linux/fs/btrfs/compression.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/slab.h>
  35#include "compat.h"
  36#include "ctree.h"
  37#include "disk-io.h"
  38#include "transaction.h"
  39#include "btrfs_inode.h"
  40#include "volumes.h"
  41#include "ordered-data.h"
  42#include "compression.h"
  43#include "extent_io.h"
  44#include "extent_map.h"
  45
  46struct compressed_bio {
  47        /* number of bios pending for this compressed extent */
  48        atomic_t pending_bios;
  49
  50        /* the pages with the compressed data on them */
  51        struct page **compressed_pages;
  52
  53        /* inode that owns this data */
  54        struct inode *inode;
  55
  56        /* starting offset in the inode for our pages */
  57        u64 start;
  58
  59        /* number of bytes in the inode we're working on */
  60        unsigned long len;
  61
  62        /* number of bytes on disk */
  63        unsigned long compressed_len;
  64
  65        /* the compression algorithm for this bio */
  66        int compress_type;
  67
  68        /* number of compressed pages in the array */
  69        unsigned long nr_pages;
  70
  71        /* IO errors */
  72        int errors;
  73        int mirror_num;
  74
  75        /* for reads, this is the bio we are copying the data into */
  76        struct bio *orig_bio;
  77
  78        /*
  79         * the start of a variable length array of checksums only
  80         * used by reads
  81         */
  82        u32 sums;
  83};
  84
  85static inline int compressed_bio_size(struct btrfs_root *root,
  86                                      unsigned long disk_size)
  87{
  88        u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
  89        return sizeof(struct compressed_bio) +
  90                ((disk_size + root->sectorsize - 1) / root->sectorsize) *
  91                csum_size;
  92}
  93
  94static struct bio *compressed_bio_alloc(struct block_device *bdev,
  95                                        u64 first_byte, gfp_t gfp_flags)
  96{
  97        int nr_vecs;
  98
  99        nr_vecs = bio_get_nr_vecs(bdev);
 100        return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
 101}
 102
 103static int check_compressed_csum(struct inode *inode,
 104                                 struct compressed_bio *cb,
 105                                 u64 disk_start)
 106{
 107        int ret;
 108        struct btrfs_root *root = BTRFS_I(inode)->root;
 109        struct page *page;
 110        unsigned long i;
 111        char *kaddr;
 112        u32 csum;
 113        u32 *cb_sum = &cb->sums;
 114
 115        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 116                return 0;
 117
 118        for (i = 0; i < cb->nr_pages; i++) {
 119                page = cb->compressed_pages[i];
 120                csum = ~(u32)0;
 121
 122                kaddr = kmap_atomic(page, KM_USER0);
 123                csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
 124                btrfs_csum_final(csum, (char *)&csum);
 125                kunmap_atomic(kaddr, KM_USER0);
 126
 127                if (csum != *cb_sum) {
 128                        printk(KERN_INFO "btrfs csum failed ino %lu "
 129                               "extent %llu csum %u "
 130                               "wanted %u mirror %d\n", inode->i_ino,
 131                               (unsigned long long)disk_start,
 132                               csum, *cb_sum, cb->mirror_num);
 133                        ret = -EIO;
 134                        goto fail;
 135                }
 136                cb_sum++;
 137
 138        }
 139        ret = 0;
 140fail:
 141        return ret;
 142}
 143
 144/* when we finish reading compressed pages from the disk, we
 145 * decompress them and then run the bio end_io routines on the
 146 * decompressed pages (in the inode address space).
 147 *
 148 * This allows the checksumming and other IO error handling routines
 149 * to work normally
 150 *
 151 * The compressed pages are freed here, and it must be run
 152 * in process context
 153 */
 154static void end_compressed_bio_read(struct bio *bio, int err)
 155{
 156        struct compressed_bio *cb = bio->bi_private;
 157        struct inode *inode;
 158        struct page *page;
 159        unsigned long index;
 160        int ret;
 161
 162        if (err)
 163                cb->errors = 1;
 164
 165        /* if there are more bios still pending for this compressed
 166         * extent, just exit
 167         */
 168        if (!atomic_dec_and_test(&cb->pending_bios))
 169                goto out;
 170
 171        inode = cb->inode;
 172        ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
 173        if (ret)
 174                goto csum_failed;
 175
 176        /* ok, we're the last bio for this extent, lets start
 177         * the decompression.
 178         */
 179        ret = btrfs_decompress_biovec(cb->compress_type,
 180                                      cb->compressed_pages,
 181                                      cb->start,
 182                                      cb->orig_bio->bi_io_vec,
 183                                      cb->orig_bio->bi_vcnt,
 184                                      cb->compressed_len);
 185csum_failed:
 186        if (ret)
 187                cb->errors = 1;
 188
 189        /* release the compressed pages */
 190        index = 0;
 191        for (index = 0; index < cb->nr_pages; index++) {
 192                page = cb->compressed_pages[index];
 193                page->mapping = NULL;
 194                page_cache_release(page);
 195        }
 196
 197        /* do io completion on the original bio */
 198        if (cb->errors) {
 199                bio_io_error(cb->orig_bio);
 200        } else {
 201                int bio_index = 0;
 202                struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
 203
 204                /*
 205                 * we have verified the checksum already, set page
 206                 * checked so the end_io handlers know about it
 207                 */
 208                while (bio_index < cb->orig_bio->bi_vcnt) {
 209                        SetPageChecked(bvec->bv_page);
 210                        bvec++;
 211                        bio_index++;
 212                }
 213                bio_endio(cb->orig_bio, 0);
 214        }
 215
 216        /* finally free the cb struct */
 217        kfree(cb->compressed_pages);
 218        kfree(cb);
 219out:
 220        bio_put(bio);
 221}
 222
 223/*
 224 * Clear the writeback bits on all of the file
 225 * pages for a compressed write
 226 */
 227static noinline int end_compressed_writeback(struct inode *inode, u64 start,
 228                                             unsigned long ram_size)
 229{
 230        unsigned long index = start >> PAGE_CACHE_SHIFT;
 231        unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
 232        struct page *pages[16];
 233        unsigned long nr_pages = end_index - index + 1;
 234        int i;
 235        int ret;
 236
 237        while (nr_pages > 0) {
 238                ret = find_get_pages_contig(inode->i_mapping, index,
 239                                     min_t(unsigned long,
 240                                     nr_pages, ARRAY_SIZE(pages)), pages);
 241                if (ret == 0) {
 242                        nr_pages -= 1;
 243                        index += 1;
 244                        continue;
 245                }
 246                for (i = 0; i < ret; i++) {
 247                        end_page_writeback(pages[i]);
 248                        page_cache_release(pages[i]);
 249                }
 250                nr_pages -= ret;
 251                index += ret;
 252        }
 253        /* the inode may be gone now */
 254        return 0;
 255}
 256
 257/*
 258 * do the cleanup once all the compressed pages hit the disk.
 259 * This will clear writeback on the file pages and free the compressed
 260 * pages.
 261 *
 262 * This also calls the writeback end hooks for the file pages so that
 263 * metadata and checksums can be updated in the file.
 264 */
 265static void end_compressed_bio_write(struct bio *bio, int err)
 266{
 267        struct extent_io_tree *tree;
 268        struct compressed_bio *cb = bio->bi_private;
 269        struct inode *inode;
 270        struct page *page;
 271        unsigned long index;
 272
 273        if (err)
 274                cb->errors = 1;
 275
 276        /* if there are more bios still pending for this compressed
 277         * extent, just exit
 278         */
 279        if (!atomic_dec_and_test(&cb->pending_bios))
 280                goto out;
 281
 282        /* ok, we're the last bio for this extent, step one is to
 283         * call back into the FS and do all the end_io operations
 284         */
 285        inode = cb->inode;
 286        tree = &BTRFS_I(inode)->io_tree;
 287        cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 288        tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 289                                         cb->start,
 290                                         cb->start + cb->len - 1,
 291                                         NULL, 1);
 292        cb->compressed_pages[0]->mapping = NULL;
 293
 294        end_compressed_writeback(inode, cb->start, cb->len);
 295        /* note, our inode could be gone now */
 296
 297        /*
 298         * release the compressed pages, these came from alloc_page and
 299         * are not attached to the inode at all
 300         */
 301        index = 0;
 302        for (index = 0; index < cb->nr_pages; index++) {
 303                page = cb->compressed_pages[index];
 304                page->mapping = NULL;
 305                page_cache_release(page);
 306        }
 307
 308        /* finally free the cb struct */
 309        kfree(cb->compressed_pages);
 310        kfree(cb);
 311out:
 312        bio_put(bio);
 313}
 314
 315/*
 316 * worker function to build and submit bios for previously compressed pages.
 317 * The corresponding pages in the inode should be marked for writeback
 318 * and the compressed pages should have a reference on them for dropping
 319 * when the IO is complete.
 320 *
 321 * This also checksums the file bytes and gets things ready for
 322 * the end io hooks.
 323 */
 324int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 325                                 unsigned long len, u64 disk_start,
 326                                 unsigned long compressed_len,
 327                                 struct page **compressed_pages,
 328                                 unsigned long nr_pages)
 329{
 330        struct bio *bio = NULL;
 331        struct btrfs_root *root = BTRFS_I(inode)->root;
 332        struct compressed_bio *cb;
 333        unsigned long bytes_left;
 334        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 335        int page_index = 0;
 336        struct page *page;
 337        u64 first_byte = disk_start;
 338        struct block_device *bdev;
 339        int ret;
 340
 341        WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
 342        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 343        atomic_set(&cb->pending_bios, 0);
 344        cb->errors = 0;
 345        cb->inode = inode;
 346        cb->start = start;
 347        cb->len = len;
 348        cb->mirror_num = 0;
 349        cb->compressed_pages = compressed_pages;
 350        cb->compressed_len = compressed_len;
 351        cb->orig_bio = NULL;
 352        cb->nr_pages = nr_pages;
 353
 354        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 355
 356        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 357        bio->bi_private = cb;
 358        bio->bi_end_io = end_compressed_bio_write;
 359        atomic_inc(&cb->pending_bios);
 360
 361        /* create and submit bios for the compressed pages */
 362        bytes_left = compressed_len;
 363        for (page_index = 0; page_index < cb->nr_pages; page_index++) {
 364                page = compressed_pages[page_index];
 365                page->mapping = inode->i_mapping;
 366                if (bio->bi_size)
 367                        ret = io_tree->ops->merge_bio_hook(page, 0,
 368                                                           PAGE_CACHE_SIZE,
 369                                                           bio, 0);
 370                else
 371                        ret = 0;
 372
 373                page->mapping = NULL;
 374                if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
 375                    PAGE_CACHE_SIZE) {
 376                        bio_get(bio);
 377
 378                        /*
 379                         * inc the count before we submit the bio so
 380                         * we know the end IO handler won't happen before
 381                         * we inc the count.  Otherwise, the cb might get
 382                         * freed before we're done setting it up
 383                         */
 384                        atomic_inc(&cb->pending_bios);
 385                        ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 386                        BUG_ON(ret);
 387
 388                        ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
 389                        BUG_ON(ret);
 390
 391                        ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 392                        BUG_ON(ret);
 393
 394                        bio_put(bio);
 395
 396                        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 397                        bio->bi_private = cb;
 398                        bio->bi_end_io = end_compressed_bio_write;
 399                        bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
 400                }
 401                if (bytes_left < PAGE_CACHE_SIZE) {
 402                        printk("bytes left %lu compress len %lu nr %lu\n",
 403                               bytes_left, cb->compressed_len, cb->nr_pages);
 404                }
 405                bytes_left -= PAGE_CACHE_SIZE;
 406                first_byte += PAGE_CACHE_SIZE;
 407                cond_resched();
 408        }
 409        bio_get(bio);
 410
 411        ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 412        BUG_ON(ret);
 413
 414        ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
 415        BUG_ON(ret);
 416
 417        ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 418        BUG_ON(ret);
 419
 420        bio_put(bio);
 421        return 0;
 422}
 423
 424static noinline int add_ra_bio_pages(struct inode *inode,
 425                                     u64 compressed_end,
 426                                     struct compressed_bio *cb)
 427{
 428        unsigned long end_index;
 429        unsigned long page_index;
 430        u64 last_offset;
 431        u64 isize = i_size_read(inode);
 432        int ret;
 433        struct page *page;
 434        unsigned long nr_pages = 0;
 435        struct extent_map *em;
 436        struct address_space *mapping = inode->i_mapping;
 437        struct extent_map_tree *em_tree;
 438        struct extent_io_tree *tree;
 439        u64 end;
 440        int misses = 0;
 441
 442        page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
 443        last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
 444        em_tree = &BTRFS_I(inode)->extent_tree;
 445        tree = &BTRFS_I(inode)->io_tree;
 446
 447        if (isize == 0)
 448                return 0;
 449
 450        end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
 451
 452        while (last_offset < compressed_end) {
 453                page_index = last_offset >> PAGE_CACHE_SHIFT;
 454
 455                if (page_index > end_index)
 456                        break;
 457
 458                rcu_read_lock();
 459                page = radix_tree_lookup(&mapping->page_tree, page_index);
 460                rcu_read_unlock();
 461                if (page) {
 462                        misses++;
 463                        if (misses > 4)
 464                                break;
 465                        goto next;
 466                }
 467
 468                page = __page_cache_alloc(mapping_gfp_mask(mapping) &
 469                                                                ~__GFP_FS);
 470                if (!page)
 471                        break;
 472
 473                if (add_to_page_cache_lru(page, mapping, page_index,
 474                                                                GFP_NOFS)) {
 475                        page_cache_release(page);
 476                        goto next;
 477                }
 478
 479                end = last_offset + PAGE_CACHE_SIZE - 1;
 480                /*
 481                 * at this point, we have a locked page in the page cache
 482                 * for these bytes in the file.  But, we have to make
 483                 * sure they map to this compressed extent on disk.
 484                 */
 485                set_page_extent_mapped(page);
 486                lock_extent(tree, last_offset, end, GFP_NOFS);
 487                read_lock(&em_tree->lock);
 488                em = lookup_extent_mapping(em_tree, last_offset,
 489                                           PAGE_CACHE_SIZE);
 490                read_unlock(&em_tree->lock);
 491
 492                if (!em || last_offset < em->start ||
 493                    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
 494                    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
 495                        free_extent_map(em);
 496                        unlock_extent(tree, last_offset, end, GFP_NOFS);
 497                        unlock_page(page);
 498                        page_cache_release(page);
 499                        break;
 500                }
 501                free_extent_map(em);
 502
 503                if (page->index == end_index) {
 504                        char *userpage;
 505                        size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
 506
 507                        if (zero_offset) {
 508                                int zeros;
 509                                zeros = PAGE_CACHE_SIZE - zero_offset;
 510                                userpage = kmap_atomic(page, KM_USER0);
 511                                memset(userpage + zero_offset, 0, zeros);
 512                                flush_dcache_page(page);
 513                                kunmap_atomic(userpage, KM_USER0);
 514                        }
 515                }
 516
 517                ret = bio_add_page(cb->orig_bio, page,
 518                                   PAGE_CACHE_SIZE, 0);
 519
 520                if (ret == PAGE_CACHE_SIZE) {
 521                        nr_pages++;
 522                        page_cache_release(page);
 523                } else {
 524                        unlock_extent(tree, last_offset, end, GFP_NOFS);
 525                        unlock_page(page);
 526                        page_cache_release(page);
 527                        break;
 528                }
 529next:
 530                last_offset += PAGE_CACHE_SIZE;
 531        }
 532        return 0;
 533}
 534
 535/*
 536 * for a compressed read, the bio we get passed has all the inode pages
 537 * in it.  We don't actually do IO on those pages but allocate new ones
 538 * to hold the compressed pages on disk.
 539 *
 540 * bio->bi_sector points to the compressed extent on disk
 541 * bio->bi_io_vec points to all of the inode pages
 542 * bio->bi_vcnt is a count of pages
 543 *
 544 * After the compressed pages are read, we copy the bytes into the
 545 * bio we were passed and then call the bio end_io calls
 546 */
 547int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 548                                 int mirror_num, unsigned long bio_flags)
 549{
 550        struct extent_io_tree *tree;
 551        struct extent_map_tree *em_tree;
 552        struct compressed_bio *cb;
 553        struct btrfs_root *root = BTRFS_I(inode)->root;
 554        unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 555        unsigned long compressed_len;
 556        unsigned long nr_pages;
 557        unsigned long page_index;
 558        struct page *page;
 559        struct block_device *bdev;
 560        struct bio *comp_bio;
 561        u64 cur_disk_byte = (u64)bio->bi_sector << 9;
 562        u64 em_len;
 563        u64 em_start;
 564        struct extent_map *em;
 565        int ret = -ENOMEM;
 566        u32 *sums;
 567
 568        tree = &BTRFS_I(inode)->io_tree;
 569        em_tree = &BTRFS_I(inode)->extent_tree;
 570
 571        /* we need the actual starting offset of this extent in the file */
 572        read_lock(&em_tree->lock);
 573        em = lookup_extent_mapping(em_tree,
 574                                   page_offset(bio->bi_io_vec->bv_page),
 575                                   PAGE_CACHE_SIZE);
 576        read_unlock(&em_tree->lock);
 577
 578        compressed_len = em->block_len;
 579        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 580        if (!cb)
 581                goto out;
 582
 583        atomic_set(&cb->pending_bios, 0);
 584        cb->errors = 0;
 585        cb->inode = inode;
 586        cb->mirror_num = mirror_num;
 587        sums = &cb->sums;
 588
 589        cb->start = em->orig_start;
 590        em_len = em->len;
 591        em_start = em->start;
 592
 593        free_extent_map(em);
 594        em = NULL;
 595
 596        cb->len = uncompressed_len;
 597        cb->compressed_len = compressed_len;
 598        cb->compress_type = extent_compress_type(bio_flags);
 599        cb->orig_bio = bio;
 600
 601        nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
 602                                 PAGE_CACHE_SIZE;
 603        cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
 604                                       GFP_NOFS);
 605        if (!cb->compressed_pages)
 606                goto fail1;
 607
 608        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 609
 610        for (page_index = 0; page_index < nr_pages; page_index++) {
 611                cb->compressed_pages[page_index] = alloc_page(GFP_NOFS |
 612                                                              __GFP_HIGHMEM);
 613                if (!cb->compressed_pages[page_index])
 614                        goto fail2;
 615        }
 616        cb->nr_pages = nr_pages;
 617
 618        add_ra_bio_pages(inode, em_start + em_len, cb);
 619
 620        /* include any pages we added in add_ra-bio_pages */
 621        uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 622        cb->len = uncompressed_len;
 623
 624        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 625        if (!comp_bio)
 626                goto fail2;
 627        comp_bio->bi_private = cb;
 628        comp_bio->bi_end_io = end_compressed_bio_read;
 629        atomic_inc(&cb->pending_bios);
 630
 631        for (page_index = 0; page_index < nr_pages; page_index++) {
 632                page = cb->compressed_pages[page_index];
 633                page->mapping = inode->i_mapping;
 634                page->index = em_start >> PAGE_CACHE_SHIFT;
 635
 636                if (comp_bio->bi_size)
 637                        ret = tree->ops->merge_bio_hook(page, 0,
 638                                                        PAGE_CACHE_SIZE,
 639                                                        comp_bio, 0);
 640                else
 641                        ret = 0;
 642
 643                page->mapping = NULL;
 644                if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
 645                    PAGE_CACHE_SIZE) {
 646                        bio_get(comp_bio);
 647
 648                        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 649                        BUG_ON(ret);
 650
 651                        /*
 652                         * inc the count before we submit the bio so
 653                         * we know the end IO handler won't happen before
 654                         * we inc the count.  Otherwise, the cb might get
 655                         * freed before we're done setting it up
 656                         */
 657                        atomic_inc(&cb->pending_bios);
 658
 659                        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 660                                btrfs_lookup_bio_sums(root, inode, comp_bio,
 661                                                      sums);
 662                        }
 663                        sums += (comp_bio->bi_size + root->sectorsize - 1) /
 664                                root->sectorsize;
 665
 666                        ret = btrfs_map_bio(root, READ, comp_bio,
 667                                            mirror_num, 0);
 668                        BUG_ON(ret);
 669
 670                        bio_put(comp_bio);
 671
 672                        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 673                                                        GFP_NOFS);
 674                        comp_bio->bi_private = cb;
 675                        comp_bio->bi_end_io = end_compressed_bio_read;
 676
 677                        bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
 678                }
 679                cur_disk_byte += PAGE_CACHE_SIZE;
 680        }
 681        bio_get(comp_bio);
 682
 683        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 684        BUG_ON(ret);
 685
 686        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
 687                btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
 688
 689        ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
 690        BUG_ON(ret);
 691
 692        bio_put(comp_bio);
 693        return 0;
 694
 695fail2:
 696        for (page_index = 0; page_index < nr_pages; page_index++)
 697                free_page((unsigned long)cb->compressed_pages[page_index]);
 698
 699        kfree(cb->compressed_pages);
 700fail1:
 701        kfree(cb);
 702out:
 703        free_extent_map(em);
 704        return ret;
 705}
 706
 707static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
 708static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
 709static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
 710static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
 711static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
 712
 713struct btrfs_compress_op *btrfs_compress_op[] = {
 714        &btrfs_zlib_compress,
 715        &btrfs_lzo_compress,
 716};
 717
 718int __init btrfs_init_compress(void)
 719{
 720        int i;
 721
 722        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 723                INIT_LIST_HEAD(&comp_idle_workspace[i]);
 724                spin_lock_init(&comp_workspace_lock[i]);
 725                atomic_set(&comp_alloc_workspace[i], 0);
 726                init_waitqueue_head(&comp_workspace_wait[i]);
 727        }
 728        return 0;
 729}
 730
 731/*
 732 * this finds an available workspace or allocates a new one
 733 * ERR_PTR is returned if things go bad.
 734 */
 735static struct list_head *find_workspace(int type)
 736{
 737        struct list_head *workspace;
 738        int cpus = num_online_cpus();
 739        int idx = type - 1;
 740
 741        struct list_head *idle_workspace        = &comp_idle_workspace[idx];
 742        spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
 743        atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
 744        wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
 745        int *num_workspace                      = &comp_num_workspace[idx];
 746again:
 747        spin_lock(workspace_lock);
 748        if (!list_empty(idle_workspace)) {
 749                workspace = idle_workspace->next;
 750                list_del(workspace);
 751                (*num_workspace)--;
 752                spin_unlock(workspace_lock);
 753                return workspace;
 754
 755        }
 756        if (atomic_read(alloc_workspace) > cpus) {
 757                DEFINE_WAIT(wait);
 758
 759                spin_unlock(workspace_lock);
 760                prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
 761                if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
 762                        schedule();
 763                finish_wait(workspace_wait, &wait);
 764                goto again;
 765        }
 766        atomic_inc(alloc_workspace);
 767        spin_unlock(workspace_lock);
 768
 769        workspace = btrfs_compress_op[idx]->alloc_workspace();
 770        if (IS_ERR(workspace)) {
 771                atomic_dec(alloc_workspace);
 772                wake_up(workspace_wait);
 773        }
 774        return workspace;
 775}
 776
 777/*
 778 * put a workspace struct back on the list or free it if we have enough
 779 * idle ones sitting around
 780 */
 781static void free_workspace(int type, struct list_head *workspace)
 782{
 783        int idx = type - 1;
 784        struct list_head *idle_workspace        = &comp_idle_workspace[idx];
 785        spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
 786        atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
 787        wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
 788        int *num_workspace                      = &comp_num_workspace[idx];
 789
 790        spin_lock(workspace_lock);
 791        if (*num_workspace < num_online_cpus()) {
 792                list_add_tail(workspace, idle_workspace);
 793                (*num_workspace)++;
 794                spin_unlock(workspace_lock);
 795                goto wake;
 796        }
 797        spin_unlock(workspace_lock);
 798
 799        btrfs_compress_op[idx]->free_workspace(workspace);
 800        atomic_dec(alloc_workspace);
 801wake:
 802        if (waitqueue_active(workspace_wait))
 803                wake_up(workspace_wait);
 804}
 805
 806/*
 807 * cleanup function for module exit
 808 */
 809static void free_workspaces(void)
 810{
 811        struct list_head *workspace;
 812        int i;
 813
 814        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 815                while (!list_empty(&comp_idle_workspace[i])) {
 816                        workspace = comp_idle_workspace[i].next;
 817                        list_del(workspace);
 818                        btrfs_compress_op[i]->free_workspace(workspace);
 819                        atomic_dec(&comp_alloc_workspace[i]);
 820                }
 821        }
 822}
 823
 824/*
 825 * given an address space and start/len, compress the bytes.
 826 *
 827 * pages are allocated to hold the compressed result and stored
 828 * in 'pages'
 829 *
 830 * out_pages is used to return the number of pages allocated.  There
 831 * may be pages allocated even if we return an error
 832 *
 833 * total_in is used to return the number of bytes actually read.  It
 834 * may be smaller then len if we had to exit early because we
 835 * ran out of room in the pages array or because we cross the
 836 * max_out threshold.
 837 *
 838 * total_out is used to return the total number of compressed bytes
 839 *
 840 * max_out tells us the max number of bytes that we're allowed to
 841 * stuff into pages
 842 */
 843int btrfs_compress_pages(int type, struct address_space *mapping,
 844                         u64 start, unsigned long len,
 845                         struct page **pages,
 846                         unsigned long nr_dest_pages,
 847                         unsigned long *out_pages,
 848                         unsigned long *total_in,
 849                         unsigned long *total_out,
 850                         unsigned long max_out)
 851{
 852        struct list_head *workspace;
 853        int ret;
 854
 855        workspace = find_workspace(type);
 856        if (IS_ERR(workspace))
 857                return -1;
 858
 859        ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 860                                                      start, len, pages,
 861                                                      nr_dest_pages, out_pages,
 862                                                      total_in, total_out,
 863                                                      max_out);
 864        free_workspace(type, workspace);
 865        return ret;
 866}
 867
 868/*
 869 * pages_in is an array of pages with compressed data.
 870 *
 871 * disk_start is the starting logical offset of this array in the file
 872 *
 873 * bvec is a bio_vec of pages from the file that we want to decompress into
 874 *
 875 * vcnt is the count of pages in the biovec
 876 *
 877 * srclen is the number of bytes in pages_in
 878 *
 879 * The basic idea is that we have a bio that was created by readpages.
 880 * The pages in the bio are for the uncompressed data, and they may not
 881 * be contiguous.  They all correspond to the range of bytes covered by
 882 * the compressed extent.
 883 */
 884int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
 885                            struct bio_vec *bvec, int vcnt, size_t srclen)
 886{
 887        struct list_head *workspace;
 888        int ret;
 889
 890        workspace = find_workspace(type);
 891        if (IS_ERR(workspace))
 892                return -ENOMEM;
 893
 894        ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
 895                                                         disk_start,
 896                                                         bvec, vcnt, srclen);
 897        free_workspace(type, workspace);
 898        return ret;
 899}
 900
 901/*
 902 * a less complex decompression routine.  Our compressed data fits in a
 903 * single page, and we want to read a single page out of it.
 904 * start_byte tells us the offset into the compressed data we're interested in
 905 */
 906int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 907                     unsigned long start_byte, size_t srclen, size_t destlen)
 908{
 909        struct list_head *workspace;
 910        int ret;
 911
 912        workspace = find_workspace(type);
 913        if (IS_ERR(workspace))
 914                return -ENOMEM;
 915
 916        ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
 917                                                  dest_page, start_byte,
 918                                                  srclen, destlen);
 919
 920        free_workspace(type, workspace);
 921        return ret;
 922}
 923
 924void btrfs_exit_compress(void)
 925{
 926        free_workspaces();
 927}
 928
 929/*
 930 * Copy uncompressed data from working buffer to pages.
 931 *
 932 * buf_start is the byte offset we're of the start of our workspace buffer.
 933 *
 934 * total_out is the last byte of the buffer
 935 */
 936int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
 937                              unsigned long total_out, u64 disk_start,
 938                              struct bio_vec *bvec, int vcnt,
 939                              unsigned long *page_index,
 940                              unsigned long *pg_offset)
 941{
 942        unsigned long buf_offset;
 943        unsigned long current_buf_start;
 944        unsigned long start_byte;
 945        unsigned long working_bytes = total_out - buf_start;
 946        unsigned long bytes;
 947        char *kaddr;
 948        struct page *page_out = bvec[*page_index].bv_page;
 949
 950        /*
 951         * start byte is the first byte of the page we're currently
 952         * copying into relative to the start of the compressed data.
 953         */
 954        start_byte = page_offset(page_out) - disk_start;
 955
 956        /* we haven't yet hit data corresponding to this page */
 957        if (total_out <= start_byte)
 958                return 1;
 959
 960        /*
 961         * the start of the data we care about is offset into
 962         * the middle of our working buffer
 963         */
 964        if (total_out > start_byte && buf_start < start_byte) {
 965                buf_offset = start_byte - buf_start;
 966                working_bytes -= buf_offset;
 967        } else {
 968                buf_offset = 0;
 969        }
 970        current_buf_start = buf_start;
 971
 972        /* copy bytes from the working buffer into the pages */
 973        while (working_bytes > 0) {
 974                bytes = min(PAGE_CACHE_SIZE - *pg_offset,
 975                            PAGE_CACHE_SIZE - buf_offset);
 976                bytes = min(bytes, working_bytes);
 977                kaddr = kmap_atomic(page_out, KM_USER0);
 978                memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
 979                kunmap_atomic(kaddr, KM_USER0);
 980                flush_dcache_page(page_out);
 981
 982                *pg_offset += bytes;
 983                buf_offset += bytes;
 984                working_bytes -= bytes;
 985                current_buf_start += bytes;
 986
 987                /* check if we need to pick another page */
 988                if (*pg_offset == PAGE_CACHE_SIZE) {
 989                        (*page_index)++;
 990                        if (*page_index >= vcnt)
 991                                return 0;
 992
 993                        page_out = bvec[*page_index].bv_page;
 994                        *pg_offset = 0;
 995                        start_byte = page_offset(page_out) - disk_start;
 996
 997                        /*
 998                         * make sure our new page is covered by this
 999                         * working buffer
1000                         */
1001                        if (total_out <= start_byte)
1002                                return 1;
1003
1004                        /*
1005                         * the next page in the biovec might not be adjacent
1006                         * to the last page, but it might still be found
1007                         * inside this working buffer. bump our offset pointer
1008                         */
1009                        if (total_out > start_byte &&
1010                            current_buf_start < start_byte) {
1011                                buf_offset = start_byte - buf_start;
1012                                working_bytes = total_out - start_byte;
1013                                current_buf_start = buf_start + buf_offset;
1014                        }
1015                }
1016        }
1017
1018        return 1;
1019}
1020