linux/drivers/usb/gadget/u_serial.c
<<
>>
Prefs
   1/*
   2 * u_serial.c - utilities for USB gadget "serial port"/TTY support
   3 *
   4 * Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com)
   5 * Copyright (C) 2008 David Brownell
   6 * Copyright (C) 2008 by Nokia Corporation
   7 *
   8 * This code also borrows from usbserial.c, which is
   9 * Copyright (C) 1999 - 2002 Greg Kroah-Hartman (greg@kroah.com)
  10 * Copyright (C) 2000 Peter Berger (pberger@brimson.com)
  11 * Copyright (C) 2000 Al Borchers (alborchers@steinerpoint.com)
  12 *
  13 * This software is distributed under the terms of the GNU General
  14 * Public License ("GPL") as published by the Free Software Foundation,
  15 * either version 2 of that License or (at your option) any later version.
  16 */
  17
  18/* #define VERBOSE_DEBUG */
  19
  20#include <linux/kernel.h>
  21#include <linux/sched.h>
  22#include <linux/interrupt.h>
  23#include <linux/device.h>
  24#include <linux/delay.h>
  25#include <linux/tty.h>
  26#include <linux/tty_flip.h>
  27#include <linux/slab.h>
  28
  29#include "u_serial.h"
  30
  31
  32/*
  33 * This component encapsulates the TTY layer glue needed to provide basic
  34 * "serial port" functionality through the USB gadget stack.  Each such
  35 * port is exposed through a /dev/ttyGS* node.
  36 *
  37 * After initialization (gserial_setup), these TTY port devices stay
  38 * available until they are removed (gserial_cleanup).  Each one may be
  39 * connected to a USB function (gserial_connect), or disconnected (with
  40 * gserial_disconnect) when the USB host issues a config change event.
  41 * Data can only flow when the port is connected to the host.
  42 *
  43 * A given TTY port can be made available in multiple configurations.
  44 * For example, each one might expose a ttyGS0 node which provides a
  45 * login application.  In one case that might use CDC ACM interface 0,
  46 * while another configuration might use interface 3 for that.  The
  47 * work to handle that (including descriptor management) is not part
  48 * of this component.
  49 *
  50 * Configurations may expose more than one TTY port.  For example, if
  51 * ttyGS0 provides login service, then ttyGS1 might provide dialer access
  52 * for a telephone or fax link.  And ttyGS2 might be something that just
  53 * needs a simple byte stream interface for some messaging protocol that
  54 * is managed in userspace ... OBEX, PTP, and MTP have been mentioned.
  55 */
  56
  57#define PREFIX  "ttyGS"
  58
  59/*
  60 * gserial is the lifecycle interface, used by USB functions
  61 * gs_port is the I/O nexus, used by the tty driver
  62 * tty_struct links to the tty/filesystem framework
  63 *
  64 * gserial <---> gs_port ... links will be null when the USB link is
  65 * inactive; managed by gserial_{connect,disconnect}().  each gserial
  66 * instance can wrap its own USB control protocol.
  67 *      gserial->ioport == usb_ep->driver_data ... gs_port
  68 *      gs_port->port_usb ... gserial
  69 *
  70 * gs_port <---> tty_struct ... links will be null when the TTY file
  71 * isn't opened; managed by gs_open()/gs_close()
  72 *      gserial->port_tty ... tty_struct
  73 *      tty_struct->driver_data ... gserial
  74 */
  75
  76/* RX and TX queues can buffer QUEUE_SIZE packets before they hit the
  77 * next layer of buffering.  For TX that's a circular buffer; for RX
  78 * consider it a NOP.  A third layer is provided by the TTY code.
  79 */
  80#define QUEUE_SIZE              16
  81#define WRITE_BUF_SIZE          8192            /* TX only */
  82
  83/* circular buffer */
  84struct gs_buf {
  85        unsigned                buf_size;
  86        char                    *buf_buf;
  87        char                    *buf_get;
  88        char                    *buf_put;
  89};
  90
  91/*
  92 * The port structure holds info for each port, one for each minor number
  93 * (and thus for each /dev/ node).
  94 */
  95struct gs_port {
  96        spinlock_t              port_lock;      /* guard port_* access */
  97
  98        struct gserial          *port_usb;
  99        struct tty_struct       *port_tty;
 100
 101        unsigned                open_count;
 102        bool                    openclose;      /* open/close in progress */
 103        u8                      port_num;
 104
 105        wait_queue_head_t       close_wait;     /* wait for last close */
 106
 107        struct list_head        read_pool;
 108        int read_started;
 109        int read_allocated;
 110        struct list_head        read_queue;
 111        unsigned                n_read;
 112        struct tasklet_struct   push;
 113
 114        struct list_head        write_pool;
 115        int write_started;
 116        int write_allocated;
 117        struct gs_buf           port_write_buf;
 118        wait_queue_head_t       drain_wait;     /* wait while writes drain */
 119
 120        /* REVISIT this state ... */
 121        struct usb_cdc_line_coding port_line_coding;    /* 8-N-1 etc */
 122};
 123
 124/* increase N_PORTS if you need more */
 125#define N_PORTS         4
 126static struct portmaster {
 127        struct mutex    lock;                   /* protect open/close */
 128        struct gs_port  *port;
 129} ports[N_PORTS];
 130static unsigned n_ports;
 131
 132#define GS_CLOSE_TIMEOUT                15              /* seconds */
 133
 134
 135
 136#ifdef VERBOSE_DEBUG
 137#define pr_vdebug(fmt, arg...) \
 138        pr_debug(fmt, ##arg)
 139#else
 140#define pr_vdebug(fmt, arg...) \
 141        ({ if (0) pr_debug(fmt, ##arg); })
 142#endif
 143
 144/*-------------------------------------------------------------------------*/
 145
 146/* Circular Buffer */
 147
 148/*
 149 * gs_buf_alloc
 150 *
 151 * Allocate a circular buffer and all associated memory.
 152 */
 153static int gs_buf_alloc(struct gs_buf *gb, unsigned size)
 154{
 155        gb->buf_buf = kmalloc(size, GFP_KERNEL);
 156        if (gb->buf_buf == NULL)
 157                return -ENOMEM;
 158
 159        gb->buf_size = size;
 160        gb->buf_put = gb->buf_buf;
 161        gb->buf_get = gb->buf_buf;
 162
 163        return 0;
 164}
 165
 166/*
 167 * gs_buf_free
 168 *
 169 * Free the buffer and all associated memory.
 170 */
 171static void gs_buf_free(struct gs_buf *gb)
 172{
 173        kfree(gb->buf_buf);
 174        gb->buf_buf = NULL;
 175}
 176
 177/*
 178 * gs_buf_clear
 179 *
 180 * Clear out all data in the circular buffer.
 181 */
 182static void gs_buf_clear(struct gs_buf *gb)
 183{
 184        gb->buf_get = gb->buf_put;
 185        /* equivalent to a get of all data available */
 186}
 187
 188/*
 189 * gs_buf_data_avail
 190 *
 191 * Return the number of bytes of data written into the circular
 192 * buffer.
 193 */
 194static unsigned gs_buf_data_avail(struct gs_buf *gb)
 195{
 196        return (gb->buf_size + gb->buf_put - gb->buf_get) % gb->buf_size;
 197}
 198
 199/*
 200 * gs_buf_space_avail
 201 *
 202 * Return the number of bytes of space available in the circular
 203 * buffer.
 204 */
 205static unsigned gs_buf_space_avail(struct gs_buf *gb)
 206{
 207        return (gb->buf_size + gb->buf_get - gb->buf_put - 1) % gb->buf_size;
 208}
 209
 210/*
 211 * gs_buf_put
 212 *
 213 * Copy data data from a user buffer and put it into the circular buffer.
 214 * Restrict to the amount of space available.
 215 *
 216 * Return the number of bytes copied.
 217 */
 218static unsigned
 219gs_buf_put(struct gs_buf *gb, const char *buf, unsigned count)
 220{
 221        unsigned len;
 222
 223        len  = gs_buf_space_avail(gb);
 224        if (count > len)
 225                count = len;
 226
 227        if (count == 0)
 228                return 0;
 229
 230        len = gb->buf_buf + gb->buf_size - gb->buf_put;
 231        if (count > len) {
 232                memcpy(gb->buf_put, buf, len);
 233                memcpy(gb->buf_buf, buf+len, count - len);
 234                gb->buf_put = gb->buf_buf + count - len;
 235        } else {
 236                memcpy(gb->buf_put, buf, count);
 237                if (count < len)
 238                        gb->buf_put += count;
 239                else /* count == len */
 240                        gb->buf_put = gb->buf_buf;
 241        }
 242
 243        return count;
 244}
 245
 246/*
 247 * gs_buf_get
 248 *
 249 * Get data from the circular buffer and copy to the given buffer.
 250 * Restrict to the amount of data available.
 251 *
 252 * Return the number of bytes copied.
 253 */
 254static unsigned
 255gs_buf_get(struct gs_buf *gb, char *buf, unsigned count)
 256{
 257        unsigned len;
 258
 259        len = gs_buf_data_avail(gb);
 260        if (count > len)
 261                count = len;
 262
 263        if (count == 0)
 264                return 0;
 265
 266        len = gb->buf_buf + gb->buf_size - gb->buf_get;
 267        if (count > len) {
 268                memcpy(buf, gb->buf_get, len);
 269                memcpy(buf+len, gb->buf_buf, count - len);
 270                gb->buf_get = gb->buf_buf + count - len;
 271        } else {
 272                memcpy(buf, gb->buf_get, count);
 273                if (count < len)
 274                        gb->buf_get += count;
 275                else /* count == len */
 276                        gb->buf_get = gb->buf_buf;
 277        }
 278
 279        return count;
 280}
 281
 282/*-------------------------------------------------------------------------*/
 283
 284/* I/O glue between TTY (upper) and USB function (lower) driver layers */
 285
 286/*
 287 * gs_alloc_req
 288 *
 289 * Allocate a usb_request and its buffer.  Returns a pointer to the
 290 * usb_request or NULL if there is an error.
 291 */
 292struct usb_request *
 293gs_alloc_req(struct usb_ep *ep, unsigned len, gfp_t kmalloc_flags)
 294{
 295        struct usb_request *req;
 296
 297        req = usb_ep_alloc_request(ep, kmalloc_flags);
 298
 299        if (req != NULL) {
 300                req->length = len;
 301                req->buf = kmalloc(len, kmalloc_flags);
 302                if (req->buf == NULL) {
 303                        usb_ep_free_request(ep, req);
 304                        return NULL;
 305                }
 306        }
 307
 308        return req;
 309}
 310
 311/*
 312 * gs_free_req
 313 *
 314 * Free a usb_request and its buffer.
 315 */
 316void gs_free_req(struct usb_ep *ep, struct usb_request *req)
 317{
 318        kfree(req->buf);
 319        usb_ep_free_request(ep, req);
 320}
 321
 322/*
 323 * gs_send_packet
 324 *
 325 * If there is data to send, a packet is built in the given
 326 * buffer and the size is returned.  If there is no data to
 327 * send, 0 is returned.
 328 *
 329 * Called with port_lock held.
 330 */
 331static unsigned
 332gs_send_packet(struct gs_port *port, char *packet, unsigned size)
 333{
 334        unsigned len;
 335
 336        len = gs_buf_data_avail(&port->port_write_buf);
 337        if (len < size)
 338                size = len;
 339        if (size != 0)
 340                size = gs_buf_get(&port->port_write_buf, packet, size);
 341        return size;
 342}
 343
 344/*
 345 * gs_start_tx
 346 *
 347 * This function finds available write requests, calls
 348 * gs_send_packet to fill these packets with data, and
 349 * continues until either there are no more write requests
 350 * available or no more data to send.  This function is
 351 * run whenever data arrives or write requests are available.
 352 *
 353 * Context: caller owns port_lock; port_usb is non-null.
 354 */
 355static int gs_start_tx(struct gs_port *port)
 356/*
 357__releases(&port->port_lock)
 358__acquires(&port->port_lock)
 359*/
 360{
 361        struct list_head        *pool = &port->write_pool;
 362        struct usb_ep           *in = port->port_usb->in;
 363        int                     status = 0;
 364        bool                    do_tty_wake = false;
 365
 366        while (!list_empty(pool)) {
 367                struct usb_request      *req;
 368                int                     len;
 369
 370                if (port->write_started >= QUEUE_SIZE)
 371                        break;
 372
 373                req = list_entry(pool->next, struct usb_request, list);
 374                len = gs_send_packet(port, req->buf, in->maxpacket);
 375                if (len == 0) {
 376                        wake_up_interruptible(&port->drain_wait);
 377                        break;
 378                }
 379                do_tty_wake = true;
 380
 381                req->length = len;
 382                list_del(&req->list);
 383                req->zero = (gs_buf_data_avail(&port->port_write_buf) == 0);
 384
 385                pr_vdebug(PREFIX "%d: tx len=%d, 0x%02x 0x%02x 0x%02x ...\n",
 386                                port->port_num, len, *((u8 *)req->buf),
 387                                *((u8 *)req->buf+1), *((u8 *)req->buf+2));
 388
 389                /* Drop lock while we call out of driver; completions
 390                 * could be issued while we do so.  Disconnection may
 391                 * happen too; maybe immediately before we queue this!
 392                 *
 393                 * NOTE that we may keep sending data for a while after
 394                 * the TTY closed (dev->ioport->port_tty is NULL).
 395                 */
 396                spin_unlock(&port->port_lock);
 397                status = usb_ep_queue(in, req, GFP_ATOMIC);
 398                spin_lock(&port->port_lock);
 399
 400                if (status) {
 401                        pr_debug("%s: %s %s err %d\n",
 402                                        __func__, "queue", in->name, status);
 403                        list_add(&req->list, pool);
 404                        break;
 405                }
 406
 407                port->write_started++;
 408
 409                /* abort immediately after disconnect */
 410                if (!port->port_usb)
 411                        break;
 412        }
 413
 414        if (do_tty_wake && port->port_tty)
 415                tty_wakeup(port->port_tty);
 416        return status;
 417}
 418
 419/*
 420 * Context: caller owns port_lock, and port_usb is set
 421 */
 422static unsigned gs_start_rx(struct gs_port *port)
 423/*
 424__releases(&port->port_lock)
 425__acquires(&port->port_lock)
 426*/
 427{
 428        struct list_head        *pool = &port->read_pool;
 429        struct usb_ep           *out = port->port_usb->out;
 430
 431        while (!list_empty(pool)) {
 432                struct usb_request      *req;
 433                int                     status;
 434                struct tty_struct       *tty;
 435
 436                /* no more rx if closed */
 437                tty = port->port_tty;
 438                if (!tty)
 439                        break;
 440
 441                if (port->read_started >= QUEUE_SIZE)
 442                        break;
 443
 444                req = list_entry(pool->next, struct usb_request, list);
 445                list_del(&req->list);
 446                req->length = out->maxpacket;
 447
 448                /* drop lock while we call out; the controller driver
 449                 * may need to call us back (e.g. for disconnect)
 450                 */
 451                spin_unlock(&port->port_lock);
 452                status = usb_ep_queue(out, req, GFP_ATOMIC);
 453                spin_lock(&port->port_lock);
 454
 455                if (status) {
 456                        pr_debug("%s: %s %s err %d\n",
 457                                        __func__, "queue", out->name, status);
 458                        list_add(&req->list, pool);
 459                        break;
 460                }
 461                port->read_started++;
 462
 463                /* abort immediately after disconnect */
 464                if (!port->port_usb)
 465                        break;
 466        }
 467        return port->read_started;
 468}
 469
 470/*
 471 * RX tasklet takes data out of the RX queue and hands it up to the TTY
 472 * layer until it refuses to take any more data (or is throttled back).
 473 * Then it issues reads for any further data.
 474 *
 475 * If the RX queue becomes full enough that no usb_request is queued,
 476 * the OUT endpoint may begin NAKing as soon as its FIFO fills up.
 477 * So QUEUE_SIZE packets plus however many the FIFO holds (usually two)
 478 * can be buffered before the TTY layer's buffers (currently 64 KB).
 479 */
 480static void gs_rx_push(unsigned long _port)
 481{
 482        struct gs_port          *port = (void *)_port;
 483        struct tty_struct       *tty;
 484        struct list_head        *queue = &port->read_queue;
 485        bool                    disconnect = false;
 486        bool                    do_push = false;
 487
 488        /* hand any queued data to the tty */
 489        spin_lock_irq(&port->port_lock);
 490        tty = port->port_tty;
 491        while (!list_empty(queue)) {
 492                struct usb_request      *req;
 493
 494                req = list_first_entry(queue, struct usb_request, list);
 495
 496                /* discard data if tty was closed */
 497                if (!tty)
 498                        goto recycle;
 499
 500                /* leave data queued if tty was rx throttled */
 501                if (test_bit(TTY_THROTTLED, &tty->flags))
 502                        break;
 503
 504                switch (req->status) {
 505                case -ESHUTDOWN:
 506                        disconnect = true;
 507                        pr_vdebug(PREFIX "%d: shutdown\n", port->port_num);
 508                        break;
 509
 510                default:
 511                        /* presumably a transient fault */
 512                        pr_warning(PREFIX "%d: unexpected RX status %d\n",
 513                                        port->port_num, req->status);
 514                        /* FALLTHROUGH */
 515                case 0:
 516                        /* normal completion */
 517                        break;
 518                }
 519
 520                /* push data to (open) tty */
 521                if (req->actual) {
 522                        char            *packet = req->buf;
 523                        unsigned        size = req->actual;
 524                        unsigned        n;
 525                        int             count;
 526
 527                        /* we may have pushed part of this packet already... */
 528                        n = port->n_read;
 529                        if (n) {
 530                                packet += n;
 531                                size -= n;
 532                        }
 533
 534                        count = tty_insert_flip_string(tty, packet, size);
 535                        if (count)
 536                                do_push = true;
 537                        if (count != size) {
 538                                /* stop pushing; TTY layer can't handle more */
 539                                port->n_read += count;
 540                                pr_vdebug(PREFIX "%d: rx block %d/%d\n",
 541                                                port->port_num,
 542                                                count, req->actual);
 543                                break;
 544                        }
 545                        port->n_read = 0;
 546                }
 547recycle:
 548                list_move(&req->list, &port->read_pool);
 549                port->read_started--;
 550        }
 551
 552        /* Push from tty to ldisc; without low_latency set this is handled by
 553         * a workqueue, so we won't get callbacks and can hold port_lock
 554         */
 555        if (tty && do_push) {
 556                tty_flip_buffer_push(tty);
 557        }
 558
 559
 560        /* We want our data queue to become empty ASAP, keeping data
 561         * in the tty and ldisc (not here).  If we couldn't push any
 562         * this time around, there may be trouble unless there's an
 563         * implicit tty_unthrottle() call on its way...
 564         *
 565         * REVISIT we should probably add a timer to keep the tasklet
 566         * from starving ... but it's not clear that case ever happens.
 567         */
 568        if (!list_empty(queue) && tty) {
 569                if (!test_bit(TTY_THROTTLED, &tty->flags)) {
 570                        if (do_push)
 571                                tasklet_schedule(&port->push);
 572                        else
 573                                pr_warning(PREFIX "%d: RX not scheduled?\n",
 574                                        port->port_num);
 575                }
 576        }
 577
 578        /* If we're still connected, refill the USB RX queue. */
 579        if (!disconnect && port->port_usb)
 580                gs_start_rx(port);
 581
 582        spin_unlock_irq(&port->port_lock);
 583}
 584
 585static void gs_read_complete(struct usb_ep *ep, struct usb_request *req)
 586{
 587        struct gs_port  *port = ep->driver_data;
 588
 589        /* Queue all received data until the tty layer is ready for it. */
 590        spin_lock(&port->port_lock);
 591        list_add_tail(&req->list, &port->read_queue);
 592        tasklet_schedule(&port->push);
 593        spin_unlock(&port->port_lock);
 594}
 595
 596static void gs_write_complete(struct usb_ep *ep, struct usb_request *req)
 597{
 598        struct gs_port  *port = ep->driver_data;
 599
 600        spin_lock(&port->port_lock);
 601        list_add(&req->list, &port->write_pool);
 602        port->write_started--;
 603
 604        switch (req->status) {
 605        default:
 606                /* presumably a transient fault */
 607                pr_warning("%s: unexpected %s status %d\n",
 608                                __func__, ep->name, req->status);
 609                /* FALL THROUGH */
 610        case 0:
 611                /* normal completion */
 612                gs_start_tx(port);
 613                break;
 614
 615        case -ESHUTDOWN:
 616                /* disconnect */
 617                pr_vdebug("%s: %s shutdown\n", __func__, ep->name);
 618                break;
 619        }
 620
 621        spin_unlock(&port->port_lock);
 622}
 623
 624static void gs_free_requests(struct usb_ep *ep, struct list_head *head,
 625                                                         int *allocated)
 626{
 627        struct usb_request      *req;
 628
 629        while (!list_empty(head)) {
 630                req = list_entry(head->next, struct usb_request, list);
 631                list_del(&req->list);
 632                gs_free_req(ep, req);
 633                if (allocated)
 634                        (*allocated)--;
 635        }
 636}
 637
 638static int gs_alloc_requests(struct usb_ep *ep, struct list_head *head,
 639                void (*fn)(struct usb_ep *, struct usb_request *),
 640                int *allocated)
 641{
 642        int                     i;
 643        struct usb_request      *req;
 644        int n = allocated ? QUEUE_SIZE - *allocated : QUEUE_SIZE;
 645
 646        /* Pre-allocate up to QUEUE_SIZE transfers, but if we can't
 647         * do quite that many this time, don't fail ... we just won't
 648         * be as speedy as we might otherwise be.
 649         */
 650        for (i = 0; i < n; i++) {
 651                req = gs_alloc_req(ep, ep->maxpacket, GFP_ATOMIC);
 652                if (!req)
 653                        return list_empty(head) ? -ENOMEM : 0;
 654                req->complete = fn;
 655                list_add_tail(&req->list, head);
 656                if (allocated)
 657                        (*allocated)++;
 658        }
 659        return 0;
 660}
 661
 662/**
 663 * gs_start_io - start USB I/O streams
 664 * @dev: encapsulates endpoints to use
 665 * Context: holding port_lock; port_tty and port_usb are non-null
 666 *
 667 * We only start I/O when something is connected to both sides of
 668 * this port.  If nothing is listening on the host side, we may
 669 * be pointlessly filling up our TX buffers and FIFO.
 670 */
 671static int gs_start_io(struct gs_port *port)
 672{
 673        struct list_head        *head = &port->read_pool;
 674        struct usb_ep           *ep = port->port_usb->out;
 675        int                     status;
 676        unsigned                started;
 677
 678        /* Allocate RX and TX I/O buffers.  We can't easily do this much
 679         * earlier (with GFP_KERNEL) because the requests are coupled to
 680         * endpoints, as are the packet sizes we'll be using.  Different
 681         * configurations may use different endpoints with a given port;
 682         * and high speed vs full speed changes packet sizes too.
 683         */
 684        status = gs_alloc_requests(ep, head, gs_read_complete,
 685                &port->read_allocated);
 686        if (status)
 687                return status;
 688
 689        status = gs_alloc_requests(port->port_usb->in, &port->write_pool,
 690                        gs_write_complete, &port->write_allocated);
 691        if (status) {
 692                gs_free_requests(ep, head, &port->read_allocated);
 693                return status;
 694        }
 695
 696        /* queue read requests */
 697        port->n_read = 0;
 698        started = gs_start_rx(port);
 699
 700        /* unblock any pending writes into our circular buffer */
 701        if (started) {
 702                tty_wakeup(port->port_tty);
 703        } else {
 704                gs_free_requests(ep, head, &port->read_allocated);
 705                gs_free_requests(port->port_usb->in, &port->write_pool,
 706                        &port->write_allocated);
 707                status = -EIO;
 708        }
 709
 710        return status;
 711}
 712
 713/*-------------------------------------------------------------------------*/
 714
 715/* TTY Driver */
 716
 717/*
 718 * gs_open sets up the link between a gs_port and its associated TTY.
 719 * That link is broken *only* by TTY close(), and all driver methods
 720 * know that.
 721 */
 722static int gs_open(struct tty_struct *tty, struct file *file)
 723{
 724        int             port_num = tty->index;
 725        struct gs_port  *port;
 726        int             status;
 727
 728        if (port_num < 0 || port_num >= n_ports)
 729                return -ENXIO;
 730
 731        do {
 732                mutex_lock(&ports[port_num].lock);
 733                port = ports[port_num].port;
 734                if (!port)
 735                        status = -ENODEV;
 736                else {
 737                        spin_lock_irq(&port->port_lock);
 738
 739                        /* already open?  Great. */
 740                        if (port->open_count) {
 741                                status = 0;
 742                                port->open_count++;
 743
 744                        /* currently opening/closing? wait ... */
 745                        } else if (port->openclose) {
 746                                status = -EBUSY;
 747
 748                        /* ... else we do the work */
 749                        } else {
 750                                status = -EAGAIN;
 751                                port->openclose = true;
 752                        }
 753                        spin_unlock_irq(&port->port_lock);
 754                }
 755                mutex_unlock(&ports[port_num].lock);
 756
 757                switch (status) {
 758                default:
 759                        /* fully handled */
 760                        return status;
 761                case -EAGAIN:
 762                        /* must do the work */
 763                        break;
 764                case -EBUSY:
 765                        /* wait for EAGAIN task to finish */
 766                        msleep(1);
 767                        /* REVISIT could have a waitchannel here, if
 768                         * concurrent open performance is important
 769                         */
 770                        break;
 771                }
 772        } while (status != -EAGAIN);
 773
 774        /* Do the "real open" */
 775        spin_lock_irq(&port->port_lock);
 776
 777        /* allocate circular buffer on first open */
 778        if (port->port_write_buf.buf_buf == NULL) {
 779
 780                spin_unlock_irq(&port->port_lock);
 781                status = gs_buf_alloc(&port->port_write_buf, WRITE_BUF_SIZE);
 782                spin_lock_irq(&port->port_lock);
 783
 784                if (status) {
 785                        pr_debug("gs_open: ttyGS%d (%p,%p) no buffer\n",
 786                                port->port_num, tty, file);
 787                        port->openclose = false;
 788                        goto exit_unlock_port;
 789                }
 790        }
 791
 792        /* REVISIT if REMOVED (ports[].port NULL), abort the open
 793         * to let rmmod work faster (but this way isn't wrong).
 794         */
 795
 796        /* REVISIT maybe wait for "carrier detect" */
 797
 798        tty->driver_data = port;
 799        port->port_tty = tty;
 800
 801        port->open_count = 1;
 802        port->openclose = false;
 803
 804        /* if connected, start the I/O stream */
 805        if (port->port_usb) {
 806                struct gserial  *gser = port->port_usb;
 807
 808                pr_debug("gs_open: start ttyGS%d\n", port->port_num);
 809                gs_start_io(port);
 810
 811                if (gser->connect)
 812                        gser->connect(gser);
 813        }
 814
 815        pr_debug("gs_open: ttyGS%d (%p,%p)\n", port->port_num, tty, file);
 816
 817        status = 0;
 818
 819exit_unlock_port:
 820        spin_unlock_irq(&port->port_lock);
 821        return status;
 822}
 823
 824static int gs_writes_finished(struct gs_port *p)
 825{
 826        int cond;
 827
 828        /* return true on disconnect or empty buffer */
 829        spin_lock_irq(&p->port_lock);
 830        cond = (p->port_usb == NULL) || !gs_buf_data_avail(&p->port_write_buf);
 831        spin_unlock_irq(&p->port_lock);
 832
 833        return cond;
 834}
 835
 836static void gs_close(struct tty_struct *tty, struct file *file)
 837{
 838        struct gs_port *port = tty->driver_data;
 839        struct gserial  *gser;
 840
 841        spin_lock_irq(&port->port_lock);
 842
 843        if (port->open_count != 1) {
 844                if (port->open_count == 0)
 845                        WARN_ON(1);
 846                else
 847                        --port->open_count;
 848                goto exit;
 849        }
 850
 851        pr_debug("gs_close: ttyGS%d (%p,%p) ...\n", port->port_num, tty, file);
 852
 853        /* mark port as closing but in use; we can drop port lock
 854         * and sleep if necessary
 855         */
 856        port->openclose = true;
 857        port->open_count = 0;
 858
 859        gser = port->port_usb;
 860        if (gser && gser->disconnect)
 861                gser->disconnect(gser);
 862
 863        /* wait for circular write buffer to drain, disconnect, or at
 864         * most GS_CLOSE_TIMEOUT seconds; then discard the rest
 865         */
 866        if (gs_buf_data_avail(&port->port_write_buf) > 0 && gser) {
 867                spin_unlock_irq(&port->port_lock);
 868                wait_event_interruptible_timeout(port->drain_wait,
 869                                        gs_writes_finished(port),
 870                                        GS_CLOSE_TIMEOUT * HZ);
 871                spin_lock_irq(&port->port_lock);
 872                gser = port->port_usb;
 873        }
 874
 875        /* Iff we're disconnected, there can be no I/O in flight so it's
 876         * ok to free the circular buffer; else just scrub it.  And don't
 877         * let the push tasklet fire again until we're re-opened.
 878         */
 879        if (gser == NULL)
 880                gs_buf_free(&port->port_write_buf);
 881        else
 882                gs_buf_clear(&port->port_write_buf);
 883
 884        tty->driver_data = NULL;
 885        port->port_tty = NULL;
 886
 887        port->openclose = false;
 888
 889        pr_debug("gs_close: ttyGS%d (%p,%p) done!\n",
 890                        port->port_num, tty, file);
 891
 892        wake_up_interruptible(&port->close_wait);
 893exit:
 894        spin_unlock_irq(&port->port_lock);
 895}
 896
 897static int gs_write(struct tty_struct *tty, const unsigned char *buf, int count)
 898{
 899        struct gs_port  *port = tty->driver_data;
 900        unsigned long   flags;
 901        int             status;
 902
 903        pr_vdebug("gs_write: ttyGS%d (%p) writing %d bytes\n",
 904                        port->port_num, tty, count);
 905
 906        spin_lock_irqsave(&port->port_lock, flags);
 907        if (count)
 908                count = gs_buf_put(&port->port_write_buf, buf, count);
 909        /* treat count == 0 as flush_chars() */
 910        if (port->port_usb)
 911                status = gs_start_tx(port);
 912        spin_unlock_irqrestore(&port->port_lock, flags);
 913
 914        return count;
 915}
 916
 917static int gs_put_char(struct tty_struct *tty, unsigned char ch)
 918{
 919        struct gs_port  *port = tty->driver_data;
 920        unsigned long   flags;
 921        int             status;
 922
 923        pr_vdebug("gs_put_char: (%d,%p) char=0x%x, called from %p\n",
 924                port->port_num, tty, ch, __builtin_return_address(0));
 925
 926        spin_lock_irqsave(&port->port_lock, flags);
 927        status = gs_buf_put(&port->port_write_buf, &ch, 1);
 928        spin_unlock_irqrestore(&port->port_lock, flags);
 929
 930        return status;
 931}
 932
 933static void gs_flush_chars(struct tty_struct *tty)
 934{
 935        struct gs_port  *port = tty->driver_data;
 936        unsigned long   flags;
 937
 938        pr_vdebug("gs_flush_chars: (%d,%p)\n", port->port_num, tty);
 939
 940        spin_lock_irqsave(&port->port_lock, flags);
 941        if (port->port_usb)
 942                gs_start_tx(port);
 943        spin_unlock_irqrestore(&port->port_lock, flags);
 944}
 945
 946static int gs_write_room(struct tty_struct *tty)
 947{
 948        struct gs_port  *port = tty->driver_data;
 949        unsigned long   flags;
 950        int             room = 0;
 951
 952        spin_lock_irqsave(&port->port_lock, flags);
 953        if (port->port_usb)
 954                room = gs_buf_space_avail(&port->port_write_buf);
 955        spin_unlock_irqrestore(&port->port_lock, flags);
 956
 957        pr_vdebug("gs_write_room: (%d,%p) room=%d\n",
 958                port->port_num, tty, room);
 959
 960        return room;
 961}
 962
 963static int gs_chars_in_buffer(struct tty_struct *tty)
 964{
 965        struct gs_port  *port = tty->driver_data;
 966        unsigned long   flags;
 967        int             chars = 0;
 968
 969        spin_lock_irqsave(&port->port_lock, flags);
 970        chars = gs_buf_data_avail(&port->port_write_buf);
 971        spin_unlock_irqrestore(&port->port_lock, flags);
 972
 973        pr_vdebug("gs_chars_in_buffer: (%d,%p) chars=%d\n",
 974                port->port_num, tty, chars);
 975
 976        return chars;
 977}
 978
 979/* undo side effects of setting TTY_THROTTLED */
 980static void gs_unthrottle(struct tty_struct *tty)
 981{
 982        struct gs_port          *port = tty->driver_data;
 983        unsigned long           flags;
 984
 985        spin_lock_irqsave(&port->port_lock, flags);
 986        if (port->port_usb) {
 987                /* Kickstart read queue processing.  We don't do xon/xoff,
 988                 * rts/cts, or other handshaking with the host, but if the
 989                 * read queue backs up enough we'll be NAKing OUT packets.
 990                 */
 991                tasklet_schedule(&port->push);
 992                pr_vdebug(PREFIX "%d: unthrottle\n", port->port_num);
 993        }
 994        spin_unlock_irqrestore(&port->port_lock, flags);
 995}
 996
 997static int gs_break_ctl(struct tty_struct *tty, int duration)
 998{
 999        struct gs_port  *port = tty->driver_data;
1000        int             status = 0;
1001        struct gserial  *gser;
1002
1003        pr_vdebug("gs_break_ctl: ttyGS%d, send break (%d) \n",
1004                        port->port_num, duration);
1005
1006        spin_lock_irq(&port->port_lock);
1007        gser = port->port_usb;
1008        if (gser && gser->send_break)
1009                status = gser->send_break(gser, duration);
1010        spin_unlock_irq(&port->port_lock);
1011
1012        return status;
1013}
1014
1015static const struct tty_operations gs_tty_ops = {
1016        .open =                 gs_open,
1017        .close =                gs_close,
1018        .write =                gs_write,
1019        .put_char =             gs_put_char,
1020        .flush_chars =          gs_flush_chars,
1021        .write_room =           gs_write_room,
1022        .chars_in_buffer =      gs_chars_in_buffer,
1023        .unthrottle =           gs_unthrottle,
1024        .break_ctl =            gs_break_ctl,
1025};
1026
1027/*-------------------------------------------------------------------------*/
1028
1029static struct tty_driver *gs_tty_driver;
1030
1031static int __init
1032gs_port_alloc(unsigned port_num, struct usb_cdc_line_coding *coding)
1033{
1034        struct gs_port  *port;
1035
1036        port = kzalloc(sizeof(struct gs_port), GFP_KERNEL);
1037        if (port == NULL)
1038                return -ENOMEM;
1039
1040        spin_lock_init(&port->port_lock);
1041        init_waitqueue_head(&port->close_wait);
1042        init_waitqueue_head(&port->drain_wait);
1043
1044        tasklet_init(&port->push, gs_rx_push, (unsigned long) port);
1045
1046        INIT_LIST_HEAD(&port->read_pool);
1047        INIT_LIST_HEAD(&port->read_queue);
1048        INIT_LIST_HEAD(&port->write_pool);
1049
1050        port->port_num = port_num;
1051        port->port_line_coding = *coding;
1052
1053        ports[port_num].port = port;
1054
1055        return 0;
1056}
1057
1058/**
1059 * gserial_setup - initialize TTY driver for one or more ports
1060 * @g: gadget to associate with these ports
1061 * @count: how many ports to support
1062 * Context: may sleep
1063 *
1064 * The TTY stack needs to know in advance how many devices it should
1065 * plan to manage.  Use this call to set up the ports you will be
1066 * exporting through USB.  Later, connect them to functions based
1067 * on what configuration is activated by the USB host; and disconnect
1068 * them as appropriate.
1069 *
1070 * An example would be a two-configuration device in which both
1071 * configurations expose port 0, but through different functions.
1072 * One configuration could even expose port 1 while the other
1073 * one doesn't.
1074 *
1075 * Returns negative errno or zero.
1076 */
1077int __init gserial_setup(struct usb_gadget *g, unsigned count)
1078{
1079        unsigned                        i;
1080        struct usb_cdc_line_coding      coding;
1081        int                             status;
1082
1083        if (count == 0 || count > N_PORTS)
1084                return -EINVAL;
1085
1086        gs_tty_driver = alloc_tty_driver(count);
1087        if (!gs_tty_driver)
1088                return -ENOMEM;
1089
1090        gs_tty_driver->owner = THIS_MODULE;
1091        gs_tty_driver->driver_name = "g_serial";
1092        gs_tty_driver->name = PREFIX;
1093        /* uses dynamically assigned dev_t values */
1094
1095        gs_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
1096        gs_tty_driver->subtype = SERIAL_TYPE_NORMAL;
1097        gs_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1098        gs_tty_driver->init_termios = tty_std_termios;
1099
1100        /* 9600-8-N-1 ... matches defaults expected by "usbser.sys" on
1101         * MS-Windows.  Otherwise, most of these flags shouldn't affect
1102         * anything unless we were to actually hook up to a serial line.
1103         */
1104        gs_tty_driver->init_termios.c_cflag =
1105                        B9600 | CS8 | CREAD | HUPCL | CLOCAL;
1106        gs_tty_driver->init_termios.c_ispeed = 9600;
1107        gs_tty_driver->init_termios.c_ospeed = 9600;
1108
1109        coding.dwDTERate = cpu_to_le32(9600);
1110        coding.bCharFormat = 8;
1111        coding.bParityType = USB_CDC_NO_PARITY;
1112        coding.bDataBits = USB_CDC_1_STOP_BITS;
1113
1114        tty_set_operations(gs_tty_driver, &gs_tty_ops);
1115
1116        /* make devices be openable */
1117        for (i = 0; i < count; i++) {
1118                mutex_init(&ports[i].lock);
1119                status = gs_port_alloc(i, &coding);
1120                if (status) {
1121                        count = i;
1122                        goto fail;
1123                }
1124        }
1125        n_ports = count;
1126
1127        /* export the driver ... */
1128        status = tty_register_driver(gs_tty_driver);
1129        if (status) {
1130                pr_err("%s: cannot register, err %d\n",
1131                                __func__, status);
1132                goto fail;
1133        }
1134
1135        /* ... and sysfs class devices, so mdev/udev make /dev/ttyGS* */
1136        for (i = 0; i < count; i++) {
1137                struct device   *tty_dev;
1138
1139                tty_dev = tty_register_device(gs_tty_driver, i, &g->dev);
1140                if (IS_ERR(tty_dev))
1141                        pr_warning("%s: no classdev for port %d, err %ld\n",
1142                                __func__, i, PTR_ERR(tty_dev));
1143        }
1144
1145        pr_debug("%s: registered %d ttyGS* device%s\n", __func__,
1146                        count, (count == 1) ? "" : "s");
1147
1148        return status;
1149fail:
1150        while (count--)
1151                kfree(ports[count].port);
1152        put_tty_driver(gs_tty_driver);
1153        gs_tty_driver = NULL;
1154        return status;
1155}
1156
1157static int gs_closed(struct gs_port *port)
1158{
1159        int cond;
1160
1161        spin_lock_irq(&port->port_lock);
1162        cond = (port->open_count == 0) && !port->openclose;
1163        spin_unlock_irq(&port->port_lock);
1164        return cond;
1165}
1166
1167/**
1168 * gserial_cleanup - remove TTY-over-USB driver and devices
1169 * Context: may sleep
1170 *
1171 * This is called to free all resources allocated by @gserial_setup().
1172 * Accordingly, it may need to wait until some open /dev/ files have
1173 * closed.
1174 *
1175 * The caller must have issued @gserial_disconnect() for any ports
1176 * that had previously been connected, so that there is never any
1177 * I/O pending when it's called.
1178 */
1179void gserial_cleanup(void)
1180{
1181        unsigned        i;
1182        struct gs_port  *port;
1183
1184        if (!gs_tty_driver)
1185                return;
1186
1187        /* start sysfs and /dev/ttyGS* node removal */
1188        for (i = 0; i < n_ports; i++)
1189                tty_unregister_device(gs_tty_driver, i);
1190
1191        for (i = 0; i < n_ports; i++) {
1192                /* prevent new opens */
1193                mutex_lock(&ports[i].lock);
1194                port = ports[i].port;
1195                ports[i].port = NULL;
1196                mutex_unlock(&ports[i].lock);
1197
1198                tasklet_kill(&port->push);
1199
1200                /* wait for old opens to finish */
1201                wait_event(port->close_wait, gs_closed(port));
1202
1203                WARN_ON(port->port_usb != NULL);
1204
1205                kfree(port);
1206        }
1207        n_ports = 0;
1208
1209        tty_unregister_driver(gs_tty_driver);
1210        put_tty_driver(gs_tty_driver);
1211        gs_tty_driver = NULL;
1212
1213        pr_debug("%s: cleaned up ttyGS* support\n", __func__);
1214}
1215
1216/**
1217 * gserial_connect - notify TTY I/O glue that USB link is active
1218 * @gser: the function, set up with endpoints and descriptors
1219 * @port_num: which port is active
1220 * Context: any (usually from irq)
1221 *
1222 * This is called activate endpoints and let the TTY layer know that
1223 * the connection is active ... not unlike "carrier detect".  It won't
1224 * necessarily start I/O queues; unless the TTY is held open by any
1225 * task, there would be no point.  However, the endpoints will be
1226 * activated so the USB host can perform I/O, subject to basic USB
1227 * hardware flow control.
1228 *
1229 * Caller needs to have set up the endpoints and USB function in @dev
1230 * before calling this, as well as the appropriate (speed-specific)
1231 * endpoint descriptors, and also have set up the TTY driver by calling
1232 * @gserial_setup().
1233 *
1234 * Returns negative errno or zero.
1235 * On success, ep->driver_data will be overwritten.
1236 */
1237int gserial_connect(struct gserial *gser, u8 port_num)
1238{
1239        struct gs_port  *port;
1240        unsigned long   flags;
1241        int             status;
1242
1243        if (!gs_tty_driver || port_num >= n_ports)
1244                return -ENXIO;
1245
1246        /* we "know" gserial_cleanup() hasn't been called */
1247        port = ports[port_num].port;
1248
1249        /* activate the endpoints */
1250        status = usb_ep_enable(gser->in, gser->in_desc);
1251        if (status < 0)
1252                return status;
1253        gser->in->driver_data = port;
1254
1255        status = usb_ep_enable(gser->out, gser->out_desc);
1256        if (status < 0)
1257                goto fail_out;
1258        gser->out->driver_data = port;
1259
1260        /* then tell the tty glue that I/O can work */
1261        spin_lock_irqsave(&port->port_lock, flags);
1262        gser->ioport = port;
1263        port->port_usb = gser;
1264
1265        /* REVISIT unclear how best to handle this state...
1266         * we don't really couple it with the Linux TTY.
1267         */
1268        gser->port_line_coding = port->port_line_coding;
1269
1270        /* REVISIT if waiting on "carrier detect", signal. */
1271
1272        /* if it's already open, start I/O ... and notify the serial
1273         * protocol about open/close status (connect/disconnect).
1274         */
1275        if (port->open_count) {
1276                pr_debug("gserial_connect: start ttyGS%d\n", port->port_num);
1277                gs_start_io(port);
1278                if (gser->connect)
1279                        gser->connect(gser);
1280        } else {
1281                if (gser->disconnect)
1282                        gser->disconnect(gser);
1283        }
1284
1285        spin_unlock_irqrestore(&port->port_lock, flags);
1286
1287        return status;
1288
1289fail_out:
1290        usb_ep_disable(gser->in);
1291        gser->in->driver_data = NULL;
1292        return status;
1293}
1294
1295/**
1296 * gserial_disconnect - notify TTY I/O glue that USB link is inactive
1297 * @gser: the function, on which gserial_connect() was called
1298 * Context: any (usually from irq)
1299 *
1300 * This is called to deactivate endpoints and let the TTY layer know
1301 * that the connection went inactive ... not unlike "hangup".
1302 *
1303 * On return, the state is as if gserial_connect() had never been called;
1304 * there is no active USB I/O on these endpoints.
1305 */
1306void gserial_disconnect(struct gserial *gser)
1307{
1308        struct gs_port  *port = gser->ioport;
1309        unsigned long   flags;
1310
1311        if (!port)
1312                return;
1313
1314        /* tell the TTY glue not to do I/O here any more */
1315        spin_lock_irqsave(&port->port_lock, flags);
1316
1317        /* REVISIT as above: how best to track this? */
1318        port->port_line_coding = gser->port_line_coding;
1319
1320        port->port_usb = NULL;
1321        gser->ioport = NULL;
1322        if (port->open_count > 0 || port->openclose) {
1323                wake_up_interruptible(&port->drain_wait);
1324                if (port->port_tty)
1325                        tty_hangup(port->port_tty);
1326        }
1327        spin_unlock_irqrestore(&port->port_lock, flags);
1328
1329        /* disable endpoints, aborting down any active I/O */
1330        usb_ep_disable(gser->out);
1331        gser->out->driver_data = NULL;
1332
1333        usb_ep_disable(gser->in);
1334        gser->in->driver_data = NULL;
1335
1336        /* finally, free any unused/unusable I/O buffers */
1337        spin_lock_irqsave(&port->port_lock, flags);
1338        if (port->open_count == 0 && !port->openclose)
1339                gs_buf_free(&port->port_write_buf);
1340        gs_free_requests(gser->out, &port->read_pool, NULL);
1341        gs_free_requests(gser->out, &port->read_queue, NULL);
1342        gs_free_requests(gser->in, &port->write_pool, NULL);
1343
1344        port->read_allocated = port->read_started =
1345                port->write_allocated = port->write_started = 0;
1346
1347        spin_unlock_irqrestore(&port->port_lock, flags);
1348}
1349