linux/fs/aio.c
<<
>>
Prefs
   1/*
   2 *      An async IO implementation for Linux
   3 *      Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *      Implements an efficient asynchronous io interface.
   6 *
   7 *      Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
   8 *
   9 *      See ../COPYING for licensing terms.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/init.h>
  13#include <linux/errno.h>
  14#include <linux/time.h>
  15#include <linux/aio_abi.h>
  16#include <linux/module.h>
  17#include <linux/syscalls.h>
  18#include <linux/backing-dev.h>
  19#include <linux/uio.h>
  20
  21#define DEBUG 0
  22
  23#include <linux/sched.h>
  24#include <linux/fs.h>
  25#include <linux/file.h>
  26#include <linux/mm.h>
  27#include <linux/mman.h>
  28#include <linux/mmu_context.h>
  29#include <linux/slab.h>
  30#include <linux/timer.h>
  31#include <linux/aio.h>
  32#include <linux/highmem.h>
  33#include <linux/workqueue.h>
  34#include <linux/security.h>
  35#include <linux/eventfd.h>
  36#include <linux/blkdev.h>
  37#include <linux/mempool.h>
  38#include <linux/hash.h>
  39#include <linux/compat.h>
  40
  41#include <asm/kmap_types.h>
  42#include <asm/uaccess.h>
  43
  44#if DEBUG > 1
  45#define dprintk         printk
  46#else
  47#define dprintk(x...)   do { ; } while (0)
  48#endif
  49
  50/*------ sysctl variables----*/
  51static DEFINE_SPINLOCK(aio_nr_lock);
  52unsigned long aio_nr;           /* current system wide number of aio requests */
  53unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  54/*----end sysctl variables---*/
  55
  56static struct kmem_cache        *kiocb_cachep;
  57static struct kmem_cache        *kioctx_cachep;
  58
  59static struct workqueue_struct *aio_wq;
  60
  61/* Used for rare fput completion. */
  62static void aio_fput_routine(struct work_struct *);
  63static DECLARE_WORK(fput_work, aio_fput_routine);
  64
  65static DEFINE_SPINLOCK(fput_lock);
  66static LIST_HEAD(fput_head);
  67
  68#define AIO_BATCH_HASH_BITS     3 /* allocated on-stack, so don't go crazy */
  69#define AIO_BATCH_HASH_SIZE     (1 << AIO_BATCH_HASH_BITS)
  70struct aio_batch_entry {
  71        struct hlist_node list;
  72        struct address_space *mapping;
  73};
  74mempool_t *abe_pool;
  75
  76static void aio_kick_handler(struct work_struct *);
  77static void aio_queue_work(struct kioctx *);
  78
  79/* aio_setup
  80 *      Creates the slab caches used by the aio routines, panic on
  81 *      failure as this is done early during the boot sequence.
  82 */
  83static int __init aio_setup(void)
  84{
  85        kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  86        kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  87
  88        aio_wq = create_workqueue("aio");
  89        abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry));
  90        BUG_ON(!aio_wq || !abe_pool);
  91
  92        pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
  93
  94        return 0;
  95}
  96__initcall(aio_setup);
  97
  98static void aio_free_ring(struct kioctx *ctx)
  99{
 100        struct aio_ring_info *info = &ctx->ring_info;
 101        long i;
 102
 103        for (i=0; i<info->nr_pages; i++)
 104                put_page(info->ring_pages[i]);
 105
 106        if (info->mmap_size) {
 107                down_write(&ctx->mm->mmap_sem);
 108                do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
 109                up_write(&ctx->mm->mmap_sem);
 110        }
 111
 112        if (info->ring_pages && info->ring_pages != info->internal_pages)
 113                kfree(info->ring_pages);
 114        info->ring_pages = NULL;
 115        info->nr = 0;
 116}
 117
 118static int aio_setup_ring(struct kioctx *ctx)
 119{
 120        struct aio_ring *ring;
 121        struct aio_ring_info *info = &ctx->ring_info;
 122        unsigned nr_events = ctx->max_reqs;
 123        unsigned long size;
 124        int nr_pages;
 125
 126        /* Compensate for the ring buffer's head/tail overlap entry */
 127        nr_events += 2; /* 1 is required, 2 for good luck */
 128
 129        size = sizeof(struct aio_ring);
 130        size += sizeof(struct io_event) * nr_events;
 131        nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
 132
 133        if (nr_pages < 0)
 134                return -EINVAL;
 135
 136        nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
 137
 138        info->nr = 0;
 139        info->ring_pages = info->internal_pages;
 140        if (nr_pages > AIO_RING_PAGES) {
 141                info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
 142                if (!info->ring_pages)
 143                        return -ENOMEM;
 144        }
 145
 146        info->mmap_size = nr_pages * PAGE_SIZE;
 147        dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
 148        down_write(&ctx->mm->mmap_sem);
 149        info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 
 150                                  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
 151                                  0);
 152        if (IS_ERR((void *)info->mmap_base)) {
 153                up_write(&ctx->mm->mmap_sem);
 154                info->mmap_size = 0;
 155                aio_free_ring(ctx);
 156                return -EAGAIN;
 157        }
 158
 159        dprintk("mmap address: 0x%08lx\n", info->mmap_base);
 160        info->nr_pages = get_user_pages(current, ctx->mm,
 161                                        info->mmap_base, nr_pages, 
 162                                        1, 0, info->ring_pages, NULL);
 163        up_write(&ctx->mm->mmap_sem);
 164
 165        if (unlikely(info->nr_pages != nr_pages)) {
 166                aio_free_ring(ctx);
 167                return -EAGAIN;
 168        }
 169
 170        ctx->user_id = info->mmap_base;
 171
 172        info->nr = nr_events;           /* trusted copy */
 173
 174        ring = kmap_atomic(info->ring_pages[0], KM_USER0);
 175        ring->nr = nr_events;   /* user copy */
 176        ring->id = ctx->user_id;
 177        ring->head = ring->tail = 0;
 178        ring->magic = AIO_RING_MAGIC;
 179        ring->compat_features = AIO_RING_COMPAT_FEATURES;
 180        ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 181        ring->header_length = sizeof(struct aio_ring);
 182        kunmap_atomic(ring, KM_USER0);
 183
 184        return 0;
 185}
 186
 187
 188/* aio_ring_event: returns a pointer to the event at the given index from
 189 * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
 190 */
 191#define AIO_EVENTS_PER_PAGE     (PAGE_SIZE / sizeof(struct io_event))
 192#define AIO_EVENTS_FIRST_PAGE   ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 193#define AIO_EVENTS_OFFSET       (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 194
 195#define aio_ring_event(info, nr, km) ({                                 \
 196        unsigned pos = (nr) + AIO_EVENTS_OFFSET;                        \
 197        struct io_event *__event;                                       \
 198        __event = kmap_atomic(                                          \
 199                        (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
 200        __event += pos % AIO_EVENTS_PER_PAGE;                           \
 201        __event;                                                        \
 202})
 203
 204#define put_aio_ring_event(event, km) do {      \
 205        struct io_event *__event = (event);     \
 206        (void)__event;                          \
 207        kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
 208} while(0)
 209
 210static void ctx_rcu_free(struct rcu_head *head)
 211{
 212        struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
 213        unsigned nr_events = ctx->max_reqs;
 214
 215        kmem_cache_free(kioctx_cachep, ctx);
 216
 217        if (nr_events) {
 218                spin_lock(&aio_nr_lock);
 219                BUG_ON(aio_nr - nr_events > aio_nr);
 220                aio_nr -= nr_events;
 221                spin_unlock(&aio_nr_lock);
 222        }
 223}
 224
 225/* __put_ioctx
 226 *      Called when the last user of an aio context has gone away,
 227 *      and the struct needs to be freed.
 228 */
 229static void __put_ioctx(struct kioctx *ctx)
 230{
 231        BUG_ON(ctx->reqs_active);
 232
 233        cancel_delayed_work(&ctx->wq);
 234        cancel_work_sync(&ctx->wq.work);
 235        aio_free_ring(ctx);
 236        mmdrop(ctx->mm);
 237        ctx->mm = NULL;
 238        pr_debug("__put_ioctx: freeing %p\n", ctx);
 239        call_rcu(&ctx->rcu_head, ctx_rcu_free);
 240}
 241
 242static inline void get_ioctx(struct kioctx *kioctx)
 243{
 244        BUG_ON(atomic_read(&kioctx->users) <= 0);
 245        atomic_inc(&kioctx->users);
 246}
 247
 248static inline int try_get_ioctx(struct kioctx *kioctx)
 249{
 250        return atomic_inc_not_zero(&kioctx->users);
 251}
 252
 253static inline void put_ioctx(struct kioctx *kioctx)
 254{
 255        BUG_ON(atomic_read(&kioctx->users) <= 0);
 256        if (unlikely(atomic_dec_and_test(&kioctx->users)))
 257                __put_ioctx(kioctx);
 258}
 259
 260/* ioctx_alloc
 261 *      Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 262 */
 263static struct kioctx *ioctx_alloc(unsigned nr_events)
 264{
 265        struct mm_struct *mm;
 266        struct kioctx *ctx;
 267        int did_sync = 0;
 268
 269        /* Prevent overflows */
 270        if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
 271            (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
 272                pr_debug("ENOMEM: nr_events too high\n");
 273                return ERR_PTR(-EINVAL);
 274        }
 275
 276        if ((unsigned long)nr_events > aio_max_nr)
 277                return ERR_PTR(-EAGAIN);
 278
 279        ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 280        if (!ctx)
 281                return ERR_PTR(-ENOMEM);
 282
 283        ctx->max_reqs = nr_events;
 284        mm = ctx->mm = current->mm;
 285        atomic_inc(&mm->mm_count);
 286
 287        atomic_set(&ctx->users, 1);
 288        spin_lock_init(&ctx->ctx_lock);
 289        spin_lock_init(&ctx->ring_info.ring_lock);
 290        init_waitqueue_head(&ctx->wait);
 291
 292        INIT_LIST_HEAD(&ctx->active_reqs);
 293        INIT_LIST_HEAD(&ctx->run_list);
 294        INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
 295
 296        if (aio_setup_ring(ctx) < 0)
 297                goto out_freectx;
 298
 299        /* limit the number of system wide aios */
 300        do {
 301                spin_lock_bh(&aio_nr_lock);
 302                if (aio_nr + nr_events > aio_max_nr ||
 303                    aio_nr + nr_events < aio_nr)
 304                        ctx->max_reqs = 0;
 305                else
 306                        aio_nr += ctx->max_reqs;
 307                spin_unlock_bh(&aio_nr_lock);
 308                if (ctx->max_reqs || did_sync)
 309                        break;
 310
 311                /* wait for rcu callbacks to have completed before giving up */
 312                synchronize_rcu();
 313                did_sync = 1;
 314                ctx->max_reqs = nr_events;
 315        } while (1);
 316
 317        if (ctx->max_reqs == 0)
 318                goto out_cleanup;
 319
 320        /* now link into global list. */
 321        spin_lock(&mm->ioctx_lock);
 322        hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
 323        spin_unlock(&mm->ioctx_lock);
 324
 325        dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 326                ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
 327        return ctx;
 328
 329out_cleanup:
 330        __put_ioctx(ctx);
 331        return ERR_PTR(-EAGAIN);
 332
 333out_freectx:
 334        mmdrop(mm);
 335        kmem_cache_free(kioctx_cachep, ctx);
 336        ctx = ERR_PTR(-ENOMEM);
 337
 338        dprintk("aio: error allocating ioctx %p\n", ctx);
 339        return ctx;
 340}
 341
 342/* aio_cancel_all
 343 *      Cancels all outstanding aio requests on an aio context.  Used 
 344 *      when the processes owning a context have all exited to encourage 
 345 *      the rapid destruction of the kioctx.
 346 */
 347static void aio_cancel_all(struct kioctx *ctx)
 348{
 349        int (*cancel)(struct kiocb *, struct io_event *);
 350        struct io_event res;
 351        spin_lock_irq(&ctx->ctx_lock);
 352        ctx->dead = 1;
 353        while (!list_empty(&ctx->active_reqs)) {
 354                struct list_head *pos = ctx->active_reqs.next;
 355                struct kiocb *iocb = list_kiocb(pos);
 356                list_del_init(&iocb->ki_list);
 357                cancel = iocb->ki_cancel;
 358                kiocbSetCancelled(iocb);
 359                if (cancel) {
 360                        iocb->ki_users++;
 361                        spin_unlock_irq(&ctx->ctx_lock);
 362                        cancel(iocb, &res);
 363                        spin_lock_irq(&ctx->ctx_lock);
 364                }
 365        }
 366        spin_unlock_irq(&ctx->ctx_lock);
 367}
 368
 369static void wait_for_all_aios(struct kioctx *ctx)
 370{
 371        struct task_struct *tsk = current;
 372        DECLARE_WAITQUEUE(wait, tsk);
 373
 374        spin_lock_irq(&ctx->ctx_lock);
 375        if (!ctx->reqs_active)
 376                goto out;
 377
 378        add_wait_queue(&ctx->wait, &wait);
 379        set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 380        while (ctx->reqs_active) {
 381                spin_unlock_irq(&ctx->ctx_lock);
 382                io_schedule();
 383                set_task_state(tsk, TASK_UNINTERRUPTIBLE);
 384                spin_lock_irq(&ctx->ctx_lock);
 385        }
 386        __set_task_state(tsk, TASK_RUNNING);
 387        remove_wait_queue(&ctx->wait, &wait);
 388
 389out:
 390        spin_unlock_irq(&ctx->ctx_lock);
 391}
 392
 393/* wait_on_sync_kiocb:
 394 *      Waits on the given sync kiocb to complete.
 395 */
 396ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
 397{
 398        while (iocb->ki_users) {
 399                set_current_state(TASK_UNINTERRUPTIBLE);
 400                if (!iocb->ki_users)
 401                        break;
 402                io_schedule();
 403        }
 404        __set_current_state(TASK_RUNNING);
 405        return iocb->ki_user_data;
 406}
 407EXPORT_SYMBOL(wait_on_sync_kiocb);
 408
 409/* exit_aio: called when the last user of mm goes away.  At this point, 
 410 * there is no way for any new requests to be submited or any of the 
 411 * io_* syscalls to be called on the context.  However, there may be 
 412 * outstanding requests which hold references to the context; as they 
 413 * go away, they will call put_ioctx and release any pinned memory
 414 * associated with the request (held via struct page * references).
 415 */
 416void exit_aio(struct mm_struct *mm)
 417{
 418        struct kioctx *ctx;
 419
 420        while (!hlist_empty(&mm->ioctx_list)) {
 421                ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
 422                hlist_del_rcu(&ctx->list);
 423
 424                aio_cancel_all(ctx);
 425
 426                wait_for_all_aios(ctx);
 427                /*
 428                 * Ensure we don't leave the ctx on the aio_wq
 429                 */
 430                cancel_work_sync(&ctx->wq.work);
 431
 432                if (1 != atomic_read(&ctx->users))
 433                        printk(KERN_DEBUG
 434                                "exit_aio:ioctx still alive: %d %d %d\n",
 435                                atomic_read(&ctx->users), ctx->dead,
 436                                ctx->reqs_active);
 437                put_ioctx(ctx);
 438        }
 439}
 440
 441/* aio_get_req
 442 *      Allocate a slot for an aio request.  Increments the users count
 443 * of the kioctx so that the kioctx stays around until all requests are
 444 * complete.  Returns NULL if no requests are free.
 445 *
 446 * Returns with kiocb->users set to 2.  The io submit code path holds
 447 * an extra reference while submitting the i/o.
 448 * This prevents races between the aio code path referencing the
 449 * req (after submitting it) and aio_complete() freeing the req.
 450 */
 451static struct kiocb *__aio_get_req(struct kioctx *ctx)
 452{
 453        struct kiocb *req = NULL;
 454        struct aio_ring *ring;
 455        int okay = 0;
 456
 457        req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
 458        if (unlikely(!req))
 459                return NULL;
 460
 461        req->ki_flags = 0;
 462        req->ki_users = 2;
 463        req->ki_key = 0;
 464        req->ki_ctx = ctx;
 465        req->ki_cancel = NULL;
 466        req->ki_retry = NULL;
 467        req->ki_dtor = NULL;
 468        req->private = NULL;
 469        req->ki_iovec = NULL;
 470        INIT_LIST_HEAD(&req->ki_run_list);
 471        req->ki_eventfd = NULL;
 472
 473        /* Check if the completion queue has enough free space to
 474         * accept an event from this io.
 475         */
 476        spin_lock_irq(&ctx->ctx_lock);
 477        ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
 478        if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
 479                list_add(&req->ki_list, &ctx->active_reqs);
 480                ctx->reqs_active++;
 481                okay = 1;
 482        }
 483        kunmap_atomic(ring, KM_USER0);
 484        spin_unlock_irq(&ctx->ctx_lock);
 485
 486        if (!okay) {
 487                kmem_cache_free(kiocb_cachep, req);
 488                req = NULL;
 489        }
 490
 491        return req;
 492}
 493
 494static inline struct kiocb *aio_get_req(struct kioctx *ctx)
 495{
 496        struct kiocb *req;
 497        /* Handle a potential starvation case -- should be exceedingly rare as 
 498         * requests will be stuck on fput_head only if the aio_fput_routine is 
 499         * delayed and the requests were the last user of the struct file.
 500         */
 501        req = __aio_get_req(ctx);
 502        if (unlikely(NULL == req)) {
 503                aio_fput_routine(NULL);
 504                req = __aio_get_req(ctx);
 505        }
 506        return req;
 507}
 508
 509static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
 510{
 511        assert_spin_locked(&ctx->ctx_lock);
 512
 513        if (req->ki_eventfd != NULL)
 514                eventfd_ctx_put(req->ki_eventfd);
 515        if (req->ki_dtor)
 516                req->ki_dtor(req);
 517        if (req->ki_iovec != &req->ki_inline_vec)
 518                kfree(req->ki_iovec);
 519        kmem_cache_free(kiocb_cachep, req);
 520        ctx->reqs_active--;
 521
 522        if (unlikely(!ctx->reqs_active && ctx->dead))
 523                wake_up(&ctx->wait);
 524}
 525
 526static void aio_fput_routine(struct work_struct *data)
 527{
 528        spin_lock_irq(&fput_lock);
 529        while (likely(!list_empty(&fput_head))) {
 530                struct kiocb *req = list_kiocb(fput_head.next);
 531                struct kioctx *ctx = req->ki_ctx;
 532
 533                list_del(&req->ki_list);
 534                spin_unlock_irq(&fput_lock);
 535
 536                /* Complete the fput(s) */
 537                if (req->ki_filp != NULL)
 538                        fput(req->ki_filp);
 539
 540                /* Link the iocb into the context's free list */
 541                spin_lock_irq(&ctx->ctx_lock);
 542                really_put_req(ctx, req);
 543                spin_unlock_irq(&ctx->ctx_lock);
 544
 545                put_ioctx(ctx);
 546                spin_lock_irq(&fput_lock);
 547        }
 548        spin_unlock_irq(&fput_lock);
 549}
 550
 551/* __aio_put_req
 552 *      Returns true if this put was the last user of the request.
 553 */
 554static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
 555{
 556        dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
 557                req, atomic_long_read(&req->ki_filp->f_count));
 558
 559        assert_spin_locked(&ctx->ctx_lock);
 560
 561        req->ki_users--;
 562        BUG_ON(req->ki_users < 0);
 563        if (likely(req->ki_users))
 564                return 0;
 565        list_del(&req->ki_list);                /* remove from active_reqs */
 566        req->ki_cancel = NULL;
 567        req->ki_retry = NULL;
 568
 569        /*
 570         * Try to optimize the aio and eventfd file* puts, by avoiding to
 571         * schedule work in case it is not final fput() time. In normal cases,
 572         * we would not be holding the last reference to the file*, so
 573         * this function will be executed w/out any aio kthread wakeup.
 574         */
 575        if (unlikely(!fput_atomic(req->ki_filp))) {
 576                get_ioctx(ctx);
 577                spin_lock(&fput_lock);
 578                list_add(&req->ki_list, &fput_head);
 579                spin_unlock(&fput_lock);
 580                queue_work(aio_wq, &fput_work);
 581        } else {
 582                req->ki_filp = NULL;
 583                really_put_req(ctx, req);
 584        }
 585        return 1;
 586}
 587
 588/* aio_put_req
 589 *      Returns true if this put was the last user of the kiocb,
 590 *      false if the request is still in use.
 591 */
 592int aio_put_req(struct kiocb *req)
 593{
 594        struct kioctx *ctx = req->ki_ctx;
 595        int ret;
 596        spin_lock_irq(&ctx->ctx_lock);
 597        ret = __aio_put_req(ctx, req);
 598        spin_unlock_irq(&ctx->ctx_lock);
 599        return ret;
 600}
 601EXPORT_SYMBOL(aio_put_req);
 602
 603static struct kioctx *lookup_ioctx(unsigned long ctx_id)
 604{
 605        struct mm_struct *mm = current->mm;
 606        struct kioctx *ctx, *ret = NULL;
 607        struct hlist_node *n;
 608
 609        rcu_read_lock();
 610
 611        hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
 612                /*
 613                 * RCU protects us against accessing freed memory but
 614                 * we have to be careful not to get a reference when the
 615                 * reference count already dropped to 0 (ctx->dead test
 616                 * is unreliable because of races).
 617                 */
 618                if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
 619                        ret = ctx;
 620                        break;
 621                }
 622        }
 623
 624        rcu_read_unlock();
 625        return ret;
 626}
 627
 628/*
 629 * Queue up a kiocb to be retried. Assumes that the kiocb
 630 * has already been marked as kicked, and places it on
 631 * the retry run list for the corresponding ioctx, if it
 632 * isn't already queued. Returns 1 if it actually queued
 633 * the kiocb (to tell the caller to activate the work
 634 * queue to process it), or 0, if it found that it was
 635 * already queued.
 636 */
 637static inline int __queue_kicked_iocb(struct kiocb *iocb)
 638{
 639        struct kioctx *ctx = iocb->ki_ctx;
 640
 641        assert_spin_locked(&ctx->ctx_lock);
 642
 643        if (list_empty(&iocb->ki_run_list)) {
 644                list_add_tail(&iocb->ki_run_list,
 645                        &ctx->run_list);
 646                return 1;
 647        }
 648        return 0;
 649}
 650
 651/* aio_run_iocb
 652 *      This is the core aio execution routine. It is
 653 *      invoked both for initial i/o submission and
 654 *      subsequent retries via the aio_kick_handler.
 655 *      Expects to be invoked with iocb->ki_ctx->lock
 656 *      already held. The lock is released and reacquired
 657 *      as needed during processing.
 658 *
 659 * Calls the iocb retry method (already setup for the
 660 * iocb on initial submission) for operation specific
 661 * handling, but takes care of most of common retry
 662 * execution details for a given iocb. The retry method
 663 * needs to be non-blocking as far as possible, to avoid
 664 * holding up other iocbs waiting to be serviced by the
 665 * retry kernel thread.
 666 *
 667 * The trickier parts in this code have to do with
 668 * ensuring that only one retry instance is in progress
 669 * for a given iocb at any time. Providing that guarantee
 670 * simplifies the coding of individual aio operations as
 671 * it avoids various potential races.
 672 */
 673static ssize_t aio_run_iocb(struct kiocb *iocb)
 674{
 675        struct kioctx   *ctx = iocb->ki_ctx;
 676        ssize_t (*retry)(struct kiocb *);
 677        ssize_t ret;
 678
 679        if (!(retry = iocb->ki_retry)) {
 680                printk("aio_run_iocb: iocb->ki_retry = NULL\n");
 681                return 0;
 682        }
 683
 684        /*
 685         * We don't want the next retry iteration for this
 686         * operation to start until this one has returned and
 687         * updated the iocb state. However, wait_queue functions
 688         * can trigger a kick_iocb from interrupt context in the
 689         * meantime, indicating that data is available for the next
 690         * iteration. We want to remember that and enable the
 691         * next retry iteration _after_ we are through with
 692         * this one.
 693         *
 694         * So, in order to be able to register a "kick", but
 695         * prevent it from being queued now, we clear the kick
 696         * flag, but make the kick code *think* that the iocb is
 697         * still on the run list until we are actually done.
 698         * When we are done with this iteration, we check if
 699         * the iocb was kicked in the meantime and if so, queue
 700         * it up afresh.
 701         */
 702
 703        kiocbClearKicked(iocb);
 704
 705        /*
 706         * This is so that aio_complete knows it doesn't need to
 707         * pull the iocb off the run list (We can't just call
 708         * INIT_LIST_HEAD because we don't want a kick_iocb to
 709         * queue this on the run list yet)
 710         */
 711        iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
 712        spin_unlock_irq(&ctx->ctx_lock);
 713
 714        /* Quit retrying if the i/o has been cancelled */
 715        if (kiocbIsCancelled(iocb)) {
 716                ret = -EINTR;
 717                aio_complete(iocb, ret, 0);
 718                /* must not access the iocb after this */
 719                goto out;
 720        }
 721
 722        /*
 723         * Now we are all set to call the retry method in async
 724         * context.
 725         */
 726        ret = retry(iocb);
 727
 728        if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
 729                /*
 730                 * There's no easy way to restart the syscall since other AIO's
 731                 * may be already running. Just fail this IO with EINTR.
 732                 */
 733                if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
 734                             ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
 735                        ret = -EINTR;
 736                aio_complete(iocb, ret, 0);
 737        }
 738out:
 739        spin_lock_irq(&ctx->ctx_lock);
 740
 741        if (-EIOCBRETRY == ret) {
 742                /*
 743                 * OK, now that we are done with this iteration
 744                 * and know that there is more left to go,
 745                 * this is where we let go so that a subsequent
 746                 * "kick" can start the next iteration
 747                 */
 748
 749                /* will make __queue_kicked_iocb succeed from here on */
 750                INIT_LIST_HEAD(&iocb->ki_run_list);
 751                /* we must queue the next iteration ourselves, if it
 752                 * has already been kicked */
 753                if (kiocbIsKicked(iocb)) {
 754                        __queue_kicked_iocb(iocb);
 755
 756                        /*
 757                         * __queue_kicked_iocb will always return 1 here, because
 758                         * iocb->ki_run_list is empty at this point so it should
 759                         * be safe to unconditionally queue the context into the
 760                         * work queue.
 761                         */
 762                        aio_queue_work(ctx);
 763                }
 764        }
 765        return ret;
 766}
 767
 768/*
 769 * __aio_run_iocbs:
 770 *      Process all pending retries queued on the ioctx
 771 *      run list.
 772 * Assumes it is operating within the aio issuer's mm
 773 * context.
 774 */
 775static int __aio_run_iocbs(struct kioctx *ctx)
 776{
 777        struct kiocb *iocb;
 778        struct list_head run_list;
 779
 780        assert_spin_locked(&ctx->ctx_lock);
 781
 782        list_replace_init(&ctx->run_list, &run_list);
 783        while (!list_empty(&run_list)) {
 784                iocb = list_entry(run_list.next, struct kiocb,
 785                        ki_run_list);
 786                list_del(&iocb->ki_run_list);
 787                /*
 788                 * Hold an extra reference while retrying i/o.
 789                 */
 790                iocb->ki_users++;       /* grab extra reference */
 791                aio_run_iocb(iocb);
 792                __aio_put_req(ctx, iocb);
 793        }
 794        if (!list_empty(&ctx->run_list))
 795                return 1;
 796        return 0;
 797}
 798
 799static void aio_queue_work(struct kioctx * ctx)
 800{
 801        unsigned long timeout;
 802        /*
 803         * if someone is waiting, get the work started right
 804         * away, otherwise, use a longer delay
 805         */
 806        smp_mb();
 807        if (waitqueue_active(&ctx->wait))
 808                timeout = 1;
 809        else
 810                timeout = HZ/10;
 811        queue_delayed_work(aio_wq, &ctx->wq, timeout);
 812}
 813
 814/*
 815 * aio_run_all_iocbs:
 816 *      Process all pending retries queued on the ioctx
 817 *      run list, and keep running them until the list
 818 *      stays empty.
 819 * Assumes it is operating within the aio issuer's mm context.
 820 */
 821static inline void aio_run_all_iocbs(struct kioctx *ctx)
 822{
 823        spin_lock_irq(&ctx->ctx_lock);
 824        while (__aio_run_iocbs(ctx))
 825                ;
 826        spin_unlock_irq(&ctx->ctx_lock);
 827}
 828
 829/*
 830 * aio_kick_handler:
 831 *      Work queue handler triggered to process pending
 832 *      retries on an ioctx. Takes on the aio issuer's
 833 *      mm context before running the iocbs, so that
 834 *      copy_xxx_user operates on the issuer's address
 835 *      space.
 836 * Run on aiod's context.
 837 */
 838static void aio_kick_handler(struct work_struct *work)
 839{
 840        struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
 841        mm_segment_t oldfs = get_fs();
 842        struct mm_struct *mm;
 843        int requeue;
 844
 845        set_fs(USER_DS);
 846        use_mm(ctx->mm);
 847        spin_lock_irq(&ctx->ctx_lock);
 848        requeue =__aio_run_iocbs(ctx);
 849        mm = ctx->mm;
 850        spin_unlock_irq(&ctx->ctx_lock);
 851        unuse_mm(mm);
 852        set_fs(oldfs);
 853        /*
 854         * we're in a worker thread already, don't use queue_delayed_work,
 855         */
 856        if (requeue)
 857                queue_delayed_work(aio_wq, &ctx->wq, 0);
 858}
 859
 860
 861/*
 862 * Called by kick_iocb to queue the kiocb for retry
 863 * and if required activate the aio work queue to process
 864 * it
 865 */
 866static void try_queue_kicked_iocb(struct kiocb *iocb)
 867{
 868        struct kioctx   *ctx = iocb->ki_ctx;
 869        unsigned long flags;
 870        int run = 0;
 871
 872        spin_lock_irqsave(&ctx->ctx_lock, flags);
 873        /* set this inside the lock so that we can't race with aio_run_iocb()
 874         * testing it and putting the iocb on the run list under the lock */
 875        if (!kiocbTryKick(iocb))
 876                run = __queue_kicked_iocb(iocb);
 877        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 878        if (run)
 879                aio_queue_work(ctx);
 880}
 881
 882/*
 883 * kick_iocb:
 884 *      Called typically from a wait queue callback context
 885 *      to trigger a retry of the iocb.
 886 *      The retry is usually executed by aio workqueue
 887 *      threads (See aio_kick_handler).
 888 */
 889void kick_iocb(struct kiocb *iocb)
 890{
 891        /* sync iocbs are easy: they can only ever be executing from a 
 892         * single context. */
 893        if (is_sync_kiocb(iocb)) {
 894                kiocbSetKicked(iocb);
 895                wake_up_process(iocb->ki_obj.tsk);
 896                return;
 897        }
 898
 899        try_queue_kicked_iocb(iocb);
 900}
 901EXPORT_SYMBOL(kick_iocb);
 902
 903/* aio_complete
 904 *      Called when the io request on the given iocb is complete.
 905 *      Returns true if this is the last user of the request.  The 
 906 *      only other user of the request can be the cancellation code.
 907 */
 908int aio_complete(struct kiocb *iocb, long res, long res2)
 909{
 910        struct kioctx   *ctx = iocb->ki_ctx;
 911        struct aio_ring_info    *info;
 912        struct aio_ring *ring;
 913        struct io_event *event;
 914        unsigned long   flags;
 915        unsigned long   tail;
 916        int             ret;
 917
 918        /*
 919         * Special case handling for sync iocbs:
 920         *  - events go directly into the iocb for fast handling
 921         *  - the sync task with the iocb in its stack holds the single iocb
 922         *    ref, no other paths have a way to get another ref
 923         *  - the sync task helpfully left a reference to itself in the iocb
 924         */
 925        if (is_sync_kiocb(iocb)) {
 926                BUG_ON(iocb->ki_users != 1);
 927                iocb->ki_user_data = res;
 928                iocb->ki_users = 0;
 929                wake_up_process(iocb->ki_obj.tsk);
 930                return 1;
 931        }
 932
 933        info = &ctx->ring_info;
 934
 935        /* add a completion event to the ring buffer.
 936         * must be done holding ctx->ctx_lock to prevent
 937         * other code from messing with the tail
 938         * pointer since we might be called from irq
 939         * context.
 940         */
 941        spin_lock_irqsave(&ctx->ctx_lock, flags);
 942
 943        if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
 944                list_del_init(&iocb->ki_run_list);
 945
 946        /*
 947         * cancelled requests don't get events, userland was given one
 948         * when the event got cancelled.
 949         */
 950        if (kiocbIsCancelled(iocb))
 951                goto put_rq;
 952
 953        ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
 954
 955        tail = info->tail;
 956        event = aio_ring_event(info, tail, KM_IRQ0);
 957        if (++tail >= info->nr)
 958                tail = 0;
 959
 960        event->obj = (u64)(unsigned long)iocb->ki_obj.user;
 961        event->data = iocb->ki_user_data;
 962        event->res = res;
 963        event->res2 = res2;
 964
 965        dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
 966                ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
 967                res, res2);
 968
 969        /* after flagging the request as done, we
 970         * must never even look at it again
 971         */
 972        smp_wmb();      /* make event visible before updating tail */
 973
 974        info->tail = tail;
 975        ring->tail = tail;
 976
 977        put_aio_ring_event(event, KM_IRQ0);
 978        kunmap_atomic(ring, KM_IRQ1);
 979
 980        pr_debug("added to ring %p at [%lu]\n", iocb, tail);
 981
 982        /*
 983         * Check if the user asked us to deliver the result through an
 984         * eventfd. The eventfd_signal() function is safe to be called
 985         * from IRQ context.
 986         */
 987        if (iocb->ki_eventfd != NULL)
 988                eventfd_signal(iocb->ki_eventfd, 1);
 989
 990put_rq:
 991        /* everything turned out well, dispose of the aiocb. */
 992        ret = __aio_put_req(ctx, iocb);
 993
 994        /*
 995         * We have to order our ring_info tail store above and test
 996         * of the wait list below outside the wait lock.  This is
 997         * like in wake_up_bit() where clearing a bit has to be
 998         * ordered with the unlocked test.
 999         */
1000        smp_mb();
1001
1002        if (waitqueue_active(&ctx->wait))
1003                wake_up(&ctx->wait);
1004
1005        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1006        return ret;
1007}
1008EXPORT_SYMBOL(aio_complete);
1009
1010/* aio_read_evt
1011 *      Pull an event off of the ioctx's event ring.  Returns the number of 
1012 *      events fetched (0 or 1 ;-)
1013 *      FIXME: make this use cmpxchg.
1014 *      TODO: make the ringbuffer user mmap()able (requires FIXME).
1015 */
1016static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1017{
1018        struct aio_ring_info *info = &ioctx->ring_info;
1019        struct aio_ring *ring;
1020        unsigned long head;
1021        int ret = 0;
1022
1023        ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1024        dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1025                 (unsigned long)ring->head, (unsigned long)ring->tail,
1026                 (unsigned long)ring->nr);
1027
1028        if (ring->head == ring->tail)
1029                goto out;
1030
1031        spin_lock(&info->ring_lock);
1032
1033        head = ring->head % info->nr;
1034        if (head != ring->tail) {
1035                struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1036                *ent = *evp;
1037                head = (head + 1) % info->nr;
1038                smp_mb(); /* finish reading the event before updatng the head */
1039                ring->head = head;
1040                ret = 1;
1041                put_aio_ring_event(evp, KM_USER1);
1042        }
1043        spin_unlock(&info->ring_lock);
1044
1045out:
1046        kunmap_atomic(ring, KM_USER0);
1047        dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1048                 (unsigned long)ring->head, (unsigned long)ring->tail);
1049        return ret;
1050}
1051
1052struct aio_timeout {
1053        struct timer_list       timer;
1054        int                     timed_out;
1055        struct task_struct      *p;
1056};
1057
1058static void timeout_func(unsigned long data)
1059{
1060        struct aio_timeout *to = (struct aio_timeout *)data;
1061
1062        to->timed_out = 1;
1063        wake_up_process(to->p);
1064}
1065
1066static inline void init_timeout(struct aio_timeout *to)
1067{
1068        setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1069        to->timed_out = 0;
1070        to->p = current;
1071}
1072
1073static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1074                               const struct timespec *ts)
1075{
1076        to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1077        if (time_after(to->timer.expires, jiffies))
1078                add_timer(&to->timer);
1079        else
1080                to->timed_out = 1;
1081}
1082
1083static inline void clear_timeout(struct aio_timeout *to)
1084{
1085        del_singleshot_timer_sync(&to->timer);
1086}
1087
1088static int read_events(struct kioctx *ctx,
1089                        long min_nr, long nr,
1090                        struct io_event __user *event,
1091                        struct timespec __user *timeout)
1092{
1093        long                    start_jiffies = jiffies;
1094        struct task_struct      *tsk = current;
1095        DECLARE_WAITQUEUE(wait, tsk);
1096        int                     ret;
1097        int                     i = 0;
1098        struct io_event         ent;
1099        struct aio_timeout      to;
1100        int                     retry = 0;
1101
1102        /* needed to zero any padding within an entry (there shouldn't be 
1103         * any, but C is fun!
1104         */
1105        memset(&ent, 0, sizeof(ent));
1106retry:
1107        ret = 0;
1108        while (likely(i < nr)) {
1109                ret = aio_read_evt(ctx, &ent);
1110                if (unlikely(ret <= 0))
1111                        break;
1112
1113                dprintk("read event: %Lx %Lx %Lx %Lx\n",
1114                        ent.data, ent.obj, ent.res, ent.res2);
1115
1116                /* Could we split the check in two? */
1117                ret = -EFAULT;
1118                if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1119                        dprintk("aio: lost an event due to EFAULT.\n");
1120                        break;
1121                }
1122                ret = 0;
1123
1124                /* Good, event copied to userland, update counts. */
1125                event ++;
1126                i ++;
1127        }
1128
1129        if (min_nr <= i)
1130                return i;
1131        if (ret)
1132                return ret;
1133
1134        /* End fast path */
1135
1136        /* racey check, but it gets redone */
1137        if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1138                retry = 1;
1139                aio_run_all_iocbs(ctx);
1140                goto retry;
1141        }
1142
1143        init_timeout(&to);
1144        if (timeout) {
1145                struct timespec ts;
1146                ret = -EFAULT;
1147                if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1148                        goto out;
1149
1150                set_timeout(start_jiffies, &to, &ts);
1151        }
1152
1153        while (likely(i < nr)) {
1154                add_wait_queue_exclusive(&ctx->wait, &wait);
1155                do {
1156                        set_task_state(tsk, TASK_INTERRUPTIBLE);
1157                        ret = aio_read_evt(ctx, &ent);
1158                        if (ret)
1159                                break;
1160                        if (min_nr <= i)
1161                                break;
1162                        if (unlikely(ctx->dead)) {
1163                                ret = -EINVAL;
1164                                break;
1165                        }
1166                        if (to.timed_out)       /* Only check after read evt */
1167                                break;
1168                        /* Try to only show up in io wait if there are ops
1169                         *  in flight */
1170                        if (ctx->reqs_active)
1171                                io_schedule();
1172                        else
1173                                schedule();
1174                        if (signal_pending(tsk)) {
1175                                ret = -EINTR;
1176                                break;
1177                        }
1178                        /*ret = aio_read_evt(ctx, &ent);*/
1179                } while (1) ;
1180
1181                set_task_state(tsk, TASK_RUNNING);
1182                remove_wait_queue(&ctx->wait, &wait);
1183
1184                if (unlikely(ret <= 0))
1185                        break;
1186
1187                ret = -EFAULT;
1188                if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1189                        dprintk("aio: lost an event due to EFAULT.\n");
1190                        break;
1191                }
1192
1193                /* Good, event copied to userland, update counts. */
1194                event ++;
1195                i ++;
1196        }
1197
1198        if (timeout)
1199                clear_timeout(&to);
1200out:
1201        destroy_timer_on_stack(&to.timer);
1202        return i ? i : ret;
1203}
1204
1205/* Take an ioctx and remove it from the list of ioctx's.  Protects 
1206 * against races with itself via ->dead.
1207 */
1208static void io_destroy(struct kioctx *ioctx)
1209{
1210        struct mm_struct *mm = current->mm;
1211        int was_dead;
1212
1213        /* delete the entry from the list is someone else hasn't already */
1214        spin_lock(&mm->ioctx_lock);
1215        was_dead = ioctx->dead;
1216        ioctx->dead = 1;
1217        hlist_del_rcu(&ioctx->list);
1218        spin_unlock(&mm->ioctx_lock);
1219
1220        dprintk("aio_release(%p)\n", ioctx);
1221        if (likely(!was_dead))
1222                put_ioctx(ioctx);       /* twice for the list */
1223
1224        aio_cancel_all(ioctx);
1225        wait_for_all_aios(ioctx);
1226
1227        /*
1228         * Wake up any waiters.  The setting of ctx->dead must be seen
1229         * by other CPUs at this point.  Right now, we rely on the
1230         * locking done by the above calls to ensure this consistency.
1231         */
1232        wake_up(&ioctx->wait);
1233        put_ioctx(ioctx);       /* once for the lookup */
1234}
1235
1236/* sys_io_setup:
1237 *      Create an aio_context capable of receiving at least nr_events.
1238 *      ctxp must not point to an aio_context that already exists, and
1239 *      must be initialized to 0 prior to the call.  On successful
1240 *      creation of the aio_context, *ctxp is filled in with the resulting 
1241 *      handle.  May fail with -EINVAL if *ctxp is not initialized,
1242 *      if the specified nr_events exceeds internal limits.  May fail 
1243 *      with -EAGAIN if the specified nr_events exceeds the user's limit 
1244 *      of available events.  May fail with -ENOMEM if insufficient kernel
1245 *      resources are available.  May fail with -EFAULT if an invalid
1246 *      pointer is passed for ctxp.  Will fail with -ENOSYS if not
1247 *      implemented.
1248 */
1249SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1250{
1251        struct kioctx *ioctx = NULL;
1252        unsigned long ctx;
1253        long ret;
1254
1255        ret = get_user(ctx, ctxp);
1256        if (unlikely(ret))
1257                goto out;
1258
1259        ret = -EINVAL;
1260        if (unlikely(ctx || nr_events == 0)) {
1261                pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1262                         ctx, nr_events);
1263                goto out;
1264        }
1265
1266        ioctx = ioctx_alloc(nr_events);
1267        ret = PTR_ERR(ioctx);
1268        if (!IS_ERR(ioctx)) {
1269                ret = put_user(ioctx->user_id, ctxp);
1270                if (!ret)
1271                        return 0;
1272
1273                get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1274                io_destroy(ioctx);
1275        }
1276
1277out:
1278        return ret;
1279}
1280
1281/* sys_io_destroy:
1282 *      Destroy the aio_context specified.  May cancel any outstanding 
1283 *      AIOs and block on completion.  Will fail with -ENOSYS if not
1284 *      implemented.  May fail with -EINVAL if the context pointed to
1285 *      is invalid.
1286 */
1287SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1288{
1289        struct kioctx *ioctx = lookup_ioctx(ctx);
1290        if (likely(NULL != ioctx)) {
1291                io_destroy(ioctx);
1292                return 0;
1293        }
1294        pr_debug("EINVAL: io_destroy: invalid context id\n");
1295        return -EINVAL;
1296}
1297
1298static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1299{
1300        struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1301
1302        BUG_ON(ret <= 0);
1303
1304        while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1305                ssize_t this = min((ssize_t)iov->iov_len, ret);
1306                iov->iov_base += this;
1307                iov->iov_len -= this;
1308                iocb->ki_left -= this;
1309                ret -= this;
1310                if (iov->iov_len == 0) {
1311                        iocb->ki_cur_seg++;
1312                        iov++;
1313                }
1314        }
1315
1316        /* the caller should not have done more io than what fit in
1317         * the remaining iovecs */
1318        BUG_ON(ret > 0 && iocb->ki_left == 0);
1319}
1320
1321static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1322{
1323        struct file *file = iocb->ki_filp;
1324        struct address_space *mapping = file->f_mapping;
1325        struct inode *inode = mapping->host;
1326        ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1327                         unsigned long, loff_t);
1328        ssize_t ret = 0;
1329        unsigned short opcode;
1330
1331        if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1332                (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1333                rw_op = file->f_op->aio_read;
1334                opcode = IOCB_CMD_PREADV;
1335        } else {
1336                rw_op = file->f_op->aio_write;
1337                opcode = IOCB_CMD_PWRITEV;
1338        }
1339
1340        /* This matches the pread()/pwrite() logic */
1341        if (iocb->ki_pos < 0)
1342                return -EINVAL;
1343
1344        do {
1345                ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1346                            iocb->ki_nr_segs - iocb->ki_cur_seg,
1347                            iocb->ki_pos);
1348                if (ret > 0)
1349                        aio_advance_iovec(iocb, ret);
1350
1351        /* retry all partial writes.  retry partial reads as long as its a
1352         * regular file. */
1353        } while (ret > 0 && iocb->ki_left > 0 &&
1354                 (opcode == IOCB_CMD_PWRITEV ||
1355                  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1356
1357        /* This means we must have transferred all that we could */
1358        /* No need to retry anymore */
1359        if ((ret == 0) || (iocb->ki_left == 0))
1360                ret = iocb->ki_nbytes - iocb->ki_left;
1361
1362        /* If we managed to write some out we return that, rather than
1363         * the eventual error. */
1364        if (opcode == IOCB_CMD_PWRITEV
1365            && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1366            && iocb->ki_nbytes - iocb->ki_left)
1367                ret = iocb->ki_nbytes - iocb->ki_left;
1368
1369        return ret;
1370}
1371
1372static ssize_t aio_fdsync(struct kiocb *iocb)
1373{
1374        struct file *file = iocb->ki_filp;
1375        ssize_t ret = -EINVAL;
1376
1377        if (file->f_op->aio_fsync)
1378                ret = file->f_op->aio_fsync(iocb, 1);
1379        return ret;
1380}
1381
1382static ssize_t aio_fsync(struct kiocb *iocb)
1383{
1384        struct file *file = iocb->ki_filp;
1385        ssize_t ret = -EINVAL;
1386
1387        if (file->f_op->aio_fsync)
1388                ret = file->f_op->aio_fsync(iocb, 0);
1389        return ret;
1390}
1391
1392static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1393{
1394        ssize_t ret;
1395
1396#ifdef CONFIG_COMPAT
1397        if (compat)
1398                ret = compat_rw_copy_check_uvector(type,
1399                                (struct compat_iovec __user *)kiocb->ki_buf,
1400                                kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1401                                &kiocb->ki_iovec);
1402        else
1403#endif
1404                ret = rw_copy_check_uvector(type,
1405                                (struct iovec __user *)kiocb->ki_buf,
1406                                kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1407                                &kiocb->ki_iovec);
1408        if (ret < 0)
1409                goto out;
1410
1411        kiocb->ki_nr_segs = kiocb->ki_nbytes;
1412        kiocb->ki_cur_seg = 0;
1413        /* ki_nbytes/left now reflect bytes instead of segs */
1414        kiocb->ki_nbytes = ret;
1415        kiocb->ki_left = ret;
1416
1417        ret = 0;
1418out:
1419        return ret;
1420}
1421
1422static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1423{
1424        kiocb->ki_iovec = &kiocb->ki_inline_vec;
1425        kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1426        kiocb->ki_iovec->iov_len = kiocb->ki_left;
1427        kiocb->ki_nr_segs = 1;
1428        kiocb->ki_cur_seg = 0;
1429        return 0;
1430}
1431
1432/*
1433 * aio_setup_iocb:
1434 *      Performs the initial checks and aio retry method
1435 *      setup for the kiocb at the time of io submission.
1436 */
1437static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1438{
1439        struct file *file = kiocb->ki_filp;
1440        ssize_t ret = 0;
1441
1442        switch (kiocb->ki_opcode) {
1443        case IOCB_CMD_PREAD:
1444                ret = -EBADF;
1445                if (unlikely(!(file->f_mode & FMODE_READ)))
1446                        break;
1447                ret = -EFAULT;
1448                if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1449                        kiocb->ki_left)))
1450                        break;
1451                ret = security_file_permission(file, MAY_READ);
1452                if (unlikely(ret))
1453                        break;
1454                ret = aio_setup_single_vector(kiocb);
1455                if (ret)
1456                        break;
1457                ret = -EINVAL;
1458                if (file->f_op->aio_read)
1459                        kiocb->ki_retry = aio_rw_vect_retry;
1460                break;
1461        case IOCB_CMD_PWRITE:
1462                ret = -EBADF;
1463                if (unlikely(!(file->f_mode & FMODE_WRITE)))
1464                        break;
1465                ret = -EFAULT;
1466                if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1467                        kiocb->ki_left)))
1468                        break;
1469                ret = security_file_permission(file, MAY_WRITE);
1470                if (unlikely(ret))
1471                        break;
1472                ret = aio_setup_single_vector(kiocb);
1473                if (ret)
1474                        break;
1475                ret = -EINVAL;
1476                if (file->f_op->aio_write)
1477                        kiocb->ki_retry = aio_rw_vect_retry;
1478                break;
1479        case IOCB_CMD_PREADV:
1480                ret = -EBADF;
1481                if (unlikely(!(file->f_mode & FMODE_READ)))
1482                        break;
1483                ret = security_file_permission(file, MAY_READ);
1484                if (unlikely(ret))
1485                        break;
1486                ret = aio_setup_vectored_rw(READ, kiocb, compat);
1487                if (ret)
1488                        break;
1489                ret = -EINVAL;
1490                if (file->f_op->aio_read)
1491                        kiocb->ki_retry = aio_rw_vect_retry;
1492                break;
1493        case IOCB_CMD_PWRITEV:
1494                ret = -EBADF;
1495                if (unlikely(!(file->f_mode & FMODE_WRITE)))
1496                        break;
1497                ret = security_file_permission(file, MAY_WRITE);
1498                if (unlikely(ret))
1499                        break;
1500                ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1501                if (ret)
1502                        break;
1503                ret = -EINVAL;
1504                if (file->f_op->aio_write)
1505                        kiocb->ki_retry = aio_rw_vect_retry;
1506                break;
1507        case IOCB_CMD_FDSYNC:
1508                ret = -EINVAL;
1509                if (file->f_op->aio_fsync)
1510                        kiocb->ki_retry = aio_fdsync;
1511                break;
1512        case IOCB_CMD_FSYNC:
1513                ret = -EINVAL;
1514                if (file->f_op->aio_fsync)
1515                        kiocb->ki_retry = aio_fsync;
1516                break;
1517        default:
1518                dprintk("EINVAL: io_submit: no operation provided\n");
1519                ret = -EINVAL;
1520        }
1521
1522        if (!kiocb->ki_retry)
1523                return ret;
1524
1525        return 0;
1526}
1527
1528static void aio_batch_add(struct address_space *mapping,
1529                          struct hlist_head *batch_hash)
1530{
1531        struct aio_batch_entry *abe;
1532        struct hlist_node *pos;
1533        unsigned bucket;
1534
1535        bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS);
1536        hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) {
1537                if (abe->mapping == mapping)
1538                        return;
1539        }
1540
1541        abe = mempool_alloc(abe_pool, GFP_KERNEL);
1542
1543        /*
1544         * we should be using igrab here, but
1545         * we don't want to hammer on the global
1546         * inode spinlock just to take an extra
1547         * reference on a file that we must already
1548         * have a reference to.
1549         *
1550         * When we're called, we always have a reference
1551         * on the file, so we must always have a reference
1552         * on the inode, so ihold() is safe here.
1553         */
1554        ihold(mapping->host);
1555        abe->mapping = mapping;
1556        hlist_add_head(&abe->list, &batch_hash[bucket]);
1557        return;
1558}
1559
1560static void aio_batch_free(struct hlist_head *batch_hash)
1561{
1562        struct aio_batch_entry *abe;
1563        struct hlist_node *pos, *n;
1564        int i;
1565
1566        for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) {
1567                hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) {
1568                        blk_run_address_space(abe->mapping);
1569                        iput(abe->mapping->host);
1570                        hlist_del(&abe->list);
1571                        mempool_free(abe, abe_pool);
1572                }
1573        }
1574}
1575
1576static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1577                         struct iocb *iocb, struct hlist_head *batch_hash,
1578                         bool compat)
1579{
1580        struct kiocb *req;
1581        struct file *file;
1582        ssize_t ret;
1583
1584        /* enforce forwards compatibility on users */
1585        if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1586                pr_debug("EINVAL: io_submit: reserve field set\n");
1587                return -EINVAL;
1588        }
1589
1590        /* prevent overflows */
1591        if (unlikely(
1592            (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1593            (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1594            ((ssize_t)iocb->aio_nbytes < 0)
1595           )) {
1596                pr_debug("EINVAL: io_submit: overflow check\n");
1597                return -EINVAL;
1598        }
1599
1600        file = fget(iocb->aio_fildes);
1601        if (unlikely(!file))
1602                return -EBADF;
1603
1604        req = aio_get_req(ctx);         /* returns with 2 references to req */
1605        if (unlikely(!req)) {
1606                fput(file);
1607                return -EAGAIN;
1608        }
1609        req->ki_filp = file;
1610        if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1611                /*
1612                 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1613                 * instance of the file* now. The file descriptor must be
1614                 * an eventfd() fd, and will be signaled for each completed
1615                 * event using the eventfd_signal() function.
1616                 */
1617                req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1618                if (IS_ERR(req->ki_eventfd)) {
1619                        ret = PTR_ERR(req->ki_eventfd);
1620                        req->ki_eventfd = NULL;
1621                        goto out_put_req;
1622                }
1623        }
1624
1625        ret = put_user(req->ki_key, &user_iocb->aio_key);
1626        if (unlikely(ret)) {
1627                dprintk("EFAULT: aio_key\n");
1628                goto out_put_req;
1629        }
1630
1631        req->ki_obj.user = user_iocb;
1632        req->ki_user_data = iocb->aio_data;
1633        req->ki_pos = iocb->aio_offset;
1634
1635        req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1636        req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1637        req->ki_opcode = iocb->aio_lio_opcode;
1638
1639        ret = aio_setup_iocb(req, compat);
1640
1641        if (ret)
1642                goto out_put_req;
1643
1644        spin_lock_irq(&ctx->ctx_lock);
1645        /*
1646         * We could have raced with io_destroy() and are currently holding a
1647         * reference to ctx which should be destroyed. We cannot submit IO
1648         * since ctx gets freed as soon as io_submit() puts its reference.  The
1649         * check here is reliable: io_destroy() sets ctx->dead before waiting
1650         * for outstanding IO and the barrier between these two is realized by
1651         * unlock of mm->ioctx_lock and lock of ctx->ctx_lock.  Analogously we
1652         * increment ctx->reqs_active before checking for ctx->dead and the
1653         * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1654         * don't see ctx->dead set here, io_destroy() waits for our IO to
1655         * finish.
1656         */
1657        if (ctx->dead) {
1658                spin_unlock_irq(&ctx->ctx_lock);
1659                ret = -EINVAL;
1660                goto out_put_req;
1661        }
1662        aio_run_iocb(req);
1663        if (!list_empty(&ctx->run_list)) {
1664                /* drain the run list */
1665                while (__aio_run_iocbs(ctx))
1666                        ;
1667        }
1668        spin_unlock_irq(&ctx->ctx_lock);
1669        if (req->ki_opcode == IOCB_CMD_PREAD ||
1670            req->ki_opcode == IOCB_CMD_PREADV ||
1671            req->ki_opcode == IOCB_CMD_PWRITE ||
1672            req->ki_opcode == IOCB_CMD_PWRITEV)
1673                aio_batch_add(file->f_mapping, batch_hash);
1674
1675        aio_put_req(req);       /* drop extra ref to req */
1676        return 0;
1677
1678out_put_req:
1679        aio_put_req(req);       /* drop extra ref to req */
1680        aio_put_req(req);       /* drop i/o ref to req */
1681        return ret;
1682}
1683
1684long do_io_submit(aio_context_t ctx_id, long nr,
1685                  struct iocb __user *__user *iocbpp, bool compat)
1686{
1687        struct kioctx *ctx;
1688        long ret = 0;
1689        int i;
1690        struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, };
1691
1692        if (unlikely(nr < 0))
1693                return -EINVAL;
1694
1695        if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1696                nr = LONG_MAX/sizeof(*iocbpp);
1697
1698        if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1699                return -EFAULT;
1700
1701        ctx = lookup_ioctx(ctx_id);
1702        if (unlikely(!ctx)) {
1703                pr_debug("EINVAL: io_submit: invalid context id\n");
1704                return -EINVAL;
1705        }
1706
1707        /*
1708         * AKPM: should this return a partial result if some of the IOs were
1709         * successfully submitted?
1710         */
1711        for (i=0; i<nr; i++) {
1712                struct iocb __user *user_iocb;
1713                struct iocb tmp;
1714
1715                if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1716                        ret = -EFAULT;
1717                        break;
1718                }
1719
1720                if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1721                        ret = -EFAULT;
1722                        break;
1723                }
1724
1725                ret = io_submit_one(ctx, user_iocb, &tmp, batch_hash, compat);
1726                if (ret)
1727                        break;
1728        }
1729        aio_batch_free(batch_hash);
1730
1731        put_ioctx(ctx);
1732        return i ? i : ret;
1733}
1734
1735/* sys_io_submit:
1736 *      Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1737 *      the number of iocbs queued.  May return -EINVAL if the aio_context
1738 *      specified by ctx_id is invalid, if nr is < 0, if the iocb at
1739 *      *iocbpp[0] is not properly initialized, if the operation specified
1740 *      is invalid for the file descriptor in the iocb.  May fail with
1741 *      -EFAULT if any of the data structures point to invalid data.  May
1742 *      fail with -EBADF if the file descriptor specified in the first
1743 *      iocb is invalid.  May fail with -EAGAIN if insufficient resources
1744 *      are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1745 *      fail with -ENOSYS if not implemented.
1746 */
1747SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1748                struct iocb __user * __user *, iocbpp)
1749{
1750        return do_io_submit(ctx_id, nr, iocbpp, 0);
1751}
1752
1753/* lookup_kiocb
1754 *      Finds a given iocb for cancellation.
1755 */
1756static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1757                                  u32 key)
1758{
1759        struct list_head *pos;
1760
1761        assert_spin_locked(&ctx->ctx_lock);
1762
1763        /* TODO: use a hash or array, this sucks. */
1764        list_for_each(pos, &ctx->active_reqs) {
1765                struct kiocb *kiocb = list_kiocb(pos);
1766                if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1767                        return kiocb;
1768        }
1769        return NULL;
1770}
1771
1772/* sys_io_cancel:
1773 *      Attempts to cancel an iocb previously passed to io_submit.  If
1774 *      the operation is successfully cancelled, the resulting event is
1775 *      copied into the memory pointed to by result without being placed
1776 *      into the completion queue and 0 is returned.  May fail with
1777 *      -EFAULT if any of the data structures pointed to are invalid.
1778 *      May fail with -EINVAL if aio_context specified by ctx_id is
1779 *      invalid.  May fail with -EAGAIN if the iocb specified was not
1780 *      cancelled.  Will fail with -ENOSYS if not implemented.
1781 */
1782SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1783                struct io_event __user *, result)
1784{
1785        int (*cancel)(struct kiocb *iocb, struct io_event *res);
1786        struct kioctx *ctx;
1787        struct kiocb *kiocb;
1788        u32 key;
1789        int ret;
1790
1791        ret = get_user(key, &iocb->aio_key);
1792        if (unlikely(ret))
1793                return -EFAULT;
1794
1795        ctx = lookup_ioctx(ctx_id);
1796        if (unlikely(!ctx))
1797                return -EINVAL;
1798
1799        spin_lock_irq(&ctx->ctx_lock);
1800        ret = -EAGAIN;
1801        kiocb = lookup_kiocb(ctx, iocb, key);
1802        if (kiocb && kiocb->ki_cancel) {
1803                cancel = kiocb->ki_cancel;
1804                kiocb->ki_users ++;
1805                kiocbSetCancelled(kiocb);
1806        } else
1807                cancel = NULL;
1808        spin_unlock_irq(&ctx->ctx_lock);
1809
1810        if (NULL != cancel) {
1811                struct io_event tmp;
1812                pr_debug("calling cancel\n");
1813                memset(&tmp, 0, sizeof(tmp));
1814                tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1815                tmp.data = kiocb->ki_user_data;
1816                ret = cancel(kiocb, &tmp);
1817                if (!ret) {
1818                        /* Cancellation succeeded -- copy the result
1819                         * into the user's buffer.
1820                         */
1821                        if (copy_to_user(result, &tmp, sizeof(tmp)))
1822                                ret = -EFAULT;
1823                }
1824        } else
1825                ret = -EINVAL;
1826
1827        put_ioctx(ctx);
1828
1829        return ret;
1830}
1831
1832/* io_getevents:
1833 *      Attempts to read at least min_nr events and up to nr events from
1834 *      the completion queue for the aio_context specified by ctx_id. If
1835 *      it succeeds, the number of read events is returned. May fail with
1836 *      -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1837 *      out of range, if timeout is out of range.  May fail with -EFAULT
1838 *      if any of the memory specified is invalid.  May return 0 or
1839 *      < min_nr if the timeout specified by timeout has elapsed
1840 *      before sufficient events are available, where timeout == NULL
1841 *      specifies an infinite timeout. Note that the timeout pointed to by
1842 *      timeout is relative and will be updated if not NULL and the
1843 *      operation blocks. Will fail with -ENOSYS if not implemented.
1844 */
1845SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1846                long, min_nr,
1847                long, nr,
1848                struct io_event __user *, events,
1849                struct timespec __user *, timeout)
1850{
1851        struct kioctx *ioctx = lookup_ioctx(ctx_id);
1852        long ret = -EINVAL;
1853
1854        if (likely(ioctx)) {
1855                if (likely(min_nr <= nr && min_nr >= 0))
1856                        ret = read_events(ioctx, min_nr, nr, events, timeout);
1857                put_ioctx(ioctx);
1858        }
1859
1860        asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1861        return ret;
1862}
1863