linux/drivers/usb/host/xhci-mem.c
<<
>>
Prefs
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
  27
  28#include "xhci.h"
  29
  30/*
  31 * Allocates a generic ring segment from the ring pool, sets the dma address,
  32 * initializes the segment to zero, and sets the private next pointer to NULL.
  33 *
  34 * Section 4.11.1.1:
  35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  36 */
  37static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
  38{
  39        struct xhci_segment *seg;
  40        dma_addr_t      dma;
  41
  42        seg = kzalloc(sizeof *seg, flags);
  43        if (!seg)
  44                return NULL;
  45        xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
  46
  47        seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  48        if (!seg->trbs) {
  49                kfree(seg);
  50                return NULL;
  51        }
  52        xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
  53                        seg->trbs, (unsigned long long)dma);
  54
  55        memset(seg->trbs, 0, SEGMENT_SIZE);
  56        seg->dma = dma;
  57        seg->next = NULL;
  58
  59        return seg;
  60}
  61
  62static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  63{
  64        if (!seg)
  65                return;
  66        if (seg->trbs) {
  67                xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
  68                                seg->trbs, (unsigned long long)seg->dma);
  69                dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  70                seg->trbs = NULL;
  71        }
  72        xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
  73        kfree(seg);
  74}
  75
  76/*
  77 * Make the prev segment point to the next segment.
  78 *
  79 * Change the last TRB in the prev segment to be a Link TRB which points to the
  80 * DMA address of the next segment.  The caller needs to set any Link TRB
  81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  82 */
  83static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  84                struct xhci_segment *next, bool link_trbs)
  85{
  86        u32 val;
  87
  88        if (!prev || !next)
  89                return;
  90        prev->next = next;
  91        if (link_trbs) {
  92                prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
  93
  94                /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
  95                val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
  96                val &= ~TRB_TYPE_BITMASK;
  97                val |= TRB_TYPE(TRB_LINK);
  98                /* Always set the chain bit with 0.95 hardware */
  99                if (xhci_link_trb_quirk(xhci))
 100                        val |= TRB_CHAIN;
 101                prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
 102        }
 103        xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
 104                        (unsigned long long)prev->dma,
 105                        (unsigned long long)next->dma);
 106}
 107
 108/* XXX: Do we need the hcd structure in all these functions? */
 109void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 110{
 111        struct xhci_segment *seg;
 112        struct xhci_segment *first_seg;
 113
 114        if (!ring || !ring->first_seg)
 115                return;
 116        first_seg = ring->first_seg;
 117        seg = first_seg->next;
 118        xhci_dbg(xhci, "Freeing ring at %p\n", ring);
 119        while (seg != first_seg) {
 120                struct xhci_segment *next = seg->next;
 121                xhci_segment_free(xhci, seg);
 122                seg = next;
 123        }
 124        xhci_segment_free(xhci, first_seg);
 125        ring->first_seg = NULL;
 126        kfree(ring);
 127}
 128
 129static void xhci_initialize_ring_info(struct xhci_ring *ring)
 130{
 131        /* The ring is empty, so the enqueue pointer == dequeue pointer */
 132        ring->enqueue = ring->first_seg->trbs;
 133        ring->enq_seg = ring->first_seg;
 134        ring->dequeue = ring->enqueue;
 135        ring->deq_seg = ring->first_seg;
 136        /* The ring is initialized to 0. The producer must write 1 to the cycle
 137         * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 138         * compare CCS to the cycle bit to check ownership, so CCS = 1.
 139         */
 140        ring->cycle_state = 1;
 141        /* Not necessary for new rings, but needed for re-initialized rings */
 142        ring->enq_updates = 0;
 143        ring->deq_updates = 0;
 144}
 145
 146/**
 147 * Create a new ring with zero or more segments.
 148 *
 149 * Link each segment together into a ring.
 150 * Set the end flag and the cycle toggle bit on the last segment.
 151 * See section 4.9.1 and figures 15 and 16.
 152 */
 153static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 154                unsigned int num_segs, bool link_trbs, gfp_t flags)
 155{
 156        struct xhci_ring        *ring;
 157        struct xhci_segment     *prev;
 158
 159        ring = kzalloc(sizeof *(ring), flags);
 160        xhci_dbg(xhci, "Allocating ring at %p\n", ring);
 161        if (!ring)
 162                return NULL;
 163
 164        INIT_LIST_HEAD(&ring->td_list);
 165        if (num_segs == 0)
 166                return ring;
 167
 168        ring->first_seg = xhci_segment_alloc(xhci, flags);
 169        if (!ring->first_seg)
 170                goto fail;
 171        num_segs--;
 172
 173        prev = ring->first_seg;
 174        while (num_segs > 0) {
 175                struct xhci_segment     *next;
 176
 177                next = xhci_segment_alloc(xhci, flags);
 178                if (!next)
 179                        goto fail;
 180                xhci_link_segments(xhci, prev, next, link_trbs);
 181
 182                prev = next;
 183                num_segs--;
 184        }
 185        xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
 186
 187        if (link_trbs) {
 188                /* See section 4.9.2.1 and 6.4.4.1 */
 189                prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
 190                xhci_dbg(xhci, "Wrote link toggle flag to"
 191                                " segment %p (virtual), 0x%llx (DMA)\n",
 192                                prev, (unsigned long long)prev->dma);
 193        }
 194        xhci_initialize_ring_info(ring);
 195        return ring;
 196
 197fail:
 198        xhci_ring_free(xhci, ring);
 199        return NULL;
 200}
 201
 202void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 203                struct xhci_virt_device *virt_dev,
 204                unsigned int ep_index)
 205{
 206        int rings_cached;
 207
 208        rings_cached = virt_dev->num_rings_cached;
 209        if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 210                virt_dev->num_rings_cached++;
 211                rings_cached = virt_dev->num_rings_cached;
 212                virt_dev->ring_cache[rings_cached] =
 213                        virt_dev->eps[ep_index].ring;
 214                xhci_dbg(xhci, "Cached old ring, "
 215                                "%d ring%s cached\n",
 216                                rings_cached,
 217                                (rings_cached > 1) ? "s" : "");
 218        } else {
 219                xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 220                xhci_dbg(xhci, "Ring cache full (%d rings), "
 221                                "freeing ring\n",
 222                                virt_dev->num_rings_cached);
 223        }
 224        virt_dev->eps[ep_index].ring = NULL;
 225}
 226
 227/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 228 * pointers to the beginning of the ring.
 229 */
 230static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 231                struct xhci_ring *ring)
 232{
 233        struct xhci_segment     *seg = ring->first_seg;
 234        do {
 235                memset(seg->trbs, 0,
 236                                sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 237                /* All endpoint rings have link TRBs */
 238                xhci_link_segments(xhci, seg, seg->next, 1);
 239                seg = seg->next;
 240        } while (seg != ring->first_seg);
 241        xhci_initialize_ring_info(ring);
 242        /* td list should be empty since all URBs have been cancelled,
 243         * but just in case...
 244         */
 245        INIT_LIST_HEAD(&ring->td_list);
 246}
 247
 248#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 249
 250static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 251                                                    int type, gfp_t flags)
 252{
 253        struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
 254        if (!ctx)
 255                return NULL;
 256
 257        BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
 258        ctx->type = type;
 259        ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 260        if (type == XHCI_CTX_TYPE_INPUT)
 261                ctx->size += CTX_SIZE(xhci->hcc_params);
 262
 263        ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
 264        memset(ctx->bytes, 0, ctx->size);
 265        return ctx;
 266}
 267
 268static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 269                             struct xhci_container_ctx *ctx)
 270{
 271        if (!ctx)
 272                return;
 273        dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 274        kfree(ctx);
 275}
 276
 277struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
 278                                              struct xhci_container_ctx *ctx)
 279{
 280        BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
 281        return (struct xhci_input_control_ctx *)ctx->bytes;
 282}
 283
 284struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 285                                        struct xhci_container_ctx *ctx)
 286{
 287        if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 288                return (struct xhci_slot_ctx *)ctx->bytes;
 289
 290        return (struct xhci_slot_ctx *)
 291                (ctx->bytes + CTX_SIZE(xhci->hcc_params));
 292}
 293
 294struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 295                                    struct xhci_container_ctx *ctx,
 296                                    unsigned int ep_index)
 297{
 298        /* increment ep index by offset of start of ep ctx array */
 299        ep_index++;
 300        if (ctx->type == XHCI_CTX_TYPE_INPUT)
 301                ep_index++;
 302
 303        return (struct xhci_ep_ctx *)
 304                (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 305}
 306
 307
 308/***************** Streams structures manipulation *************************/
 309
 310static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 311                unsigned int num_stream_ctxs,
 312                struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 313{
 314        struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 315
 316        if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 317                pci_free_consistent(pdev,
 318                                sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 319                                stream_ctx, dma);
 320        else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 321                return dma_pool_free(xhci->small_streams_pool,
 322                                stream_ctx, dma);
 323        else
 324                return dma_pool_free(xhci->medium_streams_pool,
 325                                stream_ctx, dma);
 326}
 327
 328/*
 329 * The stream context array for each endpoint with bulk streams enabled can
 330 * vary in size, based on:
 331 *  - how many streams the endpoint supports,
 332 *  - the maximum primary stream array size the host controller supports,
 333 *  - and how many streams the device driver asks for.
 334 *
 335 * The stream context array must be a power of 2, and can be as small as
 336 * 64 bytes or as large as 1MB.
 337 */
 338static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 339                unsigned int num_stream_ctxs, dma_addr_t *dma,
 340                gfp_t mem_flags)
 341{
 342        struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 343
 344        if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
 345                return pci_alloc_consistent(pdev,
 346                                sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
 347                                dma);
 348        else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
 349                return dma_pool_alloc(xhci->small_streams_pool,
 350                                mem_flags, dma);
 351        else
 352                return dma_pool_alloc(xhci->medium_streams_pool,
 353                                mem_flags, dma);
 354}
 355
 356struct xhci_ring *xhci_dma_to_transfer_ring(
 357                struct xhci_virt_ep *ep,
 358                u64 address)
 359{
 360        if (ep->ep_state & EP_HAS_STREAMS)
 361                return radix_tree_lookup(&ep->stream_info->trb_address_map,
 362                                address >> SEGMENT_SHIFT);
 363        return ep->ring;
 364}
 365
 366/* Only use this when you know stream_info is valid */
 367#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 368static struct xhci_ring *dma_to_stream_ring(
 369                struct xhci_stream_info *stream_info,
 370                u64 address)
 371{
 372        return radix_tree_lookup(&stream_info->trb_address_map,
 373                        address >> SEGMENT_SHIFT);
 374}
 375#endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
 376
 377struct xhci_ring *xhci_stream_id_to_ring(
 378                struct xhci_virt_device *dev,
 379                unsigned int ep_index,
 380                unsigned int stream_id)
 381{
 382        struct xhci_virt_ep *ep = &dev->eps[ep_index];
 383
 384        if (stream_id == 0)
 385                return ep->ring;
 386        if (!ep->stream_info)
 387                return NULL;
 388
 389        if (stream_id > ep->stream_info->num_streams)
 390                return NULL;
 391        return ep->stream_info->stream_rings[stream_id];
 392}
 393
 394#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 395static int xhci_test_radix_tree(struct xhci_hcd *xhci,
 396                unsigned int num_streams,
 397                struct xhci_stream_info *stream_info)
 398{
 399        u32 cur_stream;
 400        struct xhci_ring *cur_ring;
 401        u64 addr;
 402
 403        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 404                struct xhci_ring *mapped_ring;
 405                int trb_size = sizeof(union xhci_trb);
 406
 407                cur_ring = stream_info->stream_rings[cur_stream];
 408                for (addr = cur_ring->first_seg->dma;
 409                                addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
 410                                addr += trb_size) {
 411                        mapped_ring = dma_to_stream_ring(stream_info, addr);
 412                        if (cur_ring != mapped_ring) {
 413                                xhci_warn(xhci, "WARN: DMA address 0x%08llx "
 414                                                "didn't map to stream ID %u; "
 415                                                "mapped to ring %p\n",
 416                                                (unsigned long long) addr,
 417                                                cur_stream,
 418                                                mapped_ring);
 419                                return -EINVAL;
 420                        }
 421                }
 422                /* One TRB after the end of the ring segment shouldn't return a
 423                 * pointer to the current ring (although it may be a part of a
 424                 * different ring).
 425                 */
 426                mapped_ring = dma_to_stream_ring(stream_info, addr);
 427                if (mapped_ring != cur_ring) {
 428                        /* One TRB before should also fail */
 429                        addr = cur_ring->first_seg->dma - trb_size;
 430                        mapped_ring = dma_to_stream_ring(stream_info, addr);
 431                }
 432                if (mapped_ring == cur_ring) {
 433                        xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
 434                                        "mapped to valid stream ID %u; "
 435                                        "mapped ring = %p\n",
 436                                        (unsigned long long) addr,
 437                                        cur_stream,
 438                                        mapped_ring);
 439                        return -EINVAL;
 440                }
 441        }
 442        return 0;
 443}
 444#endif  /* CONFIG_USB_XHCI_HCD_DEBUGGING */
 445
 446/*
 447 * Change an endpoint's internal structure so it supports stream IDs.  The
 448 * number of requested streams includes stream 0, which cannot be used by device
 449 * drivers.
 450 *
 451 * The number of stream contexts in the stream context array may be bigger than
 452 * the number of streams the driver wants to use.  This is because the number of
 453 * stream context array entries must be a power of two.
 454 *
 455 * We need a radix tree for mapping physical addresses of TRBs to which stream
 456 * ID they belong to.  We need to do this because the host controller won't tell
 457 * us which stream ring the TRB came from.  We could store the stream ID in an
 458 * event data TRB, but that doesn't help us for the cancellation case, since the
 459 * endpoint may stop before it reaches that event data TRB.
 460 *
 461 * The radix tree maps the upper portion of the TRB DMA address to a ring
 462 * segment that has the same upper portion of DMA addresses.  For example, say I
 463 * have segments of size 1KB, that are always 64-byte aligned.  A segment may
 464 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 465 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 466 * pass the radix tree a key to get the right stream ID:
 467 *
 468 *      0x10c90fff >> 10 = 0x43243
 469 *      0x10c912c0 >> 10 = 0x43244
 470 *      0x10c91400 >> 10 = 0x43245
 471 *
 472 * Obviously, only those TRBs with DMA addresses that are within the segment
 473 * will make the radix tree return the stream ID for that ring.
 474 *
 475 * Caveats for the radix tree:
 476 *
 477 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 478 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 479 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 480 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 481 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 482 * extended systems (where the DMA address can be bigger than 32-bits),
 483 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 484 */
 485struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 486                unsigned int num_stream_ctxs,
 487                unsigned int num_streams, gfp_t mem_flags)
 488{
 489        struct xhci_stream_info *stream_info;
 490        u32 cur_stream;
 491        struct xhci_ring *cur_ring;
 492        unsigned long key;
 493        u64 addr;
 494        int ret;
 495
 496        xhci_dbg(xhci, "Allocating %u streams and %u "
 497                        "stream context array entries.\n",
 498                        num_streams, num_stream_ctxs);
 499        if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 500                xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 501                return NULL;
 502        }
 503        xhci->cmd_ring_reserved_trbs++;
 504
 505        stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 506        if (!stream_info)
 507                goto cleanup_trbs;
 508
 509        stream_info->num_streams = num_streams;
 510        stream_info->num_stream_ctxs = num_stream_ctxs;
 511
 512        /* Initialize the array of virtual pointers to stream rings. */
 513        stream_info->stream_rings = kzalloc(
 514                        sizeof(struct xhci_ring *)*num_streams,
 515                        mem_flags);
 516        if (!stream_info->stream_rings)
 517                goto cleanup_info;
 518
 519        /* Initialize the array of DMA addresses for stream rings for the HW. */
 520        stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 521                        num_stream_ctxs, &stream_info->ctx_array_dma,
 522                        mem_flags);
 523        if (!stream_info->stream_ctx_array)
 524                goto cleanup_ctx;
 525        memset(stream_info->stream_ctx_array, 0,
 526                        sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 527
 528        /* Allocate everything needed to free the stream rings later */
 529        stream_info->free_streams_command =
 530                xhci_alloc_command(xhci, true, true, mem_flags);
 531        if (!stream_info->free_streams_command)
 532                goto cleanup_ctx;
 533
 534        INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 535
 536        /* Allocate rings for all the streams that the driver will use,
 537         * and add their segment DMA addresses to the radix tree.
 538         * Stream 0 is reserved.
 539         */
 540        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 541                stream_info->stream_rings[cur_stream] =
 542                        xhci_ring_alloc(xhci, 1, true, mem_flags);
 543                cur_ring = stream_info->stream_rings[cur_stream];
 544                if (!cur_ring)
 545                        goto cleanup_rings;
 546                cur_ring->stream_id = cur_stream;
 547                /* Set deq ptr, cycle bit, and stream context type */
 548                addr = cur_ring->first_seg->dma |
 549                        SCT_FOR_CTX(SCT_PRI_TR) |
 550                        cur_ring->cycle_state;
 551                stream_info->stream_ctx_array[cur_stream].stream_ring = addr;
 552                xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 553                                cur_stream, (unsigned long long) addr);
 554
 555                key = (unsigned long)
 556                        (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
 557                ret = radix_tree_insert(&stream_info->trb_address_map,
 558                                key, cur_ring);
 559                if (ret) {
 560                        xhci_ring_free(xhci, cur_ring);
 561                        stream_info->stream_rings[cur_stream] = NULL;
 562                        goto cleanup_rings;
 563                }
 564        }
 565        /* Leave the other unused stream ring pointers in the stream context
 566         * array initialized to zero.  This will cause the xHC to give us an
 567         * error if the device asks for a stream ID we don't have setup (if it
 568         * was any other way, the host controller would assume the ring is
 569         * "empty" and wait forever for data to be queued to that stream ID).
 570         */
 571#if XHCI_DEBUG
 572        /* Do a little test on the radix tree to make sure it returns the
 573         * correct values.
 574         */
 575        if (xhci_test_radix_tree(xhci, num_streams, stream_info))
 576                goto cleanup_rings;
 577#endif
 578
 579        return stream_info;
 580
 581cleanup_rings:
 582        for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 583                cur_ring = stream_info->stream_rings[cur_stream];
 584                if (cur_ring) {
 585                        addr = cur_ring->first_seg->dma;
 586                        radix_tree_delete(&stream_info->trb_address_map,
 587                                        addr >> SEGMENT_SHIFT);
 588                        xhci_ring_free(xhci, cur_ring);
 589                        stream_info->stream_rings[cur_stream] = NULL;
 590                }
 591        }
 592        xhci_free_command(xhci, stream_info->free_streams_command);
 593cleanup_ctx:
 594        kfree(stream_info->stream_rings);
 595cleanup_info:
 596        kfree(stream_info);
 597cleanup_trbs:
 598        xhci->cmd_ring_reserved_trbs--;
 599        return NULL;
 600}
 601/*
 602 * Sets the MaxPStreams field and the Linear Stream Array field.
 603 * Sets the dequeue pointer to the stream context array.
 604 */
 605void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 606                struct xhci_ep_ctx *ep_ctx,
 607                struct xhci_stream_info *stream_info)
 608{
 609        u32 max_primary_streams;
 610        /* MaxPStreams is the number of stream context array entries, not the
 611         * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 612         * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 613         */
 614        max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 615        xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
 616                        1 << (max_primary_streams + 1));
 617        ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
 618        ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams);
 619        ep_ctx->ep_info |= EP_HAS_LSA;
 620        ep_ctx->deq  = stream_info->ctx_array_dma;
 621}
 622
 623/*
 624 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 625 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 626 * not at the beginning of the ring).
 627 */
 628void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
 629                struct xhci_ep_ctx *ep_ctx,
 630                struct xhci_virt_ep *ep)
 631{
 632        dma_addr_t addr;
 633        ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK;
 634        ep_ctx->ep_info &= ~EP_HAS_LSA;
 635        addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 636        ep_ctx->deq  = addr | ep->ring->cycle_state;
 637}
 638
 639/* Frees all stream contexts associated with the endpoint,
 640 *
 641 * Caller should fix the endpoint context streams fields.
 642 */
 643void xhci_free_stream_info(struct xhci_hcd *xhci,
 644                struct xhci_stream_info *stream_info)
 645{
 646        int cur_stream;
 647        struct xhci_ring *cur_ring;
 648        dma_addr_t addr;
 649
 650        if (!stream_info)
 651                return;
 652
 653        for (cur_stream = 1; cur_stream < stream_info->num_streams;
 654                        cur_stream++) {
 655                cur_ring = stream_info->stream_rings[cur_stream];
 656                if (cur_ring) {
 657                        addr = cur_ring->first_seg->dma;
 658                        radix_tree_delete(&stream_info->trb_address_map,
 659                                        addr >> SEGMENT_SHIFT);
 660                        xhci_ring_free(xhci, cur_ring);
 661                        stream_info->stream_rings[cur_stream] = NULL;
 662                }
 663        }
 664        xhci_free_command(xhci, stream_info->free_streams_command);
 665        xhci->cmd_ring_reserved_trbs--;
 666        if (stream_info->stream_ctx_array)
 667                xhci_free_stream_ctx(xhci,
 668                                stream_info->num_stream_ctxs,
 669                                stream_info->stream_ctx_array,
 670                                stream_info->ctx_array_dma);
 671
 672        if (stream_info)
 673                kfree(stream_info->stream_rings);
 674        kfree(stream_info);
 675}
 676
 677
 678/***************** Device context manipulation *************************/
 679
 680static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 681                struct xhci_virt_ep *ep)
 682{
 683        init_timer(&ep->stop_cmd_timer);
 684        ep->stop_cmd_timer.data = (unsigned long) ep;
 685        ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
 686        ep->xhci = xhci;
 687}
 688
 689/* All the xhci_tds in the ring's TD list should be freed at this point */
 690void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 691{
 692        struct xhci_virt_device *dev;
 693        int i;
 694
 695        /* Slot ID 0 is reserved */
 696        if (slot_id == 0 || !xhci->devs[slot_id])
 697                return;
 698
 699        dev = xhci->devs[slot_id];
 700        xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 701        if (!dev)
 702                return;
 703
 704        for (i = 0; i < 31; ++i) {
 705                if (dev->eps[i].ring)
 706                        xhci_ring_free(xhci, dev->eps[i].ring);
 707                if (dev->eps[i].stream_info)
 708                        xhci_free_stream_info(xhci,
 709                                        dev->eps[i].stream_info);
 710        }
 711
 712        if (dev->ring_cache) {
 713                for (i = 0; i < dev->num_rings_cached; i++)
 714                        xhci_ring_free(xhci, dev->ring_cache[i]);
 715                kfree(dev->ring_cache);
 716        }
 717
 718        if (dev->in_ctx)
 719                xhci_free_container_ctx(xhci, dev->in_ctx);
 720        if (dev->out_ctx)
 721                xhci_free_container_ctx(xhci, dev->out_ctx);
 722
 723        kfree(xhci->devs[slot_id]);
 724        xhci->devs[slot_id] = NULL;
 725}
 726
 727int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 728                struct usb_device *udev, gfp_t flags)
 729{
 730        struct xhci_virt_device *dev;
 731        int i;
 732
 733        /* Slot ID 0 is reserved */
 734        if (slot_id == 0 || xhci->devs[slot_id]) {
 735                xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 736                return 0;
 737        }
 738
 739        xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 740        if (!xhci->devs[slot_id])
 741                return 0;
 742        dev = xhci->devs[slot_id];
 743
 744        /* Allocate the (output) device context that will be used in the HC. */
 745        dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 746        if (!dev->out_ctx)
 747                goto fail;
 748
 749        xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 750                        (unsigned long long)dev->out_ctx->dma);
 751
 752        /* Allocate the (input) device context for address device command */
 753        dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 754        if (!dev->in_ctx)
 755                goto fail;
 756
 757        xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 758                        (unsigned long long)dev->in_ctx->dma);
 759
 760        /* Initialize the cancellation list and watchdog timers for each ep */
 761        for (i = 0; i < 31; i++) {
 762                xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 763                INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 764        }
 765
 766        /* Allocate endpoint 0 ring */
 767        dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
 768        if (!dev->eps[0].ring)
 769                goto fail;
 770
 771        /* Allocate pointers to the ring cache */
 772        dev->ring_cache = kzalloc(
 773                        sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
 774                        flags);
 775        if (!dev->ring_cache)
 776                goto fail;
 777        dev->num_rings_cached = 0;
 778
 779        init_completion(&dev->cmd_completion);
 780        INIT_LIST_HEAD(&dev->cmd_list);
 781        dev->udev = udev;
 782
 783        /* Point to output device context in dcbaa. */
 784        xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
 785        xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
 786                        slot_id,
 787                        &xhci->dcbaa->dev_context_ptrs[slot_id],
 788                        (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
 789
 790        return 1;
 791fail:
 792        xhci_free_virt_device(xhci, slot_id);
 793        return 0;
 794}
 795
 796void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
 797                struct usb_device *udev)
 798{
 799        struct xhci_virt_device *virt_dev;
 800        struct xhci_ep_ctx      *ep0_ctx;
 801        struct xhci_ring        *ep_ring;
 802
 803        virt_dev = xhci->devs[udev->slot_id];
 804        ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
 805        ep_ring = virt_dev->eps[0].ring;
 806        /*
 807         * FIXME we don't keep track of the dequeue pointer very well after a
 808         * Set TR dequeue pointer, so we're setting the dequeue pointer of the
 809         * host to our enqueue pointer.  This should only be called after a
 810         * configured device has reset, so all control transfers should have
 811         * been completed or cancelled before the reset.
 812         */
 813        ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue);
 814        ep0_ctx->deq |= ep_ring->cycle_state;
 815}
 816
 817/* Setup an xHCI virtual device for a Set Address command */
 818int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
 819{
 820        struct xhci_virt_device *dev;
 821        struct xhci_ep_ctx      *ep0_ctx;
 822        struct usb_device       *top_dev;
 823        struct xhci_slot_ctx    *slot_ctx;
 824        struct xhci_input_control_ctx *ctrl_ctx;
 825
 826        dev = xhci->devs[udev->slot_id];
 827        /* Slot ID 0 is reserved */
 828        if (udev->slot_id == 0 || !dev) {
 829                xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
 830                                udev->slot_id);
 831                return -EINVAL;
 832        }
 833        ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
 834        ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
 835        slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
 836
 837        /* 2) New slot context and endpoint 0 context are valid*/
 838        ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
 839
 840        /* 3) Only the control endpoint is valid - one endpoint context */
 841        slot_ctx->dev_info |= LAST_CTX(1);
 842
 843        slot_ctx->dev_info |= (u32) udev->route;
 844        switch (udev->speed) {
 845        case USB_SPEED_SUPER:
 846                slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
 847                break;
 848        case USB_SPEED_HIGH:
 849                slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
 850                break;
 851        case USB_SPEED_FULL:
 852                slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
 853                break;
 854        case USB_SPEED_LOW:
 855                slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
 856                break;
 857        case USB_SPEED_WIRELESS:
 858                xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
 859                return -EINVAL;
 860                break;
 861        default:
 862                /* Speed was set earlier, this shouldn't happen. */
 863                BUG();
 864        }
 865        /* Find the root hub port this device is under */
 866        for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
 867                        top_dev = top_dev->parent)
 868                /* Found device below root hub */;
 869        slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
 870        dev->port = top_dev->portnum;
 871        xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
 872
 873        /* Is this a LS/FS device under a HS hub? */
 874        if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
 875                        udev->tt) {
 876                slot_ctx->tt_info = udev->tt->hub->slot_id;
 877                slot_ctx->tt_info |= udev->ttport << 8;
 878                if (udev->tt->multi)
 879                        slot_ctx->dev_info |= DEV_MTT;
 880        }
 881        xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
 882        xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
 883
 884        /* Step 4 - ring already allocated */
 885        /* Step 5 */
 886        ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
 887        /*
 888         * XXX: Not sure about wireless USB devices.
 889         */
 890        switch (udev->speed) {
 891        case USB_SPEED_SUPER:
 892                ep0_ctx->ep_info2 |= MAX_PACKET(512);
 893                break;
 894        case USB_SPEED_HIGH:
 895        /* USB core guesses at a 64-byte max packet first for FS devices */
 896        case USB_SPEED_FULL:
 897                ep0_ctx->ep_info2 |= MAX_PACKET(64);
 898                break;
 899        case USB_SPEED_LOW:
 900                ep0_ctx->ep_info2 |= MAX_PACKET(8);
 901                break;
 902        case USB_SPEED_WIRELESS:
 903                xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
 904                return -EINVAL;
 905                break;
 906        default:
 907                /* New speed? */
 908                BUG();
 909        }
 910        /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
 911        ep0_ctx->ep_info2 |= MAX_BURST(0);
 912        ep0_ctx->ep_info2 |= ERROR_COUNT(3);
 913
 914        ep0_ctx->deq =
 915                dev->eps[0].ring->first_seg->dma;
 916        ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
 917
 918        /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
 919
 920        return 0;
 921}
 922
 923/* Return the polling or NAK interval.
 924 *
 925 * The polling interval is expressed in "microframes".  If xHCI's Interval field
 926 * is set to N, it will service the endpoint every 2^(Interval)*125us.
 927 *
 928 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
 929 * is set to 0.
 930 */
 931static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
 932                struct usb_host_endpoint *ep)
 933{
 934        unsigned int interval = 0;
 935
 936        switch (udev->speed) {
 937        case USB_SPEED_HIGH:
 938                /* Max NAK rate */
 939                if (usb_endpoint_xfer_control(&ep->desc) ||
 940                                usb_endpoint_xfer_bulk(&ep->desc))
 941                        interval = ep->desc.bInterval;
 942                /* Fall through - SS and HS isoc/int have same decoding */
 943        case USB_SPEED_SUPER:
 944                if (usb_endpoint_xfer_int(&ep->desc) ||
 945                                usb_endpoint_xfer_isoc(&ep->desc)) {
 946                        if (ep->desc.bInterval == 0)
 947                                interval = 0;
 948                        else
 949                                interval = ep->desc.bInterval - 1;
 950                        if (interval > 15)
 951                                interval = 15;
 952                        if (interval != ep->desc.bInterval + 1)
 953                                dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
 954                                                ep->desc.bEndpointAddress, 1 << interval);
 955                }
 956                break;
 957        /* Convert bInterval (in 1-255 frames) to microframes and round down to
 958         * nearest power of 2.
 959         */
 960        case USB_SPEED_FULL:
 961        case USB_SPEED_LOW:
 962                if (usb_endpoint_xfer_int(&ep->desc) ||
 963                                usb_endpoint_xfer_isoc(&ep->desc)) {
 964                        interval = fls(8*ep->desc.bInterval) - 1;
 965                        if (interval > 10)
 966                                interval = 10;
 967                        if (interval < 3)
 968                                interval = 3;
 969                        if ((1 << interval) != 8*ep->desc.bInterval)
 970                                dev_warn(&udev->dev,
 971                                                "ep %#x - rounding interval"
 972                                                " to %d microframes, "
 973                                                "ep desc says %d microframes\n",
 974                                                ep->desc.bEndpointAddress,
 975                                                1 << interval,
 976                                                8*ep->desc.bInterval);
 977                }
 978                break;
 979        default:
 980                BUG();
 981        }
 982        return EP_INTERVAL(interval);
 983}
 984
 985/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
 986 * High speed endpoint descriptors can define "the number of additional
 987 * transaction opportunities per microframe", but that goes in the Max Burst
 988 * endpoint context field.
 989 */
 990static inline u32 xhci_get_endpoint_mult(struct usb_device *udev,
 991                struct usb_host_endpoint *ep)
 992{
 993        if (udev->speed != USB_SPEED_SUPER ||
 994                        !usb_endpoint_xfer_isoc(&ep->desc))
 995                return 0;
 996        return ep->ss_ep_comp.bmAttributes;
 997}
 998
 999static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
1000                struct usb_host_endpoint *ep)
1001{
1002        int in;
1003        u32 type;
1004
1005        in = usb_endpoint_dir_in(&ep->desc);
1006        if (usb_endpoint_xfer_control(&ep->desc)) {
1007                type = EP_TYPE(CTRL_EP);
1008        } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1009                if (in)
1010                        type = EP_TYPE(BULK_IN_EP);
1011                else
1012                        type = EP_TYPE(BULK_OUT_EP);
1013        } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1014                if (in)
1015                        type = EP_TYPE(ISOC_IN_EP);
1016                else
1017                        type = EP_TYPE(ISOC_OUT_EP);
1018        } else if (usb_endpoint_xfer_int(&ep->desc)) {
1019                if (in)
1020                        type = EP_TYPE(INT_IN_EP);
1021                else
1022                        type = EP_TYPE(INT_OUT_EP);
1023        } else {
1024                BUG();
1025        }
1026        return type;
1027}
1028
1029/* Return the maximum endpoint service interval time (ESIT) payload.
1030 * Basically, this is the maxpacket size, multiplied by the burst size
1031 * and mult size.
1032 */
1033static inline u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1034                struct usb_device *udev,
1035                struct usb_host_endpoint *ep)
1036{
1037        int max_burst;
1038        int max_packet;
1039
1040        /* Only applies for interrupt or isochronous endpoints */
1041        if (usb_endpoint_xfer_control(&ep->desc) ||
1042                        usb_endpoint_xfer_bulk(&ep->desc))
1043                return 0;
1044
1045        if (udev->speed == USB_SPEED_SUPER)
1046                return ep->ss_ep_comp.wBytesPerInterval;
1047
1048        max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1049        max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1050        /* A 0 in max burst means 1 transfer per ESIT */
1051        return max_packet * (max_burst + 1);
1052}
1053
1054/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1055 * Drivers will have to call usb_alloc_streams() to do that.
1056 */
1057int xhci_endpoint_init(struct xhci_hcd *xhci,
1058                struct xhci_virt_device *virt_dev,
1059                struct usb_device *udev,
1060                struct usb_host_endpoint *ep,
1061                gfp_t mem_flags)
1062{
1063        unsigned int ep_index;
1064        struct xhci_ep_ctx *ep_ctx;
1065        struct xhci_ring *ep_ring;
1066        unsigned int max_packet;
1067        unsigned int max_burst;
1068        u32 max_esit_payload;
1069
1070        ep_index = xhci_get_endpoint_index(&ep->desc);
1071        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1072
1073        /* Set up the endpoint ring */
1074        /*
1075         * Isochronous endpoint ring needs bigger size because one isoc URB
1076         * carries multiple packets and it will insert multiple tds to the
1077         * ring.
1078         * This should be replaced with dynamic ring resizing in the future.
1079         */
1080        if (usb_endpoint_xfer_isoc(&ep->desc))
1081                virt_dev->eps[ep_index].new_ring =
1082                        xhci_ring_alloc(xhci, 8, true, mem_flags);
1083        else
1084                virt_dev->eps[ep_index].new_ring =
1085                        xhci_ring_alloc(xhci, 1, true, mem_flags);
1086        if (!virt_dev->eps[ep_index].new_ring) {
1087                /* Attempt to use the ring cache */
1088                if (virt_dev->num_rings_cached == 0)
1089                        return -ENOMEM;
1090                virt_dev->eps[ep_index].new_ring =
1091                        virt_dev->ring_cache[virt_dev->num_rings_cached];
1092                virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1093                virt_dev->num_rings_cached--;
1094                xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1095        }
1096        virt_dev->eps[ep_index].skip = false;
1097        ep_ring = virt_dev->eps[ep_index].new_ring;
1098        ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
1099
1100        ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
1101        ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep));
1102
1103        /* FIXME dig Mult and streams info out of ep companion desc */
1104
1105        /* Allow 3 retries for everything but isoc;
1106         * error count = 0 means infinite retries.
1107         */
1108        if (!usb_endpoint_xfer_isoc(&ep->desc))
1109                ep_ctx->ep_info2 = ERROR_COUNT(3);
1110        else
1111                ep_ctx->ep_info2 = ERROR_COUNT(1);
1112
1113        ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
1114
1115        /* Set the max packet size and max burst */
1116        switch (udev->speed) {
1117        case USB_SPEED_SUPER:
1118                max_packet = ep->desc.wMaxPacketSize;
1119                ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1120                /* dig out max burst from ep companion desc */
1121                max_packet = ep->ss_ep_comp.bMaxBurst;
1122                if (!max_packet)
1123                        xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
1124                ep_ctx->ep_info2 |= MAX_BURST(max_packet);
1125                break;
1126        case USB_SPEED_HIGH:
1127                /* bits 11:12 specify the number of additional transaction
1128                 * opportunities per microframe (USB 2.0, section 9.6.6)
1129                 */
1130                if (usb_endpoint_xfer_isoc(&ep->desc) ||
1131                                usb_endpoint_xfer_int(&ep->desc)) {
1132                        max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
1133                        ep_ctx->ep_info2 |= MAX_BURST(max_burst);
1134                }
1135                /* Fall through */
1136        case USB_SPEED_FULL:
1137        case USB_SPEED_LOW:
1138                max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize);
1139                ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
1140                break;
1141        default:
1142                BUG();
1143        }
1144        max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1145        ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload);
1146
1147        /*
1148         * XXX no idea how to calculate the average TRB buffer length for bulk
1149         * endpoints, as the driver gives us no clue how big each scatter gather
1150         * list entry (or buffer) is going to be.
1151         *
1152         * For isochronous and interrupt endpoints, we set it to the max
1153         * available, until we have new API in the USB core to allow drivers to
1154         * declare how much bandwidth they actually need.
1155         *
1156         * Normally, it would be calculated by taking the total of the buffer
1157         * lengths in the TD and then dividing by the number of TRBs in a TD,
1158         * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1159         * use Event Data TRBs, and we don't chain in a link TRB on short
1160         * transfers, we're basically dividing by 1.
1161         */
1162        ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload);
1163
1164        /* FIXME Debug endpoint context */
1165        return 0;
1166}
1167
1168void xhci_endpoint_zero(struct xhci_hcd *xhci,
1169                struct xhci_virt_device *virt_dev,
1170                struct usb_host_endpoint *ep)
1171{
1172        unsigned int ep_index;
1173        struct xhci_ep_ctx *ep_ctx;
1174
1175        ep_index = xhci_get_endpoint_index(&ep->desc);
1176        ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1177
1178        ep_ctx->ep_info = 0;
1179        ep_ctx->ep_info2 = 0;
1180        ep_ctx->deq = 0;
1181        ep_ctx->tx_info = 0;
1182        /* Don't free the endpoint ring until the set interface or configuration
1183         * request succeeds.
1184         */
1185}
1186
1187/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1188 * Useful when you want to change one particular aspect of the endpoint and then
1189 * issue a configure endpoint command.
1190 */
1191void xhci_endpoint_copy(struct xhci_hcd *xhci,
1192                struct xhci_container_ctx *in_ctx,
1193                struct xhci_container_ctx *out_ctx,
1194                unsigned int ep_index)
1195{
1196        struct xhci_ep_ctx *out_ep_ctx;
1197        struct xhci_ep_ctx *in_ep_ctx;
1198
1199        out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1200        in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1201
1202        in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1203        in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1204        in_ep_ctx->deq = out_ep_ctx->deq;
1205        in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1206}
1207
1208/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1209 * Useful when you want to change one particular aspect of the endpoint and then
1210 * issue a configure endpoint command.  Only the context entries field matters,
1211 * but we'll copy the whole thing anyway.
1212 */
1213void xhci_slot_copy(struct xhci_hcd *xhci,
1214                struct xhci_container_ctx *in_ctx,
1215                struct xhci_container_ctx *out_ctx)
1216{
1217        struct xhci_slot_ctx *in_slot_ctx;
1218        struct xhci_slot_ctx *out_slot_ctx;
1219
1220        in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1221        out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1222
1223        in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1224        in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1225        in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1226        in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1227}
1228
1229/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1230static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1231{
1232        int i;
1233        struct device *dev = xhci_to_hcd(xhci)->self.controller;
1234        int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1235
1236        xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1237
1238        if (!num_sp)
1239                return 0;
1240
1241        xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1242        if (!xhci->scratchpad)
1243                goto fail_sp;
1244
1245        xhci->scratchpad->sp_array =
1246                pci_alloc_consistent(to_pci_dev(dev),
1247                                     num_sp * sizeof(u64),
1248                                     &xhci->scratchpad->sp_dma);
1249        if (!xhci->scratchpad->sp_array)
1250                goto fail_sp2;
1251
1252        xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1253        if (!xhci->scratchpad->sp_buffers)
1254                goto fail_sp3;
1255
1256        xhci->scratchpad->sp_dma_buffers =
1257                kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1258
1259        if (!xhci->scratchpad->sp_dma_buffers)
1260                goto fail_sp4;
1261
1262        xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
1263        for (i = 0; i < num_sp; i++) {
1264                dma_addr_t dma;
1265                void *buf = pci_alloc_consistent(to_pci_dev(dev),
1266                                                 xhci->page_size, &dma);
1267                if (!buf)
1268                        goto fail_sp5;
1269
1270                xhci->scratchpad->sp_array[i] = dma;
1271                xhci->scratchpad->sp_buffers[i] = buf;
1272                xhci->scratchpad->sp_dma_buffers[i] = dma;
1273        }
1274
1275        return 0;
1276
1277 fail_sp5:
1278        for (i = i - 1; i >= 0; i--) {
1279                pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1280                                    xhci->scratchpad->sp_buffers[i],
1281                                    xhci->scratchpad->sp_dma_buffers[i]);
1282        }
1283        kfree(xhci->scratchpad->sp_dma_buffers);
1284
1285 fail_sp4:
1286        kfree(xhci->scratchpad->sp_buffers);
1287
1288 fail_sp3:
1289        pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1290                            xhci->scratchpad->sp_array,
1291                            xhci->scratchpad->sp_dma);
1292
1293 fail_sp2:
1294        kfree(xhci->scratchpad);
1295        xhci->scratchpad = NULL;
1296
1297 fail_sp:
1298        return -ENOMEM;
1299}
1300
1301static void scratchpad_free(struct xhci_hcd *xhci)
1302{
1303        int num_sp;
1304        int i;
1305        struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1306
1307        if (!xhci->scratchpad)
1308                return;
1309
1310        num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1311
1312        for (i = 0; i < num_sp; i++) {
1313                pci_free_consistent(pdev, xhci->page_size,
1314                                    xhci->scratchpad->sp_buffers[i],
1315                                    xhci->scratchpad->sp_dma_buffers[i]);
1316        }
1317        kfree(xhci->scratchpad->sp_dma_buffers);
1318        kfree(xhci->scratchpad->sp_buffers);
1319        pci_free_consistent(pdev, num_sp * sizeof(u64),
1320                            xhci->scratchpad->sp_array,
1321                            xhci->scratchpad->sp_dma);
1322        kfree(xhci->scratchpad);
1323        xhci->scratchpad = NULL;
1324}
1325
1326struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1327                bool allocate_in_ctx, bool allocate_completion,
1328                gfp_t mem_flags)
1329{
1330        struct xhci_command *command;
1331
1332        command = kzalloc(sizeof(*command), mem_flags);
1333        if (!command)
1334                return NULL;
1335
1336        if (allocate_in_ctx) {
1337                command->in_ctx =
1338                        xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1339                                        mem_flags);
1340                if (!command->in_ctx) {
1341                        kfree(command);
1342                        return NULL;
1343                }
1344        }
1345
1346        if (allocate_completion) {
1347                command->completion =
1348                        kzalloc(sizeof(struct completion), mem_flags);
1349                if (!command->completion) {
1350                        xhci_free_container_ctx(xhci, command->in_ctx);
1351                        kfree(command);
1352                        return NULL;
1353                }
1354                init_completion(command->completion);
1355        }
1356
1357        command->status = 0;
1358        INIT_LIST_HEAD(&command->cmd_list);
1359        return command;
1360}
1361
1362void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1363{
1364        int last;
1365
1366        if (!urb_priv)
1367                return;
1368
1369        last = urb_priv->length - 1;
1370        if (last >= 0) {
1371                int     i;
1372                for (i = 0; i <= last; i++)
1373                        kfree(urb_priv->td[i]);
1374        }
1375        kfree(urb_priv);
1376}
1377
1378void xhci_free_command(struct xhci_hcd *xhci,
1379                struct xhci_command *command)
1380{
1381        xhci_free_container_ctx(xhci,
1382                        command->in_ctx);
1383        kfree(command->completion);
1384        kfree(command);
1385}
1386
1387void xhci_mem_cleanup(struct xhci_hcd *xhci)
1388{
1389        struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1390        int size;
1391        int i;
1392
1393        /* Free the Event Ring Segment Table and the actual Event Ring */
1394        if (xhci->ir_set) {
1395                xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1396                xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1397                xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1398        }
1399        size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1400        if (xhci->erst.entries)
1401                pci_free_consistent(pdev, size,
1402                                xhci->erst.entries, xhci->erst.erst_dma_addr);
1403        xhci->erst.entries = NULL;
1404        xhci_dbg(xhci, "Freed ERST\n");
1405        if (xhci->event_ring)
1406                xhci_ring_free(xhci, xhci->event_ring);
1407        xhci->event_ring = NULL;
1408        xhci_dbg(xhci, "Freed event ring\n");
1409
1410        xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1411        if (xhci->cmd_ring)
1412                xhci_ring_free(xhci, xhci->cmd_ring);
1413        xhci->cmd_ring = NULL;
1414        xhci_dbg(xhci, "Freed command ring\n");
1415
1416        for (i = 1; i < MAX_HC_SLOTS; ++i)
1417                xhci_free_virt_device(xhci, i);
1418
1419        if (xhci->segment_pool)
1420                dma_pool_destroy(xhci->segment_pool);
1421        xhci->segment_pool = NULL;
1422        xhci_dbg(xhci, "Freed segment pool\n");
1423
1424        if (xhci->device_pool)
1425                dma_pool_destroy(xhci->device_pool);
1426        xhci->device_pool = NULL;
1427        xhci_dbg(xhci, "Freed device context pool\n");
1428
1429        if (xhci->small_streams_pool)
1430                dma_pool_destroy(xhci->small_streams_pool);
1431        xhci->small_streams_pool = NULL;
1432        xhci_dbg(xhci, "Freed small stream array pool\n");
1433
1434        if (xhci->medium_streams_pool)
1435                dma_pool_destroy(xhci->medium_streams_pool);
1436        xhci->medium_streams_pool = NULL;
1437        xhci_dbg(xhci, "Freed medium stream array pool\n");
1438
1439        xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1440        if (xhci->dcbaa)
1441                pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1442                                xhci->dcbaa, xhci->dcbaa->dma);
1443        xhci->dcbaa = NULL;
1444
1445        scratchpad_free(xhci);
1446
1447        xhci->num_usb2_ports = 0;
1448        xhci->num_usb3_ports = 0;
1449        kfree(xhci->usb2_ports);
1450        kfree(xhci->usb3_ports);
1451        kfree(xhci->port_array);
1452
1453        xhci->page_size = 0;
1454        xhci->page_shift = 0;
1455        xhci->bus_suspended = 0;
1456}
1457
1458static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1459                struct xhci_segment *input_seg,
1460                union xhci_trb *start_trb,
1461                union xhci_trb *end_trb,
1462                dma_addr_t input_dma,
1463                struct xhci_segment *result_seg,
1464                char *test_name, int test_number)
1465{
1466        unsigned long long start_dma;
1467        unsigned long long end_dma;
1468        struct xhci_segment *seg;
1469
1470        start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1471        end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1472
1473        seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1474        if (seg != result_seg) {
1475                xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1476                                test_name, test_number);
1477                xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1478                                "input DMA 0x%llx\n",
1479                                input_seg,
1480                                (unsigned long long) input_dma);
1481                xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1482                                "ending TRB %p (0x%llx DMA)\n",
1483                                start_trb, start_dma,
1484                                end_trb, end_dma);
1485                xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1486                                result_seg, seg);
1487                return -1;
1488        }
1489        return 0;
1490}
1491
1492/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1493static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1494{
1495        struct {
1496                dma_addr_t              input_dma;
1497                struct xhci_segment     *result_seg;
1498        } simple_test_vector [] = {
1499                /* A zeroed DMA field should fail */
1500                { 0, NULL },
1501                /* One TRB before the ring start should fail */
1502                { xhci->event_ring->first_seg->dma - 16, NULL },
1503                /* One byte before the ring start should fail */
1504                { xhci->event_ring->first_seg->dma - 1, NULL },
1505                /* Starting TRB should succeed */
1506                { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1507                /* Ending TRB should succeed */
1508                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1509                        xhci->event_ring->first_seg },
1510                /* One byte after the ring end should fail */
1511                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1512                /* One TRB after the ring end should fail */
1513                { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1514                /* An address of all ones should fail */
1515                { (dma_addr_t) (~0), NULL },
1516        };
1517        struct {
1518                struct xhci_segment     *input_seg;
1519                union xhci_trb          *start_trb;
1520                union xhci_trb          *end_trb;
1521                dma_addr_t              input_dma;
1522                struct xhci_segment     *result_seg;
1523        } complex_test_vector [] = {
1524                /* Test feeding a valid DMA address from a different ring */
1525                {       .input_seg = xhci->event_ring->first_seg,
1526                        .start_trb = xhci->event_ring->first_seg->trbs,
1527                        .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1528                        .input_dma = xhci->cmd_ring->first_seg->dma,
1529                        .result_seg = NULL,
1530                },
1531                /* Test feeding a valid end TRB from a different ring */
1532                {       .input_seg = xhci->event_ring->first_seg,
1533                        .start_trb = xhci->event_ring->first_seg->trbs,
1534                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1535                        .input_dma = xhci->cmd_ring->first_seg->dma,
1536                        .result_seg = NULL,
1537                },
1538                /* Test feeding a valid start and end TRB from a different ring */
1539                {       .input_seg = xhci->event_ring->first_seg,
1540                        .start_trb = xhci->cmd_ring->first_seg->trbs,
1541                        .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1542                        .input_dma = xhci->cmd_ring->first_seg->dma,
1543                        .result_seg = NULL,
1544                },
1545                /* TRB in this ring, but after this TD */
1546                {       .input_seg = xhci->event_ring->first_seg,
1547                        .start_trb = &xhci->event_ring->first_seg->trbs[0],
1548                        .end_trb = &xhci->event_ring->first_seg->trbs[3],
1549                        .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1550                        .result_seg = NULL,
1551                },
1552                /* TRB in this ring, but before this TD */
1553                {       .input_seg = xhci->event_ring->first_seg,
1554                        .start_trb = &xhci->event_ring->first_seg->trbs[3],
1555                        .end_trb = &xhci->event_ring->first_seg->trbs[6],
1556                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1557                        .result_seg = NULL,
1558                },
1559                /* TRB in this ring, but after this wrapped TD */
1560                {       .input_seg = xhci->event_ring->first_seg,
1561                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1562                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
1563                        .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1564                        .result_seg = NULL,
1565                },
1566                /* TRB in this ring, but before this wrapped TD */
1567                {       .input_seg = xhci->event_ring->first_seg,
1568                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1569                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
1570                        .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1571                        .result_seg = NULL,
1572                },
1573                /* TRB not in this ring, and we have a wrapped TD */
1574                {       .input_seg = xhci->event_ring->first_seg,
1575                        .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1576                        .end_trb = &xhci->event_ring->first_seg->trbs[1],
1577                        .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1578                        .result_seg = NULL,
1579                },
1580        };
1581
1582        unsigned int num_tests;
1583        int i, ret;
1584
1585        num_tests = ARRAY_SIZE(simple_test_vector);
1586        for (i = 0; i < num_tests; i++) {
1587                ret = xhci_test_trb_in_td(xhci,
1588                                xhci->event_ring->first_seg,
1589                                xhci->event_ring->first_seg->trbs,
1590                                &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1591                                simple_test_vector[i].input_dma,
1592                                simple_test_vector[i].result_seg,
1593                                "Simple", i);
1594                if (ret < 0)
1595                        return ret;
1596        }
1597
1598        num_tests = ARRAY_SIZE(complex_test_vector);
1599        for (i = 0; i < num_tests; i++) {
1600                ret = xhci_test_trb_in_td(xhci,
1601                                complex_test_vector[i].input_seg,
1602                                complex_test_vector[i].start_trb,
1603                                complex_test_vector[i].end_trb,
1604                                complex_test_vector[i].input_dma,
1605                                complex_test_vector[i].result_seg,
1606                                "Complex", i);
1607                if (ret < 0)
1608                        return ret;
1609        }
1610        xhci_dbg(xhci, "TRB math tests passed.\n");
1611        return 0;
1612}
1613
1614static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1615{
1616        u64 temp;
1617        dma_addr_t deq;
1618
1619        deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1620                        xhci->event_ring->dequeue);
1621        if (deq == 0 && !in_interrupt())
1622                xhci_warn(xhci, "WARN something wrong with SW event ring "
1623                                "dequeue ptr.\n");
1624        /* Update HC event ring dequeue pointer */
1625        temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1626        temp &= ERST_PTR_MASK;
1627        /* Don't clear the EHB bit (which is RW1C) because
1628         * there might be more events to service.
1629         */
1630        temp &= ~ERST_EHB;
1631        xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1632                        "preserving EHB bit\n");
1633        xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1634                        &xhci->ir_set->erst_dequeue);
1635}
1636
1637static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1638                u32 __iomem *addr, u8 major_revision)
1639{
1640        u32 temp, port_offset, port_count;
1641        int i;
1642
1643        if (major_revision > 0x03) {
1644                xhci_warn(xhci, "Ignoring unknown port speed, "
1645                                "Ext Cap %p, revision = 0x%x\n",
1646                                addr, major_revision);
1647                /* Ignoring port protocol we can't understand. FIXME */
1648                return;
1649        }
1650
1651        /* Port offset and count in the third dword, see section 7.2 */
1652        temp = xhci_readl(xhci, addr + 2);
1653        port_offset = XHCI_EXT_PORT_OFF(temp);
1654        port_count = XHCI_EXT_PORT_COUNT(temp);
1655        xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1656                        "count = %u, revision = 0x%x\n",
1657                        addr, port_offset, port_count, major_revision);
1658        /* Port count includes the current port offset */
1659        if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1660                /* WTF? "Valid values are ‘1’ to MaxPorts" */
1661                return;
1662        port_offset--;
1663        for (i = port_offset; i < (port_offset + port_count); i++) {
1664                /* Duplicate entry.  Ignore the port if the revisions differ. */
1665                if (xhci->port_array[i] != 0) {
1666                        xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1667                                        " port %u\n", addr, i);
1668                        xhci_warn(xhci, "Port was marked as USB %u, "
1669                                        "duplicated as USB %u\n",
1670                                        xhci->port_array[i], major_revision);
1671                        /* Only adjust the roothub port counts if we haven't
1672                         * found a similar duplicate.
1673                         */
1674                        if (xhci->port_array[i] != major_revision &&
1675                                xhci->port_array[i] != (u8) -1) {
1676                                if (xhci->port_array[i] == 0x03)
1677                                        xhci->num_usb3_ports--;
1678                                else
1679                                        xhci->num_usb2_ports--;
1680                                xhci->port_array[i] = (u8) -1;
1681                        }
1682                        /* FIXME: Should we disable the port? */
1683                        continue;
1684                }
1685                xhci->port_array[i] = major_revision;
1686                if (major_revision == 0x03)
1687                        xhci->num_usb3_ports++;
1688                else
1689                        xhci->num_usb2_ports++;
1690        }
1691        /* FIXME: Should we disable ports not in the Extended Capabilities? */
1692}
1693
1694/*
1695 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1696 * specify what speeds each port is supposed to be.  We can't count on the port
1697 * speed bits in the PORTSC register being correct until a device is connected,
1698 * but we need to set up the two fake roothubs with the correct number of USB
1699 * 3.0 and USB 2.0 ports at host controller initialization time.
1700 */
1701static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
1702{
1703        u32 __iomem *addr;
1704        u32 offset;
1705        unsigned int num_ports;
1706        int i, port_index;
1707
1708        addr = &xhci->cap_regs->hcc_params;
1709        offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
1710        if (offset == 0) {
1711                xhci_err(xhci, "No Extended Capability registers, "
1712                                "unable to set up roothub.\n");
1713                return -ENODEV;
1714        }
1715
1716        num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1717        xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
1718        if (!xhci->port_array)
1719                return -ENOMEM;
1720
1721        /*
1722         * For whatever reason, the first capability offset is from the
1723         * capability register base, not from the HCCPARAMS register.
1724         * See section 5.3.6 for offset calculation.
1725         */
1726        addr = &xhci->cap_regs->hc_capbase + offset;
1727        while (1) {
1728                u32 cap_id;
1729
1730                cap_id = xhci_readl(xhci, addr);
1731                if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
1732                        xhci_add_in_port(xhci, num_ports, addr,
1733                                        (u8) XHCI_EXT_PORT_MAJOR(cap_id));
1734                offset = XHCI_EXT_CAPS_NEXT(cap_id);
1735                if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
1736                                == num_ports)
1737                        break;
1738                /*
1739                 * Once you're into the Extended Capabilities, the offset is
1740                 * always relative to the register holding the offset.
1741                 */
1742                addr += offset;
1743        }
1744
1745        if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
1746                xhci_warn(xhci, "No ports on the roothubs?\n");
1747                return -ENODEV;
1748        }
1749        xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
1750                        xhci->num_usb2_ports, xhci->num_usb3_ports);
1751        /*
1752         * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
1753         * Not sure how the USB core will handle a hub with no ports...
1754         */
1755        if (xhci->num_usb2_ports) {
1756                xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
1757                                xhci->num_usb2_ports, flags);
1758                if (!xhci->usb2_ports)
1759                        return -ENOMEM;
1760
1761                port_index = 0;
1762                for (i = 0; i < num_ports; i++) {
1763                        if (xhci->port_array[i] == 0x03 ||
1764                                        xhci->port_array[i] == 0 ||
1765                                        xhci->port_array[i] == -1)
1766                                continue;
1767
1768                        xhci->usb2_ports[port_index] =
1769                                &xhci->op_regs->port_status_base +
1770                                NUM_PORT_REGS*i;
1771                        xhci_dbg(xhci, "USB 2.0 port at index %u, "
1772                                        "addr = %p\n", i,
1773                                        xhci->usb2_ports[port_index]);
1774                        port_index++;
1775                }
1776        }
1777        if (xhci->num_usb3_ports) {
1778                xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
1779                                xhci->num_usb3_ports, flags);
1780                if (!xhci->usb3_ports)
1781                        return -ENOMEM;
1782
1783                port_index = 0;
1784                for (i = 0; i < num_ports; i++)
1785                        if (xhci->port_array[i] == 0x03) {
1786                                xhci->usb3_ports[port_index] =
1787                                        &xhci->op_regs->port_status_base +
1788                                        NUM_PORT_REGS*i;
1789                                xhci_dbg(xhci, "USB 3.0 port at index %u, "
1790                                                "addr = %p\n", i,
1791                                                xhci->usb3_ports[port_index]);
1792                                port_index++;
1793                        }
1794        }
1795        return 0;
1796}
1797
1798int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1799{
1800        dma_addr_t      dma;
1801        struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1802        unsigned int    val, val2;
1803        u64             val_64;
1804        struct xhci_segment     *seg;
1805        u32 page_size;
1806        int i;
1807
1808        page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1809        xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1810        for (i = 0; i < 16; i++) {
1811                if ((0x1 & page_size) != 0)
1812                        break;
1813                page_size = page_size >> 1;
1814        }
1815        if (i < 16)
1816                xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1817        else
1818                xhci_warn(xhci, "WARN: no supported page size\n");
1819        /* Use 4K pages, since that's common and the minimum the HC supports */
1820        xhci->page_shift = 12;
1821        xhci->page_size = 1 << xhci->page_shift;
1822        xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1823
1824        /*
1825         * Program the Number of Device Slots Enabled field in the CONFIG
1826         * register with the max value of slots the HC can handle.
1827         */
1828        val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1829        xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1830                        (unsigned int) val);
1831        val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1832        val |= (val2 & ~HCS_SLOTS_MASK);
1833        xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1834                        (unsigned int) val);
1835        xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1836
1837        /*
1838         * Section 5.4.8 - doorbell array must be
1839         * "physically contiguous and 64-byte (cache line) aligned".
1840         */
1841        xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1842                        sizeof(*xhci->dcbaa), &dma);
1843        if (!xhci->dcbaa)
1844                goto fail;
1845        memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1846        xhci->dcbaa->dma = dma;
1847        xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1848                        (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1849        xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1850
1851        /*
1852         * Initialize the ring segment pool.  The ring must be a contiguous
1853         * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1854         * however, the command ring segment needs 64-byte aligned segments,
1855         * so we pick the greater alignment need.
1856         */
1857        xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1858                        SEGMENT_SIZE, 64, xhci->page_size);
1859
1860        /* See Table 46 and Note on Figure 55 */
1861        xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1862                        2112, 64, xhci->page_size);
1863        if (!xhci->segment_pool || !xhci->device_pool)
1864                goto fail;
1865
1866        /* Linear stream context arrays don't have any boundary restrictions,
1867         * and only need to be 16-byte aligned.
1868         */
1869        xhci->small_streams_pool =
1870                dma_pool_create("xHCI 256 byte stream ctx arrays",
1871                        dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
1872        xhci->medium_streams_pool =
1873                dma_pool_create("xHCI 1KB stream ctx arrays",
1874                        dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
1875        /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
1876         * will be allocated with pci_alloc_consistent()
1877         */
1878
1879        if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
1880                goto fail;
1881
1882        /* Set up the command ring to have one segments for now. */
1883        xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1884        if (!xhci->cmd_ring)
1885                goto fail;
1886        xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1887        xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1888                        (unsigned long long)xhci->cmd_ring->first_seg->dma);
1889
1890        /* Set the address in the Command Ring Control register */
1891        val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1892        val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1893                (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1894                xhci->cmd_ring->cycle_state;
1895        xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1896        xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1897        xhci_dbg_cmd_ptrs(xhci);
1898
1899        val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1900        val &= DBOFF_MASK;
1901        xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1902                        " from cap regs base addr\n", val);
1903        xhci->dba = (void __iomem *) xhci->cap_regs + val;
1904        xhci_dbg_regs(xhci);
1905        xhci_print_run_regs(xhci);
1906        /* Set ir_set to interrupt register set 0 */
1907        xhci->ir_set = &xhci->run_regs->ir_set[0];
1908
1909        /*
1910         * Event ring setup: Allocate a normal ring, but also setup
1911         * the event ring segment table (ERST).  Section 4.9.3.
1912         */
1913        xhci_dbg(xhci, "// Allocating event ring\n");
1914        xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1915        if (!xhci->event_ring)
1916                goto fail;
1917        if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1918                goto fail;
1919
1920        xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1921                        sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1922        if (!xhci->erst.entries)
1923                goto fail;
1924        xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1925                        (unsigned long long)dma);
1926
1927        memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1928        xhci->erst.num_entries = ERST_NUM_SEGS;
1929        xhci->erst.erst_dma_addr = dma;
1930        xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1931                        xhci->erst.num_entries,
1932                        xhci->erst.entries,
1933                        (unsigned long long)xhci->erst.erst_dma_addr);
1934
1935        /* set ring base address and size for each segment table entry */
1936        for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1937                struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1938                entry->seg_addr = seg->dma;
1939                entry->seg_size = TRBS_PER_SEGMENT;
1940                entry->rsvd = 0;
1941                seg = seg->next;
1942        }
1943
1944        /* set ERST count with the number of entries in the segment table */
1945        val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1946        val &= ERST_SIZE_MASK;
1947        val |= ERST_NUM_SEGS;
1948        xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1949                        val);
1950        xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1951
1952        xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1953        /* set the segment table base address */
1954        xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1955                        (unsigned long long)xhci->erst.erst_dma_addr);
1956        val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1957        val_64 &= ERST_PTR_MASK;
1958        val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1959        xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1960
1961        /* Set the event ring dequeue address */
1962        xhci_set_hc_event_deq(xhci);
1963        xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1964        xhci_print_ir_set(xhci, 0);
1965
1966        /*
1967         * XXX: Might need to set the Interrupter Moderation Register to
1968         * something other than the default (~1ms minimum between interrupts).
1969         * See section 5.5.1.2.
1970         */
1971        init_completion(&xhci->addr_dev);
1972        for (i = 0; i < MAX_HC_SLOTS; ++i)
1973                xhci->devs[i] = NULL;
1974        for (i = 0; i < MAX_HC_PORTS; ++i)
1975                xhci->resume_done[i] = 0;
1976
1977        if (scratchpad_alloc(xhci, flags))
1978                goto fail;
1979        if (xhci_setup_port_arrays(xhci, flags))
1980                goto fail;
1981
1982        return 0;
1983
1984fail:
1985        xhci_warn(xhci, "Couldn't initialize memory\n");
1986        xhci_mem_cleanup(xhci);
1987        return -ENOMEM;
1988}
1989