linux/fs/btrfs/tree-log.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include "ctree.h"
  22#include "transaction.h"
  23#include "disk-io.h"
  24#include "locking.h"
  25#include "print-tree.h"
  26#include "compat.h"
  27#include "tree-log.h"
  28
  29/* magic values for the inode_only field in btrfs_log_inode:
  30 *
  31 * LOG_INODE_ALL means to log everything
  32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  33 * during log replay
  34 */
  35#define LOG_INODE_ALL 0
  36#define LOG_INODE_EXISTS 1
  37
  38/*
  39 * directory trouble cases
  40 *
  41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  42 * log, we must force a full commit before doing an fsync of the directory
  43 * where the unlink was done.
  44 * ---> record transid of last unlink/rename per directory
  45 *
  46 * mkdir foo/some_dir
  47 * normal commit
  48 * rename foo/some_dir foo2/some_dir
  49 * mkdir foo/some_dir
  50 * fsync foo/some_dir/some_file
  51 *
  52 * The fsync above will unlink the original some_dir without recording
  53 * it in its new location (foo2).  After a crash, some_dir will be gone
  54 * unless the fsync of some_file forces a full commit
  55 *
  56 * 2) we must log any new names for any file or dir that is in the fsync
  57 * log. ---> check inode while renaming/linking.
  58 *
  59 * 2a) we must log any new names for any file or dir during rename
  60 * when the directory they are being removed from was logged.
  61 * ---> check inode and old parent dir during rename
  62 *
  63 *  2a is actually the more important variant.  With the extra logging
  64 *  a crash might unlink the old name without recreating the new one
  65 *
  66 * 3) after a crash, we must go through any directories with a link count
  67 * of zero and redo the rm -rf
  68 *
  69 * mkdir f1/foo
  70 * normal commit
  71 * rm -rf f1/foo
  72 * fsync(f1)
  73 *
  74 * The directory f1 was fully removed from the FS, but fsync was never
  75 * called on f1, only its parent dir.  After a crash the rm -rf must
  76 * be replayed.  This must be able to recurse down the entire
  77 * directory tree.  The inode link count fixup code takes care of the
  78 * ugly details.
  79 */
  80
  81/*
  82 * stages for the tree walking.  The first
  83 * stage (0) is to only pin down the blocks we find
  84 * the second stage (1) is to make sure that all the inodes
  85 * we find in the log are created in the subvolume.
  86 *
  87 * The last stage is to deal with directories and links and extents
  88 * and all the other fun semantics
  89 */
  90#define LOG_WALK_PIN_ONLY 0
  91#define LOG_WALK_REPLAY_INODES 1
  92#define LOG_WALK_REPLAY_ALL 2
  93
  94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  95                             struct btrfs_root *root, struct inode *inode,
  96                             int inode_only);
  97static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
  98                             struct btrfs_root *root,
  99                             struct btrfs_path *path, u64 objectid);
 100static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 101                                       struct btrfs_root *root,
 102                                       struct btrfs_root *log,
 103                                       struct btrfs_path *path,
 104                                       u64 dirid, int del_all);
 105
 106/*
 107 * tree logging is a special write ahead log used to make sure that
 108 * fsyncs and O_SYNCs can happen without doing full tree commits.
 109 *
 110 * Full tree commits are expensive because they require commonly
 111 * modified blocks to be recowed, creating many dirty pages in the
 112 * extent tree an 4x-6x higher write load than ext3.
 113 *
 114 * Instead of doing a tree commit on every fsync, we use the
 115 * key ranges and transaction ids to find items for a given file or directory
 116 * that have changed in this transaction.  Those items are copied into
 117 * a special tree (one per subvolume root), that tree is written to disk
 118 * and then the fsync is considered complete.
 119 *
 120 * After a crash, items are copied out of the log-tree back into the
 121 * subvolume tree.  Any file data extents found are recorded in the extent
 122 * allocation tree, and the log-tree freed.
 123 *
 124 * The log tree is read three times, once to pin down all the extents it is
 125 * using in ram and once, once to create all the inodes logged in the tree
 126 * and once to do all the other items.
 127 */
 128
 129/*
 130 * start a sub transaction and setup the log tree
 131 * this increments the log tree writer count to make the people
 132 * syncing the tree wait for us to finish
 133 */
 134static int start_log_trans(struct btrfs_trans_handle *trans,
 135                           struct btrfs_root *root)
 136{
 137        int ret;
 138        int err = 0;
 139
 140        mutex_lock(&root->log_mutex);
 141        if (root->log_root) {
 142                if (!root->log_start_pid) {
 143                        root->log_start_pid = current->pid;
 144                        root->log_multiple_pids = false;
 145                } else if (root->log_start_pid != current->pid) {
 146                        root->log_multiple_pids = true;
 147                }
 148
 149                root->log_batch++;
 150                atomic_inc(&root->log_writers);
 151                mutex_unlock(&root->log_mutex);
 152                return 0;
 153        }
 154        root->log_multiple_pids = false;
 155        root->log_start_pid = current->pid;
 156        mutex_lock(&root->fs_info->tree_log_mutex);
 157        if (!root->fs_info->log_root_tree) {
 158                ret = btrfs_init_log_root_tree(trans, root->fs_info);
 159                if (ret)
 160                        err = ret;
 161        }
 162        if (err == 0 && !root->log_root) {
 163                ret = btrfs_add_log_tree(trans, root);
 164                if (ret)
 165                        err = ret;
 166        }
 167        mutex_unlock(&root->fs_info->tree_log_mutex);
 168        root->log_batch++;
 169        atomic_inc(&root->log_writers);
 170        mutex_unlock(&root->log_mutex);
 171        return err;
 172}
 173
 174/*
 175 * returns 0 if there was a log transaction running and we were able
 176 * to join, or returns -ENOENT if there were not transactions
 177 * in progress
 178 */
 179static int join_running_log_trans(struct btrfs_root *root)
 180{
 181        int ret = -ENOENT;
 182
 183        smp_mb();
 184        if (!root->log_root)
 185                return -ENOENT;
 186
 187        mutex_lock(&root->log_mutex);
 188        if (root->log_root) {
 189                ret = 0;
 190                atomic_inc(&root->log_writers);
 191        }
 192        mutex_unlock(&root->log_mutex);
 193        return ret;
 194}
 195
 196/*
 197 * This either makes the current running log transaction wait
 198 * until you call btrfs_end_log_trans() or it makes any future
 199 * log transactions wait until you call btrfs_end_log_trans()
 200 */
 201int btrfs_pin_log_trans(struct btrfs_root *root)
 202{
 203        int ret = -ENOENT;
 204
 205        mutex_lock(&root->log_mutex);
 206        atomic_inc(&root->log_writers);
 207        mutex_unlock(&root->log_mutex);
 208        return ret;
 209}
 210
 211/*
 212 * indicate we're done making changes to the log tree
 213 * and wake up anyone waiting to do a sync
 214 */
 215int btrfs_end_log_trans(struct btrfs_root *root)
 216{
 217        if (atomic_dec_and_test(&root->log_writers)) {
 218                smp_mb();
 219                if (waitqueue_active(&root->log_writer_wait))
 220                        wake_up(&root->log_writer_wait);
 221        }
 222        return 0;
 223}
 224
 225
 226/*
 227 * the walk control struct is used to pass state down the chain when
 228 * processing the log tree.  The stage field tells us which part
 229 * of the log tree processing we are currently doing.  The others
 230 * are state fields used for that specific part
 231 */
 232struct walk_control {
 233        /* should we free the extent on disk when done?  This is used
 234         * at transaction commit time while freeing a log tree
 235         */
 236        int free;
 237
 238        /* should we write out the extent buffer?  This is used
 239         * while flushing the log tree to disk during a sync
 240         */
 241        int write;
 242
 243        /* should we wait for the extent buffer io to finish?  Also used
 244         * while flushing the log tree to disk for a sync
 245         */
 246        int wait;
 247
 248        /* pin only walk, we record which extents on disk belong to the
 249         * log trees
 250         */
 251        int pin;
 252
 253        /* what stage of the replay code we're currently in */
 254        int stage;
 255
 256        /* the root we are currently replaying */
 257        struct btrfs_root *replay_dest;
 258
 259        /* the trans handle for the current replay */
 260        struct btrfs_trans_handle *trans;
 261
 262        /* the function that gets used to process blocks we find in the
 263         * tree.  Note the extent_buffer might not be up to date when it is
 264         * passed in, and it must be checked or read if you need the data
 265         * inside it
 266         */
 267        int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 268                            struct walk_control *wc, u64 gen);
 269};
 270
 271/*
 272 * process_func used to pin down extents, write them or wait on them
 273 */
 274static int process_one_buffer(struct btrfs_root *log,
 275                              struct extent_buffer *eb,
 276                              struct walk_control *wc, u64 gen)
 277{
 278        if (wc->pin)
 279                btrfs_pin_extent(log->fs_info->extent_root,
 280                                 eb->start, eb->len, 0);
 281
 282        if (btrfs_buffer_uptodate(eb, gen)) {
 283                if (wc->write)
 284                        btrfs_write_tree_block(eb);
 285                if (wc->wait)
 286                        btrfs_wait_tree_block_writeback(eb);
 287        }
 288        return 0;
 289}
 290
 291/*
 292 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 293 * to the src data we are copying out.
 294 *
 295 * root is the tree we are copying into, and path is a scratch
 296 * path for use in this function (it should be released on entry and
 297 * will be released on exit).
 298 *
 299 * If the key is already in the destination tree the existing item is
 300 * overwritten.  If the existing item isn't big enough, it is extended.
 301 * If it is too large, it is truncated.
 302 *
 303 * If the key isn't in the destination yet, a new item is inserted.
 304 */
 305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 306                                   struct btrfs_root *root,
 307                                   struct btrfs_path *path,
 308                                   struct extent_buffer *eb, int slot,
 309                                   struct btrfs_key *key)
 310{
 311        int ret;
 312        u32 item_size;
 313        u64 saved_i_size = 0;
 314        int save_old_i_size = 0;
 315        unsigned long src_ptr;
 316        unsigned long dst_ptr;
 317        int overwrite_root = 0;
 318
 319        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 320                overwrite_root = 1;
 321
 322        item_size = btrfs_item_size_nr(eb, slot);
 323        src_ptr = btrfs_item_ptr_offset(eb, slot);
 324
 325        /* look for the key in the destination tree */
 326        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 327        if (ret == 0) {
 328                char *src_copy;
 329                char *dst_copy;
 330                u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 331                                                  path->slots[0]);
 332                if (dst_size != item_size)
 333                        goto insert;
 334
 335                if (item_size == 0) {
 336                        btrfs_release_path(root, path);
 337                        return 0;
 338                }
 339                dst_copy = kmalloc(item_size, GFP_NOFS);
 340                src_copy = kmalloc(item_size, GFP_NOFS);
 341                if (!dst_copy || !src_copy) {
 342                        btrfs_release_path(root, path);
 343                        kfree(dst_copy);
 344                        kfree(src_copy);
 345                        return -ENOMEM;
 346                }
 347
 348                read_extent_buffer(eb, src_copy, src_ptr, item_size);
 349
 350                dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 351                read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 352                                   item_size);
 353                ret = memcmp(dst_copy, src_copy, item_size);
 354
 355                kfree(dst_copy);
 356                kfree(src_copy);
 357                /*
 358                 * they have the same contents, just return, this saves
 359                 * us from cowing blocks in the destination tree and doing
 360                 * extra writes that may not have been done by a previous
 361                 * sync
 362                 */
 363                if (ret == 0) {
 364                        btrfs_release_path(root, path);
 365                        return 0;
 366                }
 367
 368        }
 369insert:
 370        btrfs_release_path(root, path);
 371        /* try to insert the key into the destination tree */
 372        ret = btrfs_insert_empty_item(trans, root, path,
 373                                      key, item_size);
 374
 375        /* make sure any existing item is the correct size */
 376        if (ret == -EEXIST) {
 377                u32 found_size;
 378                found_size = btrfs_item_size_nr(path->nodes[0],
 379                                                path->slots[0]);
 380                if (found_size > item_size) {
 381                        btrfs_truncate_item(trans, root, path, item_size, 1);
 382                } else if (found_size < item_size) {
 383                        ret = btrfs_extend_item(trans, root, path,
 384                                                item_size - found_size);
 385                        BUG_ON(ret);
 386                }
 387        } else if (ret) {
 388                return ret;
 389        }
 390        dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 391                                        path->slots[0]);
 392
 393        /* don't overwrite an existing inode if the generation number
 394         * was logged as zero.  This is done when the tree logging code
 395         * is just logging an inode to make sure it exists after recovery.
 396         *
 397         * Also, don't overwrite i_size on directories during replay.
 398         * log replay inserts and removes directory items based on the
 399         * state of the tree found in the subvolume, and i_size is modified
 400         * as it goes
 401         */
 402        if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 403                struct btrfs_inode_item *src_item;
 404                struct btrfs_inode_item *dst_item;
 405
 406                src_item = (struct btrfs_inode_item *)src_ptr;
 407                dst_item = (struct btrfs_inode_item *)dst_ptr;
 408
 409                if (btrfs_inode_generation(eb, src_item) == 0)
 410                        goto no_copy;
 411
 412                if (overwrite_root &&
 413                    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 414                    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 415                        save_old_i_size = 1;
 416                        saved_i_size = btrfs_inode_size(path->nodes[0],
 417                                                        dst_item);
 418                }
 419        }
 420
 421        copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 422                           src_ptr, item_size);
 423
 424        if (save_old_i_size) {
 425                struct btrfs_inode_item *dst_item;
 426                dst_item = (struct btrfs_inode_item *)dst_ptr;
 427                btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 428        }
 429
 430        /* make sure the generation is filled in */
 431        if (key->type == BTRFS_INODE_ITEM_KEY) {
 432                struct btrfs_inode_item *dst_item;
 433                dst_item = (struct btrfs_inode_item *)dst_ptr;
 434                if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 435                        btrfs_set_inode_generation(path->nodes[0], dst_item,
 436                                                   trans->transid);
 437                }
 438        }
 439no_copy:
 440        btrfs_mark_buffer_dirty(path->nodes[0]);
 441        btrfs_release_path(root, path);
 442        return 0;
 443}
 444
 445/*
 446 * simple helper to read an inode off the disk from a given root
 447 * This can only be called for subvolume roots and not for the log
 448 */
 449static noinline struct inode *read_one_inode(struct btrfs_root *root,
 450                                             u64 objectid)
 451{
 452        struct btrfs_key key;
 453        struct inode *inode;
 454
 455        key.objectid = objectid;
 456        key.type = BTRFS_INODE_ITEM_KEY;
 457        key.offset = 0;
 458        inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
 459        if (IS_ERR(inode)) {
 460                inode = NULL;
 461        } else if (is_bad_inode(inode)) {
 462                iput(inode);
 463                inode = NULL;
 464        }
 465        return inode;
 466}
 467
 468/* replays a single extent in 'eb' at 'slot' with 'key' into the
 469 * subvolume 'root'.  path is released on entry and should be released
 470 * on exit.
 471 *
 472 * extents in the log tree have not been allocated out of the extent
 473 * tree yet.  So, this completes the allocation, taking a reference
 474 * as required if the extent already exists or creating a new extent
 475 * if it isn't in the extent allocation tree yet.
 476 *
 477 * The extent is inserted into the file, dropping any existing extents
 478 * from the file that overlap the new one.
 479 */
 480static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 481                                      struct btrfs_root *root,
 482                                      struct btrfs_path *path,
 483                                      struct extent_buffer *eb, int slot,
 484                                      struct btrfs_key *key)
 485{
 486        int found_type;
 487        u64 mask = root->sectorsize - 1;
 488        u64 extent_end;
 489        u64 alloc_hint;
 490        u64 start = key->offset;
 491        u64 saved_nbytes;
 492        struct btrfs_file_extent_item *item;
 493        struct inode *inode = NULL;
 494        unsigned long size;
 495        int ret = 0;
 496
 497        item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 498        found_type = btrfs_file_extent_type(eb, item);
 499
 500        if (found_type == BTRFS_FILE_EXTENT_REG ||
 501            found_type == BTRFS_FILE_EXTENT_PREALLOC)
 502                extent_end = start + btrfs_file_extent_num_bytes(eb, item);
 503        else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 504                size = btrfs_file_extent_inline_len(eb, item);
 505                extent_end = (start + size + mask) & ~mask;
 506        } else {
 507                ret = 0;
 508                goto out;
 509        }
 510
 511        inode = read_one_inode(root, key->objectid);
 512        if (!inode) {
 513                ret = -EIO;
 514                goto out;
 515        }
 516
 517        /*
 518         * first check to see if we already have this extent in the
 519         * file.  This must be done before the btrfs_drop_extents run
 520         * so we don't try to drop this extent.
 521         */
 522        ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
 523                                       start, 0);
 524
 525        if (ret == 0 &&
 526            (found_type == BTRFS_FILE_EXTENT_REG ||
 527             found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 528                struct btrfs_file_extent_item cmp1;
 529                struct btrfs_file_extent_item cmp2;
 530                struct btrfs_file_extent_item *existing;
 531                struct extent_buffer *leaf;
 532
 533                leaf = path->nodes[0];
 534                existing = btrfs_item_ptr(leaf, path->slots[0],
 535                                          struct btrfs_file_extent_item);
 536
 537                read_extent_buffer(eb, &cmp1, (unsigned long)item,
 538                                   sizeof(cmp1));
 539                read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 540                                   sizeof(cmp2));
 541
 542                /*
 543                 * we already have a pointer to this exact extent,
 544                 * we don't have to do anything
 545                 */
 546                if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 547                        btrfs_release_path(root, path);
 548                        goto out;
 549                }
 550        }
 551        btrfs_release_path(root, path);
 552
 553        saved_nbytes = inode_get_bytes(inode);
 554        /* drop any overlapping extents */
 555        ret = btrfs_drop_extents(trans, inode, start, extent_end,
 556                                 &alloc_hint, 1);
 557        BUG_ON(ret);
 558
 559        if (found_type == BTRFS_FILE_EXTENT_REG ||
 560            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 561                u64 offset;
 562                unsigned long dest_offset;
 563                struct btrfs_key ins;
 564
 565                ret = btrfs_insert_empty_item(trans, root, path, key,
 566                                              sizeof(*item));
 567                BUG_ON(ret);
 568                dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 569                                                    path->slots[0]);
 570                copy_extent_buffer(path->nodes[0], eb, dest_offset,
 571                                (unsigned long)item,  sizeof(*item));
 572
 573                ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 574                ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 575                ins.type = BTRFS_EXTENT_ITEM_KEY;
 576                offset = key->offset - btrfs_file_extent_offset(eb, item);
 577
 578                if (ins.objectid > 0) {
 579                        u64 csum_start;
 580                        u64 csum_end;
 581                        LIST_HEAD(ordered_sums);
 582                        /*
 583                         * is this extent already allocated in the extent
 584                         * allocation tree?  If so, just add a reference
 585                         */
 586                        ret = btrfs_lookup_extent(root, ins.objectid,
 587                                                ins.offset);
 588                        if (ret == 0) {
 589                                ret = btrfs_inc_extent_ref(trans, root,
 590                                                ins.objectid, ins.offset,
 591                                                0, root->root_key.objectid,
 592                                                key->objectid, offset);
 593                        } else {
 594                                /*
 595                                 * insert the extent pointer in the extent
 596                                 * allocation tree
 597                                 */
 598                                ret = btrfs_alloc_logged_file_extent(trans,
 599                                                root, root->root_key.objectid,
 600                                                key->objectid, offset, &ins);
 601                                BUG_ON(ret);
 602                        }
 603                        btrfs_release_path(root, path);
 604
 605                        if (btrfs_file_extent_compression(eb, item)) {
 606                                csum_start = ins.objectid;
 607                                csum_end = csum_start + ins.offset;
 608                        } else {
 609                                csum_start = ins.objectid +
 610                                        btrfs_file_extent_offset(eb, item);
 611                                csum_end = csum_start +
 612                                        btrfs_file_extent_num_bytes(eb, item);
 613                        }
 614
 615                        ret = btrfs_lookup_csums_range(root->log_root,
 616                                                csum_start, csum_end - 1,
 617                                                &ordered_sums);
 618                        BUG_ON(ret);
 619                        while (!list_empty(&ordered_sums)) {
 620                                struct btrfs_ordered_sum *sums;
 621                                sums = list_entry(ordered_sums.next,
 622                                                struct btrfs_ordered_sum,
 623                                                list);
 624                                ret = btrfs_csum_file_blocks(trans,
 625                                                root->fs_info->csum_root,
 626                                                sums);
 627                                BUG_ON(ret);
 628                                list_del(&sums->list);
 629                                kfree(sums);
 630                        }
 631                } else {
 632                        btrfs_release_path(root, path);
 633                }
 634        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 635                /* inline extents are easy, we just overwrite them */
 636                ret = overwrite_item(trans, root, path, eb, slot, key);
 637                BUG_ON(ret);
 638        }
 639
 640        inode_set_bytes(inode, saved_nbytes);
 641        btrfs_update_inode(trans, root, inode);
 642out:
 643        if (inode)
 644                iput(inode);
 645        return ret;
 646}
 647
 648/*
 649 * when cleaning up conflicts between the directory names in the
 650 * subvolume, directory names in the log and directory names in the
 651 * inode back references, we may have to unlink inodes from directories.
 652 *
 653 * This is a helper function to do the unlink of a specific directory
 654 * item
 655 */
 656static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 657                                      struct btrfs_root *root,
 658                                      struct btrfs_path *path,
 659                                      struct inode *dir,
 660                                      struct btrfs_dir_item *di)
 661{
 662        struct inode *inode;
 663        char *name;
 664        int name_len;
 665        struct extent_buffer *leaf;
 666        struct btrfs_key location;
 667        int ret;
 668
 669        leaf = path->nodes[0];
 670
 671        btrfs_dir_item_key_to_cpu(leaf, di, &location);
 672        name_len = btrfs_dir_name_len(leaf, di);
 673        name = kmalloc(name_len, GFP_NOFS);
 674        if (!name)
 675                return -ENOMEM;
 676
 677        read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 678        btrfs_release_path(root, path);
 679
 680        inode = read_one_inode(root, location.objectid);
 681        BUG_ON(!inode);
 682
 683        ret = link_to_fixup_dir(trans, root, path, location.objectid);
 684        BUG_ON(ret);
 685
 686        ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
 687        BUG_ON(ret);
 688        kfree(name);
 689
 690        iput(inode);
 691        return ret;
 692}
 693
 694/*
 695 * helper function to see if a given name and sequence number found
 696 * in an inode back reference are already in a directory and correctly
 697 * point to this inode
 698 */
 699static noinline int inode_in_dir(struct btrfs_root *root,
 700                                 struct btrfs_path *path,
 701                                 u64 dirid, u64 objectid, u64 index,
 702                                 const char *name, int name_len)
 703{
 704        struct btrfs_dir_item *di;
 705        struct btrfs_key location;
 706        int match = 0;
 707
 708        di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 709                                         index, name, name_len, 0);
 710        if (di && !IS_ERR(di)) {
 711                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 712                if (location.objectid != objectid)
 713                        goto out;
 714        } else
 715                goto out;
 716        btrfs_release_path(root, path);
 717
 718        di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 719        if (di && !IS_ERR(di)) {
 720                btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 721                if (location.objectid != objectid)
 722                        goto out;
 723        } else
 724                goto out;
 725        match = 1;
 726out:
 727        btrfs_release_path(root, path);
 728        return match;
 729}
 730
 731/*
 732 * helper function to check a log tree for a named back reference in
 733 * an inode.  This is used to decide if a back reference that is
 734 * found in the subvolume conflicts with what we find in the log.
 735 *
 736 * inode backreferences may have multiple refs in a single item,
 737 * during replay we process one reference at a time, and we don't
 738 * want to delete valid links to a file from the subvolume if that
 739 * link is also in the log.
 740 */
 741static noinline int backref_in_log(struct btrfs_root *log,
 742                                   struct btrfs_key *key,
 743                                   char *name, int namelen)
 744{
 745        struct btrfs_path *path;
 746        struct btrfs_inode_ref *ref;
 747        unsigned long ptr;
 748        unsigned long ptr_end;
 749        unsigned long name_ptr;
 750        int found_name_len;
 751        int item_size;
 752        int ret;
 753        int match = 0;
 754
 755        path = btrfs_alloc_path();
 756        if (!path)
 757                return -ENOMEM;
 758
 759        ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 760        if (ret != 0)
 761                goto out;
 762
 763        item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
 764        ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 765        ptr_end = ptr + item_size;
 766        while (ptr < ptr_end) {
 767                ref = (struct btrfs_inode_ref *)ptr;
 768                found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
 769                if (found_name_len == namelen) {
 770                        name_ptr = (unsigned long)(ref + 1);
 771                        ret = memcmp_extent_buffer(path->nodes[0], name,
 772                                                   name_ptr, namelen);
 773                        if (ret == 0) {
 774                                match = 1;
 775                                goto out;
 776                        }
 777                }
 778                ptr = (unsigned long)(ref + 1) + found_name_len;
 779        }
 780out:
 781        btrfs_free_path(path);
 782        return match;
 783}
 784
 785
 786/*
 787 * replay one inode back reference item found in the log tree.
 788 * eb, slot and key refer to the buffer and key found in the log tree.
 789 * root is the destination we are replaying into, and path is for temp
 790 * use by this function.  (it should be released on return).
 791 */
 792static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
 793                                  struct btrfs_root *root,
 794                                  struct btrfs_root *log,
 795                                  struct btrfs_path *path,
 796                                  struct extent_buffer *eb, int slot,
 797                                  struct btrfs_key *key)
 798{
 799        struct inode *dir;
 800        int ret;
 801        struct btrfs_inode_ref *ref;
 802        struct btrfs_dir_item *di;
 803        struct inode *inode;
 804        char *name;
 805        int namelen;
 806        unsigned long ref_ptr;
 807        unsigned long ref_end;
 808
 809        /*
 810         * it is possible that we didn't log all the parent directories
 811         * for a given inode.  If we don't find the dir, just don't
 812         * copy the back ref in.  The link count fixup code will take
 813         * care of the rest
 814         */
 815        dir = read_one_inode(root, key->offset);
 816        if (!dir)
 817                return -ENOENT;
 818
 819        inode = read_one_inode(root, key->objectid);
 820        BUG_ON(!inode);
 821
 822        ref_ptr = btrfs_item_ptr_offset(eb, slot);
 823        ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
 824
 825again:
 826        ref = (struct btrfs_inode_ref *)ref_ptr;
 827
 828        namelen = btrfs_inode_ref_name_len(eb, ref);
 829        name = kmalloc(namelen, GFP_NOFS);
 830        BUG_ON(!name);
 831
 832        read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
 833
 834        /* if we already have a perfect match, we're done */
 835        if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
 836                         btrfs_inode_ref_index(eb, ref),
 837                         name, namelen)) {
 838                goto out;
 839        }
 840
 841        /*
 842         * look for a conflicting back reference in the metadata.
 843         * if we find one we have to unlink that name of the file
 844         * before we add our new link.  Later on, we overwrite any
 845         * existing back reference, and we don't want to create
 846         * dangling pointers in the directory.
 847         */
 848conflict_again:
 849        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 850        if (ret == 0) {
 851                char *victim_name;
 852                int victim_name_len;
 853                struct btrfs_inode_ref *victim_ref;
 854                unsigned long ptr;
 855                unsigned long ptr_end;
 856                struct extent_buffer *leaf = path->nodes[0];
 857
 858                /* are we trying to overwrite a back ref for the root directory
 859                 * if so, just jump out, we're done
 860                 */
 861                if (key->objectid == key->offset)
 862                        goto out_nowrite;
 863
 864                /* check all the names in this back reference to see
 865                 * if they are in the log.  if so, we allow them to stay
 866                 * otherwise they must be unlinked as a conflict
 867                 */
 868                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
 869                ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
 870                while (ptr < ptr_end) {
 871                        victim_ref = (struct btrfs_inode_ref *)ptr;
 872                        victim_name_len = btrfs_inode_ref_name_len(leaf,
 873                                                                   victim_ref);
 874                        victim_name = kmalloc(victim_name_len, GFP_NOFS);
 875                        BUG_ON(!victim_name);
 876
 877                        read_extent_buffer(leaf, victim_name,
 878                                           (unsigned long)(victim_ref + 1),
 879                                           victim_name_len);
 880
 881                        if (!backref_in_log(log, key, victim_name,
 882                                            victim_name_len)) {
 883                                btrfs_inc_nlink(inode);
 884                                btrfs_release_path(root, path);
 885
 886                                ret = btrfs_unlink_inode(trans, root, dir,
 887                                                         inode, victim_name,
 888                                                         victim_name_len);
 889                                kfree(victim_name);
 890                                btrfs_release_path(root, path);
 891                                goto conflict_again;
 892                        }
 893                        kfree(victim_name);
 894                        ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
 895                }
 896                BUG_ON(ret);
 897        }
 898        btrfs_release_path(root, path);
 899
 900        /* look for a conflicting sequence number */
 901        di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
 902                                         btrfs_inode_ref_index(eb, ref),
 903                                         name, namelen, 0);
 904        if (di && !IS_ERR(di)) {
 905                ret = drop_one_dir_item(trans, root, path, dir, di);
 906                BUG_ON(ret);
 907        }
 908        btrfs_release_path(root, path);
 909
 910
 911        /* look for a conflicting name */
 912        di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
 913                                   name, namelen, 0);
 914        if (di && !IS_ERR(di)) {
 915                ret = drop_one_dir_item(trans, root, path, dir, di);
 916                BUG_ON(ret);
 917        }
 918        btrfs_release_path(root, path);
 919
 920        /* insert our name */
 921        ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
 922                             btrfs_inode_ref_index(eb, ref));
 923        BUG_ON(ret);
 924
 925        btrfs_update_inode(trans, root, inode);
 926
 927out:
 928        ref_ptr = (unsigned long)(ref + 1) + namelen;
 929        kfree(name);
 930        if (ref_ptr < ref_end)
 931                goto again;
 932
 933        /* finally write the back reference in the inode */
 934        ret = overwrite_item(trans, root, path, eb, slot, key);
 935        BUG_ON(ret);
 936
 937out_nowrite:
 938        btrfs_release_path(root, path);
 939        iput(dir);
 940        iput(inode);
 941        return 0;
 942}
 943
 944static int insert_orphan_item(struct btrfs_trans_handle *trans,
 945                              struct btrfs_root *root, u64 offset)
 946{
 947        int ret;
 948        ret = btrfs_find_orphan_item(root, offset);
 949        if (ret > 0)
 950                ret = btrfs_insert_orphan_item(trans, root, offset);
 951        return ret;
 952}
 953
 954
 955/*
 956 * There are a few corners where the link count of the file can't
 957 * be properly maintained during replay.  So, instead of adding
 958 * lots of complexity to the log code, we just scan the backrefs
 959 * for any file that has been through replay.
 960 *
 961 * The scan will update the link count on the inode to reflect the
 962 * number of back refs found.  If it goes down to zero, the iput
 963 * will free the inode.
 964 */
 965static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 966                                           struct btrfs_root *root,
 967                                           struct inode *inode)
 968{
 969        struct btrfs_path *path;
 970        int ret;
 971        struct btrfs_key key;
 972        u64 nlink = 0;
 973        unsigned long ptr;
 974        unsigned long ptr_end;
 975        int name_len;
 976
 977        key.objectid = inode->i_ino;
 978        key.type = BTRFS_INODE_REF_KEY;
 979        key.offset = (u64)-1;
 980
 981        path = btrfs_alloc_path();
 982        if (!path)
 983                return -ENOMEM;
 984
 985        while (1) {
 986                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 987                if (ret < 0)
 988                        break;
 989                if (ret > 0) {
 990                        if (path->slots[0] == 0)
 991                                break;
 992                        path->slots[0]--;
 993                }
 994                btrfs_item_key_to_cpu(path->nodes[0], &key,
 995                                      path->slots[0]);
 996                if (key.objectid != inode->i_ino ||
 997                    key.type != BTRFS_INODE_REF_KEY)
 998                        break;
 999                ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1000                ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1001                                                   path->slots[0]);
1002                while (ptr < ptr_end) {
1003                        struct btrfs_inode_ref *ref;
1004
1005                        ref = (struct btrfs_inode_ref *)ptr;
1006                        name_len = btrfs_inode_ref_name_len(path->nodes[0],
1007                                                            ref);
1008                        ptr = (unsigned long)(ref + 1) + name_len;
1009                        nlink++;
1010                }
1011
1012                if (key.offset == 0)
1013                        break;
1014                key.offset--;
1015                btrfs_release_path(root, path);
1016        }
1017        btrfs_release_path(root, path);
1018        if (nlink != inode->i_nlink) {
1019                inode->i_nlink = nlink;
1020                btrfs_update_inode(trans, root, inode);
1021        }
1022        BTRFS_I(inode)->index_cnt = (u64)-1;
1023
1024        if (inode->i_nlink == 0) {
1025                if (S_ISDIR(inode->i_mode)) {
1026                        ret = replay_dir_deletes(trans, root, NULL, path,
1027                                                 inode->i_ino, 1);
1028                        BUG_ON(ret);
1029                }
1030                ret = insert_orphan_item(trans, root, inode->i_ino);
1031                BUG_ON(ret);
1032        }
1033        btrfs_free_path(path);
1034
1035        return 0;
1036}
1037
1038static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1039                                            struct btrfs_root *root,
1040                                            struct btrfs_path *path)
1041{
1042        int ret;
1043        struct btrfs_key key;
1044        struct inode *inode;
1045
1046        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1047        key.type = BTRFS_ORPHAN_ITEM_KEY;
1048        key.offset = (u64)-1;
1049        while (1) {
1050                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1051                if (ret < 0)
1052                        break;
1053
1054                if (ret == 1) {
1055                        if (path->slots[0] == 0)
1056                                break;
1057                        path->slots[0]--;
1058                }
1059
1060                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1061                if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1062                    key.type != BTRFS_ORPHAN_ITEM_KEY)
1063                        break;
1064
1065                ret = btrfs_del_item(trans, root, path);
1066                BUG_ON(ret);
1067
1068                btrfs_release_path(root, path);
1069                inode = read_one_inode(root, key.offset);
1070                BUG_ON(!inode);
1071
1072                ret = fixup_inode_link_count(trans, root, inode);
1073                BUG_ON(ret);
1074
1075                iput(inode);
1076
1077                /*
1078                 * fixup on a directory may create new entries,
1079                 * make sure we always look for the highset possible
1080                 * offset
1081                 */
1082                key.offset = (u64)-1;
1083        }
1084        btrfs_release_path(root, path);
1085        return 0;
1086}
1087
1088
1089/*
1090 * record a given inode in the fixup dir so we can check its link
1091 * count when replay is done.  The link count is incremented here
1092 * so the inode won't go away until we check it
1093 */
1094static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1095                                      struct btrfs_root *root,
1096                                      struct btrfs_path *path,
1097                                      u64 objectid)
1098{
1099        struct btrfs_key key;
1100        int ret = 0;
1101        struct inode *inode;
1102
1103        inode = read_one_inode(root, objectid);
1104        BUG_ON(!inode);
1105
1106        key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1107        btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1108        key.offset = objectid;
1109
1110        ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1111
1112        btrfs_release_path(root, path);
1113        if (ret == 0) {
1114                btrfs_inc_nlink(inode);
1115                btrfs_update_inode(trans, root, inode);
1116        } else if (ret == -EEXIST) {
1117                ret = 0;
1118        } else {
1119                BUG();
1120        }
1121        iput(inode);
1122
1123        return ret;
1124}
1125
1126/*
1127 * when replaying the log for a directory, we only insert names
1128 * for inodes that actually exist.  This means an fsync on a directory
1129 * does not implicitly fsync all the new files in it
1130 */
1131static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1132                                    struct btrfs_root *root,
1133                                    struct btrfs_path *path,
1134                                    u64 dirid, u64 index,
1135                                    char *name, int name_len, u8 type,
1136                                    struct btrfs_key *location)
1137{
1138        struct inode *inode;
1139        struct inode *dir;
1140        int ret;
1141
1142        inode = read_one_inode(root, location->objectid);
1143        if (!inode)
1144                return -ENOENT;
1145
1146        dir = read_one_inode(root, dirid);
1147        if (!dir) {
1148                iput(inode);
1149                return -EIO;
1150        }
1151        ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1152
1153        /* FIXME, put inode into FIXUP list */
1154
1155        iput(inode);
1156        iput(dir);
1157        return ret;
1158}
1159
1160/*
1161 * take a single entry in a log directory item and replay it into
1162 * the subvolume.
1163 *
1164 * if a conflicting item exists in the subdirectory already,
1165 * the inode it points to is unlinked and put into the link count
1166 * fix up tree.
1167 *
1168 * If a name from the log points to a file or directory that does
1169 * not exist in the FS, it is skipped.  fsyncs on directories
1170 * do not force down inodes inside that directory, just changes to the
1171 * names or unlinks in a directory.
1172 */
1173static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1174                                    struct btrfs_root *root,
1175                                    struct btrfs_path *path,
1176                                    struct extent_buffer *eb,
1177                                    struct btrfs_dir_item *di,
1178                                    struct btrfs_key *key)
1179{
1180        char *name;
1181        int name_len;
1182        struct btrfs_dir_item *dst_di;
1183        struct btrfs_key found_key;
1184        struct btrfs_key log_key;
1185        struct inode *dir;
1186        u8 log_type;
1187        int exists;
1188        int ret;
1189
1190        dir = read_one_inode(root, key->objectid);
1191        BUG_ON(!dir);
1192
1193        name_len = btrfs_dir_name_len(eb, di);
1194        name = kmalloc(name_len, GFP_NOFS);
1195        if (!name)
1196                return -ENOMEM;
1197
1198        log_type = btrfs_dir_type(eb, di);
1199        read_extent_buffer(eb, name, (unsigned long)(di + 1),
1200                   name_len);
1201
1202        btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1203        exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1204        if (exists == 0)
1205                exists = 1;
1206        else
1207                exists = 0;
1208        btrfs_release_path(root, path);
1209
1210        if (key->type == BTRFS_DIR_ITEM_KEY) {
1211                dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1212                                       name, name_len, 1);
1213        } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1214                dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1215                                                     key->objectid,
1216                                                     key->offset, name,
1217                                                     name_len, 1);
1218        } else {
1219                BUG();
1220        }
1221        if (!dst_di || IS_ERR(dst_di)) {
1222                /* we need a sequence number to insert, so we only
1223                 * do inserts for the BTRFS_DIR_INDEX_KEY types
1224                 */
1225                if (key->type != BTRFS_DIR_INDEX_KEY)
1226                        goto out;
1227                goto insert;
1228        }
1229
1230        btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1231        /* the existing item matches the logged item */
1232        if (found_key.objectid == log_key.objectid &&
1233            found_key.type == log_key.type &&
1234            found_key.offset == log_key.offset &&
1235            btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1236                goto out;
1237        }
1238
1239        /*
1240         * don't drop the conflicting directory entry if the inode
1241         * for the new entry doesn't exist
1242         */
1243        if (!exists)
1244                goto out;
1245
1246        ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1247        BUG_ON(ret);
1248
1249        if (key->type == BTRFS_DIR_INDEX_KEY)
1250                goto insert;
1251out:
1252        btrfs_release_path(root, path);
1253        kfree(name);
1254        iput(dir);
1255        return 0;
1256
1257insert:
1258        btrfs_release_path(root, path);
1259        ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1260                              name, name_len, log_type, &log_key);
1261
1262        BUG_ON(ret && ret != -ENOENT);
1263        goto out;
1264}
1265
1266/*
1267 * find all the names in a directory item and reconcile them into
1268 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1269 * one name in a directory item, but the same code gets used for
1270 * both directory index types
1271 */
1272static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1273                                        struct btrfs_root *root,
1274                                        struct btrfs_path *path,
1275                                        struct extent_buffer *eb, int slot,
1276                                        struct btrfs_key *key)
1277{
1278        int ret;
1279        u32 item_size = btrfs_item_size_nr(eb, slot);
1280        struct btrfs_dir_item *di;
1281        int name_len;
1282        unsigned long ptr;
1283        unsigned long ptr_end;
1284
1285        ptr = btrfs_item_ptr_offset(eb, slot);
1286        ptr_end = ptr + item_size;
1287        while (ptr < ptr_end) {
1288                di = (struct btrfs_dir_item *)ptr;
1289                name_len = btrfs_dir_name_len(eb, di);
1290                ret = replay_one_name(trans, root, path, eb, di, key);
1291                BUG_ON(ret);
1292                ptr = (unsigned long)(di + 1);
1293                ptr += name_len;
1294        }
1295        return 0;
1296}
1297
1298/*
1299 * directory replay has two parts.  There are the standard directory
1300 * items in the log copied from the subvolume, and range items
1301 * created in the log while the subvolume was logged.
1302 *
1303 * The range items tell us which parts of the key space the log
1304 * is authoritative for.  During replay, if a key in the subvolume
1305 * directory is in a logged range item, but not actually in the log
1306 * that means it was deleted from the directory before the fsync
1307 * and should be removed.
1308 */
1309static noinline int find_dir_range(struct btrfs_root *root,
1310                                   struct btrfs_path *path,
1311                                   u64 dirid, int key_type,
1312                                   u64 *start_ret, u64 *end_ret)
1313{
1314        struct btrfs_key key;
1315        u64 found_end;
1316        struct btrfs_dir_log_item *item;
1317        int ret;
1318        int nritems;
1319
1320        if (*start_ret == (u64)-1)
1321                return 1;
1322
1323        key.objectid = dirid;
1324        key.type = key_type;
1325        key.offset = *start_ret;
1326
1327        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1328        if (ret < 0)
1329                goto out;
1330        if (ret > 0) {
1331                if (path->slots[0] == 0)
1332                        goto out;
1333                path->slots[0]--;
1334        }
1335        if (ret != 0)
1336                btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1337
1338        if (key.type != key_type || key.objectid != dirid) {
1339                ret = 1;
1340                goto next;
1341        }
1342        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1343                              struct btrfs_dir_log_item);
1344        found_end = btrfs_dir_log_end(path->nodes[0], item);
1345
1346        if (*start_ret >= key.offset && *start_ret <= found_end) {
1347                ret = 0;
1348                *start_ret = key.offset;
1349                *end_ret = found_end;
1350                goto out;
1351        }
1352        ret = 1;
1353next:
1354        /* check the next slot in the tree to see if it is a valid item */
1355        nritems = btrfs_header_nritems(path->nodes[0]);
1356        if (path->slots[0] >= nritems) {
1357                ret = btrfs_next_leaf(root, path);
1358                if (ret)
1359                        goto out;
1360        } else {
1361                path->slots[0]++;
1362        }
1363
1364        btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1365
1366        if (key.type != key_type || key.objectid != dirid) {
1367                ret = 1;
1368                goto out;
1369        }
1370        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1371                              struct btrfs_dir_log_item);
1372        found_end = btrfs_dir_log_end(path->nodes[0], item);
1373        *start_ret = key.offset;
1374        *end_ret = found_end;
1375        ret = 0;
1376out:
1377        btrfs_release_path(root, path);
1378        return ret;
1379}
1380
1381/*
1382 * this looks for a given directory item in the log.  If the directory
1383 * item is not in the log, the item is removed and the inode it points
1384 * to is unlinked
1385 */
1386static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1387                                      struct btrfs_root *root,
1388                                      struct btrfs_root *log,
1389                                      struct btrfs_path *path,
1390                                      struct btrfs_path *log_path,
1391                                      struct inode *dir,
1392                                      struct btrfs_key *dir_key)
1393{
1394        int ret;
1395        struct extent_buffer *eb;
1396        int slot;
1397        u32 item_size;
1398        struct btrfs_dir_item *di;
1399        struct btrfs_dir_item *log_di;
1400        int name_len;
1401        unsigned long ptr;
1402        unsigned long ptr_end;
1403        char *name;
1404        struct inode *inode;
1405        struct btrfs_key location;
1406
1407again:
1408        eb = path->nodes[0];
1409        slot = path->slots[0];
1410        item_size = btrfs_item_size_nr(eb, slot);
1411        ptr = btrfs_item_ptr_offset(eb, slot);
1412        ptr_end = ptr + item_size;
1413        while (ptr < ptr_end) {
1414                di = (struct btrfs_dir_item *)ptr;
1415                name_len = btrfs_dir_name_len(eb, di);
1416                name = kmalloc(name_len, GFP_NOFS);
1417                if (!name) {
1418                        ret = -ENOMEM;
1419                        goto out;
1420                }
1421                read_extent_buffer(eb, name, (unsigned long)(di + 1),
1422                                  name_len);
1423                log_di = NULL;
1424                if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1425                        log_di = btrfs_lookup_dir_item(trans, log, log_path,
1426                                                       dir_key->objectid,
1427                                                       name, name_len, 0);
1428                } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1429                        log_di = btrfs_lookup_dir_index_item(trans, log,
1430                                                     log_path,
1431                                                     dir_key->objectid,
1432                                                     dir_key->offset,
1433                                                     name, name_len, 0);
1434                }
1435                if (!log_di || IS_ERR(log_di)) {
1436                        btrfs_dir_item_key_to_cpu(eb, di, &location);
1437                        btrfs_release_path(root, path);
1438                        btrfs_release_path(log, log_path);
1439                        inode = read_one_inode(root, location.objectid);
1440                        BUG_ON(!inode);
1441
1442                        ret = link_to_fixup_dir(trans, root,
1443                                                path, location.objectid);
1444                        BUG_ON(ret);
1445                        btrfs_inc_nlink(inode);
1446                        ret = btrfs_unlink_inode(trans, root, dir, inode,
1447                                                 name, name_len);
1448                        BUG_ON(ret);
1449                        kfree(name);
1450                        iput(inode);
1451
1452                        /* there might still be more names under this key
1453                         * check and repeat if required
1454                         */
1455                        ret = btrfs_search_slot(NULL, root, dir_key, path,
1456                                                0, 0);
1457                        if (ret == 0)
1458                                goto again;
1459                        ret = 0;
1460                        goto out;
1461                }
1462                btrfs_release_path(log, log_path);
1463                kfree(name);
1464
1465                ptr = (unsigned long)(di + 1);
1466                ptr += name_len;
1467        }
1468        ret = 0;
1469out:
1470        btrfs_release_path(root, path);
1471        btrfs_release_path(log, log_path);
1472        return ret;
1473}
1474
1475/*
1476 * deletion replay happens before we copy any new directory items
1477 * out of the log or out of backreferences from inodes.  It
1478 * scans the log to find ranges of keys that log is authoritative for,
1479 * and then scans the directory to find items in those ranges that are
1480 * not present in the log.
1481 *
1482 * Anything we don't find in the log is unlinked and removed from the
1483 * directory.
1484 */
1485static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1486                                       struct btrfs_root *root,
1487                                       struct btrfs_root *log,
1488                                       struct btrfs_path *path,
1489                                       u64 dirid, int del_all)
1490{
1491        u64 range_start;
1492        u64 range_end;
1493        int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1494        int ret = 0;
1495        struct btrfs_key dir_key;
1496        struct btrfs_key found_key;
1497        struct btrfs_path *log_path;
1498        struct inode *dir;
1499
1500        dir_key.objectid = dirid;
1501        dir_key.type = BTRFS_DIR_ITEM_KEY;
1502        log_path = btrfs_alloc_path();
1503        if (!log_path)
1504                return -ENOMEM;
1505
1506        dir = read_one_inode(root, dirid);
1507        /* it isn't an error if the inode isn't there, that can happen
1508         * because we replay the deletes before we copy in the inode item
1509         * from the log
1510         */
1511        if (!dir) {
1512                btrfs_free_path(log_path);
1513                return 0;
1514        }
1515again:
1516        range_start = 0;
1517        range_end = 0;
1518        while (1) {
1519                if (del_all)
1520                        range_end = (u64)-1;
1521                else {
1522                        ret = find_dir_range(log, path, dirid, key_type,
1523                                             &range_start, &range_end);
1524                        if (ret != 0)
1525                                break;
1526                }
1527
1528                dir_key.offset = range_start;
1529                while (1) {
1530                        int nritems;
1531                        ret = btrfs_search_slot(NULL, root, &dir_key, path,
1532                                                0, 0);
1533                        if (ret < 0)
1534                                goto out;
1535
1536                        nritems = btrfs_header_nritems(path->nodes[0]);
1537                        if (path->slots[0] >= nritems) {
1538                                ret = btrfs_next_leaf(root, path);
1539                                if (ret)
1540                                        break;
1541                        }
1542                        btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1543                                              path->slots[0]);
1544                        if (found_key.objectid != dirid ||
1545                            found_key.type != dir_key.type)
1546                                goto next_type;
1547
1548                        if (found_key.offset > range_end)
1549                                break;
1550
1551                        ret = check_item_in_log(trans, root, log, path,
1552                                                log_path, dir,
1553                                                &found_key);
1554                        BUG_ON(ret);
1555                        if (found_key.offset == (u64)-1)
1556                                break;
1557                        dir_key.offset = found_key.offset + 1;
1558                }
1559                btrfs_release_path(root, path);
1560                if (range_end == (u64)-1)
1561                        break;
1562                range_start = range_end + 1;
1563        }
1564
1565next_type:
1566        ret = 0;
1567        if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1568                key_type = BTRFS_DIR_LOG_INDEX_KEY;
1569                dir_key.type = BTRFS_DIR_INDEX_KEY;
1570                btrfs_release_path(root, path);
1571                goto again;
1572        }
1573out:
1574        btrfs_release_path(root, path);
1575        btrfs_free_path(log_path);
1576        iput(dir);
1577        return ret;
1578}
1579
1580/*
1581 * the process_func used to replay items from the log tree.  This
1582 * gets called in two different stages.  The first stage just looks
1583 * for inodes and makes sure they are all copied into the subvolume.
1584 *
1585 * The second stage copies all the other item types from the log into
1586 * the subvolume.  The two stage approach is slower, but gets rid of
1587 * lots of complexity around inodes referencing other inodes that exist
1588 * only in the log (references come from either directory items or inode
1589 * back refs).
1590 */
1591static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1592                             struct walk_control *wc, u64 gen)
1593{
1594        int nritems;
1595        struct btrfs_path *path;
1596        struct btrfs_root *root = wc->replay_dest;
1597        struct btrfs_key key;
1598        int level;
1599        int i;
1600        int ret;
1601
1602        btrfs_read_buffer(eb, gen);
1603
1604        level = btrfs_header_level(eb);
1605
1606        if (level != 0)
1607                return 0;
1608
1609        path = btrfs_alloc_path();
1610        BUG_ON(!path);
1611
1612        nritems = btrfs_header_nritems(eb);
1613        for (i = 0; i < nritems; i++) {
1614                btrfs_item_key_to_cpu(eb, &key, i);
1615
1616                /* inode keys are done during the first stage */
1617                if (key.type == BTRFS_INODE_ITEM_KEY &&
1618                    wc->stage == LOG_WALK_REPLAY_INODES) {
1619                        struct btrfs_inode_item *inode_item;
1620                        u32 mode;
1621
1622                        inode_item = btrfs_item_ptr(eb, i,
1623                                            struct btrfs_inode_item);
1624                        mode = btrfs_inode_mode(eb, inode_item);
1625                        if (S_ISDIR(mode)) {
1626                                ret = replay_dir_deletes(wc->trans,
1627                                         root, log, path, key.objectid, 0);
1628                                BUG_ON(ret);
1629                        }
1630                        ret = overwrite_item(wc->trans, root, path,
1631                                             eb, i, &key);
1632                        BUG_ON(ret);
1633
1634                        /* for regular files, make sure corresponding
1635                         * orhpan item exist. extents past the new EOF
1636                         * will be truncated later by orphan cleanup.
1637                         */
1638                        if (S_ISREG(mode)) {
1639                                ret = insert_orphan_item(wc->trans, root,
1640                                                         key.objectid);
1641                                BUG_ON(ret);
1642                        }
1643
1644                        ret = link_to_fixup_dir(wc->trans, root,
1645                                                path, key.objectid);
1646                        BUG_ON(ret);
1647                }
1648                if (wc->stage < LOG_WALK_REPLAY_ALL)
1649                        continue;
1650
1651                /* these keys are simply copied */
1652                if (key.type == BTRFS_XATTR_ITEM_KEY) {
1653                        ret = overwrite_item(wc->trans, root, path,
1654                                             eb, i, &key);
1655                        BUG_ON(ret);
1656                } else if (key.type == BTRFS_INODE_REF_KEY) {
1657                        ret = add_inode_ref(wc->trans, root, log, path,
1658                                            eb, i, &key);
1659                        BUG_ON(ret && ret != -ENOENT);
1660                } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1661                        ret = replay_one_extent(wc->trans, root, path,
1662                                                eb, i, &key);
1663                        BUG_ON(ret);
1664                } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1665                           key.type == BTRFS_DIR_INDEX_KEY) {
1666                        ret = replay_one_dir_item(wc->trans, root, path,
1667                                                  eb, i, &key);
1668                        BUG_ON(ret);
1669                }
1670        }
1671        btrfs_free_path(path);
1672        return 0;
1673}
1674
1675static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1676                                   struct btrfs_root *root,
1677                                   struct btrfs_path *path, int *level,
1678                                   struct walk_control *wc)
1679{
1680        u64 root_owner;
1681        u64 bytenr;
1682        u64 ptr_gen;
1683        struct extent_buffer *next;
1684        struct extent_buffer *cur;
1685        struct extent_buffer *parent;
1686        u32 blocksize;
1687        int ret = 0;
1688
1689        WARN_ON(*level < 0);
1690        WARN_ON(*level >= BTRFS_MAX_LEVEL);
1691
1692        while (*level > 0) {
1693                WARN_ON(*level < 0);
1694                WARN_ON(*level >= BTRFS_MAX_LEVEL);
1695                cur = path->nodes[*level];
1696
1697                if (btrfs_header_level(cur) != *level)
1698                        WARN_ON(1);
1699
1700                if (path->slots[*level] >=
1701                    btrfs_header_nritems(cur))
1702                        break;
1703
1704                bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1705                ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1706                blocksize = btrfs_level_size(root, *level - 1);
1707
1708                parent = path->nodes[*level];
1709                root_owner = btrfs_header_owner(parent);
1710
1711                next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1712                if (!next)
1713                        return -ENOMEM;
1714
1715                if (*level == 1) {
1716                        wc->process_func(root, next, wc, ptr_gen);
1717
1718                        path->slots[*level]++;
1719                        if (wc->free) {
1720                                btrfs_read_buffer(next, ptr_gen);
1721
1722                                btrfs_tree_lock(next);
1723                                clean_tree_block(trans, root, next);
1724                                btrfs_set_lock_blocking(next);
1725                                btrfs_wait_tree_block_writeback(next);
1726                                btrfs_tree_unlock(next);
1727
1728                                WARN_ON(root_owner !=
1729                                        BTRFS_TREE_LOG_OBJECTID);
1730                                ret = btrfs_free_reserved_extent(root,
1731                                                         bytenr, blocksize);
1732                                BUG_ON(ret);
1733                        }
1734                        free_extent_buffer(next);
1735                        continue;
1736                }
1737                btrfs_read_buffer(next, ptr_gen);
1738
1739                WARN_ON(*level <= 0);
1740                if (path->nodes[*level-1])
1741                        free_extent_buffer(path->nodes[*level-1]);
1742                path->nodes[*level-1] = next;
1743                *level = btrfs_header_level(next);
1744                path->slots[*level] = 0;
1745                cond_resched();
1746        }
1747        WARN_ON(*level < 0);
1748        WARN_ON(*level >= BTRFS_MAX_LEVEL);
1749
1750        path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
1751
1752        cond_resched();
1753        return 0;
1754}
1755
1756static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1757                                 struct btrfs_root *root,
1758                                 struct btrfs_path *path, int *level,
1759                                 struct walk_control *wc)
1760{
1761        u64 root_owner;
1762        int i;
1763        int slot;
1764        int ret;
1765
1766        for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1767                slot = path->slots[i];
1768                if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
1769                        path->slots[i]++;
1770                        *level = i;
1771                        WARN_ON(*level == 0);
1772                        return 0;
1773                } else {
1774                        struct extent_buffer *parent;
1775                        if (path->nodes[*level] == root->node)
1776                                parent = path->nodes[*level];
1777                        else
1778                                parent = path->nodes[*level + 1];
1779
1780                        root_owner = btrfs_header_owner(parent);
1781                        wc->process_func(root, path->nodes[*level], wc,
1782                                 btrfs_header_generation(path->nodes[*level]));
1783                        if (wc->free) {
1784                                struct extent_buffer *next;
1785
1786                                next = path->nodes[*level];
1787
1788                                btrfs_tree_lock(next);
1789                                clean_tree_block(trans, root, next);
1790                                btrfs_set_lock_blocking(next);
1791                                btrfs_wait_tree_block_writeback(next);
1792                                btrfs_tree_unlock(next);
1793
1794                                WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1795                                ret = btrfs_free_reserved_extent(root,
1796                                                path->nodes[*level]->start,
1797                                                path->nodes[*level]->len);
1798                                BUG_ON(ret);
1799                        }
1800                        free_extent_buffer(path->nodes[*level]);
1801                        path->nodes[*level] = NULL;
1802                        *level = i + 1;
1803                }
1804        }
1805        return 1;
1806}
1807
1808/*
1809 * drop the reference count on the tree rooted at 'snap'.  This traverses
1810 * the tree freeing any blocks that have a ref count of zero after being
1811 * decremented.
1812 */
1813static int walk_log_tree(struct btrfs_trans_handle *trans,
1814                         struct btrfs_root *log, struct walk_control *wc)
1815{
1816        int ret = 0;
1817        int wret;
1818        int level;
1819        struct btrfs_path *path;
1820        int i;
1821        int orig_level;
1822
1823        path = btrfs_alloc_path();
1824        BUG_ON(!path);
1825
1826        level = btrfs_header_level(log->node);
1827        orig_level = level;
1828        path->nodes[level] = log->node;
1829        extent_buffer_get(log->node);
1830        path->slots[level] = 0;
1831
1832        while (1) {
1833                wret = walk_down_log_tree(trans, log, path, &level, wc);
1834                if (wret > 0)
1835                        break;
1836                if (wret < 0)
1837                        ret = wret;
1838
1839                wret = walk_up_log_tree(trans, log, path, &level, wc);
1840                if (wret > 0)
1841                        break;
1842                if (wret < 0)
1843                        ret = wret;
1844        }
1845
1846        /* was the root node processed? if not, catch it here */
1847        if (path->nodes[orig_level]) {
1848                wc->process_func(log, path->nodes[orig_level], wc,
1849                         btrfs_header_generation(path->nodes[orig_level]));
1850                if (wc->free) {
1851                        struct extent_buffer *next;
1852
1853                        next = path->nodes[orig_level];
1854
1855                        btrfs_tree_lock(next);
1856                        clean_tree_block(trans, log, next);
1857                        btrfs_set_lock_blocking(next);
1858                        btrfs_wait_tree_block_writeback(next);
1859                        btrfs_tree_unlock(next);
1860
1861                        WARN_ON(log->root_key.objectid !=
1862                                BTRFS_TREE_LOG_OBJECTID);
1863                        ret = btrfs_free_reserved_extent(log, next->start,
1864                                                         next->len);
1865                        BUG_ON(ret);
1866                }
1867        }
1868
1869        for (i = 0; i <= orig_level; i++) {
1870                if (path->nodes[i]) {
1871                        free_extent_buffer(path->nodes[i]);
1872                        path->nodes[i] = NULL;
1873                }
1874        }
1875        btrfs_free_path(path);
1876        return ret;
1877}
1878
1879/*
1880 * helper function to update the item for a given subvolumes log root
1881 * in the tree of log roots
1882 */
1883static int update_log_root(struct btrfs_trans_handle *trans,
1884                           struct btrfs_root *log)
1885{
1886        int ret;
1887
1888        if (log->log_transid == 1) {
1889                /* insert root item on the first sync */
1890                ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1891                                &log->root_key, &log->root_item);
1892        } else {
1893                ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1894                                &log->root_key, &log->root_item);
1895        }
1896        return ret;
1897}
1898
1899static int wait_log_commit(struct btrfs_trans_handle *trans,
1900                           struct btrfs_root *root, unsigned long transid)
1901{
1902        DEFINE_WAIT(wait);
1903        int index = transid % 2;
1904
1905        /*
1906         * we only allow two pending log transactions at a time,
1907         * so we know that if ours is more than 2 older than the
1908         * current transaction, we're done
1909         */
1910        do {
1911                prepare_to_wait(&root->log_commit_wait[index],
1912                                &wait, TASK_UNINTERRUPTIBLE);
1913                mutex_unlock(&root->log_mutex);
1914
1915                if (root->fs_info->last_trans_log_full_commit !=
1916                    trans->transid && root->log_transid < transid + 2 &&
1917                    atomic_read(&root->log_commit[index]))
1918                        schedule();
1919
1920                finish_wait(&root->log_commit_wait[index], &wait);
1921                mutex_lock(&root->log_mutex);
1922        } while (root->log_transid < transid + 2 &&
1923                 atomic_read(&root->log_commit[index]));
1924        return 0;
1925}
1926
1927static int wait_for_writer(struct btrfs_trans_handle *trans,
1928                           struct btrfs_root *root)
1929{
1930        DEFINE_WAIT(wait);
1931        while (atomic_read(&root->log_writers)) {
1932                prepare_to_wait(&root->log_writer_wait,
1933                                &wait, TASK_UNINTERRUPTIBLE);
1934                mutex_unlock(&root->log_mutex);
1935                if (root->fs_info->last_trans_log_full_commit !=
1936                    trans->transid && atomic_read(&root->log_writers))
1937                        schedule();
1938                mutex_lock(&root->log_mutex);
1939                finish_wait(&root->log_writer_wait, &wait);
1940        }
1941        return 0;
1942}
1943
1944/*
1945 * btrfs_sync_log does sends a given tree log down to the disk and
1946 * updates the super blocks to record it.  When this call is done,
1947 * you know that any inodes previously logged are safely on disk only
1948 * if it returns 0.
1949 *
1950 * Any other return value means you need to call btrfs_commit_transaction.
1951 * Some of the edge cases for fsyncing directories that have had unlinks
1952 * or renames done in the past mean that sometimes the only safe
1953 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1954 * that has happened.
1955 */
1956int btrfs_sync_log(struct btrfs_trans_handle *trans,
1957                   struct btrfs_root *root)
1958{
1959        int index1;
1960        int index2;
1961        int mark;
1962        int ret;
1963        struct btrfs_root *log = root->log_root;
1964        struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1965        unsigned long log_transid = 0;
1966
1967        mutex_lock(&root->log_mutex);
1968        index1 = root->log_transid % 2;
1969        if (atomic_read(&root->log_commit[index1])) {
1970                wait_log_commit(trans, root, root->log_transid);
1971                mutex_unlock(&root->log_mutex);
1972                return 0;
1973        }
1974        atomic_set(&root->log_commit[index1], 1);
1975
1976        /* wait for previous tree log sync to complete */
1977        if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1978                wait_log_commit(trans, root, root->log_transid - 1);
1979
1980        while (1) {
1981                unsigned long batch = root->log_batch;
1982                if (root->log_multiple_pids) {
1983                        mutex_unlock(&root->log_mutex);
1984                        schedule_timeout_uninterruptible(1);
1985                        mutex_lock(&root->log_mutex);
1986                }
1987                wait_for_writer(trans, root);
1988                if (batch == root->log_batch)
1989                        break;
1990        }
1991
1992        /* bail out if we need to do a full commit */
1993        if (root->fs_info->last_trans_log_full_commit == trans->transid) {
1994                ret = -EAGAIN;
1995                mutex_unlock(&root->log_mutex);
1996                goto out;
1997        }
1998
1999        log_transid = root->log_transid;
2000        if (log_transid % 2 == 0)
2001                mark = EXTENT_DIRTY;
2002        else
2003                mark = EXTENT_NEW;
2004
2005        /* we start IO on  all the marked extents here, but we don't actually
2006         * wait for them until later.
2007         */
2008        ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2009        BUG_ON(ret);
2010
2011        btrfs_set_root_node(&log->root_item, log->node);
2012
2013        root->log_batch = 0;
2014        root->log_transid++;
2015        log->log_transid = root->log_transid;
2016        root->log_start_pid = 0;
2017        smp_mb();
2018        /*
2019         * IO has been started, blocks of the log tree have WRITTEN flag set
2020         * in their headers. new modifications of the log will be written to
2021         * new positions. so it's safe to allow log writers to go in.
2022         */
2023        mutex_unlock(&root->log_mutex);
2024
2025        mutex_lock(&log_root_tree->log_mutex);
2026        log_root_tree->log_batch++;
2027        atomic_inc(&log_root_tree->log_writers);
2028        mutex_unlock(&log_root_tree->log_mutex);
2029
2030        ret = update_log_root(trans, log);
2031
2032        mutex_lock(&log_root_tree->log_mutex);
2033        if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2034                smp_mb();
2035                if (waitqueue_active(&log_root_tree->log_writer_wait))
2036                        wake_up(&log_root_tree->log_writer_wait);
2037        }
2038
2039        if (ret) {
2040                BUG_ON(ret != -ENOSPC);
2041                root->fs_info->last_trans_log_full_commit = trans->transid;
2042                btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2043                mutex_unlock(&log_root_tree->log_mutex);
2044                ret = -EAGAIN;
2045                goto out;
2046        }
2047
2048        index2 = log_root_tree->log_transid % 2;
2049        if (atomic_read(&log_root_tree->log_commit[index2])) {
2050                btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2051                wait_log_commit(trans, log_root_tree,
2052                                log_root_tree->log_transid);
2053                mutex_unlock(&log_root_tree->log_mutex);
2054                ret = 0;
2055                goto out;
2056        }
2057        atomic_set(&log_root_tree->log_commit[index2], 1);
2058
2059        if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2060                wait_log_commit(trans, log_root_tree,
2061                                log_root_tree->log_transid - 1);
2062        }
2063
2064        wait_for_writer(trans, log_root_tree);
2065
2066        /*
2067         * now that we've moved on to the tree of log tree roots,
2068         * check the full commit flag again
2069         */
2070        if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2071                btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2072                mutex_unlock(&log_root_tree->log_mutex);
2073                ret = -EAGAIN;
2074                goto out_wake_log_root;
2075        }
2076
2077        ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2078                                &log_root_tree->dirty_log_pages,
2079                                EXTENT_DIRTY | EXTENT_NEW);
2080        BUG_ON(ret);
2081        btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2082
2083        btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2084                                log_root_tree->node->start);
2085        btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2086                                btrfs_header_level(log_root_tree->node));
2087
2088        log_root_tree->log_batch = 0;
2089        log_root_tree->log_transid++;
2090        smp_mb();
2091
2092        mutex_unlock(&log_root_tree->log_mutex);
2093
2094        /*
2095         * nobody else is going to jump in and write the the ctree
2096         * super here because the log_commit atomic below is protecting
2097         * us.  We must be called with a transaction handle pinning
2098         * the running transaction open, so a full commit can't hop
2099         * in and cause problems either.
2100         */
2101        write_ctree_super(trans, root->fs_info->tree_root, 1);
2102        ret = 0;
2103
2104        mutex_lock(&root->log_mutex);
2105        if (root->last_log_commit < log_transid)
2106                root->last_log_commit = log_transid;
2107        mutex_unlock(&root->log_mutex);
2108
2109out_wake_log_root:
2110        atomic_set(&log_root_tree->log_commit[index2], 0);
2111        smp_mb();
2112        if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2113                wake_up(&log_root_tree->log_commit_wait[index2]);
2114out:
2115        atomic_set(&root->log_commit[index1], 0);
2116        smp_mb();
2117        if (waitqueue_active(&root->log_commit_wait[index1]))
2118                wake_up(&root->log_commit_wait[index1]);
2119        return ret;
2120}
2121
2122static void free_log_tree(struct btrfs_trans_handle *trans,
2123                          struct btrfs_root *log)
2124{
2125        int ret;
2126        u64 start;
2127        u64 end;
2128        struct walk_control wc = {
2129                .free = 1,
2130                .process_func = process_one_buffer
2131        };
2132
2133        ret = walk_log_tree(trans, log, &wc);
2134        BUG_ON(ret);
2135
2136        while (1) {
2137                ret = find_first_extent_bit(&log->dirty_log_pages,
2138                                0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2139                if (ret)
2140                        break;
2141
2142                clear_extent_bits(&log->dirty_log_pages, start, end,
2143                                  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2144        }
2145
2146        free_extent_buffer(log->node);
2147        kfree(log);
2148}
2149
2150/*
2151 * free all the extents used by the tree log.  This should be called
2152 * at commit time of the full transaction
2153 */
2154int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2155{
2156        if (root->log_root) {
2157                free_log_tree(trans, root->log_root);
2158                root->log_root = NULL;
2159        }
2160        return 0;
2161}
2162
2163int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2164                             struct btrfs_fs_info *fs_info)
2165{
2166        if (fs_info->log_root_tree) {
2167                free_log_tree(trans, fs_info->log_root_tree);
2168                fs_info->log_root_tree = NULL;
2169        }
2170        return 0;
2171}
2172
2173/*
2174 * If both a file and directory are logged, and unlinks or renames are
2175 * mixed in, we have a few interesting corners:
2176 *
2177 * create file X in dir Y
2178 * link file X to X.link in dir Y
2179 * fsync file X
2180 * unlink file X but leave X.link
2181 * fsync dir Y
2182 *
2183 * After a crash we would expect only X.link to exist.  But file X
2184 * didn't get fsync'd again so the log has back refs for X and X.link.
2185 *
2186 * We solve this by removing directory entries and inode backrefs from the
2187 * log when a file that was logged in the current transaction is
2188 * unlinked.  Any later fsync will include the updated log entries, and
2189 * we'll be able to reconstruct the proper directory items from backrefs.
2190 *
2191 * This optimizations allows us to avoid relogging the entire inode
2192 * or the entire directory.
2193 */
2194int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2195                                 struct btrfs_root *root,
2196                                 const char *name, int name_len,
2197                                 struct inode *dir, u64 index)
2198{
2199        struct btrfs_root *log;
2200        struct btrfs_dir_item *di;
2201        struct btrfs_path *path;
2202        int ret;
2203        int err = 0;
2204        int bytes_del = 0;
2205
2206        if (BTRFS_I(dir)->logged_trans < trans->transid)
2207                return 0;
2208
2209        ret = join_running_log_trans(root);
2210        if (ret)
2211                return 0;
2212
2213        mutex_lock(&BTRFS_I(dir)->log_mutex);
2214
2215        log = root->log_root;
2216        path = btrfs_alloc_path();
2217        if (!path)
2218                return -ENOMEM;
2219
2220        di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2221                                   name, name_len, -1);
2222        if (IS_ERR(di)) {
2223                err = PTR_ERR(di);
2224                goto fail;
2225        }
2226        if (di) {
2227                ret = btrfs_delete_one_dir_name(trans, log, path, di);
2228                bytes_del += name_len;
2229                BUG_ON(ret);
2230        }
2231        btrfs_release_path(log, path);
2232        di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2233                                         index, name, name_len, -1);
2234        if (IS_ERR(di)) {
2235                err = PTR_ERR(di);
2236                goto fail;
2237        }
2238        if (di) {
2239                ret = btrfs_delete_one_dir_name(trans, log, path, di);
2240                bytes_del += name_len;
2241                BUG_ON(ret);
2242        }
2243
2244        /* update the directory size in the log to reflect the names
2245         * we have removed
2246         */
2247        if (bytes_del) {
2248                struct btrfs_key key;
2249
2250                key.objectid = dir->i_ino;
2251                key.offset = 0;
2252                key.type = BTRFS_INODE_ITEM_KEY;
2253                btrfs_release_path(log, path);
2254
2255                ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2256                if (ret < 0) {
2257                        err = ret;
2258                        goto fail;
2259                }
2260                if (ret == 0) {
2261                        struct btrfs_inode_item *item;
2262                        u64 i_size;
2263
2264                        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2265                                              struct btrfs_inode_item);
2266                        i_size = btrfs_inode_size(path->nodes[0], item);
2267                        if (i_size > bytes_del)
2268                                i_size -= bytes_del;
2269                        else
2270                                i_size = 0;
2271                        btrfs_set_inode_size(path->nodes[0], item, i_size);
2272                        btrfs_mark_buffer_dirty(path->nodes[0]);
2273                } else
2274                        ret = 0;
2275                btrfs_release_path(log, path);
2276        }
2277fail:
2278        btrfs_free_path(path);
2279        mutex_unlock(&BTRFS_I(dir)->log_mutex);
2280        if (ret == -ENOSPC) {
2281                root->fs_info->last_trans_log_full_commit = trans->transid;
2282                ret = 0;
2283        }
2284        btrfs_end_log_trans(root);
2285
2286        return err;
2287}
2288
2289/* see comments for btrfs_del_dir_entries_in_log */
2290int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2291                               struct btrfs_root *root,
2292                               const char *name, int name_len,
2293                               struct inode *inode, u64 dirid)
2294{
2295        struct btrfs_root *log;
2296        u64 index;
2297        int ret;
2298
2299        if (BTRFS_I(inode)->logged_trans < trans->transid)
2300                return 0;
2301
2302        ret = join_running_log_trans(root);
2303        if (ret)
2304                return 0;
2305        log = root->log_root;
2306        mutex_lock(&BTRFS_I(inode)->log_mutex);
2307
2308        ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2309                                  dirid, &index);
2310        mutex_unlock(&BTRFS_I(inode)->log_mutex);
2311        if (ret == -ENOSPC) {
2312                root->fs_info->last_trans_log_full_commit = trans->transid;
2313                ret = 0;
2314        }
2315        btrfs_end_log_trans(root);
2316
2317        return ret;
2318}
2319
2320/*
2321 * creates a range item in the log for 'dirid'.  first_offset and
2322 * last_offset tell us which parts of the key space the log should
2323 * be considered authoritative for.
2324 */
2325static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2326                                       struct btrfs_root *log,
2327                                       struct btrfs_path *path,
2328                                       int key_type, u64 dirid,
2329                                       u64 first_offset, u64 last_offset)
2330{
2331        int ret;
2332        struct btrfs_key key;
2333        struct btrfs_dir_log_item *item;
2334
2335        key.objectid = dirid;
2336        key.offset = first_offset;
2337        if (key_type == BTRFS_DIR_ITEM_KEY)
2338                key.type = BTRFS_DIR_LOG_ITEM_KEY;
2339        else
2340                key.type = BTRFS_DIR_LOG_INDEX_KEY;
2341        ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2342        if (ret)
2343                return ret;
2344
2345        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2346                              struct btrfs_dir_log_item);
2347        btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2348        btrfs_mark_buffer_dirty(path->nodes[0]);
2349        btrfs_release_path(log, path);
2350        return 0;
2351}
2352
2353/*
2354 * log all the items included in the current transaction for a given
2355 * directory.  This also creates the range items in the log tree required
2356 * to replay anything deleted before the fsync
2357 */
2358static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2359                          struct btrfs_root *root, struct inode *inode,
2360                          struct btrfs_path *path,
2361                          struct btrfs_path *dst_path, int key_type,
2362                          u64 min_offset, u64 *last_offset_ret)
2363{
2364        struct btrfs_key min_key;
2365        struct btrfs_key max_key;
2366        struct btrfs_root *log = root->log_root;
2367        struct extent_buffer *src;
2368        int err = 0;
2369        int ret;
2370        int i;
2371        int nritems;
2372        u64 first_offset = min_offset;
2373        u64 last_offset = (u64)-1;
2374
2375        log = root->log_root;
2376        max_key.objectid = inode->i_ino;
2377        max_key.offset = (u64)-1;
2378        max_key.type = key_type;
2379
2380        min_key.objectid = inode->i_ino;
2381        min_key.type = key_type;
2382        min_key.offset = min_offset;
2383
2384        path->keep_locks = 1;
2385
2386        ret = btrfs_search_forward(root, &min_key, &max_key,
2387                                   path, 0, trans->transid);
2388
2389        /*
2390         * we didn't find anything from this transaction, see if there
2391         * is anything at all
2392         */
2393        if (ret != 0 || min_key.objectid != inode->i_ino ||
2394            min_key.type != key_type) {
2395                min_key.objectid = inode->i_ino;
2396                min_key.type = key_type;
2397                min_key.offset = (u64)-1;
2398                btrfs_release_path(root, path);
2399                ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2400                if (ret < 0) {
2401                        btrfs_release_path(root, path);
2402                        return ret;
2403                }
2404                ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2405
2406                /* if ret == 0 there are items for this type,
2407                 * create a range to tell us the last key of this type.
2408                 * otherwise, there are no items in this directory after
2409                 * *min_offset, and we create a range to indicate that.
2410                 */
2411                if (ret == 0) {
2412                        struct btrfs_key tmp;
2413                        btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2414                                              path->slots[0]);
2415                        if (key_type == tmp.type)
2416                                first_offset = max(min_offset, tmp.offset) + 1;
2417                }
2418                goto done;
2419        }
2420
2421        /* go backward to find any previous key */
2422        ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2423        if (ret == 0) {
2424                struct btrfs_key tmp;
2425                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2426                if (key_type == tmp.type) {
2427                        first_offset = tmp.offset;
2428                        ret = overwrite_item(trans, log, dst_path,
2429                                             path->nodes[0], path->slots[0],
2430                                             &tmp);
2431                        if (ret) {
2432                                err = ret;
2433                                goto done;
2434                        }
2435                }
2436        }
2437        btrfs_release_path(root, path);
2438
2439        /* find the first key from this transaction again */
2440        ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2441        if (ret != 0) {
2442                WARN_ON(1);
2443                goto done;
2444        }
2445
2446        /*
2447         * we have a block from this transaction, log every item in it
2448         * from our directory
2449         */
2450        while (1) {
2451                struct btrfs_key tmp;
2452                src = path->nodes[0];
2453                nritems = btrfs_header_nritems(src);
2454                for (i = path->slots[0]; i < nritems; i++) {
2455                        btrfs_item_key_to_cpu(src, &min_key, i);
2456
2457                        if (min_key.objectid != inode->i_ino ||
2458                            min_key.type != key_type)
2459                                goto done;
2460                        ret = overwrite_item(trans, log, dst_path, src, i,
2461                                             &min_key);
2462                        if (ret) {
2463                                err = ret;
2464                                goto done;
2465                        }
2466                }
2467                path->slots[0] = nritems;
2468
2469                /*
2470                 * look ahead to the next item and see if it is also
2471                 * from this directory and from this transaction
2472                 */
2473                ret = btrfs_next_leaf(root, path);
2474                if (ret == 1) {
2475                        last_offset = (u64)-1;
2476                        goto done;
2477                }
2478                btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2479                if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2480                        last_offset = (u64)-1;
2481                        goto done;
2482                }
2483                if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2484                        ret = overwrite_item(trans, log, dst_path,
2485                                             path->nodes[0], path->slots[0],
2486                                             &tmp);
2487                        if (ret)
2488                                err = ret;
2489                        else
2490                                last_offset = tmp.offset;
2491                        goto done;
2492                }
2493        }
2494done:
2495        btrfs_release_path(root, path);
2496        btrfs_release_path(log, dst_path);
2497
2498        if (err == 0) {
2499                *last_offset_ret = last_offset;
2500                /*
2501                 * insert the log range keys to indicate where the log
2502                 * is valid
2503                 */
2504                ret = insert_dir_log_key(trans, log, path, key_type,
2505                                         inode->i_ino, first_offset,
2506                                         last_offset);
2507                if (ret)
2508                        err = ret;
2509        }
2510        return err;
2511}
2512
2513/*
2514 * logging directories is very similar to logging inodes, We find all the items
2515 * from the current transaction and write them to the log.
2516 *
2517 * The recovery code scans the directory in the subvolume, and if it finds a
2518 * key in the range logged that is not present in the log tree, then it means
2519 * that dir entry was unlinked during the transaction.
2520 *
2521 * In order for that scan to work, we must include one key smaller than
2522 * the smallest logged by this transaction and one key larger than the largest
2523 * key logged by this transaction.
2524 */
2525static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2526                          struct btrfs_root *root, struct inode *inode,
2527                          struct btrfs_path *path,
2528                          struct btrfs_path *dst_path)
2529{
2530        u64 min_key;
2531        u64 max_key;
2532        int ret;
2533        int key_type = BTRFS_DIR_ITEM_KEY;
2534
2535again:
2536        min_key = 0;
2537        max_key = 0;
2538        while (1) {
2539                ret = log_dir_items(trans, root, inode, path,
2540                                    dst_path, key_type, min_key,
2541                                    &max_key);
2542                if (ret)
2543                        return ret;
2544                if (max_key == (u64)-1)
2545                        break;
2546                min_key = max_key + 1;
2547        }
2548
2549        if (key_type == BTRFS_DIR_ITEM_KEY) {
2550                key_type = BTRFS_DIR_INDEX_KEY;
2551                goto again;
2552        }
2553        return 0;
2554}
2555
2556/*
2557 * a helper function to drop items from the log before we relog an
2558 * inode.  max_key_type indicates the highest item type to remove.
2559 * This cannot be run for file data extents because it does not
2560 * free the extents they point to.
2561 */
2562static int drop_objectid_items(struct btrfs_trans_handle *trans,
2563                                  struct btrfs_root *log,
2564                                  struct btrfs_path *path,
2565                                  u64 objectid, int max_key_type)
2566{
2567        int ret;
2568        struct btrfs_key key;
2569        struct btrfs_key found_key;
2570
2571        key.objectid = objectid;
2572        key.type = max_key_type;
2573        key.offset = (u64)-1;
2574
2575        while (1) {
2576                ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2577                BUG_ON(ret == 0);
2578                if (ret < 0)
2579                        break;
2580
2581                if (path->slots[0] == 0)
2582                        break;
2583
2584                path->slots[0]--;
2585                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2586                                      path->slots[0]);
2587
2588                if (found_key.objectid != objectid)
2589                        break;
2590
2591                ret = btrfs_del_item(trans, log, path);
2592                BUG_ON(ret);
2593                btrfs_release_path(log, path);
2594        }
2595        btrfs_release_path(log, path);
2596        return ret;
2597}
2598
2599static noinline int copy_items(struct btrfs_trans_handle *trans,
2600                               struct btrfs_root *log,
2601                               struct btrfs_path *dst_path,
2602                               struct extent_buffer *src,
2603                               int start_slot, int nr, int inode_only)
2604{
2605        unsigned long src_offset;
2606        unsigned long dst_offset;
2607        struct btrfs_file_extent_item *extent;
2608        struct btrfs_inode_item *inode_item;
2609        int ret;
2610        struct btrfs_key *ins_keys;
2611        u32 *ins_sizes;
2612        char *ins_data;
2613        int i;
2614        struct list_head ordered_sums;
2615
2616        INIT_LIST_HEAD(&ordered_sums);
2617
2618        ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2619                           nr * sizeof(u32), GFP_NOFS);
2620        if (!ins_data)
2621                return -ENOMEM;
2622
2623        ins_sizes = (u32 *)ins_data;
2624        ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2625
2626        for (i = 0; i < nr; i++) {
2627                ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2628                btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2629        }
2630        ret = btrfs_insert_empty_items(trans, log, dst_path,
2631                                       ins_keys, ins_sizes, nr);
2632        if (ret) {
2633                kfree(ins_data);
2634                return ret;
2635        }
2636
2637        for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2638                dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2639                                                   dst_path->slots[0]);
2640
2641                src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2642
2643                copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2644                                   src_offset, ins_sizes[i]);
2645
2646                if (inode_only == LOG_INODE_EXISTS &&
2647                    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2648                        inode_item = btrfs_item_ptr(dst_path->nodes[0],
2649                                                    dst_path->slots[0],
2650                                                    struct btrfs_inode_item);
2651                        btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2652
2653                        /* set the generation to zero so the recover code
2654                         * can tell the difference between an logging
2655                         * just to say 'this inode exists' and a logging
2656                         * to say 'update this inode with these values'
2657                         */
2658                        btrfs_set_inode_generation(dst_path->nodes[0],
2659                                                   inode_item, 0);
2660                }
2661                /* take a reference on file data extents so that truncates
2662                 * or deletes of this inode don't have to relog the inode
2663                 * again
2664                 */
2665                if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2666                        int found_type;
2667                        extent = btrfs_item_ptr(src, start_slot + i,
2668                                                struct btrfs_file_extent_item);
2669
2670                        found_type = btrfs_file_extent_type(src, extent);
2671                        if (found_type == BTRFS_FILE_EXTENT_REG ||
2672                            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2673                                u64 ds, dl, cs, cl;
2674                                ds = btrfs_file_extent_disk_bytenr(src,
2675                                                                extent);
2676                                /* ds == 0 is a hole */
2677                                if (ds == 0)
2678                                        continue;
2679
2680                                dl = btrfs_file_extent_disk_num_bytes(src,
2681                                                                extent);
2682                                cs = btrfs_file_extent_offset(src, extent);
2683                                cl = btrfs_file_extent_num_bytes(src,
2684                                                                extent);
2685                                if (btrfs_file_extent_compression(src,
2686                                                                  extent)) {
2687                                        cs = 0;
2688                                        cl = dl;
2689                                }
2690
2691                                ret = btrfs_lookup_csums_range(
2692                                                log->fs_info->csum_root,
2693                                                ds + cs, ds + cs + cl - 1,
2694                                                &ordered_sums);
2695                                BUG_ON(ret);
2696                        }
2697                }
2698        }
2699
2700        btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2701        btrfs_release_path(log, dst_path);
2702        kfree(ins_data);
2703
2704        /*
2705         * we have to do this after the loop above to avoid changing the
2706         * log tree while trying to change the log tree.
2707         */
2708        ret = 0;
2709        while (!list_empty(&ordered_sums)) {
2710                struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2711                                                   struct btrfs_ordered_sum,
2712                                                   list);
2713                if (!ret)
2714                        ret = btrfs_csum_file_blocks(trans, log, sums);
2715                list_del(&sums->list);
2716                kfree(sums);
2717        }
2718        return ret;
2719}
2720
2721/* log a single inode in the tree log.
2722 * At least one parent directory for this inode must exist in the tree
2723 * or be logged already.
2724 *
2725 * Any items from this inode changed by the current transaction are copied
2726 * to the log tree.  An extra reference is taken on any extents in this
2727 * file, allowing us to avoid a whole pile of corner cases around logging
2728 * blocks that have been removed from the tree.
2729 *
2730 * See LOG_INODE_ALL and related defines for a description of what inode_only
2731 * does.
2732 *
2733 * This handles both files and directories.
2734 */
2735static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2736                             struct btrfs_root *root, struct inode *inode,
2737                             int inode_only)
2738{
2739        struct btrfs_path *path;
2740        struct btrfs_path *dst_path;
2741        struct btrfs_key min_key;
2742        struct btrfs_key max_key;
2743        struct btrfs_root *log = root->log_root;
2744        struct extent_buffer *src = NULL;
2745        int err = 0;
2746        int ret;
2747        int nritems;
2748        int ins_start_slot = 0;
2749        int ins_nr;
2750
2751        log = root->log_root;
2752
2753        path = btrfs_alloc_path();
2754        if (!path)
2755                return -ENOMEM;
2756        dst_path = btrfs_alloc_path();
2757        if (!dst_path) {
2758                btrfs_free_path(path);
2759                return -ENOMEM;
2760        }
2761
2762        min_key.objectid = inode->i_ino;
2763        min_key.type = BTRFS_INODE_ITEM_KEY;
2764        min_key.offset = 0;
2765
2766        max_key.objectid = inode->i_ino;
2767
2768        /* today the code can only do partial logging of directories */
2769        if (!S_ISDIR(inode->i_mode))
2770            inode_only = LOG_INODE_ALL;
2771
2772        if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2773                max_key.type = BTRFS_XATTR_ITEM_KEY;
2774        else
2775                max_key.type = (u8)-1;
2776        max_key.offset = (u64)-1;
2777
2778        mutex_lock(&BTRFS_I(inode)->log_mutex);
2779
2780        /*
2781         * a brute force approach to making sure we get the most uptodate
2782         * copies of everything.
2783         */
2784        if (S_ISDIR(inode->i_mode)) {
2785                int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2786
2787                if (inode_only == LOG_INODE_EXISTS)
2788                        max_key_type = BTRFS_XATTR_ITEM_KEY;
2789                ret = drop_objectid_items(trans, log, path,
2790                                          inode->i_ino, max_key_type);
2791        } else {
2792                ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2793        }
2794        if (ret) {
2795                err = ret;
2796                goto out_unlock;
2797        }
2798        path->keep_locks = 1;
2799
2800        while (1) {
2801                ins_nr = 0;
2802                ret = btrfs_search_forward(root, &min_key, &max_key,
2803                                           path, 0, trans->transid);
2804                if (ret != 0)
2805                        break;
2806again:
2807                /* note, ins_nr might be > 0 here, cleanup outside the loop */
2808                if (min_key.objectid != inode->i_ino)
2809                        break;
2810                if (min_key.type > max_key.type)
2811                        break;
2812
2813                src = path->nodes[0];
2814                if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2815                        ins_nr++;
2816                        goto next_slot;
2817                } else if (!ins_nr) {
2818                        ins_start_slot = path->slots[0];
2819                        ins_nr = 1;
2820                        goto next_slot;
2821                }
2822
2823                ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2824                                 ins_nr, inode_only);
2825                if (ret) {
2826                        err = ret;
2827                        goto out_unlock;
2828                }
2829                ins_nr = 1;
2830                ins_start_slot = path->slots[0];
2831next_slot:
2832
2833                nritems = btrfs_header_nritems(path->nodes[0]);
2834                path->slots[0]++;
2835                if (path->slots[0] < nritems) {
2836                        btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2837                                              path->slots[0]);
2838                        goto again;
2839                }
2840                if (ins_nr) {
2841                        ret = copy_items(trans, log, dst_path, src,
2842                                         ins_start_slot,
2843                                         ins_nr, inode_only);
2844                        if (ret) {
2845                                err = ret;
2846                                goto out_unlock;
2847                        }
2848                        ins_nr = 0;
2849                }
2850                btrfs_release_path(root, path);
2851
2852                if (min_key.offset < (u64)-1)
2853                        min_key.offset++;
2854                else if (min_key.type < (u8)-1)
2855                        min_key.type++;
2856                else if (min_key.objectid < (u64)-1)
2857                        min_key.objectid++;
2858                else
2859                        break;
2860        }
2861        if (ins_nr) {
2862                ret = copy_items(trans, log, dst_path, src,
2863                                 ins_start_slot,
2864                                 ins_nr, inode_only);
2865                if (ret) {
2866                        err = ret;
2867                        goto out_unlock;
2868                }
2869                ins_nr = 0;
2870        }
2871        WARN_ON(ins_nr);
2872        if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2873                btrfs_release_path(root, path);
2874                btrfs_release_path(log, dst_path);
2875                ret = log_directory_changes(trans, root, inode, path, dst_path);
2876                if (ret) {
2877                        err = ret;
2878                        goto out_unlock;
2879                }
2880        }
2881        BTRFS_I(inode)->logged_trans = trans->transid;
2882out_unlock:
2883        mutex_unlock(&BTRFS_I(inode)->log_mutex);
2884
2885        btrfs_free_path(path);
2886        btrfs_free_path(dst_path);
2887        return err;
2888}
2889
2890/*
2891 * follow the dentry parent pointers up the chain and see if any
2892 * of the directories in it require a full commit before they can
2893 * be logged.  Returns zero if nothing special needs to be done or 1 if
2894 * a full commit is required.
2895 */
2896static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2897                                               struct inode *inode,
2898                                               struct dentry *parent,
2899                                               struct super_block *sb,
2900                                               u64 last_committed)
2901{
2902        int ret = 0;
2903        struct btrfs_root *root;
2904        struct dentry *old_parent = NULL;
2905
2906        /*
2907         * for regular files, if its inode is already on disk, we don't
2908         * have to worry about the parents at all.  This is because
2909         * we can use the last_unlink_trans field to record renames
2910         * and other fun in this file.
2911         */
2912        if (S_ISREG(inode->i_mode) &&
2913            BTRFS_I(inode)->generation <= last_committed &&
2914            BTRFS_I(inode)->last_unlink_trans <= last_committed)
2915                        goto out;
2916
2917        if (!S_ISDIR(inode->i_mode)) {
2918                if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2919                        goto out;
2920                inode = parent->d_inode;
2921        }
2922
2923        while (1) {
2924                BTRFS_I(inode)->logged_trans = trans->transid;
2925                smp_mb();
2926
2927                if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2928                        root = BTRFS_I(inode)->root;
2929
2930                        /*
2931                         * make sure any commits to the log are forced
2932                         * to be full commits
2933                         */
2934                        root->fs_info->last_trans_log_full_commit =
2935                                trans->transid;
2936                        ret = 1;
2937                        break;
2938                }
2939
2940                if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2941                        break;
2942
2943                if (IS_ROOT(parent))
2944                        break;
2945
2946                parent = dget_parent(parent);
2947                dput(old_parent);
2948                old_parent = parent;
2949                inode = parent->d_inode;
2950
2951        }
2952        dput(old_parent);
2953out:
2954        return ret;
2955}
2956
2957static int inode_in_log(struct btrfs_trans_handle *trans,
2958                 struct inode *inode)
2959{
2960        struct btrfs_root *root = BTRFS_I(inode)->root;
2961        int ret = 0;
2962
2963        mutex_lock(&root->log_mutex);
2964        if (BTRFS_I(inode)->logged_trans == trans->transid &&
2965            BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2966                ret = 1;
2967        mutex_unlock(&root->log_mutex);
2968        return ret;
2969}
2970
2971
2972/*
2973 * helper function around btrfs_log_inode to make sure newly created
2974 * parent directories also end up in the log.  A minimal inode and backref
2975 * only logging is done of any parent directories that are older than
2976 * the last committed transaction
2977 */
2978int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2979                    struct btrfs_root *root, struct inode *inode,
2980                    struct dentry *parent, int exists_only)
2981{
2982        int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2983        struct super_block *sb;
2984        struct dentry *old_parent = NULL;
2985        int ret = 0;
2986        u64 last_committed = root->fs_info->last_trans_committed;
2987
2988        sb = inode->i_sb;
2989
2990        if (btrfs_test_opt(root, NOTREELOG)) {
2991                ret = 1;
2992                goto end_no_trans;
2993        }
2994
2995        if (root->fs_info->last_trans_log_full_commit >
2996            root->fs_info->last_trans_committed) {
2997                ret = 1;
2998                goto end_no_trans;
2999        }
3000
3001        if (root != BTRFS_I(inode)->root ||
3002            btrfs_root_refs(&root->root_item) == 0) {
3003                ret = 1;
3004                goto end_no_trans;
3005        }
3006
3007        ret = check_parent_dirs_for_sync(trans, inode, parent,
3008                                         sb, last_committed);
3009        if (ret)
3010                goto end_no_trans;
3011
3012        if (inode_in_log(trans, inode)) {
3013                ret = BTRFS_NO_LOG_SYNC;
3014                goto end_no_trans;
3015        }
3016
3017        ret = start_log_trans(trans, root);
3018        if (ret)
3019                goto end_trans;
3020
3021        ret = btrfs_log_inode(trans, root, inode, inode_only);
3022        if (ret)
3023                goto end_trans;
3024
3025        /*
3026         * for regular files, if its inode is already on disk, we don't
3027         * have to worry about the parents at all.  This is because
3028         * we can use the last_unlink_trans field to record renames
3029         * and other fun in this file.
3030         */
3031        if (S_ISREG(inode->i_mode) &&
3032            BTRFS_I(inode)->generation <= last_committed &&
3033            BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3034                ret = 0;
3035                goto end_trans;
3036        }
3037
3038        inode_only = LOG_INODE_EXISTS;
3039        while (1) {
3040                if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3041                        break;
3042
3043                inode = parent->d_inode;
3044                if (root != BTRFS_I(inode)->root)
3045                        break;
3046
3047                if (BTRFS_I(inode)->generation >
3048                    root->fs_info->last_trans_committed) {
3049                        ret = btrfs_log_inode(trans, root, inode, inode_only);
3050                        if (ret)
3051                                goto end_trans;
3052                }
3053                if (IS_ROOT(parent))
3054                        break;
3055
3056                parent = dget_parent(parent);
3057                dput(old_parent);
3058                old_parent = parent;
3059        }
3060        ret = 0;
3061end_trans:
3062        dput(old_parent);
3063        if (ret < 0) {
3064                BUG_ON(ret != -ENOSPC);
3065                root->fs_info->last_trans_log_full_commit = trans->transid;
3066                ret = 1;
3067        }
3068        btrfs_end_log_trans(root);
3069end_no_trans:
3070        return ret;
3071}
3072
3073/*
3074 * it is not safe to log dentry if the chunk root has added new
3075 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3076 * If this returns 1, you must commit the transaction to safely get your
3077 * data on disk.
3078 */
3079int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3080                          struct btrfs_root *root, struct dentry *dentry)
3081{
3082        struct dentry *parent = dget_parent(dentry);
3083        int ret;
3084
3085        ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3086        dput(parent);
3087
3088        return ret;
3089}
3090
3091/*
3092 * should be called during mount to recover any replay any log trees
3093 * from the FS
3094 */
3095int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3096{
3097        int ret;
3098        struct btrfs_path *path;
3099        struct btrfs_trans_handle *trans;
3100        struct btrfs_key key;
3101        struct btrfs_key found_key;
3102        struct btrfs_key tmp_key;
3103        struct btrfs_root *log;
3104        struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3105        struct walk_control wc = {
3106                .process_func = process_one_buffer,
3107                .stage = 0,
3108        };
3109
3110        fs_info->log_root_recovering = 1;
3111        path = btrfs_alloc_path();
3112        BUG_ON(!path);
3113
3114        trans = btrfs_start_transaction(fs_info->tree_root, 0);
3115        BUG_ON(IS_ERR(trans));
3116
3117        wc.trans = trans;
3118        wc.pin = 1;
3119
3120        walk_log_tree(trans, log_root_tree, &wc);
3121
3122again:
3123        key.objectid = BTRFS_TREE_LOG_OBJECTID;
3124        key.offset = (u64)-1;
3125        btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3126
3127        while (1) {
3128                ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3129                if (ret < 0)
3130                        break;
3131                if (ret > 0) {
3132                        if (path->slots[0] == 0)
3133                                break;
3134                        path->slots[0]--;
3135                }
3136                btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3137                                      path->slots[0]);
3138                btrfs_release_path(log_root_tree, path);
3139                if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3140                        break;
3141
3142                log = btrfs_read_fs_root_no_radix(log_root_tree,
3143                                                  &found_key);
3144                BUG_ON(!log);
3145
3146
3147                tmp_key.objectid = found_key.offset;
3148                tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3149                tmp_key.offset = (u64)-1;
3150
3151                wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3152                BUG_ON(!wc.replay_dest);
3153
3154                wc.replay_dest->log_root = log;
3155                btrfs_record_root_in_trans(trans, wc.replay_dest);
3156                ret = walk_log_tree(trans, log, &wc);
3157                BUG_ON(ret);
3158
3159                if (wc.stage == LOG_WALK_REPLAY_ALL) {
3160                        ret = fixup_inode_link_counts(trans, wc.replay_dest,
3161                                                      path);
3162                        BUG_ON(ret);
3163                }
3164
3165                key.offset = found_key.offset - 1;
3166                wc.replay_dest->log_root = NULL;
3167                free_extent_buffer(log->node);
3168                free_extent_buffer(log->commit_root);
3169                kfree(log);
3170
3171                if (found_key.offset == 0)
3172                        break;
3173        }
3174        btrfs_release_path(log_root_tree, path);
3175
3176        /* step one is to pin it all, step two is to replay just inodes */
3177        if (wc.pin) {
3178                wc.pin = 0;
3179                wc.process_func = replay_one_buffer;
3180                wc.stage = LOG_WALK_REPLAY_INODES;
3181                goto again;
3182        }
3183        /* step three is to replay everything */
3184        if (wc.stage < LOG_WALK_REPLAY_ALL) {
3185                wc.stage++;
3186                goto again;
3187        }
3188
3189        btrfs_free_path(path);
3190
3191        free_extent_buffer(log_root_tree->node);
3192        log_root_tree->log_root = NULL;
3193        fs_info->log_root_recovering = 0;
3194
3195        /* step 4: commit the transaction, which also unpins the blocks */
3196        btrfs_commit_transaction(trans, fs_info->tree_root);
3197
3198        kfree(log_root_tree);
3199        return 0;
3200}
3201
3202/*
3203 * there are some corner cases where we want to force a full
3204 * commit instead of allowing a directory to be logged.
3205 *
3206 * They revolve around files there were unlinked from the directory, and
3207 * this function updates the parent directory so that a full commit is
3208 * properly done if it is fsync'd later after the unlinks are done.
3209 */
3210void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3211                             struct inode *dir, struct inode *inode,
3212                             int for_rename)
3213{
3214        /*
3215         * when we're logging a file, if it hasn't been renamed
3216         * or unlinked, and its inode is fully committed on disk,
3217         * we don't have to worry about walking up the directory chain
3218         * to log its parents.
3219         *
3220         * So, we use the last_unlink_trans field to put this transid
3221         * into the file.  When the file is logged we check it and
3222         * don't log the parents if the file is fully on disk.
3223         */
3224        if (S_ISREG(inode->i_mode))
3225                BTRFS_I(inode)->last_unlink_trans = trans->transid;
3226
3227        /*
3228         * if this directory was already logged any new
3229         * names for this file/dir will get recorded
3230         */
3231        smp_mb();
3232        if (BTRFS_I(dir)->logged_trans == trans->transid)
3233                return;
3234
3235        /*
3236         * if the inode we're about to unlink was logged,
3237         * the log will be properly updated for any new names
3238         */
3239        if (BTRFS_I(inode)->logged_trans == trans->transid)
3240                return;
3241
3242        /*
3243         * when renaming files across directories, if the directory
3244         * there we're unlinking from gets fsync'd later on, there's
3245         * no way to find the destination directory later and fsync it
3246         * properly.  So, we have to be conservative and force commits
3247         * so the new name gets discovered.
3248         */
3249        if (for_rename)
3250                goto record;
3251
3252        /* we can safely do the unlink without any special recording */
3253        return;
3254
3255record:
3256        BTRFS_I(dir)->last_unlink_trans = trans->transid;
3257}
3258
3259/*
3260 * Call this after adding a new name for a file and it will properly
3261 * update the log to reflect the new name.
3262 *
3263 * It will return zero if all goes well, and it will return 1 if a
3264 * full transaction commit is required.
3265 */
3266int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3267                        struct inode *inode, struct inode *old_dir,
3268                        struct dentry *parent)
3269{
3270        struct btrfs_root * root = BTRFS_I(inode)->root;
3271
3272        /*
3273         * this will force the logging code to walk the dentry chain
3274         * up for the file
3275         */
3276        if (S_ISREG(inode->i_mode))
3277                BTRFS_I(inode)->last_unlink_trans = trans->transid;
3278
3279        /*
3280         * if this inode hasn't been logged and directory we're renaming it
3281         * from hasn't been logged, we don't need to log it
3282         */
3283        if (BTRFS_I(inode)->logged_trans <=
3284            root->fs_info->last_trans_committed &&
3285            (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3286                    root->fs_info->last_trans_committed))
3287                return 0;
3288
3289        return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3290}
3291
3292