @tty: terminal
 494 *
 495 *      Internal and external helper for wakeups of tty. This function
 496 *      informs the line discipline if present that the driver is ready
 497 *      to receive more output data.
 498 */
 499
 500void tty_wakeup(struct tty_struct *tty)
 501{
 502        struct tty_ldisc *ld;
 503
 504        if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 505                ld = tty_ldisc_ref(tty);
 506                if (ld) {
 507                        if (ld->ops->write_wakeup)
 508                                ld->ops->write_wakeup(tty);
 509                        tty_ldisc_deref(ld);
 510                }
 511        }
 512        wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 513}
 514
 515EXPORT_SYMBOL_GPL(tty_wakeup);
 516
 517/**
 518 *      __tty_hangup            -       actual handler for hangup events
 519 *      @work: tty device
 520 *
 521 *      This can be called by the "eventd" kernel thread.  That is process
 522 *      synchronous but doesn't hold any locks, so we need to make sure we
 523 *      have the appropriate locks for what we're doing.
 524 *
 525 *      The hangup event clears any pending redirections onto the hung up
 526 *      device. It ensures future writes will error and it does the needed
 527 *      line discipline hangup and signal delivery. The tty object itself
 528 *      remains intact.
 529 *
 530 *      Locking:
 531 *              BTM
 532 *                redirect lock for undoing redirection
 533 *                file list lock for manipulating list of ttys
 534 *                tty_ldisc_lock from called functions
 535 *                termios_mutex resetting termios data
 536 *                tasklist_lock to walk task list for hangup event
 537 *                  ->siglock to protect ->signal/->sighand
 538 */
 539void __tty_hangup(struct tty_struct *tty)
 540{
 541        struct file *cons_filp = NULL;
 542        struct file *filp, *f = NULL;
 543        struct task_struct *p;
 544        struct tty_file_private *priv;
 545        int    closecount = 0, n;
 546        unsigned long flags;
 547        int refs = 0;
 548
 549        if (!tty)
 550                return;
 551
 552
 553        spin_lock(&redirect_lock);
 554        if (redirect && file_tty(redirect) == tty) {
 555                f = redirect;
 556                redirect = NULL;
 557        }
 558        spin_unlock(&redirect_lock);
 559
 560        tty_lock();
 561
 562        /* some functions below drop BTM, so we need this bit */
 563        set_bit(TTY_HUPPING, &tty->flags);
 564
 565        /* inuse_filps is protected by the single tty lock,
 566           this really needs to change if we want to flush the
 567           workqueue with the lock held */
 568        check_tty_count(tty, "tty_hangup");
 569
 570        spin_lock(&tty_files_lock);
 571        /* This breaks for file handles being sent over AF_UNIX sockets ? */
 572        list_for_each_entry(priv, &tty->tty_files, list) {
 573                filp = priv->file;
 574                if (filp->f_op->write == redirected_tty_write)
 575                        cons_filp = filp;
 576                if (filp->f_op->write != tty_write)
 577                        continue;
 578                closecount++;
 579                __tty_fasync(-1, filp, 0);      /* can't block */
 580                filp->f_op = &hung_up_tty_fops;
 581        }
 582        spin_unlock(&tty_files_lock);
 583
 584        /*
 585         * it drops BTM and thus races with reopen
 586         * we protect the race by TTY_HUPPING
 587         */
 588        tty_ldisc_hangup(tty);
 589
 590        read_lock(&tasklist_lock);
 591        if (tty->session) {
 592                do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 593                        spin_lock_irq(&p->sighand->siglock);
 594                        if (p->signal->tty == tty) {
 595                                p->signal->tty = NULL;
 596                                /* We defer the dereferences outside fo
 597                                   the tasklist lock */
 598                                refs++;
 599                        }
 600                        if (!p->signal->leader) {
 601                                spin_unlock_irq(&p->sighand->siglock);
 602                                continue;
 603                        }
 604                        __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 605                        __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 606                        put_pid(p->signal->tty_old_pgrp);  /* A noop */
 607                        spin_lock_irqsave(&tty->ctrl_lock, flags);
 608                        if (tty->pgrp)
 609                                p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 610                        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 611                        spin_unlock_irq(&p->sighand->siglock);
 612                } while_each_pid_task(tty->session, PIDTYPE_SID, p);
 613        }
 614        read_unlock(&tasklist_lock);
 615
 616        spin_lock_irqsave(&tty->ctrl_lock, flags);
 617        clear_bit(TTY_THROTTLED, &tty->flags);
 618        clear_bit(TTY_PUSH, &tty->flags);
 619        clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 620        put_pid(tty->session);
 621        put_pid(tty->pgrp);
 622        tty->session = NULL;
 623        tty->pgrp = NULL;
 624        tty->ctrl_status = 0;
 625        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 626
 627        /* Account for the p->signal references we killed */
 628        while (refs--)
 629                tty_kref_put(tty);
 630
 631        /*
 632         * If one of the devices matches a console pointer, we
 633         * cannot just call hangup() because that will cause
 634         * tty->count and state->count to go out of sync.
 635         * So we just call close() the right number of times.
 636         */
 637        if (cons_filp) {
 638                if (tty->ops->close)
 639                        for (n = 0; n < closecount; n++)
 640                                tty->ops->close(tty, cons_filp);
 641        } else if (tty->ops->hangup)
 642                (tty->ops->hangup)(tty);
 643        /*
 644         * We don't want to have driver/ldisc interactions beyond
 645         * the ones we did here. The driver layer expects no
 646         * calls after ->hangup() from the ldisc side. However we
 647         * can't yet guarantee all that.
 648         */
 649        set_bit(TTY_HUPPED, &tty->flags);
 650        clear_bit(TTY_HUPPING, &tty->flags);
 651        tty_ldisc_enable(tty);
 652
 653        tty_unlock();
 654
 655        if (f)
 656                fput(f);
 657}
 658
 659static void do_tty_hangup(struct work_struct *work)
 660{
 661        struct tty_struct *tty =
 662                container_of(work, struct tty_struct, hangup_work);
 663
 664        __tty_hangup(tty);
 665}
 666
 667/**
 668 *      tty_hangup              -       trigger a hangup event
 669 *      @tty: tty to hangup
 670 *
 671 *      A carrier loss (virtual or otherwise) has occurred on this like
 672 *      schedule a hangup sequence to run after this event.
 673 */
 674
 675void tty_hangup(struct tty_struct *tty)
 676{
 677#ifdef TTY_DEBUG_HANGUP
 678        char    buf[64];
 679        printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 680#endif
 681        schedule_work(&tty->hangup_work);
 682}
 683
 684EXPORT_SYMBOL(tty_hangup);
 685
 686/**
 687 *      tty_vhangup             -       process vhangup
 688 *      @tty: tty to hangup
 689 *
 690 *      The user has asked via system call for the terminal to be hung up.
 691 *      We do this synchronously so that when the syscall returns the process
 692 *      is complete. That guarantee is necessary for security reasons.
 693 */
 694
 695void tty_vhangup(struct tty_struct *tty)
 696{
 697#ifdef TTY_DEBUG_HANGUP
 698        char    buf[64];
 699
 700        printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 701#endif
 702        __tty_hangup(tty);
 703}
 704
 705EXPORT_SYMBOL(tty_vhangup);
 706
 707
 708/**
 709 *      tty_vhangup_self        -       process vhangup for own ctty
 710 *
 711 *      Perform a vhangup on the current controlling tty
 712 */
 713
 714void tty_vhangup_self(void)
 715{
 716        struct tty_struct *tty;
 717
 718        tty = get_current_tty();
 719        if (tty) {
 720                tty_vhangup(tty);
 721                tty_kref_put(tty);
 722        }
 723}
 724
 725/**
 726 *      tty_hung_up_p           -       was tty hung up
 727 *      @filp: file pointer of tty
 728 *
 729 *      Return true if the tty has been subject to a vhangup or a carrier
 730 *      loss
 731 */
 732
 733int tty_hung_up_p(struct file *filp)
 734{
 735        return (filp->f_op == &hung_up_tty_fops);
 736}
 737
 738EXPORT_SYMBOL(tty_hung_up_p);
 739
 740static void session_clear_tty(struct pid *session)
 741{
 742        struct task_struct *p;
 743        do_each_pid_task(session, PIDTYPE_SID, p) {
 744                proc_clear_tty(p);
 745        } while_each_pid_task(session, PIDTYPE_SID, p);
 746}
 747
 748/**
 749 *      disassociate_ctty       -       disconnect controlling tty
 750 *      @on_exit: true if exiting so need to "hang up" the session
 751 *
 752 *      This function is typically called only by the session leader, when
 753 *      it wants to disassociate itself from its controlling tty.
 754 *
 755 *      It performs the following functions:
 756 *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
 757 *      (2)  Clears the tty from being controlling the session
 758 *      (3)  Clears the controlling tty for all processes in the
 759 *              session group.
 760 *
 761 *      The argument on_exit is set to 1 if called when a process is
 762 *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
 763 *
 764 *      Locking:
 765 *              BTM is taken for hysterical raisins, and held when
 766 *                called from no_tty().
 767 *                tty_mutex is taken to protect tty
 768 *                ->siglock is taken to protect ->signal/->sighand
 769 *                tasklist_lock is taken to walk process list for sessions
 770 *                  ->siglock is taken to protect ->signal/->sighand
 771 */
 772
 773void disassociate_ctty(int on_exit)
 774{
 775        struct tty_struct *tty;
 776        struct pid *tty_pgrp = NULL;
 777
 778        if (!current->signal->leader)
 779                return;
 780
 781        tty = get_current_tty();
 782        if (tty) {
 783                tty_pgrp = get_pid(tty->pgrp);
 784                if (on_exit) {
 785                        if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 786                                tty_vhangup(tty);
 787                }
 788                tty_kref_put(tty);
 789        } else if (on_exit) {
 790                struct pid *old_pgrp;
 791                spin_lock_irq(&current->sighand->siglock);
 792                old_pgrp = current->signal->tty_old_pgrp;
 793                current->signal->tty_old_pgrp = NULL;
 794                spin_unlock_irq(&current->sighand->siglock);
 795                if (old_pgrp) {
 796                        kill_pgrp(old_pgrp, SIGHUP, on_exit);
 797                        kill_pgrp(old_pgrp, SIGCONT, on_exit);
 798                        put_pid(old_pgrp);
 799                }
 800                return;
 801        }
 802        if (tty_pgrp) {
 803                kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 804                if (!on_exit)
 805                        kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 806                put_pid(tty_pgrp);
 807        }
 808
 809        spin_lock_irq(&current->sighand->siglock);
 810        put_pid(current->signal->tty_old_pgrp);
 811        current->signal->tty_old_pgrp = NULL;
 812        spin_unlock_irq(&current->sighand->siglock);
 813
 814        tty = get_current_tty();
 815        if (tty) {
 816                unsigned long flags;
 817                spin_lock_irqsave(&tty->ctrl_lock, flags);
 818                put_pid(tty->session);
 819                put_pid(tty->pgrp);
 820                tty->session = NULL;
 821                tty->pgrp = NULL;
 822                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 823                tty_kref_put(tty);
 824        } else {
 825#ifdef TTY_DEBUG_HANGUP
 826                printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 827                       " = NULL", tty);
 828#endif
 829        }
 830
 831        /* Now clear signal->tty under the lock */
 832        read_lock(&tasklist_lock);
 833        session_clear_tty(task_session(current));
 834        read_unlock(&tasklist_lock);
 835}
 836
 837/**
 838 *
 839 *      no_tty  - Ensure the current process does not have a controlling tty
 840 */
 841void no_tty(void)
 842{
 843        struct task_struct *tsk = current;
 844        tty_lock();
 845        disassociate_ctty(0);
 846        tty_unlock();
 847        proc_clear_tty(tsk);
 848}
 849
 850
 851/**
 852 *      stop_tty        -       propagate flow control
 853 *      @tty: tty to stop
 854 *
 855 *      Perform flow control to the driver. For PTY/TTY pairs we
 856 *      must also propagate the TIOCKPKT status. May be called
 857 *      on an already stopped device and will not re-call the driver
 858 *      method.
 859 *
 860 *      This functionality is used by both the line disciplines for
 861 *      halting incoming flow and by the driver. It may therefore be
 862 *      called from any context, may be under the tty atomic_write_lock
 863 *      but not always.
 864 *
 865 *      Locking:
 866 *              Uses the tty control lock internally
 867 */
 868
 869void stop_tty(struct tty_struct *tty)
 870{
 871        unsigned long flags;
 872        spin_lock_irqsave(&tty->ctrl_lock, flags);
 873        if (tty->stopped) {
 874                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 875                return;
 876        }
 877        tty->stopped = 1;
 878        if (tty->link && tty->link->packet) {
 879                tty->ctrl_status &= ~TIOCPKT_START;
 880                tty->ctrl_status |= TIOCPKT_STOP;
 881                wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 882        }
 883        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 884        if (tty->ops->stop)
 885                (tty->ops->stop)(tty);
 886}
 887
 888EXPORT_SYMBOL(stop_tty);
 889
 890/**
 891 *      start_tty       -       propagate flow control
 892 *      @tty: tty to start
 893 *
 894 *      Start a tty that has been stopped if at all possible. Perform
 895 *      any necessary wakeups and propagate the TIOCPKT status. If this
 896 *      is the tty was previous stopped and is being started then the
 897 *      driver start method is invoked and the line discipline woken.
 898 *
 899 *      Locking:
 900 *              ctrl_lock
 901 */
 902
 903void start_tty(struct tty_struct *tty)
 904{
 905        unsigned long flags;
 906        spin_lock_irqsave(&tty->ctrl_lock, flags);
 907        if (!tty->stopped || tty->flow_stopped) {
 908                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 909                return;
 910        }
 911        tty->stopped = 0;
 912        if (tty->link && tty->link->packet) {
 913                tty->ctrl_status &= ~TIOCPKT_STOP;
 914                tty->ctrl_status |= TIOCPKT_START;
 915                wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 916        }
 917        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 918        if (tty->ops->start)
 919                (tty->ops->start)(tty);
 920        /* If we have a running line discipline it may need kicking */
 921        tty_wakeup(tty);
 922}
 923
 924EXPORT_SYMBOL(start_tty);
 925
 926/**
 927 *      tty_read        -       read method for tty device files
 928 *      @file: pointer to tty file
 929 *      @buf: user buffer
 930 *      @count: size of user buffer
 931 *      @ppos: unused
 932 *
 933 *      Perform the read system call function on this terminal device. Checks
 934 *      for hung up devices before calling the line discipline method.
 935 *
 936 *      Locking:
 937 *              Locks the line discipline internally while needed. Multiple
 938 *      read calls may be outstanding in parallel.
 939 */
 940
 941static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 942                        loff_t *ppos)
 943{
 944        int i;
 945        struct inode *inode = file->f_path.dentry->d_inode;
 946        struct tty_struct *tty = file_tty(file);
 947        struct tty_ldisc *ld;
 948
 949        if (tty_paranoia_check(tty, inode, "tty_read"))
 950                return -EIO;
 951        if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 952                return -EIO;
 953
 954        /* We want to wait for the line discipline to sort out in this
 955           situation */
 956        ld = tty_ldisc_ref_wait(tty);
 957        if (ld->ops->read)
 958                i = (ld->ops->read)(tty, file, buf, count);
 959        else
 960                i = -EIO;
 961        tty_ldisc_deref(ld);
 962        if (i > 0)
 963                inode->i_atime = current_fs_time(inode->i_sb);
 964        return i;
 965}
 966
 967void tty_write_unlock(struct tty_struct *tty)
 968{
 969        mutex_unlock(&tty->atomic_write_lock);
 970        wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 971}
 972
 973int tty_write_lock(struct tty_struct *tty, int ndelay)
 974{
 975        if (!mutex_trylock(&tty->atomic_write_lock)) {
 976                if (ndelay)
 977                        return -EAGAIN;
 978                if (mutex_lock_interruptible(&tty->atomic_write_lock))
 979                        return -ERESTARTSYS;
 980        }
 981        return 0;
 982}
 983
 984/*
 985 * Split writes up in sane blocksizes to avoid
 986 * denial-of-service type attacks
 987 */
 988static inline ssize_t do_tty_write(
 989        ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 990        struct tty_struct *tty,
 991        struct file *file,
 992        const char __user *buf,
 993        size_t count)
 994{
 995        ssize_t ret, written = 0;
 996        unsigned int chunk;
 997
 998        ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 999        if (ret < 0)
1000                return ret;
1001
1002        /*
1003         * We chunk up writes into a temporary buffer. This
1004         * simplifies low-level drivers immensely, since they
1005         * don't have locking issues and user mode accesses.
1006         *
1007         * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008         * big chunk-size..
1009         *
1010         * The default chunk-size is 2kB, because the NTTY
1011         * layer has problems with bigger chunks. It will
1012         * claim to be able to handle more characters than
1013         * it actually does.
1014         *
1015         * FIXME: This can probably go away now except that 64K chunks
1016         * are too likely to fail unless switched to vmalloc...
1017         */
1018        chunk = 2048;
1019        if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020                chunk = 65536;
1021        if (count < chunk)
1022                chunk = count;
1023
1024        /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025        if (tty->write_cnt < chunk) {
1026                unsigned char *buf_chunk;
1027
1028                if (chunk < 1024)
1029                        chunk = 1024;
1030
1031                buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032                if (!buf_chunk) {
1033                        ret = -ENOMEM;
1034                        goto out;
1035                }
1036                kfree(tty->write_buf);
1037                tty->write_cnt = chunk;
1038                tty->write_buf = buf_chunk;
1039        }
1040
1041        /* Do the write .. */
1042        for (;;) {
1043                size_t size = count;
1044                if (size > chunk)
1045                        size = chunk;
1046                ret = -EFAULT;
1047                if (copy_from_user(tty->write_buf, buf, size))
1048                        break;
1049                ret = write(tty, file, tty->write_buf, size);
1050                if (ret <= 0)
1051                        break;
1052                written += ret;
1053                buf += ret;
1054                count -= ret;
1055                if (!count)
1056                        break;
1057                ret = -ERESTARTSYS;
1058                if (signal_pending(current))
1059                        break;
1060                cond_resched();
1061        }
1062        if (written) {
1063                struct inode *inode = file->f_path.dentry->d_inode;
1064                inode->i_mtime = current_fs_time(inode->i_sb);
1065                ret = written;
1066        }
1067out:
1068        tty_write_unlock(tty);
1069        return ret;
1070}
1071
1072/**
1073 * tty_write_message - write a message to a certain tty, not just the console.
1074 * @tty: the destination tty_struct
1075 * @msg: the message to write
1076 *
1077 * This is used for messages that need to be redirected to a specific tty.
1078 * We don't put it into the syslog queue right now maybe in the future if
1079 * really needed.
1080 *
1081 * We must still hold the BTM and test the CLOSING flag for the moment.
1082 */
1083
1084void tty_write_message(struct tty_struct *tty, char *msg)
1085{
1086        if (tty) {
1087                mutex_lock(&tty->atomic_write_lock);
1088                tty_lock();
1089                if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090                        tty_unlock();
1091                        tty->ops->write(tty, msg, strlen(msg));
1092                } else
1093                        tty_unlock();
1094                tty_write_unlock(tty);
1095        }
1096        return;
1097}
1098
1099
1100/**
1101 *      tty_write               -       write method for tty device file
1102 *      @file: tty file pointer
1103 *      @buf: user data to write
1104 *      @count: bytes to write
1105 *      @ppos: unused
1106 *
1107 *      Write data to a tty device via the line discipline.
1108 *
1109 *      Locking:
1110 *              Locks the line discipline as required
1111 *              Writes to the tty driver are serialized by the atomic_write_lock
1112 *      and are then processed in chunks to the device. The line discipline
1113 *      write method will not be invoked in parallel for each device.
1114 */
1115
1116static ssize_t tty_write(struct file *file, const char __user *buf,
1117                                                size_t count, loff_t *ppos)
1118{
1119        struct inode *inode = file->f_path.dentry->d_inode;
1120        struct tty_struct *tty = file_tty(file);
1121        struct tty_ldisc *ld;
1122        ssize_t ret;
1123
1124        if (tty_paranoia_check(tty, inode, "tty_write"))
1125                return -EIO;
1126        if (!tty || !tty->ops->write ||
1127                (test_bit(TTY_IO_ERROR, &tty->flags)))
1128                        return -EIO;
1129        /* Short term debug to catch buggy drivers */
1130        if (tty->ops->write_room == NULL)
1131                printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132                        tty->driver->name);
1133        ld = tty_ldisc_ref_wait(tty);
1134        if (!ld->ops->write)
1135                ret = -EIO;
1136        else
1137                ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138        tty_ldisc_deref(ld);
1139        return ret;
1140}
1141
1142ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143                                                size_t count, loff_t *ppos)
1144{
1145        struct file *p = NULL;
1146
1147        spin_lock(&redirect_lock);
1148        if (redirect) {
1149                get_file(redirect);
1150                p = redirect;
1151        }
1152        spin_unlock(&redirect_lock);
1153
1154        if (p) {
1155                ssize_t res;
1156                res = vfs_write(p, buf, count, &p->f_pos);
1157                fput(p);
1158                return res;
1159        }
1160        return tty_write(file, buf, count, ppos);
1161}
1162
1163static char ptychar[] = "pqrstuvwxyzabcde";
1164
1165/**
1166 *      pty_line_name   -       generate name for a pty
1167 *      @driver: the tty driver in use
1168 *      @index: the minor number
1169 *      @p: output buffer of at least 6 bytes
1170 *
1171 *      Generate a name from a driver reference and write it to the output
1172 *      buffer.
1173 *
1174 *      Locking: None
1175 */
1176static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177{
1178        int i = index + driver->name_base;
1179        /* ->name is initialized to "ttyp", but "tty" is expected */
1180        sprintf(p, "%s%c%x",
1181                driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182                ptychar[i >> 4 & 0xf], i & 0xf);
1183}
1184
1185/**
1186 *      tty_line_name   -       generate name for a tty
1187 *      @driver: the tty driver in use
1188 *      @index: the minor number
1189 *      @p: output buffer of at least 7 bytes
1190 *
1191 *      Generate a name from a driver reference and write it to the output
1192 *      buffer.
1193 *
1194 *      Locking: None
1195 */
1196static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197{
1198        sprintf(p, "%s%d", driver->name, index + driver->name_base);
1199}
1200
1201/**
1202 *      tty_driver_lookup_tty() - find an existing tty, if any
1203 *      @driver: the driver for the tty
1204 *      @idx:    the minor number
1205 *
1206 *      Return the tty, if found or ERR_PTR() otherwise.
1207 *
1208 *      Locking: tty_mutex must be held. If tty is found, the mutex must
1209 *      be held until the 'fast-open' is also done. Will change once we
1210 *      have refcounting in the driver and per driver locking
1211 */
1212static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213                struct inode *inode, int idx)
1214{
1215        struct tty_struct *tty;
1216
1217        if (driver->ops->lookup)
1218                return driver->ops->lookup(driver, inode, idx);
1219
1220        tty = driver->ttys[idx];
1221        return tty;
1222}
1223
1224/**
1225 *      tty_init_termios        -  helper for termios setup
1226 *      @tty: the tty to set up
1227 *
1228 *      Initialise the termios structures for this tty. Thus runs under
1229 *      the tty_mutex currently so we can be relaxed about ordering.
1230 */
1231
1232int tty_init_termios(struct tty_struct *tty)
1233{
1234        struct ktermios *tp;
1235        int idx = tty->index;
1236
1237        tp = tty->driver->termios[idx];
1238        if (tp == NULL) {
1239                tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240                if (tp == NULL)
1241                        return -ENOMEM;
1242                memcpy(tp, &tty->driver->init_termios,
1243                                                sizeof(struct ktermios));
1244                tty->driver->termios[idx] = tp;
1245        }
1246        tty->termios = tp;
1247        tty->termios_locked = tp + 1;
1248
1249        /* Compatibility until drivers always set this */
1250        tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251        tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252        return 0;
1253}
1254EXPORT_SYMBOL_GPL(tty_init_termios);
1255
1256/**
1257 *      tty_driver_install_tty() - install a tty entry in the driver
1258 *      @driver: the driver for the tty
1259 *      @tty: the tty
1260 *
1261 *      Install a tty object into the driver tables. The tty->index field
1262 *      will be set by the time this is called. This method is responsible
1263 *      for ensuring any need additional structures are allocated and
1264 *      configured.
1265 *
1266 *      Locking: tty_mutex for now
1267 */
1268static int tty_driver_install_tty(struct tty_driver *driver,
1269                                                struct tty_struct *tty)
1270{
1271        int idx = tty->index;
1272        int ret;
1273
1274        if (driver->ops->install) {
1275                ret = driver->ops->install(driver, tty);
1276                return ret;
1277        }
1278
1279        if (tty_init_termios(tty) == 0) {
1280                tty_driver_kref_get(driver);
1281                tty->count++;
1282                driver->ttys[idx] = tty;
1283                return 0;
1284        }
1285        return -ENOMEM;
1286}
1287
1288/**
1289 *      tty_driver_remove_tty() - remove a tty from the driver tables
1290 *      @driver: the driver for the tty
1291 *      @idx:    the minor number
1292 *
1293 *      Remvoe a tty object from the driver tables. The tty->index field
1294 *      will be set by the time this is called.
1295 *
1296 *      Locking: tty_mutex for now
1297 */
1298static void tty_driver_remove_tty(struct tty_driver *driver,
1299                                                struct tty_struct *tty)
1300{
1301        if (driver->ops->remove)
1302                driver->ops->remove(driver, tty);
1303        else
1304                driver->ttys[tty->index] = NULL;
1305}
1306
1307/*
1308 *      tty_reopen()    - fast re-open of an open tty
1309 *      @tty    - the tty to open
1310 *
1311 *      Return 0 on success, -errno on error.
1312 *
1313 *      Locking: tty_mutex must be held from the time the tty was found
1314 *               till this open completes.
1315 */
1316static int tty_reopen(struct tty_struct *tty)
1317{
1318        struct tty_driver *driver = tty->driver;
1319
1320        if (test_bit(TTY_CLOSING, &tty->flags) ||
1321                        test_bit(TTY_HUPPING, &tty->flags) ||
1322                        test_bit(TTY_LDISC_CHANGING, &tty->flags))
1323                return -EIO;
1324
1325        if (driver->type == TTY_DRIVER_TYPE_PTY &&
1326            driver->subtype == PTY_TYPE_MASTER) {
1327                /*
1328                 * special case for PTY masters: only one open permitted,
1329                 * and the slave side open count is incremented as well.
1330                 */
1331                if (tty->count)
1332                        return -EIO;
1333
1334                tty->link->count++;
1335        }
1336        tty->count++;
1337        tty->driver = driver; /* N.B. why do this every time?? */
1338
1339        mutex_lock(&tty->ldisc_mutex);
1340        WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1341        mutex_unlock(&tty->ldisc_mutex);
1342
1343        return 0;
1344}
1345
1346/**
1347 *      tty_init_dev            -       initialise a tty device
1348 *      @driver: tty driver we are opening a device on
1349 *      @idx: device index
1350 *      @ret_tty: returned tty structure
1351 *      @first_ok: ok to open a new device (used by ptmx)
1352 *
1353 *      Prepare a tty device. This may not be a "new" clean device but
1354 *      could also be an active device. The pty drivers require special
1355 *      handling because of this.
1356 *
1357 *      Locking:
1358 *              The function is called under the tty_mutex, which
1359 *      protects us from the tty struct or driver itself going away.
1360 *
1361 *      On exit the tty device has the line discipline attached and
1362 *      a reference count of 1. If a pair was created for pty/tty use
1363 *      and the other was a pty master then it too has a reference count of 1.
1364 *
1365 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1366 * failed open.  The new code protects the open with a mutex, so it's
1367 * really quite straightforward.  The mutex locking can probably be
1368 * relaxed for the (most common) case of reopening a tty.
1369 */
1370
1371struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1372                                                                int first_ok)
1373{
1374        struct tty_struct *tty;
1375        int retval;
1376
1377        /* Check if pty master is being opened multiple times */
1378        if (driver->subtype == PTY_TYPE_MASTER &&
1379                (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1380                return ERR_PTR(-EIO);
1381        }
1382
1383        /*
1384         * First time open is complex, especially for PTY devices.
1385         * This code guarantees that either everything succeeds and the
1386         * TTY is ready for operation, or else the table slots are vacated
1387         * and the allocated memory released.  (Except that the termios
1388         * and locked termios may be retained.)
1389         */
1390
1391        if (!try_module_get(driver->owner))
1392                return ERR_PTR(-ENODEV);
1393
1394        tty = alloc_tty_struct();
1395        if (!tty)
1396                goto fail_no_mem;
1397        initialize_tty_struct(tty, driver, idx);
1398
1399        retval = tty_driver_install_tty(driver, tty);
1400        if (retval < 0) {
1401                free_tty_struct(tty);
1402                module_put(driver->owner);
1403                return ERR_PTR(retval);
1404        }
1405
1406        /*
1407         * Structures all installed ... call the ldisc open routines.
1408         * If we fail here just call release_tty to clean up.  No need
1409         * to decrement the use counts, as release_tty doesn't care.
1410         */
1411        retval = tty_ldisc_setup(tty, tty->link);
1412        if (retval)
1413                goto release_mem_out;
1414        return tty;
1415
1416fail_no_mem:
1417        module_put(driver->owner);
1418        return ERR_PTR(-ENOMEM);
1419
1420        /* call the tty release_tty routine to clean out this slot */
1421release_mem_out:
1422        if (printk_ratelimit())
1423                printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1424                                 "clearing slot %d\n", idx);
1425        release_tty(tty, idx);
1426        return ERR_PTR(retval);
1427}
1428
1429void tty_free_termios(struct tty_struct *tty)
1430{
1431        struct ktermios *tp;
1432        int idx = tty->index;
1433        /* Kill this flag and push into drivers for locking etc */
1434        if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435                /* FIXME: Locking on ->termios array */
1436                tp = tty->termios;
1437                tty->driver->termios[idx] = NULL;
1438                kfree(tp);
1439        }
1440}
1441EXPORT_SYMBOL(tty_free_termios);
1442
1443void tty_shutdown(struct tty_struct *tty)
1444{
1445        tty_driver_remove_tty(tty->driver, tty);
1446        tty_free_termios(tty);
1447}
1448EXPORT_SYMBOL(tty_shutdown);
1449
1450/**
1451 *      release_one_tty         -       release tty structure memory
1452 *      @kref: kref of tty we are obliterating
1453 *
1454 *      Releases memory associated with a tty structure, and clears out the
1455 *      driver table slots. This function is called when a device is no longer
1456 *      in use. It also gets called when setup of a device fails.
1457 *
1458 *      Locking:
1459 *              tty_mutex - sometimes only
1460 *              takes the file list lock internally when working on the list
1461 *      of ttys that the driver keeps.
1462 *
1463 *      This method gets called from a work queue so that the driver private
1464 *      cleanup ops can sleep (needed for USB at least)
1465 */
1466static void release_one_tty(struct work_struct *work)
1467{
1468        struct tty_struct *tty =
1469                container_of(work, struct tty_struct, hangup_work);
1470        struct tty_driver *driver = tty->driver;
1471
1472        if (tty->ops->cleanup)
1473                tty->ops->cleanup(tty);
1474
1475        tty->magic = 0;
1476        tty_driver_kref_put(driver);
1477        module_put(driver->owner);
1478
1479        spin_lock(&tty_files_lock);
1480        list_del_init(&tty->tty_files);
1481        spin_unlock(&tty_files_lock);
1482
1483        put_pid(tty->pgrp);
1484        put_pid(tty->session);
1485        free_tty_struct(tty);
1486}
1487
1488static void queue_release_one_tty(struct kref *kref)
1489{
1490        struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1491
1492        if (tty->ops->shutdown)
1493                tty->ops->shutdown(tty);
1494        else
1495                tty_shutdown(tty);
1496
1497        /* The hangup queue is now free so we can reuse it rather than
1498           waste a chunk of memory for each port */
1499        INIT_WORK(&tty->hangup_work, release_one_tty);
1500        schedule_work(&tty->hangup_work);
1501}
1502
1503/**
1504 *      tty_kref_put            -       release a tty kref
1505 *      @tty: tty device
1506 *
1507 *      Release a reference to a tty device and if need be let the kref
1508 *      layer destruct the object for us
1509 */
1510
1511void tty_kref_put(struct tty_struct *tty)
1512{
1513        if (tty)
1514                kref_put(&tty->kref, queue_release_one_tty);
1515}
1516EXPORT_SYMBOL(tty_kref_put);
1517
1518/**
1519 *      release_tty             -       release tty structure memory
1520 *
1521 *      Release both @tty and a possible linked partner (think pty pair),
1522 *      and decrement the refcount of the backing module.
1523 *
1524 *      Locking:
1525 *              tty_mutex - sometimes only
1526 *              takes the file list lock internally when working on the list
1527 *      of ttys that the driver keeps.
1528 *              FIXME: should we require tty_mutex is held here ??
1529 *
1530 */
1531static void release_tty(struct tty_struct *tty, int idx)
1532{
1533        /* This should always be true but check for the moment */
1534        WARN_ON(tty->index != idx);
1535
1536        if (tty->link)
1537                tty_kref_put(tty->link);
1538        tty_kref_put(tty);
1539}
1540
1541/**
1542 *      tty_release             -       vfs callback for close
1543 *      @inode: inode of tty
1544 *      @filp: file pointer for handle to tty
1545 *
1546 *      Called the last time each file handle is closed that references
1547 *      this tty. There may however be several such references.
1548 *
1549 *      Locking:
1550 *              Takes bkl. See tty_release_dev
1551 *
1552 * Even releasing the tty structures is a tricky business.. We have
1553 * to be very careful that the structures are all released at the
1554 * same time, as interrupts might otherwise get the wrong pointers.
1555 *
1556 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557 * lead to double frees or releasing memory still in use.
1558 */
1559
1560int tty_release(struct inode *inode, struct file *filp)
1561{
1562        struct tty_struct *tty = file_tty(filp);
1563        struct tty_struct *o_tty;
1564        int     pty_master, tty_closing, o_tty_closing, do_sleep;
1565        int     devpts;
1566        int     idx;
1567        char    buf[64];
1568
1569        if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570                return 0;
1571
1572        tty_lock();
1573        check_tty_count(tty, "tty_release_dev");
1574
1575        __tty_fasync(-1, filp, 0);
1576
1577        idx = tty->index;
1578        pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579                      tty->driver->subtype == PTY_TYPE_MASTER);
1580        devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581        o_tty = tty->link;
1582
1583#ifdef TTY_PARANOIA_CHECK
1584        if (idx < 0 || idx >= tty->driver->num) {
1585                printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586                                  "free (%s)\n", tty->name);
1587                tty_unlock();
1588                return 0;
1589        }
1590        if (!devpts) {
1591                if (tty != tty->driver->ttys[idx]) {
1592                        tty_unlock();
1593                        printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594                               "for (%s)\n", idx, tty->name);
1595                        return 0;
1596                }
1597                if (tty->termios != tty->driver->termios[idx]) {
1598                        tty_unlock();
1599                        printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600                               "for (%s)\n",
1601                               idx, tty->name);
1602                        return 0;
1603                }
1604        }
1605#endif
1606
1607#ifdef TTY_DEBUG_HANGUP
1608        printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609               tty_name(tty, buf), tty->count);
1610#endif
1611
1612#ifdef TTY_PARANOIA_CHECK
1613        if (tty->driver->other &&
1614             !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615                if (o_tty != tty->driver->other->ttys[idx]) {
1616                        tty_unlock();
1617                        printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618                                          "not o_tty for (%s)\n",
1619                               idx, tty->name);
1620                        return 0 ;
1621                }
1622                if (o_tty->termios != tty->driver->other->termios[idx]) {
1623                        tty_unlock();
1624                        printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625                                          "not o_termios for (%s)\n",
1626                               idx, tty->name);
1627                        return 0;
1628                }
1629                if (o_tty->link != tty) {
1630                        tty_unlock();
1631                        printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632                        return 0;
1633                }
1634        }
1635#endif
1636        if (tty->ops->close)
1637                tty->ops->close(tty, filp);
1638
1639        tty_unlock();
1640        /*
1641         * Sanity check: if tty->count is going to zero, there shouldn't be
1642         * any waiters on tty->read_wait or tty->write_wait.  We test the
1643         * wait queues and kick everyone out _before_ actually starting to
1644         * close.  This ensures that we won't block while releasing the tty
1645         * structure.
1646         *
1647         * The test for the o_tty closing is necessary, since the master and
1648         * slave sides may close in any order.  If the slave side closes out
1649         * first, its count will be one, since the master side holds an open.
1650         * Thus this test wouldn't be triggered at the time the slave closes,
1651         * so we do it now.
1652         *
1653         * Note that it's possible for the tty to be opened again while we're
1654         * flushing out waiters.  By recalculating the closing flags before
1655         * each iteration we avoid any problems.
1656         */
1657        while (1) {
1658                /* Guard against races with tty->count changes elsewhere and
1659                   opens on /dev/tty */
1660
1661                mutex_lock(&tty_mutex);
1662                tty_lock();
1663                tty_closing = tty->count <= 1;
1664                o_tty_closing = o_tty &&
1665                        (o_tty->count <= (pty_master ? 1 : 0));
1666                do_sleep = 0;
1667
1668                if (tty_closing) {
1669                        if (waitqueue_active(&tty->read_wait)) {
1670                                wake_up_poll(&tty->read_wait, POLLIN);
1671                                do_sleep++;
1672                        }
1673                        if (waitqueue_active(&tty->write_wait)) {
1674                                wake_up_poll(&tty->write_wait, POLLOUT);
1675                                do_sleep++;
1676                        }
1677                }
1678                if (o_tty_closing) {
1679                        if (waitqueue_active(&o_tty->read_wait)) {
1680                                wake_up_poll(&o_tty->read_wait, POLLIN);
1681                                do_sleep++;
1682                        }
1683                        if (waitqueue_active(&o_tty->write_wait)) {
1684                                wake_up_poll(&o_tty->write_wait, POLLOUT);
1685                                do_sleep++;
1686                        }
1687                }
1688                if (!do_sleep)
1689                        break;
1690
1691                printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692                                    "active!\n", tty_name(tty, buf));
1693                tty_unlock();
1694                mutex_unlock(&tty_mutex);
1695                schedule();
1696        }
1697
1698        /*
1699         * The closing flags are now consistent with the open counts on
1700         * both sides, and we've completed the last operation that could
1701         * block, so it's safe to proceed with closing.
1702         */
1703        if (pty_master) {
1704                if (--o_tty->count < 0) {
1705                        printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706                                            "(%d) for %s\n",
1707                               o_tty->count, tty_name(o_tty, buf));
1708                        o_tty->count = 0;
1709                }
1710        }
1711        if (--tty->count < 0) {
1712                printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713                       tty->count, tty_name(tty, buf));
1714                tty->count = 0;
1715        }
1716
1717        /*
1718         * We've decremented tty->count, so we need to remove this file
1719         * descriptor off the tty->tty_files list; this serves two
1720         * purposes:
1721         *  - check_tty_count sees the correct number of file descriptors
1722         *    associated with this tty.
1723         *  - do_tty_hangup no longer sees this file descriptor as
1724         *    something that needs to be handled for hangups.
1725         */
1726        tty_del_file(filp);
1727
1728        /*
1729         * Perform some housekeeping before deciding whether to return.
1730         *
1731         * Set the TTY_CLOSING flag if this was the last open.  In the
1732         * case of a pty we may have to wait around for the other side
1733         * to close, and TTY_CLOSING makes sure we can't be reopened.
1734         */
1735        if (tty_closing)
1736                set_bit(TTY_CLOSING, &tty->flags);
1737        if (o_tty_closing)
1738                set_bit(TTY_CLOSING, &o_tty->flags);
1739
1740        /*
1741         * If _either_ side is closing, make sure there aren't any
1742         * processes that still think tty or o_tty is their controlling
1743         * tty.
1744         */
1745        if (tty_closing || o_tty_closing) {
1746                read_lock(&tasklist_lock);
1747                session_clear_tty(tty->session);
1748                if (o_tty)
1749                        session_clear_tty(o_tty->session);
1750                read_unlock(&tasklist_lock);
1751        }
1752
1753        mutex_unlock(&tty_mutex);
1754
1755        /* check whether both sides are closing ... */
1756        if (!tty_closing || (o_tty && !o_tty_closing)) {
1757                tty_unlock();
1758                return 0;
1759        }
1760
1761#ifdef TTY_DEBUG_HANGUP
1762        printk(KERN_DEBUG "freeing tty structure...");
1763#endif
1764        /*
1765         * Ask the line discipline code to release its structures
1766         */
1767        tty_ldisc_release(tty, o_tty);
1768        /*
1769         * The release_tty function takes care of the details of clearing
1770         * the slots and preserving the termios structure.
1771         */
1772        release_tty(tty, idx);
1773
1774        /* Make this pty number available for reallocation */
1775        if (devpts)
1776                devpts_kill_index(inode, idx);
1777        tty_unlock();
1778        return 0;
1779}
1780
1781/**
1782 *      tty_open                -       open a tty device
1783 *      @inode: inode of device file
1784 *      @filp: file pointer to tty
1785 *
1786 *      tty_open and tty_release keep up the tty count that contains the
1787 *      number of opens done on a tty. We cannot use the inode-count, as
1788 *      different inodes might point to the same tty.
1789 *
1790 *      Open-counting is needed for pty masters, as well as for keeping
1791 *      track of serial lines: DTR is dropped when the last close happens.
1792 *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1793 *
1794 *      The termios state of a pty is reset on first open so that
1795 *      settings don't persist across reuse.
1796 *
1797 *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798 *               tty->count should protect the rest.
1799 *               ->siglock protects ->signal/->sighand
1800 */
1801
1802static int tty_open(struct inode *inode, struct file *filp)
1803{
1804        struct tty_struct *tty = NULL;
1805        int noctty, retval;
1806        struct tty_driver *driver;
1807        int index;
1808        dev_t device = inode->i_rdev;
1809        unsigned saved_flags = filp->f_flags;
1810
1811        nonseekable_open(inode, filp);
1812
1813retry_open:
1814        noctty = filp->f_flags & O_NOCTTY;
1815        index  = -1;
1816        retval = 0;
1817
1818        mutex_lock(&tty_mutex);
1819        tty_lock();
1820
1821        if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822                tty = get_current_tty();
1823                if (!tty) {
1824                        tty_unlock();
1825                        mutex_unlock(&tty_mutex);
1826                        return -ENXIO;
1827                }
1828                driver = tty_driver_kref_get(tty->driver);
1829                index = tty->index;
1830                filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831                /* noctty = 1; */
1832                /* FIXME: Should we take a driver reference ? */
1833                tty_kref_put(tty);
1834                goto got_driver;
1835        }
1836#ifdef CONFIG_VT
1837        if (device == MKDEV(TTY_MAJOR, 0)) {
1838                extern struct tty_driver *console_driver;
1839                driver = tty_driver_kref_get(console_driver);
1840                index = fg_console;
1841                noctty = 1;
1842                goto got_driver;
1843        }
1844#endif
1845        if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846                struct tty_driver *console_driver = console_device(&index);
1847                if (console_driver) {
1848                        driver = tty_driver_kref_get(console_driver);
1849                        if (driver) {
1850                                /* Don't let /dev/console block */
1851                                filp->f_flags |= O_NONBLOCK;
1852                                noctty = 1;
1853                                goto got_driver;
1854                        }
1855                }
1856                tty_unlock();
1857                mutex_unlock(&tty_mutex);
1858                return -ENODEV;
1859        }
1860
1861        driver = get_tty_driver(device, &index);
1862        if (!driver) {
1863                tty_unlock();
1864                mutex_unlock(&tty_mutex);
1865                return -ENODEV;
1866        }
1867got_driver:
1868        if (!tty) {
1869                /* check whether we're reopening an existing tty */
1870                tty = tty_driver_lookup_tty(driver, inode, index);
1871
1872                if (IS_ERR(tty)) {
1873                        tty_unlock();
1874                        mutex_unlock(&tty_mutex);
1875                        return PTR_ERR(tty);
1876                }
1877        }
1878
1879        if (tty) {
1880                retval = tty_reopen(tty);
1881                if (retval)
1882                        tty = ERR_PTR(retval);
1883        } else
1884                tty = tty_init_dev(driver, index, 0);
1885
1886        mutex_unlock(&tty_mutex);
1887        tty_driver_kref_put(driver);
1888        if (IS_ERR(tty)) {
1889                tty_unlock();
1890                return PTR_ERR(tty);
1891        }
1892
1893        retval = tty_add_file(tty, filp);
1894        if (retval) {
1895                tty_unlock();
1896                return retval;
1897        }
1898
1899        check_tty_count(tty, "tty_open");
1900        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1901            tty->driver->subtype == PTY_TYPE_MASTER)
1902                noctty = 1;
1903#ifdef TTY_DEBUG_HANGUP
1904        printk(KERN_DEBUG "opening %s...", tty->name);
1905#endif
1906        if (!retval) {
1907                if (tty->ops->open)
1908                        retval = tty->ops->open(tty, filp);
1909                else
1910                        retval = -ENODEV;
1911        }
1912        filp->f_flags = saved_flags;
1913
1914        if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1915                                                !capable(CAP_SYS_ADMIN))
1916                retval = -EBUSY;
1917
1918        if (retval) {
1919#ifdef TTY_DEBUG_HANGUP
1920                printk(KERN_DEBUG "error %d in opening %s...", retval,
1921                       tty->name);
1922#endif
1923                tty_unlock(); /* need to call tty_release without BTM */
1924                tty_release(inode, filp);
1925                if (retval != -ERESTARTSYS)
1926                        return retval;
1927
1928                if (signal_pending(current))
1929                        return retval;
1930
1931                schedule();
1932                /*
1933                 * Need to reset f_op in case a hangup happened.
1934                 */
1935                tty_lock();
1936                if (filp->f_op == &hung_up_tty_fops)
1937                        filp->f_op = &tty_fops;
1938                tty_unlock();
1939                goto retry_open;
1940        }
1941        tty_unlock();
1942
1943
1944        mutex_lock(&tty_mutex);
1945        tty_lock();
1946        spin_lock_irq(&current->sighand->siglock);
1947        if (!noctty &&
1948            current->signal->leader &&
1949            !current->signal->tty &&
1950            tty->session == NULL)
1951                __proc_set_tty(current, tty);
1952        spin_unlock_irq(&current->sighand->siglock);
1953        tty_unlock();
1954        mutex_unlock(&tty_mutex);
1955        return 0;
1956}
1957
1958
1959
1960/**
1961 *      tty_poll        -       check tty status
1962 *      @filp: file being polled
1963 *      @wait: poll wait structures to update
1964 *
1965 *      Call the line discipline polling method to obtain the poll
1966 *      status of the device.
1967 *
1968 *      Locking: locks called line discipline but ldisc poll method
1969 *      may be re-entered freely by other callers.
1970 */
1971
1972static unsigned int tty_poll(struct file *filp, poll_table *wait)
1973{
1974        struct tty_struct *tty = file_tty(filp);
1975        struct tty_ldisc *ld;
1976        int ret = 0;
1977
1978        if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1979                return 0;
1980
1981        ld = tty_ldisc_ref_wait(tty);
1982        if (ld->ops->poll)
1983                ret = (ld->ops->poll)(tty, filp, wait);
1984        tty_ldisc_deref(ld);
1985        return ret;
1986}
1987
1988static int __tty_fasync(int fd, struct file *filp, int on)
1989{
1990        struct tty_struct *tty = file_tty(filp);
1991        unsigned long flags;
1992        int retval = 0;
1993
1994        if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1995                goto out;
1996
1997        retval = fasync_helper(fd, filp, on, &tty->fasync);
1998        if (retval <= 0)
1999                goto out;
2000
2001        if (on) {
2002                enum pid_type type;
2003                struct pid *pid;
2004                if (!waitqueue_active(&tty->read_wait))
2005                        tty->minimum_to_wake = 1;
2006                spin_lock_irqsave(&tty->ctrl_lock, flags);
2007                if (tty->pgrp) {
2008                        pid = tty->pgrp;
2009                        type = PIDTYPE_PGID;
2010                } else {
2011                        pid = task_pid(current);
2012                        type = PIDTYPE_PID;
2013                }
2014                get_pid(pid);
2015                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2016                retval = __f_setown(filp, pid, type, 0);
2017                put_pid(pid);
2018                if (retval)
2019                        goto out;
2020        } else {
2021                if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2022                        tty->minimum_to_wake = N_TTY_BUF_SIZE;
2023        }
2024        retval = 0;
2025out:
2026        return retval;
2027}
2028
2029static int tty_fasync(int fd, struct file *filp, int on)
2030{
2031        int retval;
2032        tty_lock();
2033        retval = __tty_fasync(fd, filp, on);
2034        tty_unlock();
2035        return retval;
2036}
2037
2038/**
2039 *      tiocsti                 -       fake input character
2040 *      @tty: tty to fake input into
2041 *      @p: pointer to character
2042 *
2043 *      Fake input to a tty device. Does the necessary locking and
2044 *      input management.
2045 *
2046 *      FIXME: does not honour flow control ??
2047 *
2048 *      Locking:
2049 *              Called functions take tty_ldisc_lock
2050 *              current->signal->tty check is safe without locks
2051 *
2052 *      FIXME: may race normal receive processing
2053 */
2054
2055static int tiocsti(struct tty_struct *tty, char __user *p)
2056{
2057        char ch, mbz = 0;
2058        struct tty_ldisc *ld;
2059
2060        if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2061                return -EPERM;
2062        if (get_user(ch, p))
2063                return -EFAULT;
2064        tty_audit_tiocsti(tty, ch);
2065        ld = tty_ldisc_ref_wait(tty);
2066        ld->ops->receive_buf(tty, &ch, &mbz, 1);
2067        tty_ldisc_deref(ld);
2068        return 0;
2069}
2070
2071/**
2072 *      tiocgwinsz              -       implement window query ioctl
2073 *      @tty; tty
2074 *      @arg: user buffer for result
2075 *
2076 *      Copies the kernel idea of the window size into the user buffer.
2077 *
2078 *      Locking: tty->termios_mutex is taken to ensure the winsize data
2079 *              is consistent.
2080 */
2081
2082static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2083{
2084        int err;
2085
2086        mutex_lock(&tty->termios_mutex);
2087        err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2088        mutex_unlock(&tty->termios_mutex);
2089
2090        return err ? -EFAULT: 0;
2091}
2092
2093/**
2094 *      tty_do_resize           -       resize event
2095 *      @tty: tty being resized
2096 *      @rows: rows (character)
2097 *      @cols: cols (character)
2098 *
2099 *      Update the termios variables and send the necessary signals to
2100 *      peform a terminal resize correctly
2101 */
2102
2103int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2104{
2105        struct pid *pgrp;
2106        unsigned long flags;
2107
2108        /* Lock the tty */
2109        mutex_lock(&tty->termios_mutex);
2110        if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2111                goto done;
2112        /* Get the PID values and reference them so we can
2113           avoid holding the tty ctrl lock while sending signals */
2114        spin_lock_irqsave(&tty->ctrl_lock, flags);
2115        pgrp = get_pid(tty->pgrp);
2116        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2117
2118        if (pgrp)
2119                kill_pgrp(pgrp, SIGWINCH, 1);
2120        put_pid(pgrp);
2121
2122        tty->winsize = *ws;
2123done:
2124        mutex_unlock(&tty->termios_mutex);
2125        return 0;
2126}
2127
2128/**
2129 *      tiocswinsz              -       implement window size set ioctl
2130 *      @tty; tty side of tty
2131 *      @arg: user buffer for result
2132 *
2133 *      Copies the user idea of the window size to the kernel. Traditionally
2134 *      this is just advisory information but for the Linux console it
2135 *      actually has driver level meaning and triggers a VC resize.
2136 *
2137 *      Locking:
2138 *              Driver dependant. The default do_resize method takes the
2139 *      tty termios mutex and ctrl_lock. The console takes its own lock
2140 *      then calls into the default method.
2141 */
2142
2143static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2144{
2145        struct winsize tmp_ws;
2146        if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2147                return -EFAULT;
2148
2149        if (tty->ops->resize)
2150                return tty->ops->resize(tty, &tmp_ws);
2151        else
2152                return tty_do_resize(tty, &tmp_ws);
2153}
2154
2155/**
2156 *      tioccons        -       allow admin to move logical console
2157 *      @file: the file to become console
2158 *
2159 *      Allow the adminstrator to move the redirected console device
2160 *
2161 *      Locking: uses redirect_lock to guard the redirect information
2162 */
2163
2164static int tioccons(struct file *file)
2165{
2166        if (!capable(CAP_SYS_ADMIN))
2167                return -EPERM;
2168        if (file->f_op->write == redirected_tty_write) {
2169                struct file *f;
2170                spin_lock(&redirect_lock);
2171                f = redirect;
2172                redirect = NULL;
2173                spin_unlock(&redirect_lock);
2174                if (f)
2175                        fput(f);
2176                return 0;
2177        }
2178        spin_lock(&redirect_lock);
2179        if (redirect) {
2180                spin_unlock(&redirect_lock);
2181                return -EBUSY;
2182        }
2183        get_file(file);
2184        redirect = file;
2185        spin_unlock(&redirect_lock);
2186        return 0;
2187}
2188
2189/**
2190 *      fionbio         -       non blocking ioctl
2191 *      @file: file to set blocking value
2192 *      @p: user parameter
2193 *
2194 *      Historical tty interfaces had a blocking control ioctl before
2195 *      the generic functionality existed. This piece of history is preserved
2196 *      in the expected tty API of posix OS's.
2197 *
2198 *      Locking: none, the open file handle ensures it won't go away.
2199 */
2200
2201static int fionbio(struct file *file, int __user *p)
2202{
2203        int nonblock;
2204
2205        if (get_user(nonblock, p))
2206                return -EFAULT;
2207
2208        spin_lock(&file->f_lock);
2209        if (nonblock)
2210                file->f_flags |= O_NONBLOCK;
2211        else
2212                file->f_flags &= ~O_NONBLOCK;
2213        spin_unlock(&file->f_lock);
2214        return 0;
2215}
2216
2217/**
2218 *      tiocsctty       -       set controlling tty
2219 *      @tty: tty structure
2220 *      @arg: user argument
2221 *
2222 *      This ioctl is used to manage job control. It permits a session
2223 *      leader to set this tty as the controlling tty for the session.
2224 *
2225 *      Locking:
2226 *              Takes tty_mutex() to protect tty instance
2227 *              Takes tasklist_lock internally to walk sessions
2228 *              Takes ->siglock() when updating signal->tty
2229 */
2230
2231static int tiocsctty(struct tty_struct *tty, int arg)
2232{
2233        int ret = 0;
2234        if (current->signal->leader && (task_session(current) == tty->session))
2235                return ret;
2236
2237        mutex_lock(&tty_mutex);
2238        /*
2239         * The process must be a session leader and
2240         * not have a controlling tty already.
2241         */
2242        if (!current->signal->leader || current->signal->tty) {
2243                ret = -EPERM;
2244                goto unlock;
2245        }
2246
2247        if (tty->session) {
2248                /*
2249                 * This tty is already the controlling
2250                 * tty for another session group!
2251                 */
2252                if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2253                        /*
2254                         * Steal it away
2255                         */
2256                        read_lock(&tasklist_lock);
2257                        session_clear_tty(tty->session);
2258                        read_unlock(&tasklist_lock);
2259                } else {
2260                        ret = -EPERM;
2261                        goto unlock;
2262                }
2263        }
2264        proc_set_tty(current, tty);
2265unlock:
2266        mutex_unlock(&tty_mutex);
2267        return ret;
2268}
2269
2270/**
2271 *      tty_get_pgrp    -       return a ref counted pgrp pid
2272 *      @tty: tty to read
2273 *
2274 *      Returns a refcounted instance of the pid struct for the process
2275 *      group controlling the tty.
2276 */
2277
2278struct pid *tty_get_pgrp(struct tty_struct *tty)
2279{
2280        unsigned long flags;
2281        struct pid *pgrp;
2282
2283        spin_lock_irqsave(&tty->ctrl_lock, flags);
2284        pgrp = get_pid(tty->pgrp);
2285        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2286
2287        return pgrp;
2288}
2289EXPORT_SYMBOL_GPL(tty_get_pgrp);
2290
2291/**
2292 *      tiocgpgrp               -       get process group
2293 *      @tty: tty passed by user
2294 *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2295 *      @p: returned pid
2296 *
2297 *      Obtain the process group of the tty. If there is no process group
2298 *      return an error.
2299 *
2300 *      Locking: none. Reference to current->signal->tty is safe.
2301 */
2302
2303static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2304{
2305        struct pid *pid;
2306        int ret;
2307        /*
2308         * (tty == real_tty) is a cheap way of
2309         * testing if the tty is NOT a master pty.
2310         */
2311        if (tty == real_tty && current->signal->tty != real_tty)
2312                return -ENOTTY;
2313        pid = tty_get_pgrp(real_tty);
2314        ret =  put_user(pid_vnr(pid), p);
2315        put_pid(pid);
2316        return ret;
2317}
2318
2319/**
2320 *      tiocspgrp               -       attempt to set process group
2321 *      @tty: tty passed by user
2322 *      @real_tty: tty side device matching tty passed by user
2323 *      @p: pid pointer
2324 *
2325 *      Set the process group of the tty to the session passed. Only
2326 *      permitted where the tty session is our session.
2327 *
2328 *      Locking: RCU, ctrl lock
2329 */
2330
2331static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2332{
2333        struct pid *pgrp;
2334        pid_t pgrp_nr;
2335        int retval = tty_check_change(real_tty);
2336        unsigned long flags;
2337
2338        if (retval == -EIO)
2339                return -ENOTTY;
2340        if (retval)
2341                return retval;
2342        if (!current->signal->tty ||
2343            (current->signal->tty != real_tty) ||
2344            (real_tty->session != task_session(current)))
2345                return -ENOTTY;
2346        if (get_user(pgrp_nr, p))
2347                return -EFAULT;
2348        if (pgrp_nr < 0)
2349                return -EINVAL;
2350        rcu_read_lock();
2351        pgrp = find_vpid(pgrp_nr);
2352        retval = -ESRCH;
2353        if (!pgrp)
2354                goto out_unlock;
2355        retval = -EPERM;
2356        if (session_of_pgrp(pgrp) != task_session(current))
2357                goto out_unlock;
2358        retval = 0;
2359        spin_lock_irqsave(&tty->ctrl_lock, flags);
2360        put_pid(real_tty->pgrp);
2361        real_tty->pgrp = get_pid(pgrp);
2362        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2363out_unlock:
2364        rcu_read_unlock();
2365        return retval;
2366}
2367
2368/**
2369 *      tiocgsid                -       get session id
2370 *      @tty: tty passed by user
2371 *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2372 *      @p: pointer to returned session id
2373 *
2374 *      Obtain the session id of the tty. If there is no session
2375 *      return an error.
2376 *
2377 *      Locking: none. Reference to current->signal->tty is safe.
2378 */
2379
2380static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2381{
2382        /*
2383         * (tty == real_tty) is a cheap way of
2384         * testing if the tty is NOT a master pty.
2385        */
2386        if (tty == real_tty && current->signal->tty != real_tty)
2387                return -ENOTTY;
2388        if (!real_tty->session)
2389                return -ENOTTY;
2390        return put_user(pid_vnr(real_tty->session), p);
2391}
2392
2393/**
2394 *      tiocsetd        -       set line discipline
2395 *      @tty: tty device
2396 *      @p: pointer to user data
2397 *
2398 *      Set the line discipline according to user request.
2399 *
2400 *      Locking: see tty_set_ldisc, this function is just a helper
2401 */
2402
2403static int tiocsetd(struct tty_struct *tty, int __user *p)
2404{
2405        int ldisc;
2406        int ret;
2407
2408        if (get_user(ldisc, p))
2409                return -EFAULT;
2410
2411        ret = tty_set_ldisc(tty, ldisc);
2412
2413        return ret;
2414}
2415
2416/**
2417 *      send_break      -       performed time break
2418 *      @tty: device to break on
2419 *      @duration: timeout in mS
2420 *
2421 *      Perform a timed break on hardware that lacks its own driver level
2422 *      timed break functionality.
2423 *
2424 *      Locking:
2425 *              atomic_write_lock serializes
2426 *
2427 */
2428
2429static int send_break(struct tty_struct *tty, unsigned int duration)
2430{
2431        int retval;
2432
2433        if (tty->ops->break_ctl == NULL)
2434                return 0;
2435
2436        if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2437                retval = tty->ops->break_ctl(tty, duration);
2438        else {
2439                /* Do the work ourselves */
2440                if (tty_write_lock(tty, 0) < 0)
2441                        return -EINTR;
2442                retval = tty->ops->break_ctl(tty, -1);
2443                if (retval)
2444                        goto out;
2445                if (!signal_pending(current))
2446                        msleep_interruptible(duration);
2447                retval = tty->ops->break_ctl(tty, 0);
2448out:
2449                tty_write_unlock(tty);
2450                if (signal_pending(current))
2451                        retval = -EINTR;
2452        }
2453        return retval;
2454}
2455
2456/**
2457 *      tty_tiocmget            -       get modem status
2458 *      @tty: tty device
2459 *      @file: user file pointer
2460 *      @p: pointer to result
2461 *
2462 *      Obtain the modem status bits from the tty driver if the feature
2463 *      is supported. Return -EINVAL if it is not available.
2464 *
2465 *      Locking: none (up to the driver)
2466 */
2467
2468static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2469{
2470        int retval = -EINVAL;
2471
2472        if (tty->ops->tiocmget) {
2473                retval = tty->ops->tiocmget(tty, file);
2474
2475                if (retval >= 0)
2476                        retval = put_user(retval, p);
2477        }
2478        return retval;
2479}
2480
2481/**
2482 *      tty_tiocmset            -       set modem status
2483 *      @tty: tty device
2484 *      @file: user file pointer
2485 *      @cmd: command - clear bits, set bits or set all
2486 *      @p: pointer to desired bits
2487 *
2488 *      Set the modem status bits from the tty driver if the feature
2489 *      is supported. Return -EINVAL if it is not available.
2490 *
2491 *      Locking: none (up to the driver)
2492 */
2493
2494static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2495             unsigned __user *p)
2496{
2497        int retval;
2498        unsigned int set, clear, val;
2499
2500        if (tty->ops->tiocmset == NULL)
2501                return -EINVAL;
2502
2503        retval = get_user(val, p);
2504        if (retval)
2505                return retval;
2506        set = clear = 0;
2507        switch (cmd) {
2508        case TIOCMBIS:
2509                set = val;
2510                break;
2511        case TIOCMBIC:
2512                clear = val;
2513                break;
2514        case TIOCMSET:
2515                set = val;
2516                clear = ~val;
2517                break;
2518        }
2519        set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2520        clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2521        return tty->ops->tiocmset(tty, file, set, clear);
2522}
2523
2524static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2525{
2526        int retval = -EINVAL;
2527        struct serial_icounter_struct icount;
2528        memset(&icount, 0, sizeof(icount));
2529        if (tty->ops->get_icount)
2530                retval = tty->ops->get_icount(tty, &icount);
2531        if (retval != 0)
2532                return retval;
2533        if (copy_to_user(arg, &icount, sizeof(icount)))
2534                return -EFAULT;
2535        return 0;
2536}
2537
2538struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2539{
2540        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2541            tty->driver->subtype == PTY_TYPE_MASTER)
2542                tty = tty->link;
2543        return tty;
2544}
2545EXPORT_SYMBOL(tty_pair_get_tty);
2546
2547struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2548{
2549        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2550            tty->driver->subtype == PTY_TYPE_MASTER)
2551            return tty;
2552        return tty->link;
2553}
2554EXPORT_SYMBOL(tty_pair_get_pty);
2555
2556/*
2557 * Split this up, as gcc can choke on it otherwise..
2558 */
2559long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2560{
2561        struct tty_struct *tty = file_tty(file);
2562        struct tty_struct *real_tty;
2563        void __user *p = (void __user *)arg;
2564        int retval;
2565        struct tty_ldisc *ld;
2566        struct inode *inode = file->f_dentry->d_inode;
2567
2568        if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2569                return -EINVAL;
2570
2571        real_tty = tty_pair_get_tty(tty);
2572
2573        /*
2574         * Factor out some common prep work
2575         */
2576        switch (cmd) {
2577        case TIOCSETD:
2578        case TIOCSBRK:
2579        case TIOCCBRK:
2580        case TCSBRK:
2581        case TCSBRKP:
2582                retval = tty_check_change(tty);
2583                if (retval)
2584                        return retval;
2585                if (cmd != TIOCCBRK) {
2586                        tty_wait_until_sent(tty, 0);
2587                        if (signal_pending(current))
2588                                return -EINTR;
2589                }
2590                break;
2591        }
2592
2593        /*
2594         *      Now do the stuff.
2595         */
2596        switch (cmd) {
2597        case TIOCSTI:
2598                return tiocsti(tty, p);
2599        case TIOCGWINSZ:
2600                return tiocgwinsz(real_tty, p);
2601        case TIOCSWINSZ:
2602                return tiocswinsz(real_tty, p);
2603        case TIOCCONS:
2604                return real_tty != tty ? -EINVAL : tioccons(file);
2605        case FIONBIO:
2606                return fionbio(file, p);
2607        case TIOCEXCL:
2608                set_bit(TTY_EXCLUSIVE, &tty->flags);
2609                return 0;
2610        case TIOCNXCL:
2611                clear_bit(TTY_EXCLUSIVE, &tty->flags);
2612                return 0;
2613        case TIOCNOTTY:
2614                if (current->signal->tty != tty)
2615                        return -ENOTTY;
2616                no_tty();
2617                return 0;
2618        case TIOCSCTTY:
2619                return tiocsctty(tty, arg);
2620        case TIOCGPGRP:
2621                return tiocgpgrp(tty, real_tty, p);
2622        case TIOCSPGRP:
2623                return tiocspgrp(tty, real_tty, p);
2624        case TIOCGSID:
2625                return tiocgsid(tty, real_tty, p);
2626        case TIOCGETD:
2627                return put_user(tty->ldisc->ops->num, (int __user *)p);
2628        case TIOCSETD:
2629                return tiocsetd(tty, p);
2630        case TIOCGDEV:
2631        {
2632                unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2633                return put_user(ret, (unsigned int __user *)p);
2634        }
2635        /*
2636         * Break handling
2637         */
2638        case TIOCSBRK:  /* Turn break on, unconditionally */
2639                if (tty->ops->break_ctl)
2640                        return tty->ops->break_ctl(tty, -1);
2641                return 0;
2642        case TIOCCBRK:  /* Turn break off, unconditionally */
2643                if (tty->ops->break_ctl)
2644                        return tty->ops->break_ctl(tty, 0);
2645                return 0;
2646        case TCSBRK:   /* SVID version: non-zero arg --> no break */
2647                /* non-zero arg means wait for all output data
2648                 * to be sent (performed above) but don't send break.
2649                 * This is used by the tcdrain() termios function.
2650                 */
2651                if (!arg)
2652                        return send_break(tty, 250);
2653                return 0;
2654        case TCSBRKP:   /* support for POSIX tcsendbreak() */
2655                return send_break(tty, arg ? arg*100 : 250);
2656
2657        case TIOCMGET:
2658                return tty_tiocmget(tty, file, p);
2659        case TIOCMSET:
2660        case TIOCMBIC:
2661        case TIOCMBIS:
2662                return tty_tiocmset(tty, file, cmd, p);
2663        case TIOCGICOUNT:
2664                retval = tty_tiocgicount(tty, p);
2665                /* For the moment allow fall through to the old method */
2666                if (retval != -EINVAL)
2667                        return retval;
2668                break;
2669        case TCFLSH:
2670                switch (arg) {
2671                case TCIFLUSH:
2672                case TCIOFLUSH:
2673                /* flush tty buffer and allow ldisc to process ioctl */
2674                        tty_buffer_flush(tty);
2675                        break;
2676                }
2677                break;
2678        }
2679        if (tty->ops->ioctl) {
2680                retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2681                if (retval != -ENOIOCTLCMD)
2682                        return retval;
2683        }
2684        ld = tty_ldisc_ref_wait(tty);
2685        retval = -EINVAL;
2686        if (ld->ops->ioctl) {
2687                retval = ld->ops->ioctl(tty, file, cmd, arg);
2688                if (retval == -ENOIOCTLCMD)
2689                        retval = -EINVAL;
2690        }
2691        tty_ldisc_deref(ld);
2692        return retval;
2693}
2694
2695#ifdef CONFIG_COMPAT
2696static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2697                                unsigned long arg)
2698{
2699        struct inode *inode = file->f_dentry->d_inode;
2700        struct tty_struct *tty = file_tty(file);
2701        struct tty_ldisc *ld;
2702        int retval = -ENOIOCTLCMD;
2703
2704        if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2705                return -EINVAL;
2706
2707        if (tty->ops->compat_ioctl) {
2708                retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2709                if (retval != -ENOIOCTLCMD)
2710                        return retval;
2711        }
2712
2713        ld = tty_ldisc_ref_wait(tty);
2714        if (ld->ops->compat_ioctl)
2715                retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2716        tty_ldisc_deref(ld);
2717
2718        return retval;
2719}
2720#endif
2721
2722/*
2723 * This implements the "Secure Attention Key" ---  the idea is to
2724 * prevent trojan horses by killing all processes associated with this
2725 * tty when the user hits the "Secure Attention Key".  Required for
2726 * super-paranoid applications --- see the Orange Book for more details.
2727 *
2728 * This code could be nicer; ideally it should send a HUP, wait a few
2729 * seconds, then send a INT, and then a KILL signal.  But you then
2730 * have to coordinate with the init process, since all processes associated
2731 * with the current tty must be dead before the new getty is allowed
2732 * to spawn.
2733 *
2734 * Now, if it would be correct ;-/ The current code has a nasty hole -
2735 * it doesn't catch files in flight. We may send the descriptor to ourselves
2736 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2737 *
2738 * Nasty bug: do_SAK is being called in interrupt context.  This can
2739 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2740 */
2741void __do_SAK(struct tty_struct *tty)
2742{
2743#ifdef TTY_SOFT_SAK
2744        tty_hangup(tty);
2745#else
2746        struct task_struct *g, *p;
2747        struct pid *session;
2748        int             i;
2749        struct file     *filp;
2750        struct fdtable *fdt;
2751
2752        if (!tty)
2753                return;
2754        session = tty->session;
2755
2756        tty_ldisc_flush(tty);
2757
2758        tty_driver_flush_buffer(tty);
2759
2760        read_lock(&tasklist_lock);
2761        /* Kill the entire session */
2762        do_each_pid_task(session, PIDTYPE_SID, p) {
2763                printk(KERN_NOTICE "SAK: killed process %d"
2764                        " (%s): task_session(p)==tty->session\n",
2765                        task_pid_nr(p), p->comm);
2766                send_sig(SIGKILL, p, 1);
2767        } while_each_pid_task(session, PIDTYPE_SID, p);
2768        /* Now kill any processes that happen to have the
2769         * tty open.
2770         */
2771        do_each_thread(g, p) {
2772                if (p->signal->tty == tty) {
2773                        printk(KERN_NOTICE "SAK: killed process %d"
2774                            " (%s): task_session(p)==tty->session\n",
2775                            task_pid_nr(p), p->comm);
2776                        send_sig(SIGKILL, p, 1);
2777                        continue;
2778                }
2779                task_lock(p);
2780                if (p->files) {
2781                        /*
2782                         * We don't take a ref to the file, so we must
2783                         * hold ->file_lock instead.
2784                         */
2785                        spin_lock(&p->files->file_lock);
2786                        fdt = files_fdtable(p->files);
2787                        for (i = 0; i < fdt->max_fds; i++) {
2788                                filp = fcheck_files(p->files, i);
2789                                if (!filp)
2790                                        continue;
2791                                if (filp->f_op->read == tty_read &&
2792                                    file_tty(filp) == tty) {
2793                                        printk(KERN_NOTICE "SAK: killed process %d"
2794                                            " (%s): fd#%d opened to the tty\n",
2795                                            task_pid_nr(p), p->comm, i);
2796                                        force_sig(SIGKILL, p);
2797                                        break;
2798                                }
2799                        }
2800                        spin_unlock(&p->files->file_lock);
2801                }
2802                task_unlock(p);
2803        } while_each_thread(g, p);
2804        read_unlock(&tasklist_lock);
2805#endif
2806}
2807
2808static void do_SAK_work(struct work_struct *work)
2809{
2810        struct tty_struct *tty =
2811                container_of(work, struct tty_struct, SAK_work);
2812        __do_SAK(tty);
2813}
2814
2815/*
2816 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2817 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2818 * the values which we write to it will be identical to the values which it
2819 * already has. --akpm
2820 */
2821void do_SAK(struct tty_struct *tty)
2822{
2823        if (!tty)
2824                return;
2825        schedule_work(&tty->SAK_work);
2826}
2827
2828EXPORT_SYMBOL(do_SAK);
2829
2830static int dev_match_devt(struct device *dev, void *data)
2831{
2832        dev_t *devt = data;
2833        return dev->devt == *devt;
2834}
2835
2836/* Must put_device() after it's unused! */
2837static struct device *tty_get_device(struct tty_struct *tty)
2838{
2839        dev_t devt = tty_devnum(tty);
2840        return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2841}
2842
2843
2844/**
2845 *      initialize_tty_struct
2846 *      @tty: tty to initialize
2847 *
2848 *      This subroutine initializes a tty structure that has been newly
2849 *      allocated.
2850 *
2851 *      Locking: none - tty in question must not be exposed at this point
2852 */
2853
2854void initialize_tty_struct(struct tty_struct *tty,
2855                struct tty_driver *driver, int idx)
2856{
2857        memset(tty, 0, sizeof(struct tty_struct));
2858        kref_init(&tty->kref);
2859        tty->magic = TTY_MAGIC;
2860        tty_ldisc_init(tty);
2861        tty->session = NULL;
2862        tty->pgrp = NULL;
2863        tty->overrun_time = jiffies;
2864        tty->buf.head = tty->buf.tail = NULL;
2865        tty_buffer_init(tty);
2866        mutex_init(&tty->termios_mutex);
2867        mutex_init(&tty->ldisc_mutex);
2868        init_waitqueue_head(&tty->write_wait);
2869        init_waitqueue_head(&tty->read_wait);
2870        INIT_WORK(&tty->hangup_work, do_tty_hangup);
2871        mutex_init(&tty->atomic_read_lock);
2872        mutex_init(&tty->atomic_write_lock);
2873        mutex_init(&tty->output_lock);
2874        mutex_init(&tty->echo_lock);
2875        spin_lock_init(&tty->read_lock);
2876        spin_lock_init(&tty->ctrl_lock);
2877        INIT_LIST_HEAD(&tty->tty_files);
2878        INIT_WORK(&tty->SAK_work, do_SAK_work);
2879
2880        tty->driver = driver;
2881        tty->ops = driver->ops;
2882        tty->index = idx;
2883        tty_line_name(driver, idx, tty->name);
2884        tty->dev = tty_get_device(tty);
2885}
2886
2887/**
2888 *      tty_put_char    -       write one character to a tty
2889 *      @tty: tty
2890 *      @ch: character
2891 *
2892 *      Write one byte to the tty using the provided put_char method
2893 *      if present. Returns the number of characters successfully output.
2894 *
2895 *      Note: the specific put_char operation in the driver layer may go
2896 *      away soon. Don't call it directly, use this method
2897 */
2898
2899int tty_put_char(struct tty_struct *tty, unsigned char ch)
2900{
2901        if (tty->ops->put_char)
2902                return tty->ops->put_char(tty, ch);
2903        return tty->ops->write(tty, &ch, 1);
2904}
2905EXPORT_SYMBOL_GPL(tty_put_char);
2906
2907struct class *tty_class;
2908
2909/**
2910 *      tty_register_device - register a tty device
2911 *      @driver: the tty driver that describes the tty device
2912 *      @index: the index in the tty driver for this tty device
2913 *      @device: a struct device that is associated with this tty device.
2914 *              This field is optional, if there is no known struct device
2915 *              for this tty device it can be set to NULL safely.
2916 *
2917 *      Returns a pointer to the struct device for this tty device
2918 *      (or ERR_PTR(-EFOO) on error).
2919 *
2920 *      This call is required to be made to register an individual tty device
2921 *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2922 *      that bit is not set, this function should not be called by a tty
2923 *      driver.
2924 *
2925 *      Locking: ??
2926 */
2927
2928struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2929                                   struct device *device)
2930{
2931        char name[64];
2932        dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2933
2934        if (index >= driver->num) {
2935                printk(KERN_ERR "Attempt to register invalid tty line number "
2936                       " (%d).\n", index);
2937                return ERR_PTR(-EINVAL);
2938        }
2939
2940        if (driver->type == TTY_DRIVER_TYPE_PTY)
2941                pty_line_name(driver, index, name);
2942        else
2943                tty_line_name(driver, index, name);
2944
2945        return device_create(tty_class, device, dev, NULL, name);
2946}
2947EXPORT_SYMBOL(tty_register_device);
2948
2949/**
2950 *      tty_unregister_device - unregister a tty device
2951 *      @driver: the tty driver that describes the tty device
2952 *      @index: the index in the tty driver for this tty device
2953 *
2954 *      If a tty device is registered with a call to tty_register_device() then
2955 *      this function must be called when the tty device is gone.
2956 *
2957 *      Locking: ??
2958 */
2959
2960void tty_unregister_device(struct tty_driver *driver, unsigned index)
2961{
2962        device_destroy(tty_class,
2963                MKDEV(driver->major, driver->minor_start) + index);
2964}
2965EXPORT_SYMBOL(tty_unregister_device);
2966
2967struct tty_driver *alloc_tty_driver(int lines)
2968{
2969        struct tty_driver *driver;
2970
2971        driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2972        if (driver) {
2973                kref_init(&driver->kref);
2974                driver->magic = TTY_DRIVER_MAGIC;
2975                driver->num = lines;
2976                /* later we'll move allocation of tables here */
2977        }
2978        return driver;
2979}
2980EXPORT_SYMBOL(alloc_tty_driver);
2981
2982static void destruct_tty_driver(struct kref *kref)
2983{
2984        struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2985        int i;
2986        struct ktermios *tp;
2987        void *p;
2988
2989        if (driver->flags & TTY_DRIVER_INSTALLED) {
2990                /*
2991                 * Free the termios and termios_locked structures because
2992                 * we don't want to get memory leaks when modular tty
2993                 * drivers are removed from the kernel.
2994                 */
2995                for (i = 0; i < driver->num; i++) {
2996                        tp = driver->termios[i];
2997                        if (tp) {
2998                                driver->termios[i] = NULL;
2999                                kfree(tp);
3000                        }
3001                        if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3002                                tty_unregister_device(driver, i);
3003                }
3004                p = driver->ttys;
3005                proc_tty_unregister_driver(driver);
3006                driver->ttys = NULL;
3007                driver->termios = NULL;
3008                kfree(p);
3009                cdev_del(&driver->cdev);
3010        }
3011        kfree(driver);
3012}
3013
3014void tty_driver_kref_put(struct tty_driver *driver)
3015{
3016        kref_put(&driver->kref, destruct_tty_driver);
3017}
3018EXPORT_SYMBOL(tty_driver_kref_put);
3019
3020void tty_set_operations(struct tty_driver *driver,
3021                        const struct tty_operations *op)
3022{
3023        driver->ops = op;
3024};
3025EXPORT_SYMBOL(tty_set_operations);
3026
3027void put_tty_driver(struct tty_driver *d)
3028{
3029        tty_driver_kref_put(d);
3030}
3031EXPORT_SYMBOL(put_tty_driver);
3032
3033/*
3034 * Called by a tty driver to register itself.
3035 */
3036int tty_register_driver(struct tty_driver *driver)
3037{
3038        int error;
3039        int i;
3040        dev_t dev;
3041        void **p = NULL;
3042        struct device *d;
3043
3044        if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3045                p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3046                if (!p)
3047                        return -ENOMEM;
3048        }
3049
3050        if (!driver->major) {
3051                error = alloc_chrdev_region(&dev, driver->minor_start,
3052                                                driver->num, driver->name);
3053                if (!error) {
3054                        driver->major = MAJOR(dev);
3055                        driver->minor_start = MINOR(dev);
3056                }
3057        } else {
3058                dev = MKDEV(driver->major, driver->minor_start);
3059                error = register_chrdev_region(dev, driver->num, driver->name);
3060        }
3061        if (error < 0) {
3062                kfree(p);
3063                return error;
3064        }
3065
3066        if (p) {
3067                driver->ttys = (struct tty_struct **)p;
3068                driver->termios = (struct ktermios **)(p + driver->num);
3069        } else {
3070                driver->ttys = NULL;
3071                driver->termios = NULL;
3072        }
3073
3074        cdev_init(&driver->cdev, &tty_fops);
3075        driver->cdev.owner = driver->owner;
3076        error = cdev_add(&driver->cdev, dev, driver->num);
3077        if (error) {
3078                unregister_chrdev_region(dev, driver->num);
3079                driver->ttys = NULL;
3080                driver->termios = NULL;
3081                kfree(p);
3082                return error;
3083        }
3084
3085        mutex_lock(&tty_mutex);
3086        list_add(&driver->tty_drivers, &tty_drivers);
3087        mutex_unlock(&tty_mutex);
3088
3089        if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3090                for (i = 0; i < driver->num; i++) {
3091                        d = tty_register_device(driver, i, NULL);
3092                        if (IS_ERR(d)) {
3093                                error = PTR_ERR(d);
3094                                goto err;
3095                        }
3096                }
3097        }
3098        proc_tty_register_driver(driver);
3099        driver->flags |= TTY_DRIVER_INSTALLED;
3100        return 0;
3101
3102err:
3103        for (i--; i >= 0; i--)
3104                tty_unregister_device(driver, i);
3105
3106        mutex_lock(&tty_mutex);
3107        list_del(&driver->tty_drivers);
3108        mutex_unlock(&tty_mutex);
3109
3110        unregister_chrdev_region(dev, driver->num);
3111        driver->ttys = NULL;
3112        driver->termios = NULL;
3113        kfree(p);
3114        return error;
3115}
3116
3117EXPORT_SYMBOL(tty_register_driver);
3118
3119/*
3120 * Called by a tty driver to unregister itself.
3121 */
3122int tty_unregister_driver(struct tty_driver *driver)
3123{
3124#if 0
3125        /* FIXME */
3126        if (driver->refcount)
3127                return -EBUSY;
3128#endif
3129        unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3130                                driver->num);
3131        mutex_lock(&tty_mutex);
3132        list_del(&driver->tty_drivers);
3133        mutex_unlock(&tty_mutex);
3134        return 0;
3135}
3136
3137EXPORT_SYMBOL(tty_unregister_driver);
3138
3139dev_t tty_devnum(struct tty_struct *tty)
3140{
3141        return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3142}
3143EXPORT_SYMBOL(tty_devnum);
3144
3145void proc_clear_tty(struct task_struct *p)
3146{
3147        unsigned long flags;
3148        struct tty_struct *tty;
3149        spin_lock_irqsave(&p->sighand->siglock, flags);
3150        tty = p->signal->tty;
3151        p->signal->tty = NULL;
3152        spin_unlock_irqrestore(&p->sighand->siglock, flags);
3153        tty_kref_put(tty);
3154}
3155
3156/* Called under the sighand lock */
3157
3158static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3159{
3160        if (tty) {
3161                unsigned long flags;
3162                /* We should not have a session or pgrp to put here but.... */
3163                spin_lock_irqsave(&tty->ctrl_lock, flags);
3164                put_pid(tty->session);
3165                put_pid(tty->pgrp);
3166                tty->pgrp = get_pid(task_pgrp(tsk));
3167                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3168                tty->session = get_pid(task_session(tsk));
3169                if (tsk->signal->tty) {
3170                        printk(KERN_DEBUG "tty not NULL!!\n");
3171                        tty_kref_put(tsk->signal->tty);
3172                }
3173        }
3174        put_pid(tsk->signal->tty_old_pgrp);
3175        tsk->signal->tty = tty_kref_get(tty);
3176        tsk->signal->tty_old_pgrp = NULL;
3177}
3178
3179static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3180{
3181        spin_lock_irq(&tsk->sighand->siglock);
3182        __proc_set_tty(tsk, tty);
3183        spin_unlock_irq(&tsk->sighand->siglock);
3184}
3185
3186struct tty_struct *get_current_tty(void)
3187{
3188        struct tty_struct *tty;
3189        unsigned long flags;
3190
3191        spin_lock_irqsave(&current->sighand->siglock, flags);
3192        tty = tty_kref_get(current->signal->tty);
3193        spin_unlock_irqrestore(&current->sighand->siglock, flags);
3194        return tty;
3195}
3196EXPORT_SYMBOL_GPL(get_current_tty);
3197
3198void tty_default_fops(struct file_operations *fops)
3199{
3200        *fops = tty_fops;
3201}
3202
3203/*
3204 * Initialize the console device. This is called *early*, so
3205 * we can't necessarily depend on lots of kernel help here.
3206 * Just do some early initializations, and do the complex setup
3207 * later.
3208 */
3209void __init console_init(void)
3210{
3211        initcall_t *call;
3212
3213        /* Setup the default TTY line discipline. */
3214        tty_ldisc_begin();
3215
3216        /*
3217         * set up the console device so that later boot sequences can
3218         * inform about problems etc..
3219         */
3220        call = __con_initcall_start;
3221        while (call < __con_initcall_end) {
3222                (*call)();
3223                call++;
3224        }
3225}
3226
3227static char *tty_devnode(struct device *dev, mode_t *mode)
3228{
3229        if (!mode)
3230                return NULL;
3231        if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3232            dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3233                *mode = 0666;
3234        return NULL;
3235}
3236
3237static int __init tty_class_init(void)
3238{
3239        tty_class = class_create(THIS_MODULE, "tty");
3240        if (IS_ERR(tty_class))
3241                return PTR_ERR(tty_class);
3242        tty_class->devnode = tty_devnode;
3243        return 0;
3244}
3245
3246postcore_initcall(tty_class_init);
3247
3248/* 3/2004 jmc: why do these devices exist? */
3249static struct cdev tty_cdev, console_cdev;
3250
3251static ssize_t show_cons_active(struct device *dev,
3252                                struct device_attribute *attr, char *buf)
3253{
3254        struct console *cs[16];
3255        int i = 0;
3256        struct console *c;
3257        ssize_t count = 0;
3258
3259        console_lock();
3260        for_each_console(c) {
3261                if (!c->device)
3262                        continue;
3263                if (!c->write)
3264                        continue;
3265                if ((c->flags & CON_ENABLED) == 0)
3266                        continue;
3267                cs[i++] = c;
3268                if (i >= ARRAY_SIZE(cs))
3269                        break;
3270        }
3271        while (i--)
3272                count += sprintf(buf + count, "%s%d%c",
3273                                 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3274        console_unlock();
3275
3276        return count;
3277}
3278static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3279
3280static struct device *consdev;
3281
3282void console_sysfs_notify(void)
3283{
3284        if (consdev)
3285                sysfs_notify(&consdev->kobj, NULL, "active");
3286}
3287
3288/*
3289 * Ok, now we can initialize the rest of the tty devices and can count
3290 * on memory allocations, interrupts etc..
3291 */
3292int __init tty_init(void)
3293{
3294        cdev_init(&tty_cdev, &tty_fops);
3295        if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3296            register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3297                panic("Couldn't register /dev/tty driver\n");
3298        device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3299
3300        cdev_init(&console_cdev, &console_fops);
3301        if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3302            register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3303                panic("Couldn't register /dev/console driver\n");
3304        consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3305                              "console");
3306        if (IS_ERR(consdev))
3307                consdev = NULL;
3308        else
3309                WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3310
3311#ifdef CONFIG_VT
3312        vty_init(&console_fops);
3313#endif
3314        return 0;
3315}
3316
3317