linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/module.h>
   8#include <linux/spinlock.h>
   9#include <linux/blkdev.h>
  10#include <linux/swap.h>
  11#include <linux/writeback.h>
  12#include <linux/pagevec.h>
  13#include "extent_io.h"
  14#include "extent_map.h"
  15#include "compat.h"
  16#include "ctree.h"
  17#include "btrfs_inode.h"
  18
  19static struct kmem_cache *extent_state_cache;
  20static struct kmem_cache *extent_buffer_cache;
  21
  22static LIST_HEAD(buffers);
  23static LIST_HEAD(states);
  24
  25#define LEAK_DEBUG 0
  26#if LEAK_DEBUG
  27static DEFINE_SPINLOCK(leak_lock);
  28#endif
  29
  30#define BUFFER_LRU_MAX 64
  31
  32struct tree_entry {
  33        u64 start;
  34        u64 end;
  35        struct rb_node rb_node;
  36};
  37
  38struct extent_page_data {
  39        struct bio *bio;
  40        struct extent_io_tree *tree;
  41        get_extent_t *get_extent;
  42
  43        /* tells writepage not to lock the state bits for this range
  44         * it still does the unlocking
  45         */
  46        unsigned int extent_locked:1;
  47
  48        /* tells the submit_bio code to use a WRITE_SYNC */
  49        unsigned int sync_io:1;
  50};
  51
  52int __init extent_io_init(void)
  53{
  54        extent_state_cache = kmem_cache_create("extent_state",
  55                        sizeof(struct extent_state), 0,
  56                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  57        if (!extent_state_cache)
  58                return -ENOMEM;
  59
  60        extent_buffer_cache = kmem_cache_create("extent_buffers",
  61                        sizeof(struct extent_buffer), 0,
  62                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  63        if (!extent_buffer_cache)
  64                goto free_state_cache;
  65        return 0;
  66
  67free_state_cache:
  68        kmem_cache_destroy(extent_state_cache);
  69        return -ENOMEM;
  70}
  71
  72void extent_io_exit(void)
  73{
  74        struct extent_state *state;
  75        struct extent_buffer *eb;
  76
  77        while (!list_empty(&states)) {
  78                state = list_entry(states.next, struct extent_state, leak_list);
  79                printk(KERN_ERR "btrfs state leak: start %llu end %llu "
  80                       "state %lu in tree %p refs %d\n",
  81                       (unsigned long long)state->start,
  82                       (unsigned long long)state->end,
  83                       state->state, state->tree, atomic_read(&state->refs));
  84                list_del(&state->leak_list);
  85                kmem_cache_free(extent_state_cache, state);
  86
  87        }
  88
  89        while (!list_empty(&buffers)) {
  90                eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  91                printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
  92                       "refs %d\n", (unsigned long long)eb->start,
  93                       eb->len, atomic_read(&eb->refs));
  94                list_del(&eb->leak_list);
  95                kmem_cache_free(extent_buffer_cache, eb);
  96        }
  97        if (extent_state_cache)
  98                kmem_cache_destroy(extent_state_cache);
  99        if (extent_buffer_cache)
 100                kmem_cache_destroy(extent_buffer_cache);
 101}
 102
 103void extent_io_tree_init(struct extent_io_tree *tree,
 104                          struct address_space *mapping, gfp_t mask)
 105{
 106        tree->state = RB_ROOT;
 107        INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
 108        tree->ops = NULL;
 109        tree->dirty_bytes = 0;
 110        spin_lock_init(&tree->lock);
 111        spin_lock_init(&tree->buffer_lock);
 112        tree->mapping = mapping;
 113}
 114
 115static struct extent_state *alloc_extent_state(gfp_t mask)
 116{
 117        struct extent_state *state;
 118#if LEAK_DEBUG
 119        unsigned long flags;
 120#endif
 121
 122        state = kmem_cache_alloc(extent_state_cache, mask);
 123        if (!state)
 124                return state;
 125        state->state = 0;
 126        state->private = 0;
 127        state->tree = NULL;
 128#if LEAK_DEBUG
 129        spin_lock_irqsave(&leak_lock, flags);
 130        list_add(&state->leak_list, &states);
 131        spin_unlock_irqrestore(&leak_lock, flags);
 132#endif
 133        atomic_set(&state->refs, 1);
 134        init_waitqueue_head(&state->wq);
 135        return state;
 136}
 137
 138void free_extent_state(struct extent_state *state)
 139{
 140        if (!state)
 141                return;
 142        if (atomic_dec_and_test(&state->refs)) {
 143#if LEAK_DEBUG
 144                unsigned long flags;
 145#endif
 146                WARN_ON(state->tree);
 147#if LEAK_DEBUG
 148                spin_lock_irqsave(&leak_lock, flags);
 149                list_del(&state->leak_list);
 150                spin_unlock_irqrestore(&leak_lock, flags);
 151#endif
 152                kmem_cache_free(extent_state_cache, state);
 153        }
 154}
 155
 156static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
 157                                   struct rb_node *node)
 158{
 159        struct rb_node **p = &root->rb_node;
 160        struct rb_node *parent = NULL;
 161        struct tree_entry *entry;
 162
 163        while (*p) {
 164                parent = *p;
 165                entry = rb_entry(parent, struct tree_entry, rb_node);
 166
 167                if (offset < entry->start)
 168                        p = &(*p)->rb_left;
 169                else if (offset > entry->end)
 170                        p = &(*p)->rb_right;
 171                else
 172                        return parent;
 173        }
 174
 175        entry = rb_entry(node, struct tree_entry, rb_node);
 176        rb_link_node(node, parent, p);
 177        rb_insert_color(node, root);
 178        return NULL;
 179}
 180
 181static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 182                                     struct rb_node **prev_ret,
 183                                     struct rb_node **next_ret)
 184{
 185        struct rb_root *root = &tree->state;
 186        struct rb_node *n = root->rb_node;
 187        struct rb_node *prev = NULL;
 188        struct rb_node *orig_prev = NULL;
 189        struct tree_entry *entry;
 190        struct tree_entry *prev_entry = NULL;
 191
 192        while (n) {
 193                entry = rb_entry(n, struct tree_entry, rb_node);
 194                prev = n;
 195                prev_entry = entry;
 196
 197                if (offset < entry->start)
 198                        n = n->rb_left;
 199                else if (offset > entry->end)
 200                        n = n->rb_right;
 201                else
 202                        return n;
 203        }
 204
 205        if (prev_ret) {
 206                orig_prev = prev;
 207                while (prev && offset > prev_entry->end) {
 208                        prev = rb_next(prev);
 209                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 210                }
 211                *prev_ret = prev;
 212                prev = orig_prev;
 213        }
 214
 215        if (next_ret) {
 216                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 217                while (prev && offset < prev_entry->start) {
 218                        prev = rb_prev(prev);
 219                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 220                }
 221                *next_ret = prev;
 222        }
 223        return NULL;
 224}
 225
 226static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 227                                          u64 offset)
 228{
 229        struct rb_node *prev = NULL;
 230        struct rb_node *ret;
 231
 232        ret = __etree_search(tree, offset, &prev, NULL);
 233        if (!ret)
 234                return prev;
 235        return ret;
 236}
 237
 238static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 239                     struct extent_state *other)
 240{
 241        if (tree->ops && tree->ops->merge_extent_hook)
 242                tree->ops->merge_extent_hook(tree->mapping->host, new,
 243                                             other);
 244}
 245
 246/*
 247 * utility function to look for merge candidates inside a given range.
 248 * Any extents with matching state are merged together into a single
 249 * extent in the tree.  Extents with EXTENT_IO in their state field
 250 * are not merged because the end_io handlers need to be able to do
 251 * operations on them without sleeping (or doing allocations/splits).
 252 *
 253 * This should be called with the tree lock held.
 254 */
 255static int merge_state(struct extent_io_tree *tree,
 256                       struct extent_state *state)
 257{
 258        struct extent_state *other;
 259        struct rb_node *other_node;
 260
 261        if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 262                return 0;
 263
 264        other_node = rb_prev(&state->rb_node);
 265        if (other_node) {
 266                other = rb_entry(other_node, struct extent_state, rb_node);
 267                if (other->end == state->start - 1 &&
 268                    other->state == state->state) {
 269                        merge_cb(tree, state, other);
 270                        state->start = other->start;
 271                        other->tree = NULL;
 272                        rb_erase(&other->rb_node, &tree->state);
 273                        free_extent_state(other);
 274                }
 275        }
 276        other_node = rb_next(&state->rb_node);
 277        if (other_node) {
 278                other = rb_entry(other_node, struct extent_state, rb_node);
 279                if (other->start == state->end + 1 &&
 280                    other->state == state->state) {
 281                        merge_cb(tree, state, other);
 282                        other->start = state->start;
 283                        state->tree = NULL;
 284                        rb_erase(&state->rb_node, &tree->state);
 285                        free_extent_state(state);
 286                        state = NULL;
 287                }
 288        }
 289
 290        return 0;
 291}
 292
 293static int set_state_cb(struct extent_io_tree *tree,
 294                         struct extent_state *state, int *bits)
 295{
 296        if (tree->ops && tree->ops->set_bit_hook) {
 297                return tree->ops->set_bit_hook(tree->mapping->host,
 298                                               state, bits);
 299        }
 300
 301        return 0;
 302}
 303
 304static void clear_state_cb(struct extent_io_tree *tree,
 305                           struct extent_state *state, int *bits)
 306{
 307        if (tree->ops && tree->ops->clear_bit_hook)
 308                tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 309}
 310
 311/*
 312 * insert an extent_state struct into the tree.  'bits' are set on the
 313 * struct before it is inserted.
 314 *
 315 * This may return -EEXIST if the extent is already there, in which case the
 316 * state struct is freed.
 317 *
 318 * The tree lock is not taken internally.  This is a utility function and
 319 * probably isn't what you want to call (see set/clear_extent_bit).
 320 */
 321static int insert_state(struct extent_io_tree *tree,
 322                        struct extent_state *state, u64 start, u64 end,
 323                        int *bits)
 324{
 325        struct rb_node *node;
 326        int bits_to_set = *bits & ~EXTENT_CTLBITS;
 327        int ret;
 328
 329        if (end < start) {
 330                printk(KERN_ERR "btrfs end < start %llu %llu\n",
 331                       (unsigned long long)end,
 332                       (unsigned long long)start);
 333                WARN_ON(1);
 334        }
 335        state->start = start;
 336        state->end = end;
 337        ret = set_state_cb(tree, state, bits);
 338        if (ret)
 339                return ret;
 340
 341        if (bits_to_set & EXTENT_DIRTY)
 342                tree->dirty_bytes += end - start + 1;
 343        state->state |= bits_to_set;
 344        node = tree_insert(&tree->state, end, &state->rb_node);
 345        if (node) {
 346                struct extent_state *found;
 347                found = rb_entry(node, struct extent_state, rb_node);
 348                printk(KERN_ERR "btrfs found node %llu %llu on insert of "
 349                       "%llu %llu\n", (unsigned long long)found->start,
 350                       (unsigned long long)found->end,
 351                       (unsigned long long)start, (unsigned long long)end);
 352                free_extent_state(state);
 353                return -EEXIST;
 354        }
 355        state->tree = tree;
 356        merge_state(tree, state);
 357        return 0;
 358}
 359
 360static int split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 361                     u64 split)
 362{
 363        if (tree->ops && tree->ops->split_extent_hook)
 364                return tree->ops->split_extent_hook(tree->mapping->host,
 365                                                    orig, split);
 366        return 0;
 367}
 368
 369/*
 370 * split a given extent state struct in two, inserting the preallocated
 371 * struct 'prealloc' as the newly created second half.  'split' indicates an
 372 * offset inside 'orig' where it should be split.
 373 *
 374 * Before calling,
 375 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 376 * are two extent state structs in the tree:
 377 * prealloc: [orig->start, split - 1]
 378 * orig: [ split, orig->end ]
 379 *
 380 * The tree locks are not taken by this function. They need to be held
 381 * by the caller.
 382 */
 383static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 384                       struct extent_state *prealloc, u64 split)
 385{
 386        struct rb_node *node;
 387
 388        split_cb(tree, orig, split);
 389
 390        prealloc->start = orig->start;
 391        prealloc->end = split - 1;
 392        prealloc->state = orig->state;
 393        orig->start = split;
 394
 395        node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
 396        if (node) {
 397                free_extent_state(prealloc);
 398                return -EEXIST;
 399        }
 400        prealloc->tree = tree;
 401        return 0;
 402}
 403
 404/*
 405 * utility function to clear some bits in an extent state struct.
 406 * it will optionally wake up any one waiting on this state (wake == 1), or
 407 * forcibly remove the state from the tree (delete == 1).
 408 *
 409 * If no bits are set on the state struct after clearing things, the
 410 * struct is freed and removed from the tree
 411 */
 412static int clear_state_bit(struct extent_io_tree *tree,
 413                            struct extent_state *state,
 414                            int *bits, int wake)
 415{
 416        int bits_to_clear = *bits & ~EXTENT_CTLBITS;
 417        int ret = state->state & bits_to_clear;
 418
 419        if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 420                u64 range = state->end - state->start + 1;
 421                WARN_ON(range > tree->dirty_bytes);
 422                tree->dirty_bytes -= range;
 423        }
 424        clear_state_cb(tree, state, bits);
 425        state->state &= ~bits_to_clear;
 426        if (wake)
 427                wake_up(&state->wq);
 428        if (state->state == 0) {
 429                if (state->tree) {
 430                        rb_erase(&state->rb_node, &tree->state);
 431                        state->tree = NULL;
 432                        free_extent_state(state);
 433                } else {
 434                        WARN_ON(1);
 435                }
 436        } else {
 437                merge_state(tree, state);
 438        }
 439        return ret;
 440}
 441
 442/*
 443 * clear some bits on a range in the tree.  This may require splitting
 444 * or inserting elements in the tree, so the gfp mask is used to
 445 * indicate which allocations or sleeping are allowed.
 446 *
 447 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 448 * the given range from the tree regardless of state (ie for truncate).
 449 *
 450 * the range [start, end] is inclusive.
 451 *
 452 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
 453 * bits were already set, or zero if none of the bits were already set.
 454 */
 455int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 456                     int bits, int wake, int delete,
 457                     struct extent_state **cached_state,
 458                     gfp_t mask)
 459{
 460        struct extent_state *state;
 461        struct extent_state *cached;
 462        struct extent_state *prealloc = NULL;
 463        struct rb_node *next_node;
 464        struct rb_node *node;
 465        u64 last_end;
 466        int err;
 467        int set = 0;
 468        int clear = 0;
 469
 470        if (delete)
 471                bits |= ~EXTENT_CTLBITS;
 472        bits |= EXTENT_FIRST_DELALLOC;
 473
 474        if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 475                clear = 1;
 476again:
 477        if (!prealloc && (mask & __GFP_WAIT)) {
 478                prealloc = alloc_extent_state(mask);
 479                if (!prealloc)
 480                        return -ENOMEM;
 481        }
 482
 483        spin_lock(&tree->lock);
 484        if (cached_state) {
 485                cached = *cached_state;
 486
 487                if (clear) {
 488                        *cached_state = NULL;
 489                        cached_state = NULL;
 490                }
 491
 492                if (cached && cached->tree && cached->start == start) {
 493                        if (clear)
 494                                atomic_dec(&cached->refs);
 495                        state = cached;
 496                        goto hit_next;
 497                }
 498                if (clear)
 499                        free_extent_state(cached);
 500        }
 501        /*
 502         * this search will find the extents that end after
 503         * our range starts
 504         */
 505        node = tree_search(tree, start);
 506        if (!node)
 507                goto out;
 508        state = rb_entry(node, struct extent_state, rb_node);
 509hit_next:
 510        if (state->start > end)
 511                goto out;
 512        WARN_ON(state->end < start);
 513        last_end = state->end;
 514
 515        /*
 516         *     | ---- desired range ---- |
 517         *  | state | or
 518         *  | ------------- state -------------- |
 519         *
 520         * We need to split the extent we found, and may flip
 521         * bits on second half.
 522         *
 523         * If the extent we found extends past our range, we
 524         * just split and search again.  It'll get split again
 525         * the next time though.
 526         *
 527         * If the extent we found is inside our range, we clear
 528         * the desired bit on it.
 529         */
 530
 531        if (state->start < start) {
 532                if (!prealloc)
 533                        prealloc = alloc_extent_state(GFP_ATOMIC);
 534                err = split_state(tree, state, prealloc, start);
 535                BUG_ON(err == -EEXIST);
 536                prealloc = NULL;
 537                if (err)
 538                        goto out;
 539                if (state->end <= end) {
 540                        set |= clear_state_bit(tree, state, &bits, wake);
 541                        if (last_end == (u64)-1)
 542                                goto out;
 543                        start = last_end + 1;
 544                }
 545                goto search_again;
 546        }
 547        /*
 548         * | ---- desired range ---- |
 549         *                        | state |
 550         * We need to split the extent, and clear the bit
 551         * on the first half
 552         */
 553        if (state->start <= end && state->end > end) {
 554                if (!prealloc)
 555                        prealloc = alloc_extent_state(GFP_ATOMIC);
 556                err = split_state(tree, state, prealloc, end + 1);
 557                BUG_ON(err == -EEXIST);
 558                if (wake)
 559                        wake_up(&state->wq);
 560
 561                set |= clear_state_bit(tree, prealloc, &bits, wake);
 562
 563                prealloc = NULL;
 564                goto out;
 565        }
 566
 567        if (state->end < end && prealloc && !need_resched())
 568                next_node = rb_next(&state->rb_node);
 569        else
 570                next_node = NULL;
 571
 572        set |= clear_state_bit(tree, state, &bits, wake);
 573        if (last_end == (u64)-1)
 574                goto out;
 575        start = last_end + 1;
 576        if (start <= end && next_node) {
 577                state = rb_entry(next_node, struct extent_state,
 578                                 rb_node);
 579                if (state->start == start)
 580                        goto hit_next;
 581        }
 582        goto search_again;
 583
 584out:
 585        spin_unlock(&tree->lock);
 586        if (prealloc)
 587                free_extent_state(prealloc);
 588
 589        return set;
 590
 591search_again:
 592        if (start > end)
 593                goto out;
 594        spin_unlock(&tree->lock);
 595        if (mask & __GFP_WAIT)
 596                cond_resched();
 597        goto again;
 598}
 599
 600static int wait_on_state(struct extent_io_tree *tree,
 601                         struct extent_state *state)
 602                __releases(tree->lock)
 603                __acquires(tree->lock)
 604{
 605        DEFINE_WAIT(wait);
 606        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 607        spin_unlock(&tree->lock);
 608        schedule();
 609        spin_lock(&tree->lock);
 610        finish_wait(&state->wq, &wait);
 611        return 0;
 612}
 613
 614/*
 615 * waits for one or more bits to clear on a range in the state tree.
 616 * The range [start, end] is inclusive.
 617 * The tree lock is taken by this function
 618 */
 619int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
 620{
 621        struct extent_state *state;
 622        struct rb_node *node;
 623
 624        spin_lock(&tree->lock);
 625again:
 626        while (1) {
 627                /*
 628                 * this search will find all the extents that end after
 629                 * our range starts
 630                 */
 631                node = tree_search(tree, start);
 632                if (!node)
 633                        break;
 634
 635                state = rb_entry(node, struct extent_state, rb_node);
 636
 637                if (state->start > end)
 638                        goto out;
 639
 640                if (state->state & bits) {
 641                        start = state->start;
 642                        atomic_inc(&state->refs);
 643                        wait_on_state(tree, state);
 644                        free_extent_state(state);
 645                        goto again;
 646                }
 647                start = state->end + 1;
 648
 649                if (start > end)
 650                        break;
 651
 652                if (need_resched()) {
 653                        spin_unlock(&tree->lock);
 654                        cond_resched();
 655                        spin_lock(&tree->lock);
 656                }
 657        }
 658out:
 659        spin_unlock(&tree->lock);
 660        return 0;
 661}
 662
 663static int set_state_bits(struct extent_io_tree *tree,
 664                           struct extent_state *state,
 665                           int *bits)
 666{
 667        int ret;
 668        int bits_to_set = *bits & ~EXTENT_CTLBITS;
 669
 670        ret = set_state_cb(tree, state, bits);
 671        if (ret)
 672                return ret;
 673        if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 674                u64 range = state->end - state->start + 1;
 675                tree->dirty_bytes += range;
 676        }
 677        state->state |= bits_to_set;
 678
 679        return 0;
 680}
 681
 682static void cache_state(struct extent_state *state,
 683                        struct extent_state **cached_ptr)
 684{
 685        if (cached_ptr && !(*cached_ptr)) {
 686                if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 687                        *cached_ptr = state;
 688                        atomic_inc(&state->refs);
 689                }
 690        }
 691}
 692
 693/*
 694 * set some bits on a range in the tree.  This may require allocations or
 695 * sleeping, so the gfp mask is used to indicate what is allowed.
 696 *
 697 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 698 * part of the range already has the desired bits set.  The start of the
 699 * existing range is returned in failed_start in this case.
 700 *
 701 * [start, end] is inclusive This takes the tree lock.
 702 */
 703
 704int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 705                   int bits, int exclusive_bits, u64 *failed_start,
 706                   struct extent_state **cached_state, gfp_t mask)
 707{
 708        struct extent_state *state;
 709        struct extent_state *prealloc = NULL;
 710        struct rb_node *node;
 711        int err = 0;
 712        u64 last_start;
 713        u64 last_end;
 714
 715        bits |= EXTENT_FIRST_DELALLOC;
 716again:
 717        if (!prealloc && (mask & __GFP_WAIT)) {
 718                prealloc = alloc_extent_state(mask);
 719                if (!prealloc)
 720                        return -ENOMEM;
 721        }
 722
 723        spin_lock(&tree->lock);
 724        if (cached_state && *cached_state) {
 725                state = *cached_state;
 726                if (state->start == start && state->tree) {
 727                        node = &state->rb_node;
 728                        goto hit_next;
 729                }
 730        }
 731        /*
 732         * this search will find all the extents that end after
 733         * our range starts.
 734         */
 735        node = tree_search(tree, start);
 736        if (!node) {
 737                err = insert_state(tree, prealloc, start, end, &bits);
 738                prealloc = NULL;
 739                BUG_ON(err == -EEXIST);
 740                goto out;
 741        }
 742        state = rb_entry(node, struct extent_state, rb_node);
 743hit_next:
 744        last_start = state->start;
 745        last_end = state->end;
 746
 747        /*
 748         * | ---- desired range ---- |
 749         * | state |
 750         *
 751         * Just lock what we found and keep going
 752         */
 753        if (state->start == start && state->end <= end) {
 754                struct rb_node *next_node;
 755                if (state->state & exclusive_bits) {
 756                        *failed_start = state->start;
 757                        err = -EEXIST;
 758                        goto out;
 759                }
 760
 761                err = set_state_bits(tree, state, &bits);
 762                if (err)
 763                        goto out;
 764
 765                cache_state(state, cached_state);
 766                merge_state(tree, state);
 767                if (last_end == (u64)-1)
 768                        goto out;
 769
 770                start = last_end + 1;
 771                if (start < end && prealloc && !need_resched()) {
 772                        next_node = rb_next(node);
 773                        if (next_node) {
 774                                state = rb_entry(next_node, struct extent_state,
 775                                                 rb_node);
 776                                if (state->start == start)
 777                                        goto hit_next;
 778                        }
 779                }
 780                goto search_again;
 781        }
 782
 783        /*
 784         *     | ---- desired range ---- |
 785         * | state |
 786         *   or
 787         * | ------------- state -------------- |
 788         *
 789         * We need to split the extent we found, and may flip bits on
 790         * second half.
 791         *
 792         * If the extent we found extends past our
 793         * range, we just split and search again.  It'll get split
 794         * again the next time though.
 795         *
 796         * If the extent we found is inside our range, we set the
 797         * desired bit on it.
 798         */
 799        if (state->start < start) {
 800                if (state->state & exclusive_bits) {
 801                        *failed_start = start;
 802                        err = -EEXIST;
 803                        goto out;
 804                }
 805                err = split_state(tree, state, prealloc, start);
 806                BUG_ON(err == -EEXIST);
 807                prealloc = NULL;
 808                if (err)
 809                        goto out;
 810                if (state->end <= end) {
 811                        err = set_state_bits(tree, state, &bits);
 812                        if (err)
 813                                goto out;
 814                        cache_state(state, cached_state);
 815                        merge_state(tree, state);
 816                        if (last_end == (u64)-1)
 817                                goto out;
 818                        start = last_end + 1;
 819                }
 820                goto search_again;
 821        }
 822        /*
 823         * | ---- desired range ---- |
 824         *     | state | or               | state |
 825         *
 826         * There's a hole, we need to insert something in it and
 827         * ignore the extent we found.
 828         */
 829        if (state->start > start) {
 830                u64 this_end;
 831                if (end < last_start)
 832                        this_end = end;
 833                else
 834                        this_end = last_start - 1;
 835                err = insert_state(tree, prealloc, start, this_end,
 836                                   &bits);
 837                BUG_ON(err == -EEXIST);
 838                if (err) {
 839                        prealloc = NULL;
 840                        goto out;
 841                }
 842                cache_state(prealloc, cached_state);
 843                prealloc = NULL;
 844                start = this_end + 1;
 845                goto search_again;
 846        }
 847        /*
 848         * | ---- desired range ---- |
 849         *                        | state |
 850         * We need to split the extent, and set the bit
 851         * on the first half
 852         */
 853        if (state->start <= end && state->end > end) {
 854                if (state->state & exclusive_bits) {
 855                        *failed_start = start;
 856                        err = -EEXIST;
 857                        goto out;
 858                }
 859                err = split_state(tree, state, prealloc, end + 1);
 860                BUG_ON(err == -EEXIST);
 861
 862                err = set_state_bits(tree, prealloc, &bits);
 863                if (err) {
 864                        prealloc = NULL;
 865                        goto out;
 866                }
 867                cache_state(prealloc, cached_state);
 868                merge_state(tree, prealloc);
 869                prealloc = NULL;
 870                goto out;
 871        }
 872
 873        goto search_again;
 874
 875out:
 876        spin_unlock(&tree->lock);
 877        if (prealloc)
 878                free_extent_state(prealloc);
 879
 880        return err;
 881
 882search_again:
 883        if (start > end)
 884                goto out;
 885        spin_unlock(&tree->lock);
 886        if (mask & __GFP_WAIT)
 887                cond_resched();
 888        goto again;
 889}
 890
 891/* wrappers around set/clear extent bit */
 892int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 893                     gfp_t mask)
 894{
 895        return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
 896                              NULL, mask);
 897}
 898
 899int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 900                    int bits, gfp_t mask)
 901{
 902        return set_extent_bit(tree, start, end, bits, 0, NULL,
 903                              NULL, mask);
 904}
 905
 906int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 907                      int bits, gfp_t mask)
 908{
 909        return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
 910}
 911
 912int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
 913                        struct extent_state **cached_state, gfp_t mask)
 914{
 915        return set_extent_bit(tree, start, end,
 916                              EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
 917                              0, NULL, cached_state, mask);
 918}
 919
 920int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 921                       gfp_t mask)
 922{
 923        return clear_extent_bit(tree, start, end,
 924                                EXTENT_DIRTY | EXTENT_DELALLOC |
 925                                EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
 926}
 927
 928int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
 929                     gfp_t mask)
 930{
 931        return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
 932                              NULL, mask);
 933}
 934
 935static int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
 936                       gfp_t mask)
 937{
 938        return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0,
 939                                NULL, mask);
 940}
 941
 942int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
 943                        gfp_t mask)
 944{
 945        return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
 946                              NULL, mask);
 947}
 948
 949static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
 950                                 u64 end, struct extent_state **cached_state,
 951                                 gfp_t mask)
 952{
 953        return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
 954                                cached_state, mask);
 955}
 956
 957int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
 958{
 959        return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
 960}
 961
 962/*
 963 * either insert or lock state struct between start and end use mask to tell
 964 * us if waiting is desired.
 965 */
 966int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 967                     int bits, struct extent_state **cached_state, gfp_t mask)
 968{
 969        int err;
 970        u64 failed_start;
 971        while (1) {
 972                err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
 973                                     EXTENT_LOCKED, &failed_start,
 974                                     cached_state, mask);
 975                if (err == -EEXIST && (mask & __GFP_WAIT)) {
 976                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
 977                        start = failed_start;
 978                } else {
 979                        break;
 980                }
 981                WARN_ON(start > end);
 982        }
 983        return err;
 984}
 985
 986int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
 987{
 988        return lock_extent_bits(tree, start, end, 0, NULL, mask);
 989}
 990
 991int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
 992                    gfp_t mask)
 993{
 994        int err;
 995        u64 failed_start;
 996
 997        err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
 998                             &failed_start, NULL, mask);
 999        if (err == -EEXIST) {
1000                if (failed_start > start)
1001                        clear_extent_bit(tree, start, failed_start - 1,
1002                                         EXTENT_LOCKED, 1, 0, NULL, mask);
1003                return 0;
1004        }
1005        return 1;
1006}
1007
1008int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1009                         struct extent_state **cached, gfp_t mask)
1010{
1011        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1012                                mask);
1013}
1014
1015int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1016                  gfp_t mask)
1017{
1018        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1019                                mask);
1020}
1021
1022/*
1023 * helper function to set pages and extents in the tree dirty
1024 */
1025int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
1026{
1027        unsigned long index = start >> PAGE_CACHE_SHIFT;
1028        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1029        struct page *page;
1030
1031        while (index <= end_index) {
1032                page = find_get_page(tree->mapping, index);
1033                BUG_ON(!page);
1034                __set_page_dirty_nobuffers(page);
1035                page_cache_release(page);
1036                index++;
1037        }
1038        return 0;
1039}
1040
1041/*
1042 * helper function to set both pages and extents in the tree writeback
1043 */
1044static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1045{
1046        unsigned long index = start >> PAGE_CACHE_SHIFT;
1047        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1048        struct page *page;
1049
1050        while (index <= end_index) {
1051                page = find_get_page(tree->mapping, index);
1052                BUG_ON(!page);
1053                set_page_writeback(page);
1054                page_cache_release(page);
1055                index++;
1056        }
1057        return 0;
1058}
1059
1060/*
1061 * find the first offset in the io tree with 'bits' set. zero is
1062 * returned if we find something, and *start_ret and *end_ret are
1063 * set to reflect the state struct that was found.
1064 *
1065 * If nothing was found, 1 is returned, < 0 on error
1066 */
1067int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1068                          u64 *start_ret, u64 *end_ret, int bits)
1069{
1070        struct rb_node *node;
1071        struct extent_state *state;
1072        int ret = 1;
1073
1074        spin_lock(&tree->lock);
1075        /*
1076         * this search will find all the extents that end after
1077         * our range starts.
1078         */
1079        node = tree_search(tree, start);
1080        if (!node)
1081                goto out;
1082
1083        while (1) {
1084                state = rb_entry(node, struct extent_state, rb_node);
1085                if (state->end >= start && (state->state & bits)) {
1086                        *start_ret = state->start;
1087                        *end_ret = state->end;
1088                        ret = 0;
1089                        break;
1090                }
1091                node = rb_next(node);
1092                if (!node)
1093                        break;
1094        }
1095out:
1096        spin_unlock(&tree->lock);
1097        return ret;
1098}
1099
1100/* find the first state struct with 'bits' set after 'start', and
1101 * return it.  tree->lock must be held.  NULL will returned if
1102 * nothing was found after 'start'
1103 */
1104struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1105                                                 u64 start, int bits)
1106{
1107        struct rb_node *node;
1108        struct extent_state *state;
1109
1110        /*
1111         * this search will find all the extents that end after
1112         * our range starts.
1113         */
1114        node = tree_search(tree, start);
1115        if (!node)
1116                goto out;
1117
1118        while (1) {
1119                state = rb_entry(node, struct extent_state, rb_node);
1120                if (state->end >= start && (state->state & bits))
1121                        return state;
1122
1123                node = rb_next(node);
1124                if (!node)
1125                        break;
1126        }
1127out:
1128        return NULL;
1129}
1130
1131/*
1132 * find a contiguous range of bytes in the file marked as delalloc, not
1133 * more than 'max_bytes'.  start and end are used to return the range,
1134 *
1135 * 1 is returned if we find something, 0 if nothing was in the tree
1136 */
1137static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1138                                        u64 *start, u64 *end, u64 max_bytes,
1139                                        struct extent_state **cached_state)
1140{
1141        struct rb_node *node;
1142        struct extent_state *state;
1143        u64 cur_start = *start;
1144        u64 found = 0;
1145        u64 total_bytes = 0;
1146
1147        spin_lock(&tree->lock);
1148
1149        /*
1150         * this search will find all the extents that end after
1151         * our range starts.
1152         */
1153        node = tree_search(tree, cur_start);
1154        if (!node) {
1155                if (!found)
1156                        *end = (u64)-1;
1157                goto out;
1158        }
1159
1160        while (1) {
1161                state = rb_entry(node, struct extent_state, rb_node);
1162                if (found && (state->start != cur_start ||
1163                              (state->state & EXTENT_BOUNDARY))) {
1164                        goto out;
1165                }
1166                if (!(state->state & EXTENT_DELALLOC)) {
1167                        if (!found)
1168                                *end = state->end;
1169                        goto out;
1170                }
1171                if (!found) {
1172                        *start = state->start;
1173                        *cached_state = state;
1174                        atomic_inc(&state->refs);
1175                }
1176                found++;
1177                *end = state->end;
1178                cur_start = state->end + 1;
1179                node = rb_next(node);
1180                if (!node)
1181                        break;
1182                total_bytes += state->end - state->start + 1;
1183                if (total_bytes >= max_bytes)
1184                        break;
1185        }
1186out:
1187        spin_unlock(&tree->lock);
1188        return found;
1189}
1190
1191static noinline int __unlock_for_delalloc(struct inode *inode,
1192                                          struct page *locked_page,
1193                                          u64 start, u64 end)
1194{
1195        int ret;
1196        struct page *pages[16];
1197        unsigned long index = start >> PAGE_CACHE_SHIFT;
1198        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1199        unsigned long nr_pages = end_index - index + 1;
1200        int i;
1201
1202        if (index == locked_page->index && end_index == index)
1203                return 0;
1204
1205        while (nr_pages > 0) {
1206                ret = find_get_pages_contig(inode->i_mapping, index,
1207                                     min_t(unsigned long, nr_pages,
1208                                     ARRAY_SIZE(pages)), pages);
1209                for (i = 0; i < ret; i++) {
1210                        if (pages[i] != locked_page)
1211                                unlock_page(pages[i]);
1212                        page_cache_release(pages[i]);
1213                }
1214                nr_pages -= ret;
1215                index += ret;
1216                cond_resched();
1217        }
1218        return 0;
1219}
1220
1221static noinline int lock_delalloc_pages(struct inode *inode,
1222                                        struct page *locked_page,
1223                                        u64 delalloc_start,
1224                                        u64 delalloc_end)
1225{
1226        unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1227        unsigned long start_index = index;
1228        unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1229        unsigned long pages_locked = 0;
1230        struct page *pages[16];
1231        unsigned long nrpages;
1232        int ret;
1233        int i;
1234
1235        /* the caller is responsible for locking the start index */
1236        if (index == locked_page->index && index == end_index)
1237                return 0;
1238
1239        /* skip the page at the start index */
1240        nrpages = end_index - index + 1;
1241        while (nrpages > 0) {
1242                ret = find_get_pages_contig(inode->i_mapping, index,
1243                                     min_t(unsigned long,
1244                                     nrpages, ARRAY_SIZE(pages)), pages);
1245                if (ret == 0) {
1246                        ret = -EAGAIN;
1247                        goto done;
1248                }
1249                /* now we have an array of pages, lock them all */
1250                for (i = 0; i < ret; i++) {
1251                        /*
1252                         * the caller is taking responsibility for
1253                         * locked_page
1254                         */
1255                        if (pages[i] != locked_page) {
1256                                lock_page(pages[i]);
1257                                if (!PageDirty(pages[i]) ||
1258                                    pages[i]->mapping != inode->i_mapping) {
1259                                        ret = -EAGAIN;
1260                                        unlock_page(pages[i]);
1261                                        page_cache_release(pages[i]);
1262                                        goto done;
1263                                }
1264                        }
1265                        page_cache_release(pages[i]);
1266                        pages_locked++;
1267                }
1268                nrpages -= ret;
1269                index += ret;
1270                cond_resched();
1271        }
1272        ret = 0;
1273done:
1274        if (ret && pages_locked) {
1275                __unlock_for_delalloc(inode, locked_page,
1276                              delalloc_start,
1277                              ((u64)(start_index + pages_locked - 1)) <<
1278                              PAGE_CACHE_SHIFT);
1279        }
1280        return ret;
1281}
1282
1283/*
1284 * find a contiguous range of bytes in the file marked as delalloc, not
1285 * more than 'max_bytes'.  start and end are used to return the range,
1286 *
1287 * 1 is returned if we find something, 0 if nothing was in the tree
1288 */
1289static noinline u64 find_lock_delalloc_range(struct inode *inode,
1290                                             struct extent_io_tree *tree,
1291                                             struct page *locked_page,
1292                                             u64 *start, u64 *end,
1293                                             u64 max_bytes)
1294{
1295        u64 delalloc_start;
1296        u64 delalloc_end;
1297        u64 found;
1298        struct extent_state *cached_state = NULL;
1299        int ret;
1300        int loops = 0;
1301
1302again:
1303        /* step one, find a bunch of delalloc bytes starting at start */
1304        delalloc_start = *start;
1305        delalloc_end = 0;
1306        found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1307                                    max_bytes, &cached_state);
1308        if (!found || delalloc_end <= *start) {
1309                *start = delalloc_start;
1310                *end = delalloc_end;
1311                free_extent_state(cached_state);
1312                return found;
1313        }
1314
1315        /*
1316         * start comes from the offset of locked_page.  We have to lock
1317         * pages in order, so we can't process delalloc bytes before
1318         * locked_page
1319         */
1320        if (delalloc_start < *start)
1321                delalloc_start = *start;
1322
1323        /*
1324         * make sure to limit the number of pages we try to lock down
1325         * if we're looping.
1326         */
1327        if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1328                delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1329
1330        /* step two, lock all the pages after the page that has start */
1331        ret = lock_delalloc_pages(inode, locked_page,
1332                                  delalloc_start, delalloc_end);
1333        if (ret == -EAGAIN) {
1334                /* some of the pages are gone, lets avoid looping by
1335                 * shortening the size of the delalloc range we're searching
1336                 */
1337                free_extent_state(cached_state);
1338                if (!loops) {
1339                        unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1340                        max_bytes = PAGE_CACHE_SIZE - offset;
1341                        loops = 1;
1342                        goto again;
1343                } else {
1344                        found = 0;
1345                        goto out_failed;
1346                }
1347        }
1348        BUG_ON(ret);
1349
1350        /* step three, lock the state bits for the whole range */
1351        lock_extent_bits(tree, delalloc_start, delalloc_end,
1352                         0, &cached_state, GFP_NOFS);
1353
1354        /* then test to make sure it is all still delalloc */
1355        ret = test_range_bit(tree, delalloc_start, delalloc_end,
1356                             EXTENT_DELALLOC, 1, cached_state);
1357        if (!ret) {
1358                unlock_extent_cached(tree, delalloc_start, delalloc_end,
1359                                     &cached_state, GFP_NOFS);
1360                __unlock_for_delalloc(inode, locked_page,
1361                              delalloc_start, delalloc_end);
1362                cond_resched();
1363                goto again;
1364        }
1365        free_extent_state(cached_state);
1366        *start = delalloc_start;
1367        *end = delalloc_end;
1368out_failed:
1369        return found;
1370}
1371
1372int extent_clear_unlock_delalloc(struct inode *inode,
1373                                struct extent_io_tree *tree,
1374                                u64 start, u64 end, struct page *locked_page,
1375                                unsigned long op)
1376{
1377        int ret;
1378        struct page *pages[16];
1379        unsigned long index = start >> PAGE_CACHE_SHIFT;
1380        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1381        unsigned long nr_pages = end_index - index + 1;
1382        int i;
1383        int clear_bits = 0;
1384
1385        if (op & EXTENT_CLEAR_UNLOCK)
1386                clear_bits |= EXTENT_LOCKED;
1387        if (op & EXTENT_CLEAR_DIRTY)
1388                clear_bits |= EXTENT_DIRTY;
1389
1390        if (op & EXTENT_CLEAR_DELALLOC)
1391                clear_bits |= EXTENT_DELALLOC;
1392
1393        clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1394        if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1395                    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1396                    EXTENT_SET_PRIVATE2)))
1397                return 0;
1398
1399        while (nr_pages > 0) {
1400                ret = find_get_pages_contig(inode->i_mapping, index,
1401                                     min_t(unsigned long,
1402                                     nr_pages, ARRAY_SIZE(pages)), pages);
1403                for (i = 0; i < ret; i++) {
1404
1405                        if (op & EXTENT_SET_PRIVATE2)
1406                                SetPagePrivate2(pages[i]);
1407
1408                        if (pages[i] == locked_page) {
1409                                page_cache_release(pages[i]);
1410                                continue;
1411                        }
1412                        if (op & EXTENT_CLEAR_DIRTY)
1413                                clear_page_dirty_for_io(pages[i]);
1414                        if (op & EXTENT_SET_WRITEBACK)
1415                                set_page_writeback(pages[i]);
1416                        if (op & EXTENT_END_WRITEBACK)
1417                                end_page_writeback(pages[i]);
1418                        if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1419                                unlock_page(pages[i]);
1420                        page_cache_release(pages[i]);
1421                }
1422                nr_pages -= ret;
1423                index += ret;
1424                cond_resched();
1425        }
1426        return 0;
1427}
1428
1429/*
1430 * count the number of bytes in the tree that have a given bit(s)
1431 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1432 * cached.  The total number found is returned.
1433 */
1434u64 count_range_bits(struct extent_io_tree *tree,
1435                     u64 *start, u64 search_end, u64 max_bytes,
1436                     unsigned long bits, int contig)
1437{
1438        struct rb_node *node;
1439        struct extent_state *state;
1440        u64 cur_start = *start;
1441        u64 total_bytes = 0;
1442        u64 last = 0;
1443        int found = 0;
1444
1445        if (search_end <= cur_start) {
1446                WARN_ON(1);
1447                return 0;
1448        }
1449
1450        spin_lock(&tree->lock);
1451        if (cur_start == 0 && bits == EXTENT_DIRTY) {
1452                total_bytes = tree->dirty_bytes;
1453                goto out;
1454        }
1455        /*
1456         * this search will find all the extents that end after
1457         * our range starts.
1458         */
1459        node = tree_search(tree, cur_start);
1460        if (!node)
1461                goto out;
1462
1463        while (1) {
1464                state = rb_entry(node, struct extent_state, rb_node);
1465                if (state->start > search_end)
1466                        break;
1467                if (contig && found && state->start > last + 1)
1468                        break;
1469                if (state->end >= cur_start && (state->state & bits) == bits) {
1470                        total_bytes += min(search_end, state->end) + 1 -
1471                                       max(cur_start, state->start);
1472                        if (total_bytes >= max_bytes)
1473                                break;
1474                        if (!found) {
1475                                *start = state->start;
1476                                found = 1;
1477                        }
1478                        last = state->end;
1479                } else if (contig && found) {
1480                        break;
1481                }
1482                node = rb_next(node);
1483                if (!node)
1484                        break;
1485        }
1486out:
1487        spin_unlock(&tree->lock);
1488        return total_bytes;
1489}
1490
1491/*
1492 * set the private field for a given byte offset in the tree.  If there isn't
1493 * an extent_state there already, this does nothing.
1494 */
1495int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1496{
1497        struct rb_node *node;
1498        struct extent_state *state;
1499        int ret = 0;
1500
1501        spin_lock(&tree->lock);
1502        /*
1503         * this search will find all the extents that end after
1504         * our range starts.
1505         */
1506        node = tree_search(tree, start);
1507        if (!node) {
1508                ret = -ENOENT;
1509                goto out;
1510        }
1511        state = rb_entry(node, struct extent_state, rb_node);
1512        if (state->start != start) {
1513                ret = -ENOENT;
1514                goto out;
1515        }
1516        state->private = private;
1517out:
1518        spin_unlock(&tree->lock);
1519        return ret;
1520}
1521
1522int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1523{
1524        struct rb_node *node;
1525        struct extent_state *state;
1526        int ret = 0;
1527
1528        spin_lock(&tree->lock);
1529        /*
1530         * this search will find all the extents that end after
1531         * our range starts.
1532         */
1533        node = tree_search(tree, start);
1534        if (!node) {
1535                ret = -ENOENT;
1536                goto out;
1537        }
1538        state = rb_entry(node, struct extent_state, rb_node);
1539        if (state->start != start) {
1540                ret = -ENOENT;
1541                goto out;
1542        }
1543        *private = state->private;
1544out:
1545        spin_unlock(&tree->lock);
1546        return ret;
1547}
1548
1549/*
1550 * searches a range in the state tree for a given mask.
1551 * If 'filled' == 1, this returns 1 only if every extent in the tree
1552 * has the bits set.  Otherwise, 1 is returned if any bit in the
1553 * range is found set.
1554 */
1555int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1556                   int bits, int filled, struct extent_state *cached)
1557{
1558        struct extent_state *state = NULL;
1559        struct rb_node *node;
1560        int bitset = 0;
1561
1562        spin_lock(&tree->lock);
1563        if (cached && cached->tree && cached->start == start)
1564                node = &cached->rb_node;
1565        else
1566                node = tree_search(tree, start);
1567        while (node && start <= end) {
1568                state = rb_entry(node, struct extent_state, rb_node);
1569
1570                if (filled && state->start > start) {
1571                        bitset = 0;
1572                        break;
1573                }
1574
1575                if (state->start > end)
1576                        break;
1577
1578                if (state->state & bits) {
1579                        bitset = 1;
1580                        if (!filled)
1581                                break;
1582                } else if (filled) {
1583                        bitset = 0;
1584                        break;
1585                }
1586
1587                if (state->end == (u64)-1)
1588                        break;
1589
1590                start = state->end + 1;
1591                if (start > end)
1592                        break;
1593                node = rb_next(node);
1594                if (!node) {
1595                        if (filled)
1596                                bitset = 0;
1597                        break;
1598                }
1599        }
1600        spin_unlock(&tree->lock);
1601        return bitset;
1602}
1603
1604/*
1605 * helper function to set a given page up to date if all the
1606 * extents in the tree for that page are up to date
1607 */
1608static int check_page_uptodate(struct extent_io_tree *tree,
1609                               struct page *page)
1610{
1611        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1612        u64 end = start + PAGE_CACHE_SIZE - 1;
1613        if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1614                SetPageUptodate(page);
1615        return 0;
1616}
1617
1618/*
1619 * helper function to unlock a page if all the extents in the tree
1620 * for that page are unlocked
1621 */
1622static int check_page_locked(struct extent_io_tree *tree,
1623                             struct page *page)
1624{
1625        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1626        u64 end = start + PAGE_CACHE_SIZE - 1;
1627        if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1628                unlock_page(page);
1629        return 0;
1630}
1631
1632/*
1633 * helper function to end page writeback if all the extents
1634 * in the tree for that page are done with writeback
1635 */
1636static int check_page_writeback(struct extent_io_tree *tree,
1637                             struct page *page)
1638{
1639        end_page_writeback(page);
1640        return 0;
1641}
1642
1643/* lots and lots of room for performance fixes in the end_bio funcs */
1644
1645/*
1646 * after a writepage IO is done, we need to:
1647 * clear the uptodate bits on error
1648 * clear the writeback bits in the extent tree for this IO
1649 * end_page_writeback if the page has no more pending IO
1650 *
1651 * Scheduling is not allowed, so the extent state tree is expected
1652 * to have one and only one object corresponding to this IO.
1653 */
1654static void end_bio_extent_writepage(struct bio *bio, int err)
1655{
1656        int uptodate = err == 0;
1657        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1658        struct extent_io_tree *tree;
1659        u64 start;
1660        u64 end;
1661        int whole_page;
1662        int ret;
1663
1664        do {
1665                struct page *page = bvec->bv_page;
1666                tree = &BTRFS_I(page->mapping->host)->io_tree;
1667
1668                start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1669                         bvec->bv_offset;
1670                end = start + bvec->bv_len - 1;
1671
1672                if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1673                        whole_page = 1;
1674                else
1675                        whole_page = 0;
1676
1677                if (--bvec >= bio->bi_io_vec)
1678                        prefetchw(&bvec->bv_page->flags);
1679                if (tree->ops && tree->ops->writepage_end_io_hook) {
1680                        ret = tree->ops->writepage_end_io_hook(page, start,
1681                                                       end, NULL, uptodate);
1682                        if (ret)
1683                                uptodate = 0;
1684                }
1685
1686                if (!uptodate && tree->ops &&
1687                    tree->ops->writepage_io_failed_hook) {
1688                        ret = tree->ops->writepage_io_failed_hook(bio, page,
1689                                                         start, end, NULL);
1690                        if (ret == 0) {
1691                                uptodate = (err == 0);
1692                                continue;
1693                        }
1694                }
1695
1696                if (!uptodate) {
1697                        clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1698                        ClearPageUptodate(page);
1699                        SetPageError(page);
1700                }
1701
1702                if (whole_page)
1703                        end_page_writeback(page);
1704                else
1705                        check_page_writeback(tree, page);
1706        } while (bvec >= bio->bi_io_vec);
1707
1708        bio_put(bio);
1709}
1710
1711/*
1712 * after a readpage IO is done, we need to:
1713 * clear the uptodate bits on error
1714 * set the uptodate bits if things worked
1715 * set the page up to date if all extents in the tree are uptodate
1716 * clear the lock bit in the extent tree
1717 * unlock the page if there are no other extents locked for it
1718 *
1719 * Scheduling is not allowed, so the extent state tree is expected
1720 * to have one and only one object corresponding to this IO.
1721 */
1722static void end_bio_extent_readpage(struct bio *bio, int err)
1723{
1724        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1725        struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1726        struct bio_vec *bvec = bio->bi_io_vec;
1727        struct extent_io_tree *tree;
1728        u64 start;
1729        u64 end;
1730        int whole_page;
1731        int ret;
1732
1733        if (err)
1734                uptodate = 0;
1735
1736        do {
1737                struct page *page = bvec->bv_page;
1738                tree = &BTRFS_I(page->mapping->host)->io_tree;
1739
1740                start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1741                        bvec->bv_offset;
1742                end = start + bvec->bv_len - 1;
1743
1744                if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1745                        whole_page = 1;
1746                else
1747                        whole_page = 0;
1748
1749                if (++bvec <= bvec_end)
1750                        prefetchw(&bvec->bv_page->flags);
1751
1752                if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1753                        ret = tree->ops->readpage_end_io_hook(page, start, end,
1754                                                              NULL);
1755                        if (ret)
1756                                uptodate = 0;
1757                }
1758                if (!uptodate && tree->ops &&
1759                    tree->ops->readpage_io_failed_hook) {
1760                        ret = tree->ops->readpage_io_failed_hook(bio, page,
1761                                                         start, end, NULL);
1762                        if (ret == 0) {
1763                                uptodate =
1764                                        test_bit(BIO_UPTODATE, &bio->bi_flags);
1765                                if (err)
1766                                        uptodate = 0;
1767                                continue;
1768                        }
1769                }
1770
1771                if (uptodate) {
1772                        set_extent_uptodate(tree, start, end,
1773                                            GFP_ATOMIC);
1774                }
1775                unlock_extent(tree, start, end, GFP_ATOMIC);
1776
1777                if (whole_page) {
1778                        if (uptodate) {
1779                                SetPageUptodate(page);
1780                        } else {
1781                                ClearPageUptodate(page);
1782                                SetPageError(page);
1783                        }
1784                        unlock_page(page);
1785                } else {
1786                        if (uptodate) {
1787                                check_page_uptodate(tree, page);
1788                        } else {
1789                                ClearPageUptodate(page);
1790                                SetPageError(page);
1791                        }
1792                        check_page_locked(tree, page);
1793                }
1794        } while (bvec <= bvec_end);
1795
1796        bio_put(bio);
1797}
1798
1799/*
1800 * IO done from prepare_write is pretty simple, we just unlock
1801 * the structs in the extent tree when done, and set the uptodate bits
1802 * as appropriate.
1803 */
1804static void end_bio_extent_preparewrite(struct bio *bio, int err)
1805{
1806        const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1807        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1808        struct extent_io_tree *tree;
1809        u64 start;
1810        u64 end;
1811
1812        do {
1813                struct page *page = bvec->bv_page;
1814                tree = &BTRFS_I(page->mapping->host)->io_tree;
1815
1816                start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1817                        bvec->bv_offset;
1818                end = start + bvec->bv_len - 1;
1819
1820                if (--bvec >= bio->bi_io_vec)
1821                        prefetchw(&bvec->bv_page->flags);
1822
1823                if (uptodate) {
1824                        set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1825                } else {
1826                        ClearPageUptodate(page);
1827                        SetPageError(page);
1828                }
1829
1830                unlock_extent(tree, start, end, GFP_ATOMIC);
1831
1832        } while (bvec >= bio->bi_io_vec);
1833
1834        bio_put(bio);
1835}
1836
1837struct bio *
1838btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1839                gfp_t gfp_flags)
1840{
1841        struct bio *bio;
1842
1843        bio = bio_alloc(gfp_flags, nr_vecs);
1844
1845        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1846                while (!bio && (nr_vecs /= 2))
1847                        bio = bio_alloc(gfp_flags, nr_vecs);
1848        }
1849
1850        if (bio) {
1851                bio->bi_size = 0;
1852                bio->bi_bdev = bdev;
1853                bio->bi_sector = first_sector;
1854        }
1855        return bio;
1856}
1857
1858static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1859                          unsigned long bio_flags)
1860{
1861        int ret = 0;
1862        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1863        struct page *page = bvec->bv_page;
1864        struct extent_io_tree *tree = bio->bi_private;
1865        u64 start;
1866
1867        start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1868
1869        bio->bi_private = NULL;
1870
1871        bio_get(bio);
1872
1873        if (tree->ops && tree->ops->submit_bio_hook)
1874                ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1875                                           mirror_num, bio_flags, start);
1876        else
1877                submit_bio(rw, bio);
1878        if (bio_flagged(bio, BIO_EOPNOTSUPP))
1879                ret = -EOPNOTSUPP;
1880        bio_put(bio);
1881        return ret;
1882}
1883
1884static int submit_extent_page(int rw, struct extent_io_tree *tree,
1885                              struct page *page, sector_t sector,
1886                              size_t size, unsigned long offset,
1887                              struct block_device *bdev,
1888                              struct bio **bio_ret,
1889                              unsigned long max_pages,
1890                              bio_end_io_t end_io_func,
1891                              int mirror_num,
1892                              unsigned long prev_bio_flags,
1893                              unsigned long bio_flags)
1894{
1895        int ret = 0;
1896        struct bio *bio;
1897        int nr;
1898        int contig = 0;
1899        int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1900        int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1901        size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1902
1903        if (bio_ret && *bio_ret) {
1904                bio = *bio_ret;
1905                if (old_compressed)
1906                        contig = bio->bi_sector == sector;
1907                else
1908                        contig = bio->bi_sector + (bio->bi_size >> 9) ==
1909                                sector;
1910
1911                if (prev_bio_flags != bio_flags || !contig ||
1912                    (tree->ops && tree->ops->merge_bio_hook &&
1913                     tree->ops->merge_bio_hook(page, offset, page_size, bio,
1914                                               bio_flags)) ||
1915                    bio_add_page(bio, page, page_size, offset) < page_size) {
1916                        ret = submit_one_bio(rw, bio, mirror_num,
1917                                             prev_bio_flags);
1918                        bio = NULL;
1919                } else {
1920                        return 0;
1921                }
1922        }
1923        if (this_compressed)
1924                nr = BIO_MAX_PAGES;
1925        else
1926                nr = bio_get_nr_vecs(bdev);
1927
1928        bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1929        if (!bio)
1930                return -ENOMEM;
1931
1932        bio_add_page(bio, page, page_size, offset);
1933        bio->bi_end_io = end_io_func;
1934        bio->bi_private = tree;
1935
1936        if (bio_ret)
1937                *bio_ret = bio;
1938        else
1939                ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1940
1941        return ret;
1942}
1943
1944void set_page_extent_mapped(struct page *page)
1945{
1946        if (!PagePrivate(page)) {
1947                SetPagePrivate(page);
1948                page_cache_get(page);
1949                set_page_private(page, EXTENT_PAGE_PRIVATE);
1950        }
1951}
1952
1953static void set_page_extent_head(struct page *page, unsigned long len)
1954{
1955        WARN_ON(!PagePrivate(page));
1956        set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1957}
1958
1959/*
1960 * basic readpage implementation.  Locked extent state structs are inserted
1961 * into the tree that are removed when the IO is done (by the end_io
1962 * handlers)
1963 */
1964static int __extent_read_full_page(struct extent_io_tree *tree,
1965                                   struct page *page,
1966                                   get_extent_t *get_extent,
1967                                   struct bio **bio, int mirror_num,
1968                                   unsigned long *bio_flags)
1969{
1970        struct inode *inode = page->mapping->host;
1971        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1972        u64 page_end = start + PAGE_CACHE_SIZE - 1;
1973        u64 end;
1974        u64 cur = start;
1975        u64 extent_offset;
1976        u64 last_byte = i_size_read(inode);
1977        u64 block_start;
1978        u64 cur_end;
1979        sector_t sector;
1980        struct extent_map *em;
1981        struct block_device *bdev;
1982        struct btrfs_ordered_extent *ordered;
1983        int ret;
1984        int nr = 0;
1985        size_t page_offset = 0;
1986        size_t iosize;
1987        size_t disk_io_size;
1988        size_t blocksize = inode->i_sb->s_blocksize;
1989        unsigned long this_bio_flag = 0;
1990
1991        set_page_extent_mapped(page);
1992
1993        end = page_end;
1994        while (1) {
1995                lock_extent(tree, start, end, GFP_NOFS);
1996                ordered = btrfs_lookup_ordered_extent(inode, start);
1997                if (!ordered)
1998                        break;
1999                unlock_extent(tree, start, end, GFP_NOFS);
2000                btrfs_start_ordered_extent(inode, ordered, 1);
2001                btrfs_put_ordered_extent(ordered);
2002        }
2003
2004        if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2005                char *userpage;
2006                size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2007
2008                if (zero_offset) {
2009                        iosize = PAGE_CACHE_SIZE - zero_offset;
2010                        userpage = kmap_atomic(page, KM_USER0);
2011                        memset(userpage + zero_offset, 0, iosize);
2012                        flush_dcache_page(page);
2013                        kunmap_atomic(userpage, KM_USER0);
2014                }
2015        }
2016        while (cur <= end) {
2017                if (cur >= last_byte) {
2018                        char *userpage;
2019                        iosize = PAGE_CACHE_SIZE - page_offset;
2020                        userpage = kmap_atomic(page, KM_USER0);
2021                        memset(userpage + page_offset, 0, iosize);
2022                        flush_dcache_page(page);
2023                        kunmap_atomic(userpage, KM_USER0);
2024                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2025                                            GFP_NOFS);
2026                        unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2027                        break;
2028                }
2029                em = get_extent(inode, page, page_offset, cur,
2030                                end - cur + 1, 0);
2031                if (IS_ERR(em) || !em) {
2032                        SetPageError(page);
2033                        unlock_extent(tree, cur, end, GFP_NOFS);
2034                        break;
2035                }
2036                extent_offset = cur - em->start;
2037                BUG_ON(extent_map_end(em) <= cur);
2038                BUG_ON(end < cur);
2039
2040                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2041                        this_bio_flag = EXTENT_BIO_COMPRESSED;
2042                        extent_set_compress_type(&this_bio_flag,
2043                                                 em->compress_type);
2044                }
2045
2046                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2047                cur_end = min(extent_map_end(em) - 1, end);
2048                iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2049                if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2050                        disk_io_size = em->block_len;
2051                        sector = em->block_start >> 9;
2052                } else {
2053                        sector = (em->block_start + extent_offset) >> 9;
2054                        disk_io_size = iosize;
2055                }
2056                bdev = em->bdev;
2057                block_start = em->block_start;
2058                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2059                        block_start = EXTENT_MAP_HOLE;
2060                free_extent_map(em);
2061                em = NULL;
2062
2063                /* we've found a hole, just zero and go on */
2064                if (block_start == EXTENT_MAP_HOLE) {
2065                        char *userpage;
2066                        userpage = kmap_atomic(page, KM_USER0);
2067                        memset(userpage + page_offset, 0, iosize);
2068                        flush_dcache_page(page);
2069                        kunmap_atomic(userpage, KM_USER0);
2070
2071                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2072                                            GFP_NOFS);
2073                        unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2074                        cur = cur + iosize;
2075                        page_offset += iosize;
2076                        continue;
2077                }
2078                /* the get_extent function already copied into the page */
2079                if (test_range_bit(tree, cur, cur_end,
2080                                   EXTENT_UPTODATE, 1, NULL)) {
2081                        check_page_uptodate(tree, page);
2082                        unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2083                        cur = cur + iosize;
2084                        page_offset += iosize;
2085                        continue;
2086                }
2087                /* we have an inline extent but it didn't get marked up
2088                 * to date.  Error out
2089                 */
2090                if (block_start == EXTENT_MAP_INLINE) {
2091                        SetPageError(page);
2092                        unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2093                        cur = cur + iosize;
2094                        page_offset += iosize;
2095                        continue;
2096                }
2097
2098                ret = 0;
2099                if (tree->ops && tree->ops->readpage_io_hook) {
2100                        ret = tree->ops->readpage_io_hook(page, cur,
2101                                                          cur + iosize - 1);
2102                }
2103                if (!ret) {
2104                        unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2105                        pnr -= page->index;
2106                        ret = submit_extent_page(READ, tree, page,
2107                                         sector, disk_io_size, page_offset,
2108                                         bdev, bio, pnr,
2109                                         end_bio_extent_readpage, mirror_num,
2110                                         *bio_flags,
2111                                         this_bio_flag);
2112                        nr++;
2113                        *bio_flags = this_bio_flag;
2114                }
2115                if (ret)
2116                        SetPageError(page);
2117                cur = cur + iosize;
2118                page_offset += iosize;
2119        }
2120        if (!nr) {
2121                if (!PageError(page))
2122                        SetPageUptodate(page);
2123                unlock_page(page);
2124        }
2125        return 0;
2126}
2127
2128int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2129                            get_extent_t *get_extent)
2130{
2131        struct bio *bio = NULL;
2132        unsigned long bio_flags = 0;
2133        int ret;
2134
2135        ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2136                                      &bio_flags);
2137        if (bio)
2138                ret = submit_one_bio(READ, bio, 0, bio_flags);
2139        return ret;
2140}
2141
2142static noinline void update_nr_written(struct page *page,
2143                                      struct writeback_control *wbc,
2144                                      unsigned long nr_written)
2145{
2146        wbc->nr_to_write -= nr_written;
2147        if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2148            wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2149                page->mapping->writeback_index = page->index + nr_written;
2150}
2151
2152/*
2153 * the writepage semantics are similar to regular writepage.  extent
2154 * records are inserted to lock ranges in the tree, and as dirty areas
2155 * are found, they are marked writeback.  Then the lock bits are removed
2156 * and the end_io handler clears the writeback ranges
2157 */
2158static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2159                              void *data)
2160{
2161        struct inode *inode = page->mapping->host;
2162        struct extent_page_data *epd = data;
2163        struct extent_io_tree *tree = epd->tree;
2164        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2165        u64 delalloc_start;
2166        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2167        u64 end;
2168        u64 cur = start;
2169        u64 extent_offset;
2170        u64 last_byte = i_size_read(inode);
2171        u64 block_start;
2172        u64 iosize;
2173        sector_t sector;
2174        struct extent_state *cached_state = NULL;
2175        struct extent_map *em;
2176        struct block_device *bdev;
2177        int ret;
2178        int nr = 0;
2179        size_t pg_offset = 0;
2180        size_t blocksize;
2181        loff_t i_size = i_size_read(inode);
2182        unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2183        u64 nr_delalloc;
2184        u64 delalloc_end;
2185        int page_started;
2186        int compressed;
2187        int write_flags;
2188        unsigned long nr_written = 0;
2189
2190        if (wbc->sync_mode == WB_SYNC_ALL)
2191                write_flags = WRITE_SYNC_PLUG;
2192        else
2193                write_flags = WRITE;
2194
2195        WARN_ON(!PageLocked(page));
2196        pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2197        if (page->index > end_index ||
2198           (page->index == end_index && !pg_offset)) {
2199                page->mapping->a_ops->invalidatepage(page, 0);
2200                unlock_page(page);
2201                return 0;
2202        }
2203
2204        if (page->index == end_index) {
2205                char *userpage;
2206
2207                userpage = kmap_atomic(page, KM_USER0);
2208                memset(userpage + pg_offset, 0,
2209                       PAGE_CACHE_SIZE - pg_offset);
2210                kunmap_atomic(userpage, KM_USER0);
2211                flush_dcache_page(page);
2212        }
2213        pg_offset = 0;
2214
2215        set_page_extent_mapped(page);
2216
2217        delalloc_start = start;
2218        delalloc_end = 0;
2219        page_started = 0;
2220        if (!epd->extent_locked) {
2221                u64 delalloc_to_write = 0;
2222                /*
2223                 * make sure the wbc mapping index is at least updated
2224                 * to this page.
2225                 */
2226                update_nr_written(page, wbc, 0);
2227
2228                while (delalloc_end < page_end) {
2229                        nr_delalloc = find_lock_delalloc_range(inode, tree,
2230                                                       page,
2231                                                       &delalloc_start,
2232                                                       &delalloc_end,
2233                                                       128 * 1024 * 1024);
2234                        if (nr_delalloc == 0) {
2235                                delalloc_start = delalloc_end + 1;
2236                                continue;
2237                        }
2238                        tree->ops->fill_delalloc(inode, page, delalloc_start,
2239                                                 delalloc_end, &page_started,
2240                                                 &nr_written);
2241                        /*
2242                         * delalloc_end is already one less than the total
2243                         * length, so we don't subtract one from
2244                         * PAGE_CACHE_SIZE
2245                         */
2246                        delalloc_to_write += (delalloc_end - delalloc_start +
2247                                              PAGE_CACHE_SIZE) >>
2248                                              PAGE_CACHE_SHIFT;
2249                        delalloc_start = delalloc_end + 1;
2250                }
2251                if (wbc->nr_to_write < delalloc_to_write) {
2252                        int thresh = 8192;
2253
2254                        if (delalloc_to_write < thresh * 2)
2255                                thresh = delalloc_to_write;
2256                        wbc->nr_to_write = min_t(u64, delalloc_to_write,
2257                                                 thresh);
2258                }
2259
2260                /* did the fill delalloc function already unlock and start
2261                 * the IO?
2262                 */
2263                if (page_started) {
2264                        ret = 0;
2265                        /*
2266                         * we've unlocked the page, so we can't update
2267                         * the mapping's writeback index, just update
2268                         * nr_to_write.
2269                         */
2270                        wbc->nr_to_write -= nr_written;
2271                        goto done_unlocked;
2272                }
2273        }
2274        if (tree->ops && tree->ops->writepage_start_hook) {
2275                ret = tree->ops->writepage_start_hook(page, start,
2276                                                      page_end);
2277                if (ret == -EAGAIN) {
2278                        redirty_page_for_writepage(wbc, page);
2279                        update_nr_written(page, wbc, nr_written);
2280                        unlock_page(page);
2281                        ret = 0;
2282                        goto done_unlocked;
2283                }
2284        }
2285
2286        /*
2287         * we don't want to touch the inode after unlocking the page,
2288         * so we update the mapping writeback index now
2289         */
2290        update_nr_written(page, wbc, nr_written + 1);
2291
2292        end = page_end;
2293        if (last_byte <= start) {
2294                if (tree->ops && tree->ops->writepage_end_io_hook)
2295                        tree->ops->writepage_end_io_hook(page, start,
2296                                                         page_end, NULL, 1);
2297                goto done;
2298        }
2299
2300        blocksize = inode->i_sb->s_blocksize;
2301
2302        while (cur <= end) {
2303                if (cur >= last_byte) {
2304                        if (tree->ops && tree->ops->writepage_end_io_hook)
2305                                tree->ops->writepage_end_io_hook(page, cur,
2306                                                         page_end, NULL, 1);
2307                        break;
2308                }
2309                em = epd->get_extent(inode, page, pg_offset, cur,
2310                                     end - cur + 1, 1);
2311                if (IS_ERR(em) || !em) {
2312                        SetPageError(page);
2313                        break;
2314                }
2315
2316                extent_offset = cur - em->start;
2317                BUG_ON(extent_map_end(em) <= cur);
2318                BUG_ON(end < cur);
2319                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2320                iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2321                sector = (em->block_start + extent_offset) >> 9;
2322                bdev = em->bdev;
2323                block_start = em->block_start;
2324                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2325                free_extent_map(em);
2326                em = NULL;
2327
2328                /*
2329                 * compressed and inline extents are written through other
2330                 * paths in the FS
2331                 */
2332                if (compressed || block_start == EXTENT_MAP_HOLE ||
2333                    block_start == EXTENT_MAP_INLINE) {
2334                        /*
2335                         * end_io notification does not happen here for
2336                         * compressed extents
2337                         */
2338                        if (!compressed && tree->ops &&
2339                            tree->ops->writepage_end_io_hook)
2340                                tree->ops->writepage_end_io_hook(page, cur,
2341                                                         cur + iosize - 1,
2342                                                         NULL, 1);
2343                        else if (compressed) {
2344                                /* we don't want to end_page_writeback on
2345                                 * a compressed extent.  this happens
2346                                 * elsewhere
2347                                 */
2348                                nr++;
2349                        }
2350
2351                        cur += iosize;
2352                        pg_offset += iosize;
2353                        continue;
2354                }
2355                /* leave this out until we have a page_mkwrite call */
2356                if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2357                                   EXTENT_DIRTY, 0, NULL)) {
2358                        cur = cur + iosize;
2359                        pg_offset += iosize;
2360                        continue;
2361                }
2362
2363                if (tree->ops && tree->ops->writepage_io_hook) {
2364                        ret = tree->ops->writepage_io_hook(page, cur,
2365                                                cur + iosize - 1);
2366                } else {
2367                        ret = 0;
2368                }
2369                if (ret) {
2370                        SetPageError(page);
2371                } else {
2372                        unsigned long max_nr = end_index + 1;
2373
2374                        set_range_writeback(tree, cur, cur + iosize - 1);
2375                        if (!PageWriteback(page)) {
2376                                printk(KERN_ERR "btrfs warning page %lu not "
2377                                       "writeback, cur %llu end %llu\n",
2378                                       page->index, (unsigned long long)cur,
2379                                       (unsigned long long)end);
2380                        }
2381
2382                        ret = submit_extent_page(write_flags, tree, page,
2383                                                 sector, iosize, pg_offset,
2384                                                 bdev, &epd->bio, max_nr,
2385                                                 end_bio_extent_writepage,
2386                                                 0, 0, 0);
2387                        if (ret)
2388                                SetPageError(page);
2389                }
2390                cur = cur + iosize;
2391                pg_offset += iosize;
2392                nr++;
2393        }
2394done:
2395        if (nr == 0) {
2396                /* make sure the mapping tag for page dirty gets cleared */
2397                set_page_writeback(page);
2398                end_page_writeback(page);
2399        }
2400        unlock_page(page);
2401
2402done_unlocked:
2403
2404        /* drop our reference on any cached states */
2405        free_extent_state(cached_state);
2406        return 0;
2407}
2408
2409/**
2410 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2411 * @mapping: address space structure to write
2412 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2413 * @writepage: function called for each page
2414 * @data: data passed to writepage function
2415 *
2416 * If a page is already under I/O, write_cache_pages() skips it, even
2417 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2418 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2419 * and msync() need to guarantee that all the data which was dirty at the time
2420 * the call was made get new I/O started against them.  If wbc->sync_mode is
2421 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2422 * existing IO to complete.
2423 */
2424static int extent_write_cache_pages(struct extent_io_tree *tree,
2425                             struct address_space *mapping,
2426                             struct writeback_control *wbc,
2427                             writepage_t writepage, void *data,
2428                             void (*flush_fn)(void *))
2429{
2430        int ret = 0;
2431        int done = 0;
2432        int nr_to_write_done = 0;
2433        struct pagevec pvec;
2434        int nr_pages;
2435        pgoff_t index;
2436        pgoff_t end;            /* Inclusive */
2437        int scanned = 0;
2438
2439        pagevec_init(&pvec, 0);
2440        if (wbc->range_cyclic) {
2441                index = mapping->writeback_index; /* Start from prev offset */
2442                end = -1;
2443        } else {
2444                index = wbc->range_start >> PAGE_CACHE_SHIFT;
2445                end = wbc->range_end >> PAGE_CACHE_SHIFT;
2446                scanned = 1;
2447        }
2448retry:
2449        while (!done && !nr_to_write_done && (index <= end) &&
2450               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2451                              PAGECACHE_TAG_DIRTY, min(end - index,
2452                                  (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2453                unsigned i;
2454
2455                scanned = 1;
2456                for (i = 0; i < nr_pages; i++) {
2457                        struct page *page = pvec.pages[i];
2458
2459                        /*
2460                         * At this point we hold neither mapping->tree_lock nor
2461                         * lock on the page itself: the page may be truncated or
2462                         * invalidated (changing page->mapping to NULL), or even
2463                         * swizzled back from swapper_space to tmpfs file
2464                         * mapping
2465                         */
2466                        if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2467                                tree->ops->write_cache_pages_lock_hook(page);
2468                        else
2469                                lock_page(page);
2470
2471                        if (unlikely(page->mapping != mapping)) {
2472                                unlock_page(page);
2473                                continue;
2474                        }
2475
2476                        if (!wbc->range_cyclic && page->index > end) {
2477                                done = 1;
2478                                unlock_page(page);
2479                                continue;
2480                        }
2481
2482                        if (wbc->sync_mode != WB_SYNC_NONE) {
2483                                if (PageWriteback(page))
2484                                        flush_fn(data);
2485                                wait_on_page_writeback(page);
2486                        }
2487
2488                        if (PageWriteback(page) ||
2489                            !clear_page_dirty_for_io(page)) {
2490                                unlock_page(page);
2491                                continue;
2492                        }
2493
2494                        ret = (*writepage)(page, wbc, data);
2495
2496                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2497                                unlock_page(page);
2498                                ret = 0;
2499                        }
2500                        if (ret)
2501                                done = 1;
2502
2503                        /*
2504                         * the filesystem may choose to bump up nr_to_write.
2505                         * We have to make sure to honor the new nr_to_write
2506                         * at any time
2507                         */
2508                        nr_to_write_done = wbc->nr_to_write <= 0;
2509                }
2510                pagevec_release(&pvec);
2511                cond_resched();
2512        }
2513        if (!scanned && !done) {
2514                /*
2515                 * We hit the last page and there is more work to be done: wrap
2516                 * back to the start of the file
2517                 */
2518                scanned = 1;
2519                index = 0;
2520                goto retry;
2521        }
2522        return ret;
2523}
2524
2525static void flush_epd_write_bio(struct extent_page_data *epd)
2526{
2527        if (epd->bio) {
2528                if (epd->sync_io)
2529                        submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2530                else
2531                        submit_one_bio(WRITE, epd->bio, 0, 0);
2532                epd->bio = NULL;
2533        }
2534}
2535
2536static noinline void flush_write_bio(void *data)
2537{
2538        struct extent_page_data *epd = data;
2539        flush_epd_write_bio(epd);
2540}
2541
2542int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2543                          get_extent_t *get_extent,
2544                          struct writeback_control *wbc)
2545{
2546        int ret;
2547        struct address_space *mapping = page->mapping;
2548        struct extent_page_data epd = {
2549                .bio = NULL,
2550                .tree = tree,
2551                .get_extent = get_extent,
2552                .extent_locked = 0,
2553                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2554        };
2555        struct writeback_control wbc_writepages = {
2556                .sync_mode      = wbc->sync_mode,
2557                .older_than_this = NULL,
2558                .nr_to_write    = 64,
2559                .range_start    = page_offset(page) + PAGE_CACHE_SIZE,
2560                .range_end      = (loff_t)-1,
2561        };
2562
2563        ret = __extent_writepage(page, wbc, &epd);
2564
2565        extent_write_cache_pages(tree, mapping, &wbc_writepages,
2566                                 __extent_writepage, &epd, flush_write_bio);
2567        flush_epd_write_bio(&epd);
2568        return ret;
2569}
2570
2571int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2572                              u64 start, u64 end, get_extent_t *get_extent,
2573                              int mode)
2574{
2575        int ret = 0;
2576        struct address_space *mapping = inode->i_mapping;
2577        struct page *page;
2578        unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2579                PAGE_CACHE_SHIFT;
2580
2581        struct extent_page_data epd = {
2582                .bio = NULL,
2583                .tree = tree,
2584                .get_extent = get_extent,
2585                .extent_locked = 1,
2586                .sync_io = mode == WB_SYNC_ALL,
2587        };
2588        struct writeback_control wbc_writepages = {
2589                .sync_mode      = mode,
2590                .older_than_this = NULL,
2591                .nr_to_write    = nr_pages * 2,
2592                .range_start    = start,
2593                .range_end      = end + 1,
2594        };
2595
2596        while (start <= end) {
2597                page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2598                if (clear_page_dirty_for_io(page))
2599                        ret = __extent_writepage(page, &wbc_writepages, &epd);
2600                else {
2601                        if (tree->ops && tree->ops->writepage_end_io_hook)
2602                                tree->ops->writepage_end_io_hook(page, start,
2603                                                 start + PAGE_CACHE_SIZE - 1,
2604                                                 NULL, 1);
2605                        unlock_page(page);
2606                }
2607                page_cache_release(page);
2608                start += PAGE_CACHE_SIZE;
2609        }
2610
2611        flush_epd_write_bio(&epd);
2612        return ret;
2613}
2614
2615int extent_writepages(struct extent_io_tree *tree,
2616                      struct address_space *mapping,
2617                      get_extent_t *get_extent,
2618                      struct writeback_control *wbc)
2619{
2620        int ret = 0;
2621        struct extent_page_data epd = {
2622                .bio = NULL,
2623                .tree = tree,
2624                .get_extent = get_extent,
2625                .extent_locked = 0,
2626                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2627        };
2628
2629        ret = extent_write_cache_pages(tree, mapping, wbc,
2630                                       __extent_writepage, &epd,
2631                                       flush_write_bio);
2632        flush_epd_write_bio(&epd);
2633        return ret;
2634}
2635
2636int extent_readpages(struct extent_io_tree *tree,
2637                     struct address_space *mapping,
2638                     struct list_head *pages, unsigned nr_pages,
2639                     get_extent_t get_extent)
2640{
2641        struct bio *bio = NULL;
2642        unsigned page_idx;
2643        unsigned long bio_flags = 0;
2644
2645        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2646                struct page *page = list_entry(pages->prev, struct page, lru);
2647
2648                prefetchw(&page->flags);
2649                list_del(&page->lru);
2650                if (!add_to_page_cache_lru(page, mapping,
2651                                        page->index, GFP_KERNEL)) {
2652                        __extent_read_full_page(tree, page, get_extent,
2653                                                &bio, 0, &bio_flags);
2654                }
2655                page_cache_release(page);
2656        }
2657        BUG_ON(!list_empty(pages));
2658        if (bio)
2659                submit_one_bio(READ, bio, 0, bio_flags);
2660        return 0;
2661}
2662
2663/*
2664 * basic invalidatepage code, this waits on any locked or writeback
2665 * ranges corresponding to the page, and then deletes any extent state
2666 * records from the tree
2667 */
2668int extent_invalidatepage(struct extent_io_tree *tree,
2669                          struct page *page, unsigned long offset)
2670{
2671        struct extent_state *cached_state = NULL;
2672        u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2673        u64 end = start + PAGE_CACHE_SIZE - 1;
2674        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2675
2676        start += (offset + blocksize - 1) & ~(blocksize - 1);
2677        if (start > end)
2678                return 0;
2679
2680        lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2681        wait_on_page_writeback(page);
2682        clear_extent_bit(tree, start, end,
2683                         EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2684                         EXTENT_DO_ACCOUNTING,
2685                         1, 1, &cached_state, GFP_NOFS);
2686        return 0;
2687}
2688
2689/*
2690 * simple commit_write call, set_range_dirty is used to mark both
2691 * the pages and the extent records as dirty
2692 */
2693int extent_commit_write(struct extent_io_tree *tree,
2694                        struct inode *inode, struct page *page,
2695                        unsigned from, unsigned to)
2696{
2697        loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2698
2699        set_page_extent_mapped(page);
2700        set_page_dirty(page);
2701
2702        if (pos > inode->i_size) {
2703                i_size_write(inode, pos);
2704                mark_inode_dirty(inode);
2705        }
2706        return 0;
2707}
2708
2709int extent_prepare_write(struct extent_io_tree *tree,
2710                         struct inode *inode, struct page *page,
2711                         unsigned from, unsigned to, get_extent_t *get_extent)
2712{
2713        u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2714        u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2715        u64 block_start;
2716        u64 orig_block_start;
2717        u64 block_end;
2718        u64 cur_end;
2719        struct extent_map *em;
2720        unsigned blocksize = 1 << inode->i_blkbits;
2721        size_t page_offset = 0;
2722        size_t block_off_start;
2723        size_t block_off_end;
2724        int err = 0;
2725        int iocount = 0;
2726        int ret = 0;
2727        int isnew;
2728
2729        set_page_extent_mapped(page);
2730
2731        block_start = (page_start + from) & ~((u64)blocksize - 1);
2732        block_end = (page_start + to - 1) | (blocksize - 1);
2733        orig_block_start = block_start;
2734
2735        lock_extent(tree, page_start, page_end, GFP_NOFS);
2736        while (block_start <= block_end) {
2737                em = get_extent(inode, page, page_offset, block_start,
2738                                block_end - block_start + 1, 1);
2739                if (IS_ERR(em) || !em)
2740                        goto err;
2741
2742                cur_end = min(block_end, extent_map_end(em) - 1);
2743                block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2744                block_off_end = block_off_start + blocksize;
2745                isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2746
2747                if (!PageUptodate(page) && isnew &&
2748                    (block_off_end > to || block_off_start < from)) {
2749                        void *kaddr;
2750
2751                        kaddr = kmap_atomic(page, KM_USER0);
2752                        if (block_off_end > to)
2753                                memset(kaddr + to, 0, block_off_end - to);
2754                        if (block_off_start < from)
2755                                memset(kaddr + block_off_start, 0,
2756                                       from - block_off_start);
2757                        flush_dcache_page(page);
2758                        kunmap_atomic(kaddr, KM_USER0);
2759                }
2760                if ((em->block_start != EXTENT_MAP_HOLE &&
2761                     em->block_start != EXTENT_MAP_INLINE) &&
2762                    !isnew && !PageUptodate(page) &&
2763                    (block_off_end > to || block_off_start < from) &&
2764                    !test_range_bit(tree, block_start, cur_end,
2765                                    EXTENT_UPTODATE, 1, NULL)) {
2766                        u64 sector;
2767                        u64 extent_offset = block_start - em->start;
2768                        size_t iosize;
2769                        sector = (em->block_start + extent_offset) >> 9;
2770                        iosize = (cur_end - block_start + blocksize) &
2771                                ~((u64)blocksize - 1);
2772                        /*
2773                         * we've already got the extent locked, but we
2774                         * need to split the state such that our end_bio
2775                         * handler can clear the lock.
2776                         */
2777                        set_extent_bit(tree, block_start,
2778                                       block_start + iosize - 1,
2779                                       EXTENT_LOCKED, 0, NULL, NULL, GFP_NOFS);
2780                        ret = submit_extent_page(READ, tree, page,
2781                                         sector, iosize, page_offset, em->bdev,
2782                                         NULL, 1,
2783                                         end_bio_extent_preparewrite, 0,
2784                                         0, 0);
2785                        if (ret && !err)
2786                                err = ret;
2787                        iocount++;
2788                        block_start = block_start + iosize;
2789                } else {
2790                        set_extent_uptodate(tree, block_start, cur_end,
2791                                            GFP_NOFS);
2792                        unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2793                        block_start = cur_end + 1;
2794                }
2795                page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2796                free_extent_map(em);
2797        }
2798        if (iocount) {
2799                wait_extent_bit(tree, orig_block_start,
2800                                block_end, EXTENT_LOCKED);
2801        }
2802        check_page_uptodate(tree, page);
2803err:
2804        /* FIXME, zero out newly allocated blocks on error */
2805        return err;
2806}
2807
2808/*
2809 * a helper for releasepage, this tests for areas of the page that
2810 * are locked or under IO and drops the related state bits if it is safe
2811 * to drop the page.
2812 */
2813int try_release_extent_state(struct extent_map_tree *map,
2814                             struct extent_io_tree *tree, struct page *page,
2815                             gfp_t mask)
2816{
2817        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2818        u64 end = start + PAGE_CACHE_SIZE - 1;
2819        int ret = 1;
2820
2821        if (test_range_bit(tree, start, end,
2822                           EXTENT_IOBITS, 0, NULL))
2823                ret = 0;
2824        else {
2825                if ((mask & GFP_NOFS) == GFP_NOFS)
2826                        mask = GFP_NOFS;
2827                /*
2828                 * at this point we can safely clear everything except the
2829                 * locked bit and the nodatasum bit
2830                 */
2831                ret = clear_extent_bit(tree, start, end,
2832                                 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2833                                 0, 0, NULL, mask);
2834
2835                /* if clear_extent_bit failed for enomem reasons,
2836                 * we can't allow the release to continue.
2837                 */
2838                if (ret < 0)
2839                        ret = 0;
2840                else
2841                        ret = 1;
2842        }
2843        return ret;
2844}
2845
2846/*
2847 * a helper for releasepage.  As long as there are no locked extents
2848 * in the range corresponding to the page, both state records and extent
2849 * map records are removed
2850 */
2851int try_release_extent_mapping(struct extent_map_tree *map,
2852                               struct extent_io_tree *tree, struct page *page,
2853                               gfp_t mask)
2854{
2855        struct extent_map *em;
2856        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2857        u64 end = start + PAGE_CACHE_SIZE - 1;
2858
2859        if ((mask & __GFP_WAIT) &&
2860            page->mapping->host->i_size > 16 * 1024 * 1024) {
2861                u64 len;
2862                while (start <= end) {
2863                        len = end - start + 1;
2864                        write_lock(&map->lock);
2865                        em = lookup_extent_mapping(map, start, len);
2866                        if (!em || IS_ERR(em)) {
2867                                write_unlock(&map->lock);
2868                                break;
2869                        }
2870                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2871                            em->start != start) {
2872                                write_unlock(&map->lock);
2873                                free_extent_map(em);
2874                                break;
2875                        }
2876                        if (!test_range_bit(tree, em->start,
2877                                            extent_map_end(em) - 1,
2878                                            EXTENT_LOCKED | EXTENT_WRITEBACK,
2879                                            0, NULL)) {
2880                                remove_extent_mapping(map, em);
2881                                /* once for the rb tree */
2882                                free_extent_map(em);
2883                        }
2884                        start = extent_map_end(em);
2885                        write_unlock(&map->lock);
2886
2887                        /* once for us */
2888                        free_extent_map(em);
2889                }
2890        }
2891        return try_release_extent_state(map, tree, page, mask);
2892}
2893
2894sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2895                get_extent_t *get_extent)
2896{
2897        struct inode *inode = mapping->host;
2898        struct extent_state *cached_state = NULL;
2899        u64 start = iblock << inode->i_blkbits;
2900        sector_t sector = 0;
2901        size_t blksize = (1 << inode->i_blkbits);
2902        struct extent_map *em;
2903
2904        lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + blksize - 1,
2905                         0, &cached_state, GFP_NOFS);
2906        em = get_extent(inode, NULL, 0, start, blksize, 0);
2907        unlock_extent_cached(&BTRFS_I(inode)->io_tree, start,
2908                             start + blksize - 1, &cached_state, GFP_NOFS);
2909        if (!em || IS_ERR(em))
2910                return 0;
2911
2912        if (em->block_start > EXTENT_MAP_LAST_BYTE)
2913                goto out;
2914
2915        sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2916out:
2917        free_extent_map(em);
2918        return sector;
2919}
2920
2921/*
2922 * helper function for fiemap, which doesn't want to see any holes.
2923 * This maps until we find something past 'last'
2924 */
2925static struct extent_map *get_extent_skip_holes(struct inode *inode,
2926                                                u64 offset,
2927                                                u64 last,
2928                                                get_extent_t *get_extent)
2929{
2930        u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
2931        struct extent_map *em;
2932        u64 len;
2933
2934        if (offset >= last)
2935                return NULL;
2936
2937        while(1) {
2938                len = last - offset;
2939                if (len == 0)
2940                        break;
2941                len = (len + sectorsize - 1) & ~(sectorsize - 1);
2942                em = get_extent(inode, NULL, 0, offset, len, 0);
2943                if (!em || IS_ERR(em))
2944                        return em;
2945
2946                /* if this isn't a hole return it */
2947                if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
2948                    em->block_start != EXTENT_MAP_HOLE) {
2949                        return em;
2950                }
2951
2952                /* this is a hole, advance to the next extent */
2953                offset = extent_map_end(em);
2954                free_extent_map(em);
2955                if (offset >= last)
2956                        break;
2957        }
2958        return NULL;
2959}
2960
2961int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2962                __u64 start, __u64 len, get_extent_t *get_extent)
2963{
2964        int ret = 0;
2965        u64 off = start;
2966        u64 max = start + len;
2967        u32 flags = 0;
2968        u32 found_type;
2969        u64 last;
2970        u64 last_for_get_extent = 0;
2971        u64 disko = 0;
2972        u64 isize = i_size_read(inode);
2973        struct btrfs_key found_key;
2974        struct extent_map *em = NULL;
2975        struct extent_state *cached_state = NULL;
2976        struct btrfs_path *path;
2977        struct btrfs_file_extent_item *item;
2978        int end = 0;
2979        u64 em_start = 0;
2980        u64 em_len = 0;
2981        u64 em_end = 0;
2982        unsigned long emflags;
2983
2984        if (len == 0)
2985                return -EINVAL;
2986
2987        path = btrfs_alloc_path();
2988        if (!path)
2989                return -ENOMEM;
2990        path->leave_spinning = 1;
2991
2992        /*
2993         * lookup the last file extent.  We're not using i_size here
2994         * because there might be preallocation past i_size
2995         */
2996        ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
2997                                       path, inode->i_ino, -1, 0);
2998        if (ret < 0) {
2999                btrfs_free_path(path);
3000                return ret;
3001        }
3002        WARN_ON(!ret);
3003        path->slots[0]--;
3004        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3005                              struct btrfs_file_extent_item);
3006        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3007        found_type = btrfs_key_type(&found_key);
3008
3009        /* No extents, but there might be delalloc bits */
3010        if (found_key.objectid != inode->i_ino ||
3011            found_type != BTRFS_EXTENT_DATA_KEY) {
3012                /* have to trust i_size as the end */
3013                last = (u64)-1;
3014                last_for_get_extent = isize;
3015        } else {
3016                /*
3017                 * remember the start of the last extent.  There are a
3018                 * bunch of different factors that go into the length of the
3019                 * extent, so its much less complex to remember where it started
3020                 */
3021                last = found_key.offset;
3022                last_for_get_extent = last + 1;
3023        }
3024        btrfs_free_path(path);
3025
3026        /*
3027         * we might have some extents allocated but more delalloc past those
3028         * extents.  so, we trust isize unless the start of the last extent is
3029         * beyond isize
3030         */
3031        if (last < isize) {
3032                last = (u64)-1;
3033                last_for_get_extent = isize;
3034        }
3035
3036        lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3037                         &cached_state, GFP_NOFS);
3038
3039        em = get_extent_skip_holes(inode, off, last_for_get_extent,
3040                                   get_extent);
3041        if (!em)
3042                goto out;
3043        if (IS_ERR(em)) {
3044                ret = PTR_ERR(em);
3045                goto out;
3046        }
3047
3048        while (!end) {
3049                u64 offset_in_extent;
3050
3051                /* break if the extent we found is outside the range */
3052                if (em->start >= max || extent_map_end(em) < off)
3053                        break;
3054
3055                /*
3056                 * get_extent may return an extent that starts before our
3057                 * requested range.  We have to make sure the ranges
3058                 * we return to fiemap always move forward and don't
3059                 * overlap, so adjust the offsets here
3060                 */
3061                em_start = max(em->start, off);
3062
3063                /*
3064                 * record the offset from the start of the extent
3065                 * for adjusting the disk offset below
3066                 */
3067                offset_in_extent = em_start - em->start;
3068                em_end = extent_map_end(em);
3069                em_len = em_end - em_start;
3070                emflags = em->flags;
3071                disko = 0;
3072                flags = 0;
3073
3074                /*
3075                 * bump off for our next call to get_extent
3076                 */
3077                off = extent_map_end(em);
3078                if (off >= max)
3079                        end = 1;
3080
3081                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3082                        end = 1;
3083                        flags |= FIEMAP_EXTENT_LAST;
3084                } else if (em->block_start == EXTENT_MAP_INLINE) {
3085                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
3086                                  FIEMAP_EXTENT_NOT_ALIGNED);
3087                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3088                        flags |= (FIEMAP_EXTENT_DELALLOC |
3089                                  FIEMAP_EXTENT_UNKNOWN);
3090                } else {
3091                        disko = em->block_start + offset_in_extent;
3092                }
3093                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3094                        flags |= FIEMAP_EXTENT_ENCODED;
3095
3096                free_extent_map(em);
3097                em = NULL;
3098                if ((em_start >= last) || em_len == (u64)-1 ||
3099                   (last == (u64)-1 && isize <= em_end)) {
3100                        flags |= FIEMAP_EXTENT_LAST;
3101                        end = 1;
3102                }
3103
3104                /* now scan forward to see if this is really the last extent. */
3105                em = get_extent_skip_holes(inode, off, last_for_get_extent,
3106                                           get_extent);
3107                if (IS_ERR(em)) {
3108                        ret = PTR_ERR(em);
3109                        goto out;
3110                }
3111                if (!em) {
3112                        flags |= FIEMAP_EXTENT_LAST;
3113                        end = 1;
3114                }
3115                ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3116                                              em_len, flags);
3117                if (ret)
3118                        goto out_free;
3119        }
3120out_free:
3121        free_extent_map(em);
3122out:
3123        unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3124                             &cached_state, GFP_NOFS);
3125        return ret;
3126}
3127
3128static inline struct page *extent_buffer_page(struct extent_buffer *eb,
3129                                              unsigned long i)
3130{
3131        struct page *p;
3132        struct address_space *mapping;
3133
3134        if (i == 0)
3135                return eb->first_page;
3136        i += eb->start >> PAGE_CACHE_SHIFT;
3137        mapping = eb->first_page->mapping;
3138        if (!mapping)
3139                return NULL;
3140
3141        /*
3142         * extent_buffer_page is only called after pinning the page
3143         * by increasing the reference count.  So we know the page must
3144         * be in the radix tree.
3145         */
3146        rcu_read_lock();
3147        p = radix_tree_lookup(&mapping->page_tree, i);
3148        rcu_read_unlock();
3149
3150        return p;
3151}
3152
3153static inline unsigned long num_extent_pages(u64 start, u64 len)
3154{
3155        return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3156                (start >> PAGE_CACHE_SHIFT);
3157}
3158
3159static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3160                                                   u64 start,
3161                                                   unsigned long len,
3162                                                   gfp_t mask)
3163{
3164        struct extent_buffer *eb = NULL;
3165#if LEAK_DEBUG
3166        unsigned long flags;
3167#endif
3168
3169        eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3170        if (eb == NULL)
3171                return NULL;
3172        eb->start = start;
3173        eb->len = len;
3174        spin_lock_init(&eb->lock);
3175        init_waitqueue_head(&eb->lock_wq);
3176
3177#if LEAK_DEBUG
3178        spin_lock_irqsave(&leak_lock, flags);
3179        list_add(&eb->leak_list, &buffers);
3180        spin_unlock_irqrestore(&leak_lock, flags);
3181#endif
3182        atomic_set(&eb->refs, 1);
3183
3184        return eb;
3185}
3186
3187static void __free_extent_buffer(struct extent_buffer *eb)
3188{
3189#if LEAK_DEBUG
3190        unsigned long flags;
3191        spin_lock_irqsave(&leak_lock, flags);
3192        list_del(&eb->leak_list);
3193        spin_unlock_irqrestore(&leak_lock, flags);
3194#endif
3195        kmem_cache_free(extent_buffer_cache, eb);
3196}
3197
3198/*
3199 * Helper for releasing extent buffer page.
3200 */
3201static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3202                                                unsigned long start_idx)
3203{
3204        unsigned long index;
3205        struct page *page;
3206
3207        if (!eb->first_page)
3208                return;
3209
3210        index = num_extent_pages(eb->start, eb->len);
3211        if (start_idx >= index)
3212                return;
3213
3214        do {
3215                index--;
3216                page = extent_buffer_page(eb, index);
3217                if (page)
3218                        page_cache_release(page);
3219        } while (index != start_idx);
3220}
3221
3222/*
3223 * Helper for releasing the extent buffer.
3224 */
3225static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3226{
3227        btrfs_release_extent_buffer_page(eb, 0);
3228        __free_extent_buffer(eb);
3229}
3230
3231struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3232                                          u64 start, unsigned long len,
3233                                          struct page *page0,
3234                                          gfp_t mask)
3235{
3236        unsigned long num_pages = num_extent_pages(start, len);
3237        unsigned long i;
3238        unsigned long index = start >> PAGE_CACHE_SHIFT;
3239        struct extent_buffer *eb;
3240        struct extent_buffer *exists = NULL;
3241        struct page *p;
3242        struct address_space *mapping = tree->mapping;
3243        int uptodate = 1;
3244        int ret;
3245
3246        rcu_read_lock();
3247        eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3248        if (eb && atomic_inc_not_zero(&eb->refs)) {
3249                rcu_read_unlock();
3250                mark_page_accessed(eb->first_page);
3251                return eb;
3252        }
3253        rcu_read_unlock();
3254
3255        eb = __alloc_extent_buffer(tree, start, len, mask);
3256        if (!eb)
3257                return NULL;
3258
3259        if (page0) {
3260                eb->first_page = page0;
3261                i = 1;
3262                index++;
3263                page_cache_get(page0);
3264                mark_page_accessed(page0);
3265                set_page_extent_mapped(page0);
3266                set_page_extent_head(page0, len);
3267                uptodate = PageUptodate(page0);
3268        } else {
3269                i = 0;
3270        }
3271        for (; i < num_pages; i++, index++) {
3272                p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
3273                if (!p) {
3274                        WARN_ON(1);
3275                        goto free_eb;
3276                }
3277                set_page_extent_mapped(p);
3278                mark_page_accessed(p);
3279                if (i == 0) {
3280                        eb->first_page = p;
3281                        set_page_extent_head(p, len);
3282                } else {
3283                        set_page_private(p, EXTENT_PAGE_PRIVATE);
3284                }
3285                if (!PageUptodate(p))
3286                        uptodate = 0;
3287
3288                /*
3289                 * see below about how we avoid a nasty race with release page
3290                 * and why we unlock later
3291                 */
3292                if (i != 0)
3293                        unlock_page(p);
3294        }
3295        if (uptodate)
3296                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3297
3298        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3299        if (ret)
3300                goto free_eb;
3301
3302        spin_lock(&tree->buffer_lock);
3303        ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3304        if (ret == -EEXIST) {
3305                exists = radix_tree_lookup(&tree->buffer,
3306                                                start >> PAGE_CACHE_SHIFT);
3307                /* add one reference for the caller */
3308                atomic_inc(&exists->refs);
3309                spin_unlock(&tree->buffer_lock);
3310                radix_tree_preload_end();
3311                goto free_eb;
3312        }
3313        /* add one reference for the tree */
3314        atomic_inc(&eb->refs);
3315        spin_unlock(&tree->buffer_lock);
3316        radix_tree_preload_end();
3317
3318        /*
3319         * there is a race where release page may have
3320         * tried to find this extent buffer in the radix
3321         * but failed.  It will tell the VM it is safe to
3322         * reclaim the, and it will clear the page private bit.
3323         * We must make sure to set the page private bit properly
3324         * after the extent buffer is in the radix tree so
3325         * it doesn't get lost
3326         */
3327        set_page_extent_mapped(eb->first_page);
3328        set_page_extent_head(eb->first_page, eb->len);
3329        if (!page0)
3330                unlock_page(eb->first_page);
3331        return eb;
3332
3333free_eb:
3334        if (eb->first_page && !page0)
3335                unlock_page(eb->first_page);
3336
3337        if (!atomic_dec_and_test(&eb->refs))
3338                return exists;
3339        btrfs_release_extent_buffer(eb);
3340        return exists;
3341}
3342
3343struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3344                                         u64 start, unsigned long len,
3345                                          gfp_t mask)
3346{
3347        struct extent_buffer *eb;
3348
3349        rcu_read_lock();
3350        eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3351        if (eb && atomic_inc_not_zero(&eb->refs)) {
3352                rcu_read_unlock();
3353                mark_page_accessed(eb->first_page);
3354                return eb;
3355        }
3356        rcu_read_unlock();
3357
3358        return NULL;
3359}
3360
3361void free_extent_buffer(struct extent_buffer *eb)
3362{
3363        if (!eb)
3364                return;
3365
3366        if (!atomic_dec_and_test(&eb->refs))
3367                return;
3368
3369        WARN_ON(1);
3370}
3371
3372int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3373                              struct extent_buffer *eb)
3374{
3375        unsigned long i;
3376        unsigned long num_pages;
3377        struct page *page;
3378
3379        num_pages = num_extent_pages(eb->start, eb->len);
3380
3381        for (i = 0; i < num_pages; i++) {
3382                page = extent_buffer_page(eb, i);
3383                if (!PageDirty(page))
3384                        continue;
3385
3386                lock_page(page);
3387                WARN_ON(!PagePrivate(page));
3388
3389                set_page_extent_mapped(page);
3390                if (i == 0)
3391                        set_page_extent_head(page, eb->len);
3392
3393                clear_page_dirty_for_io(page);
3394                spin_lock_irq(&page->mapping->tree_lock);
3395                if (!PageDirty(page)) {
3396                        radix_tree_tag_clear(&page->mapping->page_tree,
3397                                                page_index(page),
3398                                                PAGECACHE_TAG_DIRTY);
3399                }
3400                spin_unlock_irq(&page->mapping->tree_lock);
3401                unlock_page(page);
3402        }
3403        return 0;
3404}
3405
3406int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
3407                                    struct extent_buffer *eb)
3408{
3409        return wait_on_extent_writeback(tree, eb->start,
3410                                        eb->start + eb->len - 1);
3411}
3412
3413int set_extent_buffer_dirty(struct extent_io_tree *tree,
3414                             struct extent_buffer *eb)
3415{
3416        unsigned long i;
3417        unsigned long num_pages;
3418        int was_dirty = 0;
3419
3420        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3421        num_pages = num_extent_pages(eb->start, eb->len);
3422        for (i = 0; i < num_pages; i++)
3423                __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3424        return was_dirty;
3425}
3426
3427int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3428                                struct extent_buffer *eb,
3429                                struct extent_state **cached_state)
3430{
3431        unsigned long i;
3432        struct page *page;
3433        unsigned long num_pages;
3434
3435        num_pages = num_extent_pages(eb->start, eb->len);
3436        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3437
3438        clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3439                              cached_state, GFP_NOFS);
3440        for (i = 0; i < num_pages; i++) {
3441                page = extent_buffer_page(eb, i);
3442                if (page)
3443                        ClearPageUptodate(page);
3444        }
3445        return 0;
3446}
3447
3448int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3449                                struct extent_buffer *eb)
3450{
3451        unsigned long i;
3452        struct page *page;
3453        unsigned long num_pages;
3454
3455        num_pages = num_extent_pages(eb->start, eb->len);
3456
3457        set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3458                            GFP_NOFS);
3459        for (i = 0; i < num_pages; i++) {
3460                page = extent_buffer_page(eb, i);
3461                if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3462                    ((i == num_pages - 1) &&
3463                     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3464                        check_page_uptodate(tree, page);
3465                        continue;
3466                }
3467                SetPageUptodate(page);
3468        }
3469        return 0;
3470}
3471
3472int extent_range_uptodate(struct extent_io_tree *tree,
3473                          u64 start, u64 end)
3474{
3475        struct page *page;
3476        int ret;
3477        int pg_uptodate = 1;
3478        int uptodate;
3479        unsigned long index;
3480
3481        ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL);
3482        if (ret)
3483                return 1;
3484        while (start <= end) {
3485                index = start >> PAGE_CACHE_SHIFT;
3486                page = find_get_page(tree->mapping, index);
3487                uptodate = PageUptodate(page);
3488                page_cache_release(page);
3489                if (!uptodate) {
3490                        pg_uptodate = 0;
3491                        break;
3492                }
3493                start += PAGE_CACHE_SIZE;
3494        }
3495        return pg_uptodate;
3496}
3497
3498int extent_buffer_uptodate(struct extent_io_tree *tree,
3499                           struct extent_buffer *eb,
3500                           struct extent_state *cached_state)
3501{
3502        int ret = 0;
3503        unsigned long num_pages;
3504        unsigned long i;
3505        struct page *page;
3506        int pg_uptodate = 1;
3507
3508        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3509                return 1;
3510
3511        ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3512                           EXTENT_UPTODATE, 1, cached_state);
3513        if (ret)
3514                return ret;
3515
3516        num_pages = num_extent_pages(eb->start, eb->len);
3517        for (i = 0; i < num_pages; i++) {
3518                page = extent_buffer_page(eb, i);
3519                if (!PageUptodate(page)) {
3520                        pg_uptodate = 0;
3521                        break;
3522                }
3523        }
3524        return pg_uptodate;
3525}
3526
3527int read_extent_buffer_pages(struct extent_io_tree *tree,
3528                             struct extent_buffer *eb,
3529                             u64 start, int wait,
3530                             get_extent_t *get_extent, int mirror_num)
3531{
3532        unsigned long i;
3533        unsigned long start_i;
3534        struct page *page;
3535        int err;
3536        int ret = 0;
3537        int locked_pages = 0;
3538        int all_uptodate = 1;
3539        int inc_all_pages = 0;
3540        unsigned long num_pages;
3541        struct bio *bio = NULL;
3542        unsigned long bio_flags = 0;
3543
3544        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3545                return 0;
3546
3547        if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3548                           EXTENT_UPTODATE, 1, NULL)) {
3549                return 0;
3550        }
3551
3552        if (start) {
3553                WARN_ON(start < eb->start);
3554                start_i = (start >> PAGE_CACHE_SHIFT) -
3555                        (eb->start >> PAGE_CACHE_SHIFT);
3556        } else {
3557                start_i = 0;
3558        }
3559
3560        num_pages = num_extent_pages(eb->start, eb->len);
3561        for (i = start_i; i < num_pages; i++) {
3562                page = extent_buffer_page(eb, i);
3563                if (!wait) {
3564                        if (!trylock_page(page))
3565                                goto unlock_exit;
3566                } else {
3567                        lock_page(page);
3568                }
3569                locked_pages++;
3570                if (!PageUptodate(page))
3571                        all_uptodate = 0;
3572        }
3573        if (all_uptodate) {
3574                if (start_i == 0)
3575                        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3576                goto unlock_exit;
3577        }
3578
3579        for (i = start_i; i < num_pages; i++) {
3580                page = extent_buffer_page(eb, i);
3581
3582                WARN_ON(!PagePrivate(page));
3583
3584                set_page_extent_mapped(page);
3585                if (i == 0)
3586                        set_page_extent_head(page, eb->len);
3587
3588                if (inc_all_pages)
3589                        page_cache_get(page);
3590                if (!PageUptodate(page)) {
3591                        if (start_i == 0)
3592                                inc_all_pages = 1;
3593                        ClearPageError(page);
3594                        err = __extent_read_full_page(tree, page,
3595                                                      get_extent, &bio,
3596                                                      mirror_num, &bio_flags);
3597                        if (err)
3598                                ret = err;
3599                } else {
3600                        unlock_page(page);
3601                }
3602        }
3603
3604        if (bio)
3605                submit_one_bio(READ, bio, mirror_num, bio_flags);
3606
3607        if (ret || !wait)
3608                return ret;
3609
3610        for (i = start_i; i < num_pages; i++) {
3611                page = extent_buffer_page(eb, i);
3612                wait_on_page_locked(page);
3613                if (!PageUptodate(page))
3614                        ret = -EIO;
3615        }
3616
3617        if (!ret)
3618                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3619        return ret;
3620
3621unlock_exit:
3622        i = start_i;
3623        while (locked_pages > 0) {
3624                page = extent_buffer_page(eb, i);
3625                i++;
3626                unlock_page(page);
3627                locked_pages--;
3628        }
3629        return ret;
3630}
3631
3632void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3633                        unsigned long start,
3634                        unsigned long len)
3635{
3636        size_t cur;
3637        size_t offset;
3638        struct page *page;
3639        char *kaddr;
3640        char *dst = (char *)dstv;
3641        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3642        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3643
3644        WARN_ON(start > eb->len);
3645        WARN_ON(start + len > eb->start + eb->len);
3646
3647        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3648
3649        while (len > 0) {
3650                page = extent_buffer_page(eb, i);
3651
3652                cur = min(len, (PAGE_CACHE_SIZE - offset));
3653                kaddr = kmap_atomic(page, KM_USER1);
3654                memcpy(dst, kaddr + offset, cur);
3655                kunmap_atomic(kaddr, KM_USER1);
3656
3657                dst += cur;
3658                len -= cur;
3659                offset = 0;
3660                i++;
3661        }
3662}
3663
3664int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3665                               unsigned long min_len, char **token, char **map,
3666                               unsigned long *map_start,
3667                               unsigned long *map_len, int km)
3668{
3669        size_t offset = start & (PAGE_CACHE_SIZE - 1);
3670        char *kaddr;
3671        struct page *p;
3672        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3673        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3674        unsigned long end_i = (start_offset + start + min_len - 1) >>
3675                PAGE_CACHE_SHIFT;
3676
3677        if (i != end_i)
3678                return -EINVAL;
3679
3680        if (i == 0) {
3681                offset = start_offset;
3682                *map_start = 0;
3683        } else {
3684                offset = 0;
3685                *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3686        }
3687
3688        if (start + min_len > eb->len) {
3689                printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3690                       "wanted %lu %lu\n", (unsigned long long)eb->start,
3691                       eb->len, start, min_len);
3692                WARN_ON(1);
3693        }
3694
3695        p = extent_buffer_page(eb, i);
3696        kaddr = kmap_atomic(p, km);
3697        *token = kaddr;
3698        *map = kaddr + offset;
3699        *map_len = PAGE_CACHE_SIZE - offset;
3700        return 0;
3701}
3702
3703int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3704                      unsigned long min_len,
3705                      char **token, char **map,
3706                      unsigned long *map_start,
3707                      unsigned long *map_len, int km)
3708{
3709        int err;
3710        int save = 0;
3711        if (eb->map_token) {
3712                unmap_extent_buffer(eb, eb->map_token, km);
3713                eb->map_token = NULL;
3714                save = 1;
3715        }
3716        err = map_private_extent_buffer(eb, start, min_len, token, map,
3717                                       map_start, map_len, km);
3718        if (!err && save) {
3719                eb->map_token = *token;
3720                eb->kaddr = *map;
3721                eb->map_start = *map_start;
3722                eb->map_len = *map_len;
3723        }
3724        return err;
3725}
3726
3727void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3728{
3729        kunmap_atomic(token, km);
3730}
3731
3732int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3733                          unsigned long start,
3734                          unsigned long len)
3735{
3736        size_t cur;
3737        size_t offset;
3738        struct page *page;
3739        char *kaddr;
3740        char *ptr = (char *)ptrv;
3741        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3742        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3743        int ret = 0;
3744
3745        WARN_ON(start > eb->len);
3746        WARN_ON(start + len > eb->start + eb->len);
3747
3748        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3749
3750        while (len > 0) {
3751                page = extent_buffer_page(eb, i);
3752
3753                cur = min(len, (PAGE_CACHE_SIZE - offset));
3754
3755                kaddr = kmap_atomic(page, KM_USER0);
3756                ret = memcmp(ptr, kaddr + offset, cur);
3757                kunmap_atomic(kaddr, KM_USER0);
3758                if (ret)
3759                        break;
3760
3761                ptr += cur;
3762                len -= cur;
3763                offset = 0;
3764                i++;
3765        }
3766        return ret;
3767}
3768
3769void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3770                         unsigned long start, unsigned long len)
3771{
3772        size_t cur;
3773        size_t offset;
3774        struct page *page;
3775        char *kaddr;
3776        char *src = (char *)srcv;
3777        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3778        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3779
3780        WARN_ON(start > eb->len);
3781        WARN_ON(start + len > eb->start + eb->len);
3782
3783        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3784
3785        while (len > 0) {
3786                page = extent_buffer_page(eb, i);
3787                WARN_ON(!PageUptodate(page));
3788
3789                cur = min(len, PAGE_CACHE_SIZE - offset);
3790                kaddr = kmap_atomic(page, KM_USER1);
3791                memcpy(kaddr + offset, src, cur);
3792                kunmap_atomic(kaddr, KM_USER1);
3793
3794                src += cur;
3795                len -= cur;
3796                offset = 0;
3797                i++;
3798        }
3799}
3800
3801void memset_extent_buffer(struct extent_buffer *eb, char c,
3802                          unsigned long start, unsigned long len)
3803{
3804        size_t cur;
3805        size_t offset;
3806        struct page *page;
3807        char *kaddr;
3808        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3809        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3810
3811        WARN_ON(start > eb->len);
3812        WARN_ON(start + len > eb->start + eb->len);
3813
3814        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3815
3816        while (len > 0) {
3817                page = extent_buffer_page(eb, i);
3818                WARN_ON(!PageUptodate(page));
3819
3820                cur = min(len, PAGE_CACHE_SIZE - offset);
3821                kaddr = kmap_atomic(page, KM_USER0);
3822                memset(kaddr + offset, c, cur);
3823                kunmap_atomic(kaddr, KM_USER0);
3824
3825                len -= cur;
3826                offset = 0;
3827                i++;
3828        }
3829}
3830
3831void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3832                        unsigned long dst_offset, unsigned long src_offset,
3833                        unsigned long len)
3834{
3835        u64 dst_len = dst->len;
3836        size_t cur;
3837        size_t offset;
3838        struct page *page;
3839        char *kaddr;
3840        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3841        unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3842
3843        WARN_ON(src->len != dst_len);
3844
3845        offset = (start_offset + dst_offset) &
3846                ((unsigned long)PAGE_CACHE_SIZE - 1);
3847
3848        while (len > 0) {
3849                page = extent_buffer_page(dst, i);
3850                WARN_ON(!PageUptodate(page));
3851
3852                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3853
3854                kaddr = kmap_atomic(page, KM_USER0);
3855                read_extent_buffer(src, kaddr + offset, src_offset, cur);
3856                kunmap_atomic(kaddr, KM_USER0);
3857
3858                src_offset += cur;
3859                len -= cur;
3860                offset = 0;
3861                i++;
3862        }
3863}
3864
3865static void move_pages(struct page *dst_page, struct page *src_page,
3866                       unsigned long dst_off, unsigned long src_off,
3867                       unsigned long len)
3868{
3869        char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3870        if (dst_page == src_page) {
3871                memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3872        } else {
3873                char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3874                char *p = dst_kaddr + dst_off + len;
3875                char *s = src_kaddr + src_off + len;
3876
3877                while (len--)
3878                        *--p = *--s;
3879
3880                kunmap_atomic(src_kaddr, KM_USER1);
3881        }
3882        kunmap_atomic(dst_kaddr, KM_USER0);
3883}
3884
3885static void copy_pages(struct page *dst_page, struct page *src_page,
3886                       unsigned long dst_off, unsigned long src_off,
3887                       unsigned long len)
3888{
3889        char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3890        char *src_kaddr;
3891
3892        if (dst_page != src_page)
3893                src_kaddr = kmap_atomic(src_page, KM_USER1);
3894        else
3895                src_kaddr = dst_kaddr;
3896
3897        memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3898        kunmap_atomic(dst_kaddr, KM_USER0);
3899        if (dst_page != src_page)
3900                kunmap_atomic(src_kaddr, KM_USER1);
3901}
3902
3903void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3904                           unsigned long src_offset, unsigned long len)
3905{
3906        size_t cur;
3907        size_t dst_off_in_page;
3908        size_t src_off_in_page;
3909        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3910        unsigned long dst_i;
3911        unsigned long src_i;
3912
3913        if (src_offset + len > dst->len) {
3914                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3915                       "len %lu dst len %lu\n", src_offset, len, dst->len);
3916                BUG_ON(1);
3917        }
3918        if (dst_offset + len > dst->len) {
3919                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3920                       "len %lu dst len %lu\n", dst_offset, len, dst->len);
3921                BUG_ON(1);
3922        }
3923
3924        while (len > 0) {
3925                dst_off_in_page = (start_offset + dst_offset) &
3926                        ((unsigned long)PAGE_CACHE_SIZE - 1);
3927                src_off_in_page = (start_offset + src_offset) &
3928                        ((unsigned long)PAGE_CACHE_SIZE - 1);
3929
3930                dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3931                src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3932
3933                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3934                                               src_off_in_page));
3935                cur = min_t(unsigned long, cur,
3936                        (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3937
3938                copy_pages(extent_buffer_page(dst, dst_i),
3939                           extent_buffer_page(dst, src_i),
3940                           dst_off_in_page, src_off_in_page, cur);
3941
3942                src_offset += cur;
3943                dst_offset += cur;
3944                len -= cur;
3945        }
3946}
3947
3948void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3949                           unsigned long src_offset, unsigned long len)
3950{
3951        size_t cur;
3952        size_t dst_off_in_page;
3953        size_t src_off_in_page;
3954        unsigned long dst_end = dst_offset + len - 1;
3955        unsigned long src_end = src_offset + len - 1;
3956        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3957        unsigned long dst_i;
3958        unsigned long src_i;
3959
3960        if (src_offset + len > dst->len) {
3961                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3962                       "len %lu len %lu\n", src_offset, len, dst->len);
3963                BUG_ON(1);
3964        }
3965        if (dst_offset + len > dst->len) {
3966                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3967                       "len %lu len %lu\n", dst_offset, len, dst->len);
3968                BUG_ON(1);
3969        }
3970        if (dst_offset < src_offset) {
3971                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3972                return;
3973        }
3974        while (len > 0) {
3975                dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3976                src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3977
3978                dst_off_in_page = (start_offset + dst_end) &
3979                        ((unsigned long)PAGE_CACHE_SIZE - 1);
3980                src_off_in_page = (start_offset + src_end) &
3981                        ((unsigned long)PAGE_CACHE_SIZE - 1);
3982
3983                cur = min_t(unsigned long, len, src_off_in_page + 1);
3984                cur = min(cur, dst_off_in_page + 1);
3985                move_pages(extent_buffer_page(dst, dst_i),
3986                           extent_buffer_page(dst, src_i),
3987                           dst_off_in_page - cur + 1,
3988                           src_off_in_page - cur + 1, cur);
3989
3990                dst_end -= cur;
3991                src_end -= cur;
3992                len -= cur;
3993        }
3994}
3995
3996static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3997{
3998        struct extent_buffer *eb =
3999                        container_of(head, struct extent_buffer, rcu_head);
4000
4001        btrfs_release_extent_buffer(eb);
4002}
4003
4004int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4005{
4006        u64 start = page_offset(page);
4007        struct extent_buffer *eb;
4008        int ret = 1;
4009
4010        spin_lock(&tree->buffer_lock);
4011        eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4012        if (!eb) {
4013                spin_unlock(&tree->buffer_lock);
4014                return ret;
4015        }
4016
4017        if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4018                ret = 0;
4019                goto out;
4020        }
4021
4022        /*
4023         * set @eb->refs to 0 if it is already 1, and then release the @eb.
4024         * Or go back.
4025         */
4026        if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4027                ret = 0;
4028                goto out;
4029        }
4030
4031        radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4032out:
4033        spin_unlock(&tree->buffer_lock);
4034
4035        /* at this point we can safely release the extent buffer */
4036        if (atomic_read(&eb->refs) == 0)
4037                call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4038        return ret;
4039}
4040