linux/drivers/xen/swiotlb-xen.c
<<
>>
Prefs
   1/*
   2 *  Copyright 2010
   3 *  by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
   4 *
   5 * This code provides a IOMMU for Xen PV guests with PCI passthrough.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License v2.0 as published by
   9 * the Free Software Foundation
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * PV guests under Xen are running in an non-contiguous memory architecture.
  17 *
  18 * When PCI pass-through is utilized, this necessitates an IOMMU for
  19 * translating bus (DMA) to virtual and vice-versa and also providing a
  20 * mechanism to have contiguous pages for device drivers operations (say DMA
  21 * operations).
  22 *
  23 * Specifically, under Xen the Linux idea of pages is an illusion. It
  24 * assumes that pages start at zero and go up to the available memory. To
  25 * help with that, the Linux Xen MMU provides a lookup mechanism to
  26 * translate the page frame numbers (PFN) to machine frame numbers (MFN)
  27 * and vice-versa. The MFN are the "real" frame numbers. Furthermore
  28 * memory is not contiguous. Xen hypervisor stitches memory for guests
  29 * from different pools, which means there is no guarantee that PFN==MFN
  30 * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
  31 * allocated in descending order (high to low), meaning the guest might
  32 * never get any MFN's under the 4GB mark.
  33 *
  34 */
  35
  36#include <linux/bootmem.h>
  37#include <linux/dma-mapping.h>
  38#include <xen/swiotlb-xen.h>
  39#include <xen/page.h>
  40#include <xen/xen-ops.h>
  41/*
  42 * Used to do a quick range check in swiotlb_tbl_unmap_single and
  43 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  44 * API.
  45 */
  46
  47static char *xen_io_tlb_start, *xen_io_tlb_end;
  48static unsigned long xen_io_tlb_nslabs;
  49/*
  50 * Quick lookup value of the bus address of the IOTLB.
  51 */
  52
  53u64 start_dma_addr;
  54
  55static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
  56{
  57        return phys_to_machine(XPADDR(paddr)).maddr;;
  58}
  59
  60static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
  61{
  62        return machine_to_phys(XMADDR(baddr)).paddr;
  63}
  64
  65static dma_addr_t xen_virt_to_bus(void *address)
  66{
  67        return xen_phys_to_bus(virt_to_phys(address));
  68}
  69
  70static int check_pages_physically_contiguous(unsigned long pfn,
  71                                             unsigned int offset,
  72                                             size_t length)
  73{
  74        unsigned long next_mfn;
  75        int i;
  76        int nr_pages;
  77
  78        next_mfn = pfn_to_mfn(pfn);
  79        nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
  80
  81        for (i = 1; i < nr_pages; i++) {
  82                if (pfn_to_mfn(++pfn) != ++next_mfn)
  83                        return 0;
  84        }
  85        return 1;
  86}
  87
  88static int range_straddles_page_boundary(phys_addr_t p, size_t size)
  89{
  90        unsigned long pfn = PFN_DOWN(p);
  91        unsigned int offset = p & ~PAGE_MASK;
  92
  93        if (offset + size <= PAGE_SIZE)
  94                return 0;
  95        if (check_pages_physically_contiguous(pfn, offset, size))
  96                return 0;
  97        return 1;
  98}
  99
 100static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
 101{
 102        unsigned long mfn = PFN_DOWN(dma_addr);
 103        unsigned long pfn = mfn_to_local_pfn(mfn);
 104        phys_addr_t paddr;
 105
 106        /* If the address is outside our domain, it CAN
 107         * have the same virtual address as another address
 108         * in our domain. Therefore _only_ check address within our domain.
 109         */
 110        if (pfn_valid(pfn)) {
 111                paddr = PFN_PHYS(pfn);
 112                return paddr >= virt_to_phys(xen_io_tlb_start) &&
 113                       paddr < virt_to_phys(xen_io_tlb_end);
 114        }
 115        return 0;
 116}
 117
 118static int max_dma_bits = 32;
 119
 120static int
 121xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
 122{
 123        int i, rc;
 124        int dma_bits;
 125
 126        dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
 127
 128        i = 0;
 129        do {
 130                int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
 131
 132                do {
 133                        rc = xen_create_contiguous_region(
 134                                (unsigned long)buf + (i << IO_TLB_SHIFT),
 135                                get_order(slabs << IO_TLB_SHIFT),
 136                                dma_bits);
 137                } while (rc && dma_bits++ < max_dma_bits);
 138                if (rc)
 139                        return rc;
 140
 141                i += slabs;
 142        } while (i < nslabs);
 143        return 0;
 144}
 145
 146void __init xen_swiotlb_init(int verbose)
 147{
 148        unsigned long bytes;
 149        int rc;
 150
 151        xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
 152        xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
 153
 154        bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
 155
 156        /*
 157         * Get IO TLB memory from any location.
 158         */
 159        xen_io_tlb_start = alloc_bootmem(bytes);
 160        if (!xen_io_tlb_start)
 161                panic("Cannot allocate SWIOTLB buffer");
 162
 163        xen_io_tlb_end = xen_io_tlb_start + bytes;
 164        /*
 165         * And replace that memory with pages under 4GB.
 166         */
 167        rc = xen_swiotlb_fixup(xen_io_tlb_start,
 168                               bytes,
 169                               xen_io_tlb_nslabs);
 170        if (rc)
 171                goto error;
 172
 173        start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
 174        swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
 175
 176        return;
 177error:
 178        panic("DMA(%d): Failed to exchange pages allocated for DMA with Xen! "\
 179              "We either don't have the permission or you do not have enough"\
 180              "free memory under 4GB!\n", rc);
 181}
 182
 183void *
 184xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
 185                           dma_addr_t *dma_handle, gfp_t flags)
 186{
 187        void *ret;
 188        int order = get_order(size);
 189        u64 dma_mask = DMA_BIT_MASK(32);
 190        unsigned long vstart;
 191
 192        /*
 193        * Ignore region specifiers - the kernel's ideas of
 194        * pseudo-phys memory layout has nothing to do with the
 195        * machine physical layout.  We can't allocate highmem
 196        * because we can't return a pointer to it.
 197        */
 198        flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
 199
 200        if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
 201                return ret;
 202
 203        vstart = __get_free_pages(flags, order);
 204        ret = (void *)vstart;
 205
 206        if (hwdev && hwdev->coherent_dma_mask)
 207                dma_mask = dma_alloc_coherent_mask(hwdev, flags);
 208
 209        if (ret) {
 210                if (xen_create_contiguous_region(vstart, order,
 211                                                 fls64(dma_mask)) != 0) {
 212                        free_pages(vstart, order);
 213                        return NULL;
 214                }
 215                memset(ret, 0, size);
 216                *dma_handle = virt_to_machine(ret).maddr;
 217        }
 218        return ret;
 219}
 220EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
 221
 222void
 223xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
 224                          dma_addr_t dev_addr)
 225{
 226        int order = get_order(size);
 227
 228        if (dma_release_from_coherent(hwdev, order, vaddr))
 229                return;
 230
 231        xen_destroy_contiguous_region((unsigned long)vaddr, order);
 232        free_pages((unsigned long)vaddr, order);
 233}
 234EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
 235
 236
 237/*
 238 * Map a single buffer of the indicated size for DMA in streaming mode.  The
 239 * physical address to use is returned.
 240 *
 241 * Once the device is given the dma address, the device owns this memory until
 242 * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
 243 */
 244dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
 245                                unsigned long offset, size_t size,
 246                                enum dma_data_direction dir,
 247                                struct dma_attrs *attrs)
 248{
 249        phys_addr_t phys = page_to_phys(page) + offset;
 250        dma_addr_t dev_addr = xen_phys_to_bus(phys);
 251        void *map;
 252
 253        BUG_ON(dir == DMA_NONE);
 254        /*
 255         * If the address happens to be in the device's DMA window,
 256         * we can safely return the device addr and not worry about bounce
 257         * buffering it.
 258         */
 259        if (dma_capable(dev, dev_addr, size) &&
 260            !range_straddles_page_boundary(phys, size) && !swiotlb_force)
 261                return dev_addr;
 262
 263        /*
 264         * Oh well, have to allocate and map a bounce buffer.
 265         */
 266        map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
 267        if (!map)
 268                return DMA_ERROR_CODE;
 269
 270        dev_addr = xen_virt_to_bus(map);
 271
 272        /*
 273         * Ensure that the address returned is DMA'ble
 274         */
 275        if (!dma_capable(dev, dev_addr, size))
 276                panic("map_single: bounce buffer is not DMA'ble");
 277
 278        return dev_addr;
 279}
 280EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
 281
 282/*
 283 * Unmap a single streaming mode DMA translation.  The dma_addr and size must
 284 * match what was provided for in a previous xen_swiotlb_map_page call.  All
 285 * other usages are undefined.
 286 *
 287 * After this call, reads by the cpu to the buffer are guaranteed to see
 288 * whatever the device wrote there.
 289 */
 290static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
 291                             size_t size, enum dma_data_direction dir)
 292{
 293        phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 294
 295        BUG_ON(dir == DMA_NONE);
 296
 297        /* NOTE: We use dev_addr here, not paddr! */
 298        if (is_xen_swiotlb_buffer(dev_addr)) {
 299                swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
 300                return;
 301        }
 302
 303        if (dir != DMA_FROM_DEVICE)
 304                return;
 305
 306        /*
 307         * phys_to_virt doesn't work with hihgmem page but we could
 308         * call dma_mark_clean() with hihgmem page here. However, we
 309         * are fine since dma_mark_clean() is null on POWERPC. We can
 310         * make dma_mark_clean() take a physical address if necessary.
 311         */
 312        dma_mark_clean(phys_to_virt(paddr), size);
 313}
 314
 315void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
 316                            size_t size, enum dma_data_direction dir,
 317                            struct dma_attrs *attrs)
 318{
 319        xen_unmap_single(hwdev, dev_addr, size, dir);
 320}
 321EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
 322
 323/*
 324 * Make physical memory consistent for a single streaming mode DMA translation
 325 * after a transfer.
 326 *
 327 * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
 328 * using the cpu, yet do not wish to teardown the dma mapping, you must
 329 * call this function before doing so.  At the next point you give the dma
 330 * address back to the card, you must first perform a
 331 * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
 332 */
 333static void
 334xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
 335                        size_t size, enum dma_data_direction dir,
 336                        enum dma_sync_target target)
 337{
 338        phys_addr_t paddr = xen_bus_to_phys(dev_addr);
 339
 340        BUG_ON(dir == DMA_NONE);
 341
 342        /* NOTE: We use dev_addr here, not paddr! */
 343        if (is_xen_swiotlb_buffer(dev_addr)) {
 344                swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
 345                                       target);
 346                return;
 347        }
 348
 349        if (dir != DMA_FROM_DEVICE)
 350                return;
 351
 352        dma_mark_clean(phys_to_virt(paddr), size);
 353}
 354
 355void
 356xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
 357                                size_t size, enum dma_data_direction dir)
 358{
 359        xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
 360}
 361EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
 362
 363void
 364xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
 365                                   size_t size, enum dma_data_direction dir)
 366{
 367        xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
 368}
 369EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
 370
 371/*
 372 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 373 * This is the scatter-gather version of the above xen_swiotlb_map_page
 374 * interface.  Here the scatter gather list elements are each tagged with the
 375 * appropriate dma address and length.  They are obtained via
 376 * sg_dma_{address,length}(SG).
 377 *
 378 * NOTE: An implementation may be able to use a smaller number of
 379 *       DMA address/length pairs than there are SG table elements.
 380 *       (for example via virtual mapping capabilities)
 381 *       The routine returns the number of addr/length pairs actually
 382 *       used, at most nents.
 383 *
 384 * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
 385 * same here.
 386 */
 387int
 388xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 389                         int nelems, enum dma_data_direction dir,
 390                         struct dma_attrs *attrs)
 391{
 392        struct scatterlist *sg;
 393        int i;
 394
 395        BUG_ON(dir == DMA_NONE);
 396
 397        for_each_sg(sgl, sg, nelems, i) {
 398                phys_addr_t paddr = sg_phys(sg);
 399                dma_addr_t dev_addr = xen_phys_to_bus(paddr);
 400
 401                if (swiotlb_force ||
 402                    !dma_capable(hwdev, dev_addr, sg->length) ||
 403                    range_straddles_page_boundary(paddr, sg->length)) {
 404                        void *map = swiotlb_tbl_map_single(hwdev,
 405                                                           start_dma_addr,
 406                                                           sg_phys(sg),
 407                                                           sg->length, dir);
 408                        if (!map) {
 409                                /* Don't panic here, we expect map_sg users
 410                                   to do proper error handling. */
 411                                xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
 412                                                           attrs);
 413                                sgl[0].dma_length = 0;
 414                                return DMA_ERROR_CODE;
 415                        }
 416                        sg->dma_address = xen_virt_to_bus(map);
 417                } else
 418                        sg->dma_address = dev_addr;
 419                sg->dma_length = sg->length;
 420        }
 421        return nelems;
 422}
 423EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
 424
 425int
 426xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 427                   enum dma_data_direction dir)
 428{
 429        return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
 430}
 431EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg);
 432
 433/*
 434 * Unmap a set of streaming mode DMA translations.  Again, cpu read rules
 435 * concerning calls here are the same as for swiotlb_unmap_page() above.
 436 */
 437void
 438xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
 439                           int nelems, enum dma_data_direction dir,
 440                           struct dma_attrs *attrs)
 441{
 442        struct scatterlist *sg;
 443        int i;
 444
 445        BUG_ON(dir == DMA_NONE);
 446
 447        for_each_sg(sgl, sg, nelems, i)
 448                xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
 449
 450}
 451EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
 452
 453void
 454xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
 455                     enum dma_data_direction dir)
 456{
 457        return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
 458}
 459EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg);
 460
 461/*
 462 * Make physical memory consistent for a set of streaming mode DMA translations
 463 * after a transfer.
 464 *
 465 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
 466 * and usage.
 467 */
 468static void
 469xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
 470                    int nelems, enum dma_data_direction dir,
 471                    enum dma_sync_target target)
 472{
 473        struct scatterlist *sg;
 474        int i;
 475
 476        for_each_sg(sgl, sg, nelems, i)
 477                xen_swiotlb_sync_single(hwdev, sg->dma_address,
 478                                        sg->dma_length, dir, target);
 479}
 480
 481void
 482xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
 483                            int nelems, enum dma_data_direction dir)
 484{
 485        xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
 486}
 487EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
 488
 489void
 490xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
 491                               int nelems, enum dma_data_direction dir)
 492{
 493        xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
 494}
 495EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
 496
 497int
 498xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
 499{
 500        return !dma_addr;
 501}
 502EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
 503
 504/*
 505 * Return whether the given device DMA address mask can be supported
 506 * properly.  For example, if your device can only drive the low 24-bits
 507 * during bus mastering, then you would pass 0x00ffffff as the mask to
 508 * this function.
 509 */
 510int
 511xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
 512{
 513        return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
 514}
 515EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);
 516