linux/fs/ext3/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext3/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 *      (sct@redhat.com), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 *      (jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/fs.h>
  27#include <linux/time.h>
  28#include <linux/ext3_jbd.h>
  29#include <linux/jbd.h>
  30#include <linux/highuid.h>
  31#include <linux/pagemap.h>
  32#include <linux/quotaops.h>
  33#include <linux/string.h>
  34#include <linux/buffer_head.h>
  35#include <linux/writeback.h>
  36#include <linux/mpage.h>
  37#include <linux/uio.h>
  38#include <linux/bio.h>
  39#include <linux/fiemap.h>
  40#include <linux/namei.h>
  41#include "xattr.h"
  42#include "acl.h"
  43
  44static int ext3_writepage_trans_blocks(struct inode *inode);
  45
  46/*
  47 * Test whether an inode is a fast symlink.
  48 */
  49static int ext3_inode_is_fast_symlink(struct inode *inode)
  50{
  51        int ea_blocks = EXT3_I(inode)->i_file_acl ?
  52                (inode->i_sb->s_blocksize >> 9) : 0;
  53
  54        return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  55}
  56
  57/*
  58 * The ext3 forget function must perform a revoke if we are freeing data
  59 * which has been journaled.  Metadata (eg. indirect blocks) must be
  60 * revoked in all cases.
  61 *
  62 * "bh" may be NULL: a metadata block may have been freed from memory
  63 * but there may still be a record of it in the journal, and that record
  64 * still needs to be revoked.
  65 */
  66int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  67                        struct buffer_head *bh, ext3_fsblk_t blocknr)
  68{
  69        int err;
  70
  71        might_sleep();
  72
  73        BUFFER_TRACE(bh, "enter");
  74
  75        jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  76                  "data mode %lx\n",
  77                  bh, is_metadata, inode->i_mode,
  78                  test_opt(inode->i_sb, DATA_FLAGS));
  79
  80        /* Never use the revoke function if we are doing full data
  81         * journaling: there is no need to, and a V1 superblock won't
  82         * support it.  Otherwise, only skip the revoke on un-journaled
  83         * data blocks. */
  84
  85        if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  86            (!is_metadata && !ext3_should_journal_data(inode))) {
  87                if (bh) {
  88                        BUFFER_TRACE(bh, "call journal_forget");
  89                        return ext3_journal_forget(handle, bh);
  90                }
  91                return 0;
  92        }
  93
  94        /*
  95         * data!=journal && (is_metadata || should_journal_data(inode))
  96         */
  97        BUFFER_TRACE(bh, "call ext3_journal_revoke");
  98        err = ext3_journal_revoke(handle, blocknr, bh);
  99        if (err)
 100                ext3_abort(inode->i_sb, __func__,
 101                           "error %d when attempting revoke", err);
 102        BUFFER_TRACE(bh, "exit");
 103        return err;
 104}
 105
 106/*
 107 * Work out how many blocks we need to proceed with the next chunk of a
 108 * truncate transaction.
 109 */
 110static unsigned long blocks_for_truncate(struct inode *inode)
 111{
 112        unsigned long needed;
 113
 114        needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
 115
 116        /* Give ourselves just enough room to cope with inodes in which
 117         * i_blocks is corrupt: we've seen disk corruptions in the past
 118         * which resulted in random data in an inode which looked enough
 119         * like a regular file for ext3 to try to delete it.  Things
 120         * will go a bit crazy if that happens, but at least we should
 121         * try not to panic the whole kernel. */
 122        if (needed < 2)
 123                needed = 2;
 124
 125        /* But we need to bound the transaction so we don't overflow the
 126         * journal. */
 127        if (needed > EXT3_MAX_TRANS_DATA)
 128                needed = EXT3_MAX_TRANS_DATA;
 129
 130        return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
 131}
 132
 133/*
 134 * Truncate transactions can be complex and absolutely huge.  So we need to
 135 * be able to restart the transaction at a conventient checkpoint to make
 136 * sure we don't overflow the journal.
 137 *
 138 * start_transaction gets us a new handle for a truncate transaction,
 139 * and extend_transaction tries to extend the existing one a bit.  If
 140 * extend fails, we need to propagate the failure up and restart the
 141 * transaction in the top-level truncate loop. --sct
 142 */
 143static handle_t *start_transaction(struct inode *inode)
 144{
 145        handle_t *result;
 146
 147        result = ext3_journal_start(inode, blocks_for_truncate(inode));
 148        if (!IS_ERR(result))
 149                return result;
 150
 151        ext3_std_error(inode->i_sb, PTR_ERR(result));
 152        return result;
 153}
 154
 155/*
 156 * Try to extend this transaction for the purposes of truncation.
 157 *
 158 * Returns 0 if we managed to create more room.  If we can't create more
 159 * room, and the transaction must be restarted we return 1.
 160 */
 161static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
 162{
 163        if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
 164                return 0;
 165        if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
 166                return 0;
 167        return 1;
 168}
 169
 170/*
 171 * Restart the transaction associated with *handle.  This does a commit,
 172 * so before we call here everything must be consistently dirtied against
 173 * this transaction.
 174 */
 175static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
 176{
 177        int ret;
 178
 179        jbd_debug(2, "restarting handle %p\n", handle);
 180        /*
 181         * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
 182         * At this moment, get_block can be called only for blocks inside
 183         * i_size since page cache has been already dropped and writes are
 184         * blocked by i_mutex. So we can safely drop the truncate_mutex.
 185         */
 186        mutex_unlock(&EXT3_I(inode)->truncate_mutex);
 187        ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
 188        mutex_lock(&EXT3_I(inode)->truncate_mutex);
 189        return ret;
 190}
 191
 192/*
 193 * Called at inode eviction from icache
 194 */
 195void ext3_evict_inode (struct inode *inode)
 196{
 197        struct ext3_block_alloc_info *rsv;
 198        handle_t *handle;
 199        int want_delete = 0;
 200
 201        if (!inode->i_nlink && !is_bad_inode(inode)) {
 202                dquot_initialize(inode);
 203                want_delete = 1;
 204        }
 205
 206        truncate_inode_pages(&inode->i_data, 0);
 207
 208        ext3_discard_reservation(inode);
 209        rsv = EXT3_I(inode)->i_block_alloc_info;
 210        EXT3_I(inode)->i_block_alloc_info = NULL;
 211        if (unlikely(rsv))
 212                kfree(rsv);
 213
 214        if (!want_delete)
 215                goto no_delete;
 216
 217        handle = start_transaction(inode);
 218        if (IS_ERR(handle)) {
 219                /*
 220                 * If we're going to skip the normal cleanup, we still need to
 221                 * make sure that the in-core orphan linked list is properly
 222                 * cleaned up.
 223                 */
 224                ext3_orphan_del(NULL, inode);
 225                goto no_delete;
 226        }
 227
 228        if (IS_SYNC(inode))
 229                handle->h_sync = 1;
 230        inode->i_size = 0;
 231        if (inode->i_blocks)
 232                ext3_truncate(inode);
 233        /*
 234         * Kill off the orphan record which ext3_truncate created.
 235         * AKPM: I think this can be inside the above `if'.
 236         * Note that ext3_orphan_del() has to be able to cope with the
 237         * deletion of a non-existent orphan - this is because we don't
 238         * know if ext3_truncate() actually created an orphan record.
 239         * (Well, we could do this if we need to, but heck - it works)
 240         */
 241        ext3_orphan_del(handle, inode);
 242        EXT3_I(inode)->i_dtime  = get_seconds();
 243
 244        /*
 245         * One subtle ordering requirement: if anything has gone wrong
 246         * (transaction abort, IO errors, whatever), then we can still
 247         * do these next steps (the fs will already have been marked as
 248         * having errors), but we can't free the inode if the mark_dirty
 249         * fails.
 250         */
 251        if (ext3_mark_inode_dirty(handle, inode)) {
 252                /* If that failed, just dquot_drop() and be done with that */
 253                dquot_drop(inode);
 254                end_writeback(inode);
 255        } else {
 256                ext3_xattr_delete_inode(handle, inode);
 257                dquot_free_inode(inode);
 258                dquot_drop(inode);
 259                end_writeback(inode);
 260                ext3_free_inode(handle, inode);
 261        }
 262        ext3_journal_stop(handle);
 263        return;
 264no_delete:
 265        end_writeback(inode);
 266        dquot_drop(inode);
 267}
 268
 269typedef struct {
 270        __le32  *p;
 271        __le32  key;
 272        struct buffer_head *bh;
 273} Indirect;
 274
 275static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 276{
 277        p->key = *(p->p = v);
 278        p->bh = bh;
 279}
 280
 281static int verify_chain(Indirect *from, Indirect *to)
 282{
 283        while (from <= to && from->key == *from->p)
 284                from++;
 285        return (from > to);
 286}
 287
 288/**
 289 *      ext3_block_to_path - parse the block number into array of offsets
 290 *      @inode: inode in question (we are only interested in its superblock)
 291 *      @i_block: block number to be parsed
 292 *      @offsets: array to store the offsets in
 293 *      @boundary: set this non-zero if the referred-to block is likely to be
 294 *             followed (on disk) by an indirect block.
 295 *
 296 *      To store the locations of file's data ext3 uses a data structure common
 297 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 298 *      data blocks at leaves and indirect blocks in intermediate nodes.
 299 *      This function translates the block number into path in that tree -
 300 *      return value is the path length and @offsets[n] is the offset of
 301 *      pointer to (n+1)th node in the nth one. If @block is out of range
 302 *      (negative or too large) warning is printed and zero returned.
 303 *
 304 *      Note: function doesn't find node addresses, so no IO is needed. All
 305 *      we need to know is the capacity of indirect blocks (taken from the
 306 *      inode->i_sb).
 307 */
 308
 309/*
 310 * Portability note: the last comparison (check that we fit into triple
 311 * indirect block) is spelled differently, because otherwise on an
 312 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 313 * if our filesystem had 8Kb blocks. We might use long long, but that would
 314 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 315 * i_block would have to be negative in the very beginning, so we would not
 316 * get there at all.
 317 */
 318
 319static int ext3_block_to_path(struct inode *inode,
 320                        long i_block, int offsets[4], int *boundary)
 321{
 322        int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
 323        int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
 324        const long direct_blocks = EXT3_NDIR_BLOCKS,
 325                indirect_blocks = ptrs,
 326                double_blocks = (1 << (ptrs_bits * 2));
 327        int n = 0;
 328        int final = 0;
 329
 330        if (i_block < 0) {
 331                ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
 332        } else if (i_block < direct_blocks) {
 333                offsets[n++] = i_block;
 334                final = direct_blocks;
 335        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 336                offsets[n++] = EXT3_IND_BLOCK;
 337                offsets[n++] = i_block;
 338                final = ptrs;
 339        } else if ((i_block -= indirect_blocks) < double_blocks) {
 340                offsets[n++] = EXT3_DIND_BLOCK;
 341                offsets[n++] = i_block >> ptrs_bits;
 342                offsets[n++] = i_block & (ptrs - 1);
 343                final = ptrs;
 344        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 345                offsets[n++] = EXT3_TIND_BLOCK;
 346                offsets[n++] = i_block >> (ptrs_bits * 2);
 347                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 348                offsets[n++] = i_block & (ptrs - 1);
 349                final = ptrs;
 350        } else {
 351                ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
 352        }
 353        if (boundary)
 354                *boundary = final - 1 - (i_block & (ptrs - 1));
 355        return n;
 356}
 357
 358/**
 359 *      ext3_get_branch - read the chain of indirect blocks leading to data
 360 *      @inode: inode in question
 361 *      @depth: depth of the chain (1 - direct pointer, etc.)
 362 *      @offsets: offsets of pointers in inode/indirect blocks
 363 *      @chain: place to store the result
 364 *      @err: here we store the error value
 365 *
 366 *      Function fills the array of triples <key, p, bh> and returns %NULL
 367 *      if everything went OK or the pointer to the last filled triple
 368 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 369 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 370 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 371 *      number (it points into struct inode for i==0 and into the bh->b_data
 372 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 373 *      block for i>0 and NULL for i==0. In other words, it holds the block
 374 *      numbers of the chain, addresses they were taken from (and where we can
 375 *      verify that chain did not change) and buffer_heads hosting these
 376 *      numbers.
 377 *
 378 *      Function stops when it stumbles upon zero pointer (absent block)
 379 *              (pointer to last triple returned, *@err == 0)
 380 *      or when it gets an IO error reading an indirect block
 381 *              (ditto, *@err == -EIO)
 382 *      or when it notices that chain had been changed while it was reading
 383 *              (ditto, *@err == -EAGAIN)
 384 *      or when it reads all @depth-1 indirect blocks successfully and finds
 385 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 386 */
 387static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
 388                                 Indirect chain[4], int *err)
 389{
 390        struct super_block *sb = inode->i_sb;
 391        Indirect *p = chain;
 392        struct buffer_head *bh;
 393
 394        *err = 0;
 395        /* i_data is not going away, no lock needed */
 396        add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
 397        if (!p->key)
 398                goto no_block;
 399        while (--depth) {
 400                bh = sb_bread(sb, le32_to_cpu(p->key));
 401                if (!bh)
 402                        goto failure;
 403                /* Reader: pointers */
 404                if (!verify_chain(chain, p))
 405                        goto changed;
 406                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 407                /* Reader: end */
 408                if (!p->key)
 409                        goto no_block;
 410        }
 411        return NULL;
 412
 413changed:
 414        brelse(bh);
 415        *err = -EAGAIN;
 416        goto no_block;
 417failure:
 418        *err = -EIO;
 419no_block:
 420        return p;
 421}
 422
 423/**
 424 *      ext3_find_near - find a place for allocation with sufficient locality
 425 *      @inode: owner
 426 *      @ind: descriptor of indirect block.
 427 *
 428 *      This function returns the preferred place for block allocation.
 429 *      It is used when heuristic for sequential allocation fails.
 430 *      Rules are:
 431 *        + if there is a block to the left of our position - allocate near it.
 432 *        + if pointer will live in indirect block - allocate near that block.
 433 *        + if pointer will live in inode - allocate in the same
 434 *          cylinder group.
 435 *
 436 * In the latter case we colour the starting block by the callers PID to
 437 * prevent it from clashing with concurrent allocations for a different inode
 438 * in the same block group.   The PID is used here so that functionally related
 439 * files will be close-by on-disk.
 440 *
 441 *      Caller must make sure that @ind is valid and will stay that way.
 442 */
 443static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
 444{
 445        struct ext3_inode_info *ei = EXT3_I(inode);
 446        __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
 447        __le32 *p;
 448        ext3_fsblk_t bg_start;
 449        ext3_grpblk_t colour;
 450
 451        /* Try to find previous block */
 452        for (p = ind->p - 1; p >= start; p--) {
 453                if (*p)
 454                        return le32_to_cpu(*p);
 455        }
 456
 457        /* No such thing, so let's try location of indirect block */
 458        if (ind->bh)
 459                return ind->bh->b_blocknr;
 460
 461        /*
 462         * It is going to be referred to from the inode itself? OK, just put it
 463         * into the same cylinder group then.
 464         */
 465        bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
 466        colour = (current->pid % 16) *
 467                        (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 468        return bg_start + colour;
 469}
 470
 471/**
 472 *      ext3_find_goal - find a preferred place for allocation.
 473 *      @inode: owner
 474 *      @block:  block we want
 475 *      @partial: pointer to the last triple within a chain
 476 *
 477 *      Normally this function find the preferred place for block allocation,
 478 *      returns it.
 479 */
 480
 481static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
 482                                   Indirect *partial)
 483{
 484        struct ext3_block_alloc_info *block_i;
 485
 486        block_i =  EXT3_I(inode)->i_block_alloc_info;
 487
 488        /*
 489         * try the heuristic for sequential allocation,
 490         * failing that at least try to get decent locality.
 491         */
 492        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 493                && (block_i->last_alloc_physical_block != 0)) {
 494                return block_i->last_alloc_physical_block + 1;
 495        }
 496
 497        return ext3_find_near(inode, partial);
 498}
 499
 500/**
 501 *      ext3_blks_to_allocate - Look up the block map and count the number
 502 *      of direct blocks need to be allocated for the given branch.
 503 *
 504 *      @branch: chain of indirect blocks
 505 *      @k: number of blocks need for indirect blocks
 506 *      @blks: number of data blocks to be mapped.
 507 *      @blocks_to_boundary:  the offset in the indirect block
 508 *
 509 *      return the total number of blocks to be allocate, including the
 510 *      direct and indirect blocks.
 511 */
 512static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
 513                int blocks_to_boundary)
 514{
 515        unsigned long count = 0;
 516
 517        /*
 518         * Simple case, [t,d]Indirect block(s) has not allocated yet
 519         * then it's clear blocks on that path have not allocated
 520         */
 521        if (k > 0) {
 522                /* right now we don't handle cross boundary allocation */
 523                if (blks < blocks_to_boundary + 1)
 524                        count += blks;
 525                else
 526                        count += blocks_to_boundary + 1;
 527                return count;
 528        }
 529
 530        count++;
 531        while (count < blks && count <= blocks_to_boundary &&
 532                le32_to_cpu(*(branch[0].p + count)) == 0) {
 533                count++;
 534        }
 535        return count;
 536}
 537
 538/**
 539 *      ext3_alloc_blocks - multiple allocate blocks needed for a branch
 540 *      @handle: handle for this transaction
 541 *      @inode: owner
 542 *      @goal: preferred place for allocation
 543 *      @indirect_blks: the number of blocks need to allocate for indirect
 544 *                      blocks
 545 *      @blks:  number of blocks need to allocated for direct blocks
 546 *      @new_blocks: on return it will store the new block numbers for
 547 *      the indirect blocks(if needed) and the first direct block,
 548 *      @err: here we store the error value
 549 *
 550 *      return the number of direct blocks allocated
 551 */
 552static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
 553                        ext3_fsblk_t goal, int indirect_blks, int blks,
 554                        ext3_fsblk_t new_blocks[4], int *err)
 555{
 556        int target, i;
 557        unsigned long count = 0;
 558        int index = 0;
 559        ext3_fsblk_t current_block = 0;
 560        int ret = 0;
 561
 562        /*
 563         * Here we try to allocate the requested multiple blocks at once,
 564         * on a best-effort basis.
 565         * To build a branch, we should allocate blocks for
 566         * the indirect blocks(if not allocated yet), and at least
 567         * the first direct block of this branch.  That's the
 568         * minimum number of blocks need to allocate(required)
 569         */
 570        target = blks + indirect_blks;
 571
 572        while (1) {
 573                count = target;
 574                /* allocating blocks for indirect blocks and direct blocks */
 575                current_block = ext3_new_blocks(handle,inode,goal,&count,err);
 576                if (*err)
 577                        goto failed_out;
 578
 579                target -= count;
 580                /* allocate blocks for indirect blocks */
 581                while (index < indirect_blks && count) {
 582                        new_blocks[index++] = current_block++;
 583                        count--;
 584                }
 585
 586                if (count > 0)
 587                        break;
 588        }
 589
 590        /* save the new block number for the first direct block */
 591        new_blocks[index] = current_block;
 592
 593        /* total number of blocks allocated for direct blocks */
 594        ret = count;
 595        *err = 0;
 596        return ret;
 597failed_out:
 598        for (i = 0; i <index; i++)
 599                ext3_free_blocks(handle, inode, new_blocks[i], 1);
 600        return ret;
 601}
 602
 603/**
 604 *      ext3_alloc_branch - allocate and set up a chain of blocks.
 605 *      @handle: handle for this transaction
 606 *      @inode: owner
 607 *      @indirect_blks: number of allocated indirect blocks
 608 *      @blks: number of allocated direct blocks
 609 *      @goal: preferred place for allocation
 610 *      @offsets: offsets (in the blocks) to store the pointers to next.
 611 *      @branch: place to store the chain in.
 612 *
 613 *      This function allocates blocks, zeroes out all but the last one,
 614 *      links them into chain and (if we are synchronous) writes them to disk.
 615 *      In other words, it prepares a branch that can be spliced onto the
 616 *      inode. It stores the information about that chain in the branch[], in
 617 *      the same format as ext3_get_branch() would do. We are calling it after
 618 *      we had read the existing part of chain and partial points to the last
 619 *      triple of that (one with zero ->key). Upon the exit we have the same
 620 *      picture as after the successful ext3_get_block(), except that in one
 621 *      place chain is disconnected - *branch->p is still zero (we did not
 622 *      set the last link), but branch->key contains the number that should
 623 *      be placed into *branch->p to fill that gap.
 624 *
 625 *      If allocation fails we free all blocks we've allocated (and forget
 626 *      their buffer_heads) and return the error value the from failed
 627 *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 628 *      as described above and return 0.
 629 */
 630static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
 631                        int indirect_blks, int *blks, ext3_fsblk_t goal,
 632                        int *offsets, Indirect *branch)
 633{
 634        int blocksize = inode->i_sb->s_blocksize;
 635        int i, n = 0;
 636        int err = 0;
 637        struct buffer_head *bh;
 638        int num;
 639        ext3_fsblk_t new_blocks[4];
 640        ext3_fsblk_t current_block;
 641
 642        num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
 643                                *blks, new_blocks, &err);
 644        if (err)
 645                return err;
 646
 647        branch[0].key = cpu_to_le32(new_blocks[0]);
 648        /*
 649         * metadata blocks and data blocks are allocated.
 650         */
 651        for (n = 1; n <= indirect_blks;  n++) {
 652                /*
 653                 * Get buffer_head for parent block, zero it out
 654                 * and set the pointer to new one, then send
 655                 * parent to disk.
 656                 */
 657                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 658                branch[n].bh = bh;
 659                lock_buffer(bh);
 660                BUFFER_TRACE(bh, "call get_create_access");
 661                err = ext3_journal_get_create_access(handle, bh);
 662                if (err) {
 663                        unlock_buffer(bh);
 664                        brelse(bh);
 665                        goto failed;
 666                }
 667
 668                memset(bh->b_data, 0, blocksize);
 669                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 670                branch[n].key = cpu_to_le32(new_blocks[n]);
 671                *branch[n].p = branch[n].key;
 672                if ( n == indirect_blks) {
 673                        current_block = new_blocks[n];
 674                        /*
 675                         * End of chain, update the last new metablock of
 676                         * the chain to point to the new allocated
 677                         * data blocks numbers
 678                         */
 679                        for (i=1; i < num; i++)
 680                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 681                }
 682                BUFFER_TRACE(bh, "marking uptodate");
 683                set_buffer_uptodate(bh);
 684                unlock_buffer(bh);
 685
 686                BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
 687                err = ext3_journal_dirty_metadata(handle, bh);
 688                if (err)
 689                        goto failed;
 690        }
 691        *blks = num;
 692        return err;
 693failed:
 694        /* Allocation failed, free what we already allocated */
 695        for (i = 1; i <= n ; i++) {
 696                BUFFER_TRACE(branch[i].bh, "call journal_forget");
 697                ext3_journal_forget(handle, branch[i].bh);
 698        }
 699        for (i = 0; i <indirect_blks; i++)
 700                ext3_free_blocks(handle, inode, new_blocks[i], 1);
 701
 702        ext3_free_blocks(handle, inode, new_blocks[i], num);
 703
 704        return err;
 705}
 706
 707/**
 708 * ext3_splice_branch - splice the allocated branch onto inode.
 709 * @handle: handle for this transaction
 710 * @inode: owner
 711 * @block: (logical) number of block we are adding
 712 * @where: location of missing link
 713 * @num:   number of indirect blocks we are adding
 714 * @blks:  number of direct blocks we are adding
 715 *
 716 * This function fills the missing link and does all housekeeping needed in
 717 * inode (->i_blocks, etc.). In case of success we end up with the full
 718 * chain to new block and return 0.
 719 */
 720static int ext3_splice_branch(handle_t *handle, struct inode *inode,
 721                        long block, Indirect *where, int num, int blks)
 722{
 723        int i;
 724        int err = 0;
 725        struct ext3_block_alloc_info *block_i;
 726        ext3_fsblk_t current_block;
 727        struct ext3_inode_info *ei = EXT3_I(inode);
 728
 729        block_i = ei->i_block_alloc_info;
 730        /*
 731         * If we're splicing into a [td]indirect block (as opposed to the
 732         * inode) then we need to get write access to the [td]indirect block
 733         * before the splice.
 734         */
 735        if (where->bh) {
 736                BUFFER_TRACE(where->bh, "get_write_access");
 737                err = ext3_journal_get_write_access(handle, where->bh);
 738                if (err)
 739                        goto err_out;
 740        }
 741        /* That's it */
 742
 743        *where->p = where->key;
 744
 745        /*
 746         * Update the host buffer_head or inode to point to more just allocated
 747         * direct blocks blocks
 748         */
 749        if (num == 0 && blks > 1) {
 750                current_block = le32_to_cpu(where->key) + 1;
 751                for (i = 1; i < blks; i++)
 752                        *(where->p + i ) = cpu_to_le32(current_block++);
 753        }
 754
 755        /*
 756         * update the most recently allocated logical & physical block
 757         * in i_block_alloc_info, to assist find the proper goal block for next
 758         * allocation
 759         */
 760        if (block_i) {
 761                block_i->last_alloc_logical_block = block + blks - 1;
 762                block_i->last_alloc_physical_block =
 763                                le32_to_cpu(where[num].key) + blks - 1;
 764        }
 765
 766        /* We are done with atomic stuff, now do the rest of housekeeping */
 767
 768        inode->i_ctime = CURRENT_TIME_SEC;
 769        ext3_mark_inode_dirty(handle, inode);
 770        /* ext3_mark_inode_dirty already updated i_sync_tid */
 771        atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
 772
 773        /* had we spliced it onto indirect block? */
 774        if (where->bh) {
 775                /*
 776                 * If we spliced it onto an indirect block, we haven't
 777                 * altered the inode.  Note however that if it is being spliced
 778                 * onto an indirect block at the very end of the file (the
 779                 * file is growing) then we *will* alter the inode to reflect
 780                 * the new i_size.  But that is not done here - it is done in
 781                 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
 782                 */
 783                jbd_debug(5, "splicing indirect only\n");
 784                BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
 785                err = ext3_journal_dirty_metadata(handle, where->bh);
 786                if (err)
 787                        goto err_out;
 788        } else {
 789                /*
 790                 * OK, we spliced it into the inode itself on a direct block.
 791                 * Inode was dirtied above.
 792                 */
 793                jbd_debug(5, "splicing direct\n");
 794        }
 795        return err;
 796
 797err_out:
 798        for (i = 1; i <= num; i++) {
 799                BUFFER_TRACE(where[i].bh, "call journal_forget");
 800                ext3_journal_forget(handle, where[i].bh);
 801                ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
 802        }
 803        ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
 804
 805        return err;
 806}
 807
 808/*
 809 * Allocation strategy is simple: if we have to allocate something, we will
 810 * have to go the whole way to leaf. So let's do it before attaching anything
 811 * to tree, set linkage between the newborn blocks, write them if sync is
 812 * required, recheck the path, free and repeat if check fails, otherwise
 813 * set the last missing link (that will protect us from any truncate-generated
 814 * removals - all blocks on the path are immune now) and possibly force the
 815 * write on the parent block.
 816 * That has a nice additional property: no special recovery from the failed
 817 * allocations is needed - we simply release blocks and do not touch anything
 818 * reachable from inode.
 819 *
 820 * `handle' can be NULL if create == 0.
 821 *
 822 * The BKL may not be held on entry here.  Be sure to take it early.
 823 * return > 0, # of blocks mapped or allocated.
 824 * return = 0, if plain lookup failed.
 825 * return < 0, error case.
 826 */
 827int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
 828                sector_t iblock, unsigned long maxblocks,
 829                struct buffer_head *bh_result,
 830                int create)
 831{
 832        int err = -EIO;
 833        int offsets[4];
 834        Indirect chain[4];
 835        Indirect *partial;
 836        ext3_fsblk_t goal;
 837        int indirect_blks;
 838        int blocks_to_boundary = 0;
 839        int depth;
 840        struct ext3_inode_info *ei = EXT3_I(inode);
 841        int count = 0;
 842        ext3_fsblk_t first_block = 0;
 843
 844
 845        J_ASSERT(handle != NULL || create == 0);
 846        depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 847
 848        if (depth == 0)
 849                goto out;
 850
 851        partial = ext3_get_branch(inode, depth, offsets, chain, &err);
 852
 853        /* Simplest case - block found, no allocation needed */
 854        if (!partial) {
 855                first_block = le32_to_cpu(chain[depth - 1].key);
 856                clear_buffer_new(bh_result);
 857                count++;
 858                /*map more blocks*/
 859                while (count < maxblocks && count <= blocks_to_boundary) {
 860                        ext3_fsblk_t blk;
 861
 862                        if (!verify_chain(chain, chain + depth - 1)) {
 863                                /*
 864                                 * Indirect block might be removed by
 865                                 * truncate while we were reading it.
 866                                 * Handling of that case: forget what we've
 867                                 * got now. Flag the err as EAGAIN, so it
 868                                 * will reread.
 869                                 */
 870                                err = -EAGAIN;
 871                                count = 0;
 872                                break;
 873                        }
 874                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 875
 876                        if (blk == first_block + count)
 877                                count++;
 878                        else
 879                                break;
 880                }
 881                if (err != -EAGAIN)
 882                        goto got_it;
 883        }
 884
 885        /* Next simple case - plain lookup or failed read of indirect block */
 886        if (!create || err == -EIO)
 887                goto cleanup;
 888
 889        mutex_lock(&ei->truncate_mutex);
 890
 891        /*
 892         * If the indirect block is missing while we are reading
 893         * the chain(ext3_get_branch() returns -EAGAIN err), or
 894         * if the chain has been changed after we grab the semaphore,
 895         * (either because another process truncated this branch, or
 896         * another get_block allocated this branch) re-grab the chain to see if
 897         * the request block has been allocated or not.
 898         *
 899         * Since we already block the truncate/other get_block
 900         * at this point, we will have the current copy of the chain when we
 901         * splice the branch into the tree.
 902         */
 903        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 904                while (partial > chain) {
 905                        brelse(partial->bh);
 906                        partial--;
 907                }
 908                partial = ext3_get_branch(inode, depth, offsets, chain, &err);
 909                if (!partial) {
 910                        count++;
 911                        mutex_unlock(&ei->truncate_mutex);
 912                        if (err)
 913                                goto cleanup;
 914                        clear_buffer_new(bh_result);
 915                        goto got_it;
 916                }
 917        }
 918
 919        /*
 920         * Okay, we need to do block allocation.  Lazily initialize the block
 921         * allocation info here if necessary
 922        */
 923        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 924                ext3_init_block_alloc_info(inode);
 925
 926        goal = ext3_find_goal(inode, iblock, partial);
 927
 928        /* the number of blocks need to allocate for [d,t]indirect blocks */
 929        indirect_blks = (chain + depth) - partial - 1;
 930
 931        /*
 932         * Next look up the indirect map to count the totoal number of
 933         * direct blocks to allocate for this branch.
 934         */
 935        count = ext3_blks_to_allocate(partial, indirect_blks,
 936                                        maxblocks, blocks_to_boundary);
 937        /*
 938         * Block out ext3_truncate while we alter the tree
 939         */
 940        err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
 941                                offsets + (partial - chain), partial);
 942
 943        /*
 944         * The ext3_splice_branch call will free and forget any buffers
 945         * on the new chain if there is a failure, but that risks using
 946         * up transaction credits, especially for bitmaps where the
 947         * credits cannot be returned.  Can we handle this somehow?  We
 948         * may need to return -EAGAIN upwards in the worst case.  --sct
 949         */
 950        if (!err)
 951                err = ext3_splice_branch(handle, inode, iblock,
 952                                        partial, indirect_blks, count);
 953        mutex_unlock(&ei->truncate_mutex);
 954        if (err)
 955                goto cleanup;
 956
 957        set_buffer_new(bh_result);
 958got_it:
 959        map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
 960        if (count > blocks_to_boundary)
 961                set_buffer_boundary(bh_result);
 962        err = count;
 963        /* Clean up and exit */
 964        partial = chain + depth - 1;    /* the whole chain */
 965cleanup:
 966        while (partial > chain) {
 967                BUFFER_TRACE(partial->bh, "call brelse");
 968                brelse(partial->bh);
 969                partial--;
 970        }
 971        BUFFER_TRACE(bh_result, "returned");
 972out:
 973        return err;
 974}
 975
 976/* Maximum number of blocks we map for direct IO at once. */
 977#define DIO_MAX_BLOCKS 4096
 978/*
 979 * Number of credits we need for writing DIO_MAX_BLOCKS:
 980 * We need sb + group descriptor + bitmap + inode -> 4
 981 * For B blocks with A block pointers per block we need:
 982 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
 983 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
 984 */
 985#define DIO_CREDITS 25
 986
 987static int ext3_get_block(struct inode *inode, sector_t iblock,
 988                        struct buffer_head *bh_result, int create)
 989{
 990        handle_t *handle = ext3_journal_current_handle();
 991        int ret = 0, started = 0;
 992        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 993
 994        if (create && !handle) {        /* Direct IO write... */
 995                if (max_blocks > DIO_MAX_BLOCKS)
 996                        max_blocks = DIO_MAX_BLOCKS;
 997                handle = ext3_journal_start(inode, DIO_CREDITS +
 998                                EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
 999                if (IS_ERR(handle)) {
1000                        ret = PTR_ERR(handle);
1001                        goto out;
1002                }
1003                started = 1;
1004        }
1005
1006        ret = ext3_get_blocks_handle(handle, inode, iblock,
1007                                        max_blocks, bh_result, create);
1008        if (ret > 0) {
1009                bh_result->b_size = (ret << inode->i_blkbits);
1010                ret = 0;
1011        }
1012        if (started)
1013                ext3_journal_stop(handle);
1014out:
1015        return ret;
1016}
1017
1018int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1019                u64 start, u64 len)
1020{
1021        return generic_block_fiemap(inode, fieinfo, start, len,
1022                                    ext3_get_block);
1023}
1024
1025/*
1026 * `handle' can be NULL if create is zero
1027 */
1028struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1029                                long block, int create, int *errp)
1030{
1031        struct buffer_head dummy;
1032        int fatal = 0, err;
1033
1034        J_ASSERT(handle != NULL || create == 0);
1035
1036        dummy.b_state = 0;
1037        dummy.b_blocknr = -1000;
1038        buffer_trace_init(&dummy.b_history);
1039        err = ext3_get_blocks_handle(handle, inode, block, 1,
1040                                        &dummy, create);
1041        /*
1042         * ext3_get_blocks_handle() returns number of blocks
1043         * mapped. 0 in case of a HOLE.
1044         */
1045        if (err > 0) {
1046                if (err > 1)
1047                        WARN_ON(1);
1048                err = 0;
1049        }
1050        *errp = err;
1051        if (!err && buffer_mapped(&dummy)) {
1052                struct buffer_head *bh;
1053                bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1054                if (!bh) {
1055                        *errp = -EIO;
1056                        goto err;
1057                }
1058                if (buffer_new(&dummy)) {
1059                        J_ASSERT(create != 0);
1060                        J_ASSERT(handle != NULL);
1061
1062                        /*
1063                         * Now that we do not always journal data, we should
1064                         * keep in mind whether this should always journal the
1065                         * new buffer as metadata.  For now, regular file
1066                         * writes use ext3_get_block instead, so it's not a
1067                         * problem.
1068                         */
1069                        lock_buffer(bh);
1070                        BUFFER_TRACE(bh, "call get_create_access");
1071                        fatal = ext3_journal_get_create_access(handle, bh);
1072                        if (!fatal && !buffer_uptodate(bh)) {
1073                                memset(bh->b_data,0,inode->i_sb->s_blocksize);
1074                                set_buffer_uptodate(bh);
1075                        }
1076                        unlock_buffer(bh);
1077                        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1078                        err = ext3_journal_dirty_metadata(handle, bh);
1079                        if (!fatal)
1080                                fatal = err;
1081                } else {
1082                        BUFFER_TRACE(bh, "not a new buffer");
1083                }
1084                if (fatal) {
1085                        *errp = fatal;
1086                        brelse(bh);
1087                        bh = NULL;
1088                }
1089                return bh;
1090        }
1091err:
1092        return NULL;
1093}
1094
1095struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1096                               int block, int create, int *err)
1097{
1098        struct buffer_head * bh;
1099
1100        bh = ext3_getblk(handle, inode, block, create, err);
1101        if (!bh)
1102                return bh;
1103        if (buffer_uptodate(bh))
1104                return bh;
1105        ll_rw_block(READ_META, 1, &bh);
1106        wait_on_buffer(bh);
1107        if (buffer_uptodate(bh))
1108                return bh;
1109        put_bh(bh);
1110        *err = -EIO;
1111        return NULL;
1112}
1113
1114static int walk_page_buffers(   handle_t *handle,
1115                                struct buffer_head *head,
1116                                unsigned from,
1117                                unsigned to,
1118                                int *partial,
1119                                int (*fn)(      handle_t *handle,
1120                                                struct buffer_head *bh))
1121{
1122        struct buffer_head *bh;
1123        unsigned block_start, block_end;
1124        unsigned blocksize = head->b_size;
1125        int err, ret = 0;
1126        struct buffer_head *next;
1127
1128        for (   bh = head, block_start = 0;
1129                ret == 0 && (bh != head || !block_start);
1130                block_start = block_end, bh = next)
1131        {
1132                next = bh->b_this_page;
1133                block_end = block_start + blocksize;
1134                if (block_end <= from || block_start >= to) {
1135                        if (partial && !buffer_uptodate(bh))
1136                                *partial = 1;
1137                        continue;
1138                }
1139                err = (*fn)(handle, bh);
1140                if (!ret)
1141                        ret = err;
1142        }
1143        return ret;
1144}
1145
1146/*
1147 * To preserve ordering, it is essential that the hole instantiation and
1148 * the data write be encapsulated in a single transaction.  We cannot
1149 * close off a transaction and start a new one between the ext3_get_block()
1150 * and the commit_write().  So doing the journal_start at the start of
1151 * prepare_write() is the right place.
1152 *
1153 * Also, this function can nest inside ext3_writepage() ->
1154 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1155 * has generated enough buffer credits to do the whole page.  So we won't
1156 * block on the journal in that case, which is good, because the caller may
1157 * be PF_MEMALLOC.
1158 *
1159 * By accident, ext3 can be reentered when a transaction is open via
1160 * quota file writes.  If we were to commit the transaction while thus
1161 * reentered, there can be a deadlock - we would be holding a quota
1162 * lock, and the commit would never complete if another thread had a
1163 * transaction open and was blocking on the quota lock - a ranking
1164 * violation.
1165 *
1166 * So what we do is to rely on the fact that journal_stop/journal_start
1167 * will _not_ run commit under these circumstances because handle->h_ref
1168 * is elevated.  We'll still have enough credits for the tiny quotafile
1169 * write.
1170 */
1171static int do_journal_get_write_access(handle_t *handle,
1172                                        struct buffer_head *bh)
1173{
1174        int dirty = buffer_dirty(bh);
1175        int ret;
1176
1177        if (!buffer_mapped(bh) || buffer_freed(bh))
1178                return 0;
1179        /*
1180         * __block_prepare_write() could have dirtied some buffers. Clean
1181         * the dirty bit as jbd2_journal_get_write_access() could complain
1182         * otherwise about fs integrity issues. Setting of the dirty bit
1183         * by __block_prepare_write() isn't a real problem here as we clear
1184         * the bit before releasing a page lock and thus writeback cannot
1185         * ever write the buffer.
1186         */
1187        if (dirty)
1188                clear_buffer_dirty(bh);
1189        ret = ext3_journal_get_write_access(handle, bh);
1190        if (!ret && dirty)
1191                ret = ext3_journal_dirty_metadata(handle, bh);
1192        return ret;
1193}
1194
1195/*
1196 * Truncate blocks that were not used by write. We have to truncate the
1197 * pagecache as well so that corresponding buffers get properly unmapped.
1198 */
1199static void ext3_truncate_failed_write(struct inode *inode)
1200{
1201        truncate_inode_pages(inode->i_mapping, inode->i_size);
1202        ext3_truncate(inode);
1203}
1204
1205static int ext3_write_begin(struct file *file, struct address_space *mapping,
1206                                loff_t pos, unsigned len, unsigned flags,
1207                                struct page **pagep, void **fsdata)
1208{
1209        struct inode *inode = mapping->host;
1210        int ret;
1211        handle_t *handle;
1212        int retries = 0;
1213        struct page *page;
1214        pgoff_t index;
1215        unsigned from, to;
1216        /* Reserve one block more for addition to orphan list in case
1217         * we allocate blocks but write fails for some reason */
1218        int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1219
1220        index = pos >> PAGE_CACHE_SHIFT;
1221        from = pos & (PAGE_CACHE_SIZE - 1);
1222        to = from + len;
1223
1224retry:
1225        page = grab_cache_page_write_begin(mapping, index, flags);
1226        if (!page)
1227                return -ENOMEM;
1228        *pagep = page;
1229
1230        handle = ext3_journal_start(inode, needed_blocks);
1231        if (IS_ERR(handle)) {
1232                unlock_page(page);
1233                page_cache_release(page);
1234                ret = PTR_ERR(handle);
1235                goto out;
1236        }
1237        ret = __block_write_begin(page, pos, len, ext3_get_block);
1238        if (ret)
1239                goto write_begin_failed;
1240
1241        if (ext3_should_journal_data(inode)) {
1242                ret = walk_page_buffers(handle, page_buffers(page),
1243                                from, to, NULL, do_journal_get_write_access);
1244        }
1245write_begin_failed:
1246        if (ret) {
1247                /*
1248                 * block_write_begin may have instantiated a few blocks
1249                 * outside i_size.  Trim these off again. Don't need
1250                 * i_size_read because we hold i_mutex.
1251                 *
1252                 * Add inode to orphan list in case we crash before truncate
1253                 * finishes. Do this only if ext3_can_truncate() agrees so
1254                 * that orphan processing code is happy.
1255                 */
1256                if (pos + len > inode->i_size && ext3_can_truncate(inode))
1257                        ext3_orphan_add(handle, inode);
1258                ext3_journal_stop(handle);
1259                unlock_page(page);
1260                page_cache_release(page);
1261                if (pos + len > inode->i_size)
1262                        ext3_truncate_failed_write(inode);
1263        }
1264        if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1265                goto retry;
1266out:
1267        return ret;
1268}
1269
1270
1271int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1272{
1273        int err = journal_dirty_data(handle, bh);
1274        if (err)
1275                ext3_journal_abort_handle(__func__, __func__,
1276                                                bh, handle, err);
1277        return err;
1278}
1279
1280/* For ordered writepage and write_end functions */
1281static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1282{
1283        /*
1284         * Write could have mapped the buffer but it didn't copy the data in
1285         * yet. So avoid filing such buffer into a transaction.
1286         */
1287        if (buffer_mapped(bh) && buffer_uptodate(bh))
1288                return ext3_journal_dirty_data(handle, bh);
1289        return 0;
1290}
1291
1292/* For write_end() in data=journal mode */
1293static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1294{
1295        if (!buffer_mapped(bh) || buffer_freed(bh))
1296                return 0;
1297        set_buffer_uptodate(bh);
1298        return ext3_journal_dirty_metadata(handle, bh);
1299}
1300
1301/*
1302 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1303 * for the whole page but later we failed to copy the data in. Update inode
1304 * size according to what we managed to copy. The rest is going to be
1305 * truncated in write_end function.
1306 */
1307static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1308{
1309        /* What matters to us is i_disksize. We don't write i_size anywhere */
1310        if (pos + copied > inode->i_size)
1311                i_size_write(inode, pos + copied);
1312        if (pos + copied > EXT3_I(inode)->i_disksize) {
1313                EXT3_I(inode)->i_disksize = pos + copied;
1314                mark_inode_dirty(inode);
1315        }
1316}
1317
1318/*
1319 * We need to pick up the new inode size which generic_commit_write gave us
1320 * `file' can be NULL - eg, when called from page_symlink().
1321 *
1322 * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1323 * buffers are managed internally.
1324 */
1325static int ext3_ordered_write_end(struct file *file,
1326                                struct address_space *mapping,
1327                                loff_t pos, unsigned len, unsigned copied,
1328                                struct page *page, void *fsdata)
1329{
1330        handle_t *handle = ext3_journal_current_handle();
1331        struct inode *inode = file->f_mapping->host;
1332        unsigned from, to;
1333        int ret = 0, ret2;
1334
1335        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1336
1337        from = pos & (PAGE_CACHE_SIZE - 1);
1338        to = from + copied;
1339        ret = walk_page_buffers(handle, page_buffers(page),
1340                from, to, NULL, journal_dirty_data_fn);
1341
1342        if (ret == 0)
1343                update_file_sizes(inode, pos, copied);
1344        /*
1345         * There may be allocated blocks outside of i_size because
1346         * we failed to copy some data. Prepare for truncate.
1347         */
1348        if (pos + len > inode->i_size && ext3_can_truncate(inode))
1349                ext3_orphan_add(handle, inode);
1350        ret2 = ext3_journal_stop(handle);
1351        if (!ret)
1352                ret = ret2;
1353        unlock_page(page);
1354        page_cache_release(page);
1355
1356        if (pos + len > inode->i_size)
1357                ext3_truncate_failed_write(inode);
1358        return ret ? ret : copied;
1359}
1360
1361static int ext3_writeback_write_end(struct file *file,
1362                                struct address_space *mapping,
1363                                loff_t pos, unsigned len, unsigned copied,
1364                                struct page *page, void *fsdata)
1365{
1366        handle_t *handle = ext3_journal_current_handle();
1367        struct inode *inode = file->f_mapping->host;
1368        int ret;
1369
1370        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1371        update_file_sizes(inode, pos, copied);
1372        /*
1373         * There may be allocated blocks outside of i_size because
1374         * we failed to copy some data. Prepare for truncate.
1375         */
1376        if (pos + len > inode->i_size && ext3_can_truncate(inode))
1377                ext3_orphan_add(handle, inode);
1378        ret = ext3_journal_stop(handle);
1379        unlock_page(page);
1380        page_cache_release(page);
1381
1382        if (pos + len > inode->i_size)
1383                ext3_truncate_failed_write(inode);
1384        return ret ? ret : copied;
1385}
1386
1387static int ext3_journalled_write_end(struct file *file,
1388                                struct address_space *mapping,
1389                                loff_t pos, unsigned len, unsigned copied,
1390                                struct page *page, void *fsdata)
1391{
1392        handle_t *handle = ext3_journal_current_handle();
1393        struct inode *inode = mapping->host;
1394        int ret = 0, ret2;
1395        int partial = 0;
1396        unsigned from, to;
1397
1398        from = pos & (PAGE_CACHE_SIZE - 1);
1399        to = from + len;
1400
1401        if (copied < len) {
1402                if (!PageUptodate(page))
1403                        copied = 0;
1404                page_zero_new_buffers(page, from + copied, to);
1405                to = from + copied;
1406        }
1407
1408        ret = walk_page_buffers(handle, page_buffers(page), from,
1409                                to, &partial, write_end_fn);
1410        if (!partial)
1411                SetPageUptodate(page);
1412
1413        if (pos + copied > inode->i_size)
1414                i_size_write(inode, pos + copied);
1415        /*
1416         * There may be allocated blocks outside of i_size because
1417         * we failed to copy some data. Prepare for truncate.
1418         */
1419        if (pos + len > inode->i_size && ext3_can_truncate(inode))
1420                ext3_orphan_add(handle, inode);
1421        ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1422        if (inode->i_size > EXT3_I(inode)->i_disksize) {
1423                EXT3_I(inode)->i_disksize = inode->i_size;
1424                ret2 = ext3_mark_inode_dirty(handle, inode);
1425                if (!ret)
1426                        ret = ret2;
1427        }
1428
1429        ret2 = ext3_journal_stop(handle);
1430        if (!ret)
1431                ret = ret2;
1432        unlock_page(page);
1433        page_cache_release(page);
1434
1435        if (pos + len > inode->i_size)
1436                ext3_truncate_failed_write(inode);
1437        return ret ? ret : copied;
1438}
1439
1440/*
1441 * bmap() is special.  It gets used by applications such as lilo and by
1442 * the swapper to find the on-disk block of a specific piece of data.
1443 *
1444 * Naturally, this is dangerous if the block concerned is still in the
1445 * journal.  If somebody makes a swapfile on an ext3 data-journaling
1446 * filesystem and enables swap, then they may get a nasty shock when the
1447 * data getting swapped to that swapfile suddenly gets overwritten by
1448 * the original zero's written out previously to the journal and
1449 * awaiting writeback in the kernel's buffer cache.
1450 *
1451 * So, if we see any bmap calls here on a modified, data-journaled file,
1452 * take extra steps to flush any blocks which might be in the cache.
1453 */
1454static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1455{
1456        struct inode *inode = mapping->host;
1457        journal_t *journal;
1458        int err;
1459
1460        if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1461                /*
1462                 * This is a REALLY heavyweight approach, but the use of
1463                 * bmap on dirty files is expected to be extremely rare:
1464                 * only if we run lilo or swapon on a freshly made file
1465                 * do we expect this to happen.
1466                 *
1467                 * (bmap requires CAP_SYS_RAWIO so this does not
1468                 * represent an unprivileged user DOS attack --- we'd be
1469                 * in trouble if mortal users could trigger this path at
1470                 * will.)
1471                 *
1472                 * NB. EXT3_STATE_JDATA is not set on files other than
1473                 * regular files.  If somebody wants to bmap a directory
1474                 * or symlink and gets confused because the buffer
1475                 * hasn't yet been flushed to disk, they deserve
1476                 * everything they get.
1477                 */
1478
1479                ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1480                journal = EXT3_JOURNAL(inode);
1481                journal_lock_updates(journal);
1482                err = journal_flush(journal);
1483                journal_unlock_updates(journal);
1484
1485                if (err)
1486                        return 0;
1487        }
1488
1489        return generic_block_bmap(mapping,block,ext3_get_block);
1490}
1491
1492static int bget_one(handle_t *handle, struct buffer_head *bh)
1493{
1494        get_bh(bh);
1495        return 0;
1496}
1497
1498static int bput_one(handle_t *handle, struct buffer_head *bh)
1499{
1500        put_bh(bh);
1501        return 0;
1502}
1503
1504static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1505{
1506        return !buffer_mapped(bh);
1507}
1508
1509/*
1510 * Note that we always start a transaction even if we're not journalling
1511 * data.  This is to preserve ordering: any hole instantiation within
1512 * __block_write_full_page -> ext3_get_block() should be journalled
1513 * along with the data so we don't crash and then get metadata which
1514 * refers to old data.
1515 *
1516 * In all journalling modes block_write_full_page() will start the I/O.
1517 *
1518 * Problem:
1519 *
1520 *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1521 *              ext3_writepage()
1522 *
1523 * Similar for:
1524 *
1525 *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1526 *
1527 * Same applies to ext3_get_block().  We will deadlock on various things like
1528 * lock_journal and i_truncate_mutex.
1529 *
1530 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1531 * allocations fail.
1532 *
1533 * 16May01: If we're reentered then journal_current_handle() will be
1534 *          non-zero. We simply *return*.
1535 *
1536 * 1 July 2001: @@@ FIXME:
1537 *   In journalled data mode, a data buffer may be metadata against the
1538 *   current transaction.  But the same file is part of a shared mapping
1539 *   and someone does a writepage() on it.
1540 *
1541 *   We will move the buffer onto the async_data list, but *after* it has
1542 *   been dirtied. So there's a small window where we have dirty data on
1543 *   BJ_Metadata.
1544 *
1545 *   Note that this only applies to the last partial page in the file.  The
1546 *   bit which block_write_full_page() uses prepare/commit for.  (That's
1547 *   broken code anyway: it's wrong for msync()).
1548 *
1549 *   It's a rare case: affects the final partial page, for journalled data
1550 *   where the file is subject to bith write() and writepage() in the same
1551 *   transction.  To fix it we'll need a custom block_write_full_page().
1552 *   We'll probably need that anyway for journalling writepage() output.
1553 *
1554 * We don't honour synchronous mounts for writepage().  That would be
1555 * disastrous.  Any write() or metadata operation will sync the fs for
1556 * us.
1557 *
1558 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1559 * we don't need to open a transaction here.
1560 */
1561static int ext3_ordered_writepage(struct page *page,
1562                                struct writeback_control *wbc)
1563{
1564        struct inode *inode = page->mapping->host;
1565        struct buffer_head *page_bufs;
1566        handle_t *handle = NULL;
1567        int ret = 0;
1568        int err;
1569
1570        J_ASSERT(PageLocked(page));
1571        WARN_ON_ONCE(IS_RDONLY(inode));
1572
1573        /*
1574         * We give up here if we're reentered, because it might be for a
1575         * different filesystem.
1576         */
1577        if (ext3_journal_current_handle())
1578                goto out_fail;
1579
1580        if (!page_has_buffers(page)) {
1581                create_empty_buffers(page, inode->i_sb->s_blocksize,
1582                                (1 << BH_Dirty)|(1 << BH_Uptodate));
1583                page_bufs = page_buffers(page);
1584        } else {
1585                page_bufs = page_buffers(page);
1586                if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1587                                       NULL, buffer_unmapped)) {
1588                        /* Provide NULL get_block() to catch bugs if buffers
1589                         * weren't really mapped */
1590                        return block_write_full_page(page, NULL, wbc);
1591                }
1592        }
1593        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1594
1595        if (IS_ERR(handle)) {
1596                ret = PTR_ERR(handle);
1597                goto out_fail;
1598        }
1599
1600        walk_page_buffers(handle, page_bufs, 0,
1601                        PAGE_CACHE_SIZE, NULL, bget_one);
1602
1603        ret = block_write_full_page(page, ext3_get_block, wbc);
1604
1605        /*
1606         * The page can become unlocked at any point now, and
1607         * truncate can then come in and change things.  So we
1608         * can't touch *page from now on.  But *page_bufs is
1609         * safe due to elevated refcount.
1610         */
1611
1612        /*
1613         * And attach them to the current transaction.  But only if
1614         * block_write_full_page() succeeded.  Otherwise they are unmapped,
1615         * and generally junk.
1616         */
1617        if (ret == 0) {
1618                err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1619                                        NULL, journal_dirty_data_fn);
1620                if (!ret)
1621                        ret = err;
1622        }
1623        walk_page_buffers(handle, page_bufs, 0,
1624                        PAGE_CACHE_SIZE, NULL, bput_one);
1625        err = ext3_journal_stop(handle);
1626        if (!ret)
1627                ret = err;
1628        return ret;
1629
1630out_fail:
1631        redirty_page_for_writepage(wbc, page);
1632        unlock_page(page);
1633        return ret;
1634}
1635
1636static int ext3_writeback_writepage(struct page *page,
1637                                struct writeback_control *wbc)
1638{
1639        struct inode *inode = page->mapping->host;
1640        handle_t *handle = NULL;
1641        int ret = 0;
1642        int err;
1643
1644        J_ASSERT(PageLocked(page));
1645        WARN_ON_ONCE(IS_RDONLY(inode));
1646
1647        if (ext3_journal_current_handle())
1648                goto out_fail;
1649
1650        if (page_has_buffers(page)) {
1651                if (!walk_page_buffers(NULL, page_buffers(page), 0,
1652                                      PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1653                        /* Provide NULL get_block() to catch bugs if buffers
1654                         * weren't really mapped */
1655                        return block_write_full_page(page, NULL, wbc);
1656                }
1657        }
1658
1659        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1660        if (IS_ERR(handle)) {
1661                ret = PTR_ERR(handle);
1662                goto out_fail;
1663        }
1664
1665        ret = block_write_full_page(page, ext3_get_block, wbc);
1666
1667        err = ext3_journal_stop(handle);
1668        if (!ret)
1669                ret = err;
1670        return ret;
1671
1672out_fail:
1673        redirty_page_for_writepage(wbc, page);
1674        unlock_page(page);
1675        return ret;
1676}
1677
1678static int ext3_journalled_writepage(struct page *page,
1679                                struct writeback_control *wbc)
1680{
1681        struct inode *inode = page->mapping->host;
1682        handle_t *handle = NULL;
1683        int ret = 0;
1684        int err;
1685
1686        J_ASSERT(PageLocked(page));
1687        WARN_ON_ONCE(IS_RDONLY(inode));
1688
1689        if (ext3_journal_current_handle())
1690                goto no_write;
1691
1692        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1693        if (IS_ERR(handle)) {
1694                ret = PTR_ERR(handle);
1695                goto no_write;
1696        }
1697
1698        if (!page_has_buffers(page) || PageChecked(page)) {
1699                /*
1700                 * It's mmapped pagecache.  Add buffers and journal it.  There
1701                 * doesn't seem much point in redirtying the page here.
1702                 */
1703                ClearPageChecked(page);
1704                ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1705                                          ext3_get_block);
1706                if (ret != 0) {
1707                        ext3_journal_stop(handle);
1708                        goto out_unlock;
1709                }
1710                ret = walk_page_buffers(handle, page_buffers(page), 0,
1711                        PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1712
1713                err = walk_page_buffers(handle, page_buffers(page), 0,
1714                                PAGE_CACHE_SIZE, NULL, write_end_fn);
1715                if (ret == 0)
1716                        ret = err;
1717                ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1718                unlock_page(page);
1719        } else {
1720                /*
1721                 * It may be a page full of checkpoint-mode buffers.  We don't
1722                 * really know unless we go poke around in the buffer_heads.
1723                 * But block_write_full_page will do the right thing.
1724                 */
1725                ret = block_write_full_page(page, ext3_get_block, wbc);
1726        }
1727        err = ext3_journal_stop(handle);
1728        if (!ret)
1729                ret = err;
1730out:
1731        return ret;
1732
1733no_write:
1734        redirty_page_for_writepage(wbc, page);
1735out_unlock:
1736        unlock_page(page);
1737        goto out;
1738}
1739
1740static int ext3_readpage(struct file *file, struct page *page)
1741{
1742        return mpage_readpage(page, ext3_get_block);
1743}
1744
1745static int
1746ext3_readpages(struct file *file, struct address_space *mapping,
1747                struct list_head *pages, unsigned nr_pages)
1748{
1749        return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1750}
1751
1752static void ext3_invalidatepage(struct page *page, unsigned long offset)
1753{
1754        journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1755
1756        /*
1757         * If it's a full truncate we just forget about the pending dirtying
1758         */
1759        if (offset == 0)
1760                ClearPageChecked(page);
1761
1762        journal_invalidatepage(journal, page, offset);
1763}
1764
1765static int ext3_releasepage(struct page *page, gfp_t wait)
1766{
1767        journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1768
1769        WARN_ON(PageChecked(page));
1770        if (!page_has_buffers(page))
1771                return 0;
1772        return journal_try_to_free_buffers(journal, page, wait);
1773}
1774
1775/*
1776 * If the O_DIRECT write will extend the file then add this inode to the
1777 * orphan list.  So recovery will truncate it back to the original size
1778 * if the machine crashes during the write.
1779 *
1780 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1781 * crashes then stale disk data _may_ be exposed inside the file. But current
1782 * VFS code falls back into buffered path in that case so we are safe.
1783 */
1784static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1785                        const struct iovec *iov, loff_t offset,
1786                        unsigned long nr_segs)
1787{
1788        struct file *file = iocb->ki_filp;
1789        struct inode *inode = file->f_mapping->host;
1790        struct ext3_inode_info *ei = EXT3_I(inode);
1791        handle_t *handle;
1792        ssize_t ret;
1793        int orphan = 0;
1794        size_t count = iov_length(iov, nr_segs);
1795        int retries = 0;
1796
1797        if (rw == WRITE) {
1798                loff_t final_size = offset + count;
1799
1800                if (final_size > inode->i_size) {
1801                        /* Credits for sb + inode write */
1802                        handle = ext3_journal_start(inode, 2);
1803                        if (IS_ERR(handle)) {
1804                                ret = PTR_ERR(handle);
1805                                goto out;
1806                        }
1807                        ret = ext3_orphan_add(handle, inode);
1808                        if (ret) {
1809                                ext3_journal_stop(handle);
1810                                goto out;
1811                        }
1812                        orphan = 1;
1813                        ei->i_disksize = inode->i_size;
1814                        ext3_journal_stop(handle);
1815                }
1816        }
1817
1818retry:
1819        ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1820                                 offset, nr_segs,
1821                                 ext3_get_block, NULL);
1822        /*
1823         * In case of error extending write may have instantiated a few
1824         * blocks outside i_size. Trim these off again.
1825         */
1826        if (unlikely((rw & WRITE) && ret < 0)) {
1827                loff_t isize = i_size_read(inode);
1828                loff_t end = offset + iov_length(iov, nr_segs);
1829
1830                if (end > isize)
1831                        vmtruncate(inode, isize);
1832        }
1833        if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1834                goto retry;
1835
1836        if (orphan) {
1837                int err;
1838
1839                /* Credits for sb + inode write */
1840                handle = ext3_journal_start(inode, 2);
1841                if (IS_ERR(handle)) {
1842                        /* This is really bad luck. We've written the data
1843                         * but cannot extend i_size. Truncate allocated blocks
1844                         * and pretend the write failed... */
1845                        ext3_truncate(inode);
1846                        ret = PTR_ERR(handle);
1847                        goto out;
1848                }
1849                if (inode->i_nlink)
1850                        ext3_orphan_del(handle, inode);
1851                if (ret > 0) {
1852                        loff_t end = offset + ret;
1853                        if (end > inode->i_size) {
1854                                ei->i_disksize = end;
1855                                i_size_write(inode, end);
1856                                /*
1857                                 * We're going to return a positive `ret'
1858                                 * here due to non-zero-length I/O, so there's
1859                                 * no way of reporting error returns from
1860                                 * ext3_mark_inode_dirty() to userspace.  So
1861                                 * ignore it.
1862                                 */
1863                                ext3_mark_inode_dirty(handle, inode);
1864                        }
1865                }
1866                err = ext3_journal_stop(handle);
1867                if (ret == 0)
1868                        ret = err;
1869        }
1870out:
1871        return ret;
1872}
1873
1874/*
1875 * Pages can be marked dirty completely asynchronously from ext3's journalling
1876 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1877 * much here because ->set_page_dirty is called under VFS locks.  The page is
1878 * not necessarily locked.
1879 *
1880 * We cannot just dirty the page and leave attached buffers clean, because the
1881 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1882 * or jbddirty because all the journalling code will explode.
1883 *
1884 * So what we do is to mark the page "pending dirty" and next time writepage
1885 * is called, propagate that into the buffers appropriately.
1886 */
1887static int ext3_journalled_set_page_dirty(struct page *page)
1888{
1889        SetPageChecked(page);
1890        return __set_page_dirty_nobuffers(page);
1891}
1892
1893static const struct address_space_operations ext3_ordered_aops = {
1894        .readpage               = ext3_readpage,
1895        .readpages              = ext3_readpages,
1896        .writepage              = ext3_ordered_writepage,
1897        .sync_page              = block_sync_page,
1898        .write_begin            = ext3_write_begin,
1899        .write_end              = ext3_ordered_write_end,
1900        .bmap                   = ext3_bmap,
1901        .invalidatepage         = ext3_invalidatepage,
1902        .releasepage            = ext3_releasepage,
1903        .direct_IO              = ext3_direct_IO,
1904        .migratepage            = buffer_migrate_page,
1905        .is_partially_uptodate  = block_is_partially_uptodate,
1906        .error_remove_page      = generic_error_remove_page,
1907};
1908
1909static const struct address_space_operations ext3_writeback_aops = {
1910        .readpage               = ext3_readpage,
1911        .readpages              = ext3_readpages,
1912        .writepage              = ext3_writeback_writepage,
1913        .sync_page              = block_sync_page,
1914        .write_begin            = ext3_write_begin,
1915        .write_end              = ext3_writeback_write_end,
1916        .bmap                   = ext3_bmap,
1917        .invalidatepage         = ext3_invalidatepage,
1918        .releasepage            = ext3_releasepage,
1919        .direct_IO              = ext3_direct_IO,
1920        .migratepage            = buffer_migrate_page,
1921        .is_partially_uptodate  = block_is_partially_uptodate,
1922        .error_remove_page      = generic_error_remove_page,
1923};
1924
1925static const struct address_space_operations ext3_journalled_aops = {
1926        .readpage               = ext3_readpage,
1927        .readpages              = ext3_readpages,
1928        .writepage              = ext3_journalled_writepage,
1929        .sync_page              = block_sync_page,
1930        .write_begin            = ext3_write_begin,
1931        .write_end              = ext3_journalled_write_end,
1932        .set_page_dirty         = ext3_journalled_set_page_dirty,
1933        .bmap                   = ext3_bmap,
1934        .invalidatepage         = ext3_invalidatepage,
1935        .releasepage            = ext3_releasepage,
1936        .is_partially_uptodate  = block_is_partially_uptodate,
1937        .error_remove_page      = generic_error_remove_page,
1938};
1939
1940void ext3_set_aops(struct inode *inode)
1941{
1942        if (ext3_should_order_data(inode))
1943                inode->i_mapping->a_ops = &ext3_ordered_aops;
1944        else if (ext3_should_writeback_data(inode))
1945                inode->i_mapping->a_ops = &ext3_writeback_aops;
1946        else
1947                inode->i_mapping->a_ops = &ext3_journalled_aops;
1948}
1949
1950/*
1951 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1952 * up to the end of the block which corresponds to `from'.
1953 * This required during truncate. We need to physically zero the tail end
1954 * of that block so it doesn't yield old data if the file is later grown.
1955 */
1956static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1957                struct address_space *mapping, loff_t from)
1958{
1959        ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1960        unsigned offset = from & (PAGE_CACHE_SIZE-1);
1961        unsigned blocksize, iblock, length, pos;
1962        struct inode *inode = mapping->host;
1963        struct buffer_head *bh;
1964        int err = 0;
1965
1966        blocksize = inode->i_sb->s_blocksize;
1967        length = blocksize - (offset & (blocksize - 1));
1968        iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1969
1970        if (!page_has_buffers(page))
1971                create_empty_buffers(page, blocksize, 0);
1972
1973        /* Find the buffer that contains "offset" */
1974        bh = page_buffers(page);
1975        pos = blocksize;
1976        while (offset >= pos) {
1977                bh = bh->b_this_page;
1978                iblock++;
1979                pos += blocksize;
1980        }
1981
1982        err = 0;
1983        if (buffer_freed(bh)) {
1984                BUFFER_TRACE(bh, "freed: skip");
1985                goto unlock;
1986        }
1987
1988        if (!buffer_mapped(bh)) {
1989                BUFFER_TRACE(bh, "unmapped");
1990                ext3_get_block(inode, iblock, bh, 0);
1991                /* unmapped? It's a hole - nothing to do */
1992                if (!buffer_mapped(bh)) {
1993                        BUFFER_TRACE(bh, "still unmapped");
1994                        goto unlock;
1995                }
1996        }
1997
1998        /* Ok, it's mapped. Make sure it's up-to-date */
1999        if (PageUptodate(page))
2000                set_buffer_uptodate(bh);
2001
2002        if (!buffer_uptodate(bh)) {
2003                err = -EIO;
2004                ll_rw_block(READ, 1, &bh);
2005                wait_on_buffer(bh);
2006                /* Uhhuh. Read error. Complain and punt. */
2007                if (!buffer_uptodate(bh))
2008                        goto unlock;
2009        }
2010
2011        if (ext3_should_journal_data(inode)) {
2012                BUFFER_TRACE(bh, "get write access");
2013                err = ext3_journal_get_write_access(handle, bh);
2014                if (err)
2015                        goto unlock;
2016        }
2017
2018        zero_user(page, offset, length);
2019        BUFFER_TRACE(bh, "zeroed end of block");
2020
2021        err = 0;
2022        if (ext3_should_journal_data(inode)) {
2023                err = ext3_journal_dirty_metadata(handle, bh);
2024        } else {
2025                if (ext3_should_order_data(inode))
2026                        err = ext3_journal_dirty_data(handle, bh);
2027                mark_buffer_dirty(bh);
2028        }
2029
2030unlock:
2031        unlock_page(page);
2032        page_cache_release(page);
2033        return err;
2034}
2035
2036/*
2037 * Probably it should be a library function... search for first non-zero word
2038 * or memcmp with zero_page, whatever is better for particular architecture.
2039 * Linus?
2040 */
2041static inline int all_zeroes(__le32 *p, __le32 *q)
2042{
2043        while (p < q)
2044                if (*p++)
2045                        return 0;
2046        return 1;
2047}
2048
2049/**
2050 *      ext3_find_shared - find the indirect blocks for partial truncation.
2051 *      @inode:   inode in question
2052 *      @depth:   depth of the affected branch
2053 *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2054 *      @chain:   place to store the pointers to partial indirect blocks
2055 *      @top:     place to the (detached) top of branch
2056 *
2057 *      This is a helper function used by ext3_truncate().
2058 *
2059 *      When we do truncate() we may have to clean the ends of several
2060 *      indirect blocks but leave the blocks themselves alive. Block is
2061 *      partially truncated if some data below the new i_size is refered
2062 *      from it (and it is on the path to the first completely truncated
2063 *      data block, indeed).  We have to free the top of that path along
2064 *      with everything to the right of the path. Since no allocation
2065 *      past the truncation point is possible until ext3_truncate()
2066 *      finishes, we may safely do the latter, but top of branch may
2067 *      require special attention - pageout below the truncation point
2068 *      might try to populate it.
2069 *
2070 *      We atomically detach the top of branch from the tree, store the
2071 *      block number of its root in *@top, pointers to buffer_heads of
2072 *      partially truncated blocks - in @chain[].bh and pointers to
2073 *      their last elements that should not be removed - in
2074 *      @chain[].p. Return value is the pointer to last filled element
2075 *      of @chain.
2076 *
2077 *      The work left to caller to do the actual freeing of subtrees:
2078 *              a) free the subtree starting from *@top
2079 *              b) free the subtrees whose roots are stored in
2080 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2081 *              c) free the subtrees growing from the inode past the @chain[0].
2082 *                      (no partially truncated stuff there).  */
2083
2084static Indirect *ext3_find_shared(struct inode *inode, int depth,
2085                        int offsets[4], Indirect chain[4], __le32 *top)
2086{
2087        Indirect *partial, *p;
2088        int k, err;
2089
2090        *top = 0;
2091        /* Make k index the deepest non-null offset + 1 */
2092        for (k = depth; k > 1 && !offsets[k-1]; k--)
2093                ;
2094        partial = ext3_get_branch(inode, k, offsets, chain, &err);
2095        /* Writer: pointers */
2096        if (!partial)
2097                partial = chain + k-1;
2098        /*
2099         * If the branch acquired continuation since we've looked at it -
2100         * fine, it should all survive and (new) top doesn't belong to us.
2101         */
2102        if (!partial->key && *partial->p)
2103                /* Writer: end */
2104                goto no_top;
2105        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2106                ;
2107        /*
2108         * OK, we've found the last block that must survive. The rest of our
2109         * branch should be detached before unlocking. However, if that rest
2110         * of branch is all ours and does not grow immediately from the inode
2111         * it's easier to cheat and just decrement partial->p.
2112         */
2113        if (p == chain + k - 1 && p > chain) {
2114                p->p--;
2115        } else {
2116                *top = *p->p;
2117                /* Nope, don't do this in ext3.  Must leave the tree intact */
2118#if 0
2119                *p->p = 0;
2120#endif
2121        }
2122        /* Writer: end */
2123
2124        while(partial > p) {
2125                brelse(partial->bh);
2126                partial--;
2127        }
2128no_top:
2129        return partial;
2130}
2131
2132/*
2133 * Zero a number of block pointers in either an inode or an indirect block.
2134 * If we restart the transaction we must again get write access to the
2135 * indirect block for further modification.
2136 *
2137 * We release `count' blocks on disk, but (last - first) may be greater
2138 * than `count' because there can be holes in there.
2139 */
2140static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2141                struct buffer_head *bh, ext3_fsblk_t block_to_free,
2142                unsigned long count, __le32 *first, __le32 *last)
2143{
2144        __le32 *p;
2145        if (try_to_extend_transaction(handle, inode)) {
2146                if (bh) {
2147                        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2148                        if (ext3_journal_dirty_metadata(handle, bh))
2149                                return;
2150                }
2151                ext3_mark_inode_dirty(handle, inode);
2152                truncate_restart_transaction(handle, inode);
2153                if (bh) {
2154                        BUFFER_TRACE(bh, "retaking write access");
2155                        if (ext3_journal_get_write_access(handle, bh))
2156                                return;
2157                }
2158        }
2159
2160        /*
2161         * Any buffers which are on the journal will be in memory. We find
2162         * them on the hash table so journal_revoke() will run journal_forget()
2163         * on them.  We've already detached each block from the file, so
2164         * bforget() in journal_forget() should be safe.
2165         *
2166         * AKPM: turn on bforget in journal_forget()!!!
2167         */
2168        for (p = first; p < last; p++) {
2169                u32 nr = le32_to_cpu(*p);
2170                if (nr) {
2171                        struct buffer_head *bh;
2172
2173                        *p = 0;
2174                        bh = sb_find_get_block(inode->i_sb, nr);
2175                        ext3_forget(handle, 0, inode, bh, nr);
2176                }
2177        }
2178
2179        ext3_free_blocks(handle, inode, block_to_free, count);
2180}
2181
2182/**
2183 * ext3_free_data - free a list of data blocks
2184 * @handle:     handle for this transaction
2185 * @inode:      inode we are dealing with
2186 * @this_bh:    indirect buffer_head which contains *@first and *@last
2187 * @first:      array of block numbers
2188 * @last:       points immediately past the end of array
2189 *
2190 * We are freeing all blocks refered from that array (numbers are stored as
2191 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2192 *
2193 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2194 * blocks are contiguous then releasing them at one time will only affect one
2195 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2196 * actually use a lot of journal space.
2197 *
2198 * @this_bh will be %NULL if @first and @last point into the inode's direct
2199 * block pointers.
2200 */
2201static void ext3_free_data(handle_t *handle, struct inode *inode,
2202                           struct buffer_head *this_bh,
2203                           __le32 *first, __le32 *last)
2204{
2205        ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2206        unsigned long count = 0;            /* Number of blocks in the run */
2207        __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2208                                               corresponding to
2209                                               block_to_free */
2210        ext3_fsblk_t nr;                    /* Current block # */
2211        __le32 *p;                          /* Pointer into inode/ind
2212                                               for current block */
2213        int err;
2214
2215        if (this_bh) {                          /* For indirect block */
2216                BUFFER_TRACE(this_bh, "get_write_access");
2217                err = ext3_journal_get_write_access(handle, this_bh);
2218                /* Important: if we can't update the indirect pointers
2219                 * to the blocks, we can't free them. */
2220                if (err)
2221                        return;
2222        }
2223
2224        for (p = first; p < last; p++) {
2225                nr = le32_to_cpu(*p);
2226                if (nr) {
2227                        /* accumulate blocks to free if they're contiguous */
2228                        if (count == 0) {
2229                                block_to_free = nr;
2230                                block_to_free_p = p;
2231                                count = 1;
2232                        } else if (nr == block_to_free + count) {
2233                                count++;
2234                        } else {
2235                                ext3_clear_blocks(handle, inode, this_bh,
2236                                                  block_to_free,
2237                                                  count, block_to_free_p, p);
2238                                block_to_free = nr;
2239                                block_to_free_p = p;
2240                                count = 1;
2241                        }
2242                }
2243        }
2244
2245        if (count > 0)
2246                ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2247                                  count, block_to_free_p, p);
2248
2249        if (this_bh) {
2250                BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2251
2252                /*
2253                 * The buffer head should have an attached journal head at this
2254                 * point. However, if the data is corrupted and an indirect
2255                 * block pointed to itself, it would have been detached when
2256                 * the block was cleared. Check for this instead of OOPSing.
2257                 */
2258                if (bh2jh(this_bh))
2259                        ext3_journal_dirty_metadata(handle, this_bh);
2260                else
2261                        ext3_error(inode->i_sb, "ext3_free_data",
2262                                   "circular indirect block detected, "
2263                                   "inode=%lu, block=%llu",
2264                                   inode->i_ino,
2265                                   (unsigned long long)this_bh->b_blocknr);
2266        }
2267}
2268
2269/**
2270 *      ext3_free_branches - free an array of branches
2271 *      @handle: JBD handle for this transaction
2272 *      @inode: inode we are dealing with
2273 *      @parent_bh: the buffer_head which contains *@first and *@last
2274 *      @first: array of block numbers
2275 *      @last:  pointer immediately past the end of array
2276 *      @depth: depth of the branches to free
2277 *
2278 *      We are freeing all blocks refered from these branches (numbers are
2279 *      stored as little-endian 32-bit) and updating @inode->i_blocks
2280 *      appropriately.
2281 */
2282static void ext3_free_branches(handle_t *handle, struct inode *inode,
2283                               struct buffer_head *parent_bh,
2284                               __le32 *first, __le32 *last, int depth)
2285{
2286        ext3_fsblk_t nr;
2287        __le32 *p;
2288
2289        if (is_handle_aborted(handle))
2290                return;
2291
2292        if (depth--) {
2293                struct buffer_head *bh;
2294                int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2295                p = last;
2296                while (--p >= first) {
2297                        nr = le32_to_cpu(*p);
2298                        if (!nr)
2299                                continue;               /* A hole */
2300
2301                        /* Go read the buffer for the next level down */
2302                        bh = sb_bread(inode->i_sb, nr);
2303
2304                        /*
2305                         * A read failure? Report error and clear slot
2306                         * (should be rare).
2307                         */
2308                        if (!bh) {
2309                                ext3_error(inode->i_sb, "ext3_free_branches",
2310                                           "Read failure, inode=%lu, block="E3FSBLK,
2311                                           inode->i_ino, nr);
2312                                continue;
2313                        }
2314
2315                        /* This zaps the entire block.  Bottom up. */
2316                        BUFFER_TRACE(bh, "free child branches");
2317                        ext3_free_branches(handle, inode, bh,
2318                                           (__le32*)bh->b_data,
2319                                           (__le32*)bh->b_data + addr_per_block,
2320                                           depth);
2321
2322                        /*
2323                         * Everything below this this pointer has been
2324                         * released.  Now let this top-of-subtree go.
2325                         *
2326                         * We want the freeing of this indirect block to be
2327                         * atomic in the journal with the updating of the
2328                         * bitmap block which owns it.  So make some room in
2329                         * the journal.
2330                         *
2331                         * We zero the parent pointer *after* freeing its
2332                         * pointee in the bitmaps, so if extend_transaction()
2333                         * for some reason fails to put the bitmap changes and
2334                         * the release into the same transaction, recovery
2335                         * will merely complain about releasing a free block,
2336                         * rather than leaking blocks.
2337                         */
2338                        if (is_handle_aborted(handle))
2339                                return;
2340                        if (try_to_extend_transaction(handle, inode)) {
2341                                ext3_mark_inode_dirty(handle, inode);
2342                                truncate_restart_transaction(handle, inode);
2343                        }
2344
2345                        /*
2346                         * We've probably journalled the indirect block several
2347                         * times during the truncate.  But it's no longer
2348                         * needed and we now drop it from the transaction via
2349                         * journal_revoke().
2350                         *
2351                         * That's easy if it's exclusively part of this
2352                         * transaction.  But if it's part of the committing
2353                         * transaction then journal_forget() will simply
2354                         * brelse() it.  That means that if the underlying
2355                         * block is reallocated in ext3_get_block(),
2356                         * unmap_underlying_metadata() will find this block
2357                         * and will try to get rid of it.  damn, damn. Thus
2358                         * we don't allow a block to be reallocated until
2359                         * a transaction freeing it has fully committed.
2360                         *
2361                         * We also have to make sure journal replay after a
2362                         * crash does not overwrite non-journaled data blocks
2363                         * with old metadata when the block got reallocated for
2364                         * data.  Thus we have to store a revoke record for a
2365                         * block in the same transaction in which we free the
2366                         * block.
2367                         */
2368                        ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2369
2370                        ext3_free_blocks(handle, inode, nr, 1);
2371
2372                        if (parent_bh) {
2373                                /*
2374                                 * The block which we have just freed is
2375                                 * pointed to by an indirect block: journal it
2376                                 */
2377                                BUFFER_TRACE(parent_bh, "get_write_access");
2378                                if (!ext3_journal_get_write_access(handle,
2379                                                                   parent_bh)){
2380                                        *p = 0;
2381                                        BUFFER_TRACE(parent_bh,
2382                                        "call ext3_journal_dirty_metadata");
2383                                        ext3_journal_dirty_metadata(handle,
2384                                                                    parent_bh);
2385                                }
2386                        }
2387                }
2388        } else {
2389                /* We have reached the bottom of the tree. */
2390                BUFFER_TRACE(parent_bh, "free data blocks");
2391                ext3_free_data(handle, inode, parent_bh, first, last);
2392        }
2393}
2394
2395int ext3_can_truncate(struct inode *inode)
2396{
2397        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2398                return 0;
2399        if (S_ISREG(inode->i_mode))
2400                return 1;
2401        if (S_ISDIR(inode->i_mode))
2402                return 1;
2403        if (S_ISLNK(inode->i_mode))
2404                return !ext3_inode_is_fast_symlink(inode);
2405        return 0;
2406}
2407
2408/*
2409 * ext3_truncate()
2410 *
2411 * We block out ext3_get_block() block instantiations across the entire
2412 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2413 * simultaneously on behalf of the same inode.
2414 *
2415 * As we work through the truncate and commmit bits of it to the journal there
2416 * is one core, guiding principle: the file's tree must always be consistent on
2417 * disk.  We must be able to restart the truncate after a crash.
2418 *
2419 * The file's tree may be transiently inconsistent in memory (although it
2420 * probably isn't), but whenever we close off and commit a journal transaction,
2421 * the contents of (the filesystem + the journal) must be consistent and
2422 * restartable.  It's pretty simple, really: bottom up, right to left (although
2423 * left-to-right works OK too).
2424 *
2425 * Note that at recovery time, journal replay occurs *before* the restart of
2426 * truncate against the orphan inode list.
2427 *
2428 * The committed inode has the new, desired i_size (which is the same as
2429 * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2430 * that this inode's truncate did not complete and it will again call
2431 * ext3_truncate() to have another go.  So there will be instantiated blocks
2432 * to the right of the truncation point in a crashed ext3 filesystem.  But
2433 * that's fine - as long as they are linked from the inode, the post-crash
2434 * ext3_truncate() run will find them and release them.
2435 */
2436void ext3_truncate(struct inode *inode)
2437{
2438        handle_t *handle;
2439        struct ext3_inode_info *ei = EXT3_I(inode);
2440        __le32 *i_data = ei->i_data;
2441        int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2442        struct address_space *mapping = inode->i_mapping;
2443        int offsets[4];
2444        Indirect chain[4];
2445        Indirect *partial;
2446        __le32 nr = 0;
2447        int n;
2448        long last_block;
2449        unsigned blocksize = inode->i_sb->s_blocksize;
2450        struct page *page;
2451
2452        if (!ext3_can_truncate(inode))
2453                goto out_notrans;
2454
2455        if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2456                ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2457
2458        /*
2459         * We have to lock the EOF page here, because lock_page() nests
2460         * outside journal_start().
2461         */
2462        if ((inode->i_size & (blocksize - 1)) == 0) {
2463                /* Block boundary? Nothing to do */
2464                page = NULL;
2465        } else {
2466                page = grab_cache_page(mapping,
2467                                inode->i_size >> PAGE_CACHE_SHIFT);
2468                if (!page)
2469                        goto out_notrans;
2470        }
2471
2472        handle = start_transaction(inode);
2473        if (IS_ERR(handle)) {
2474                if (page) {
2475                        clear_highpage(page);
2476                        flush_dcache_page(page);
2477                        unlock_page(page);
2478                        page_cache_release(page);
2479                }
2480                goto out_notrans;
2481        }
2482
2483        last_block = (inode->i_size + blocksize-1)
2484                                        >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2485
2486        if (page)
2487                ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2488
2489        n = ext3_block_to_path(inode, last_block, offsets, NULL);
2490        if (n == 0)
2491                goto out_stop;  /* error */
2492
2493        /*
2494         * OK.  This truncate is going to happen.  We add the inode to the
2495         * orphan list, so that if this truncate spans multiple transactions,
2496         * and we crash, we will resume the truncate when the filesystem
2497         * recovers.  It also marks the inode dirty, to catch the new size.
2498         *
2499         * Implication: the file must always be in a sane, consistent
2500         * truncatable state while each transaction commits.
2501         */
2502        if (ext3_orphan_add(handle, inode))
2503                goto out_stop;
2504
2505        /*
2506         * The orphan list entry will now protect us from any crash which
2507         * occurs before the truncate completes, so it is now safe to propagate
2508         * the new, shorter inode size (held for now in i_size) into the
2509         * on-disk inode. We do this via i_disksize, which is the value which
2510         * ext3 *really* writes onto the disk inode.
2511         */
2512        ei->i_disksize = inode->i_size;
2513
2514        /*
2515         * From here we block out all ext3_get_block() callers who want to
2516         * modify the block allocation tree.
2517         */
2518        mutex_lock(&ei->truncate_mutex);
2519
2520        if (n == 1) {           /* direct blocks */
2521                ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2522                               i_data + EXT3_NDIR_BLOCKS);
2523                goto do_indirects;
2524        }
2525
2526        partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2527        /* Kill the top of shared branch (not detached) */
2528        if (nr) {
2529                if (partial == chain) {
2530                        /* Shared branch grows from the inode */
2531                        ext3_free_branches(handle, inode, NULL,
2532                                           &nr, &nr+1, (chain+n-1) - partial);
2533                        *partial->p = 0;
2534                        /*
2535                         * We mark the inode dirty prior to restart,
2536                         * and prior to stop.  No need for it here.
2537                         */
2538                } else {
2539                        /* Shared branch grows from an indirect block */
2540                        ext3_free_branches(handle, inode, partial->bh,
2541                                        partial->p,
2542                                        partial->p+1, (chain+n-1) - partial);
2543                }
2544        }
2545        /* Clear the ends of indirect blocks on the shared branch */
2546        while (partial > chain) {
2547                ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2548                                   (__le32*)partial->bh->b_data+addr_per_block,
2549                                   (chain+n-1) - partial);
2550                BUFFER_TRACE(partial->bh, "call brelse");
2551                brelse (partial->bh);
2552                partial--;
2553        }
2554do_indirects:
2555        /* Kill the remaining (whole) subtrees */
2556        switch (offsets[0]) {
2557        default:
2558                nr = i_data[EXT3_IND_BLOCK];
2559                if (nr) {
2560                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2561                        i_data[EXT3_IND_BLOCK] = 0;
2562                }
2563        case EXT3_IND_BLOCK:
2564                nr = i_data[EXT3_DIND_BLOCK];
2565                if (nr) {
2566                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2567                        i_data[EXT3_DIND_BLOCK] = 0;
2568                }
2569        case EXT3_DIND_BLOCK:
2570                nr = i_data[EXT3_TIND_BLOCK];
2571                if (nr) {
2572                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2573                        i_data[EXT3_TIND_BLOCK] = 0;
2574                }
2575        case EXT3_TIND_BLOCK:
2576                ;
2577        }
2578
2579        ext3_discard_reservation(inode);
2580
2581        mutex_unlock(&ei->truncate_mutex);
2582        inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2583        ext3_mark_inode_dirty(handle, inode);
2584
2585        /*
2586         * In a multi-transaction truncate, we only make the final transaction
2587         * synchronous
2588         */
2589        if (IS_SYNC(inode))
2590                handle->h_sync = 1;
2591out_stop:
2592        /*
2593         * If this was a simple ftruncate(), and the file will remain alive
2594         * then we need to clear up the orphan record which we created above.
2595         * However, if this was a real unlink then we were called by
2596         * ext3_evict_inode(), and we allow that function to clean up the
2597         * orphan info for us.
2598         */
2599        if (inode->i_nlink)
2600                ext3_orphan_del(handle, inode);
2601
2602        ext3_journal_stop(handle);
2603        return;
2604out_notrans:
2605        /*
2606         * Delete the inode from orphan list so that it doesn't stay there
2607         * forever and trigger assertion on umount.
2608         */
2609        if (inode->i_nlink)
2610                ext3_orphan_del(NULL, inode);
2611}
2612
2613static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2614                unsigned long ino, struct ext3_iloc *iloc)
2615{
2616        unsigned long block_group;
2617        unsigned long offset;
2618        ext3_fsblk_t block;
2619        struct ext3_group_desc *gdp;
2620
2621        if (!ext3_valid_inum(sb, ino)) {
2622                /*
2623                 * This error is already checked for in namei.c unless we are
2624                 * looking at an NFS filehandle, in which case no error
2625                 * report is needed
2626                 */
2627                return 0;
2628        }
2629
2630        block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2631        gdp = ext3_get_group_desc(sb, block_group, NULL);
2632        if (!gdp)
2633                return 0;
2634        /*
2635         * Figure out the offset within the block group inode table
2636         */
2637        offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2638                EXT3_INODE_SIZE(sb);
2639        block = le32_to_cpu(gdp->bg_inode_table) +
2640                (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2641
2642        iloc->block_group = block_group;
2643        iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2644        return block;
2645}
2646
2647/*
2648 * ext3_get_inode_loc returns with an extra refcount against the inode's
2649 * underlying buffer_head on success. If 'in_mem' is true, we have all
2650 * data in memory that is needed to recreate the on-disk version of this
2651 * inode.
2652 */
2653static int __ext3_get_inode_loc(struct inode *inode,
2654                                struct ext3_iloc *iloc, int in_mem)
2655{
2656        ext3_fsblk_t block;
2657        struct buffer_head *bh;
2658
2659        block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2660        if (!block)
2661                return -EIO;
2662
2663        bh = sb_getblk(inode->i_sb, block);
2664        if (!bh) {
2665                ext3_error (inode->i_sb, "ext3_get_inode_loc",
2666                                "unable to read inode block - "
2667                                "inode=%lu, block="E3FSBLK,
2668                                 inode->i_ino, block);
2669                return -EIO;
2670        }
2671        if (!buffer_uptodate(bh)) {
2672                lock_buffer(bh);
2673
2674                /*
2675                 * If the buffer has the write error flag, we have failed
2676                 * to write out another inode in the same block.  In this
2677                 * case, we don't have to read the block because we may
2678                 * read the old inode data successfully.
2679                 */
2680                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2681                        set_buffer_uptodate(bh);
2682
2683                if (buffer_uptodate(bh)) {
2684                        /* someone brought it uptodate while we waited */
2685                        unlock_buffer(bh);
2686                        goto has_buffer;
2687                }
2688
2689                /*
2690                 * If we have all information of the inode in memory and this
2691                 * is the only valid inode in the block, we need not read the
2692                 * block.
2693                 */
2694                if (in_mem) {
2695                        struct buffer_head *bitmap_bh;
2696                        struct ext3_group_desc *desc;
2697                        int inodes_per_buffer;
2698                        int inode_offset, i;
2699                        int block_group;
2700                        int start;
2701
2702                        block_group = (inode->i_ino - 1) /
2703                                        EXT3_INODES_PER_GROUP(inode->i_sb);
2704                        inodes_per_buffer = bh->b_size /
2705                                EXT3_INODE_SIZE(inode->i_sb);
2706                        inode_offset = ((inode->i_ino - 1) %
2707                                        EXT3_INODES_PER_GROUP(inode->i_sb));
2708                        start = inode_offset & ~(inodes_per_buffer - 1);
2709
2710                        /* Is the inode bitmap in cache? */
2711                        desc = ext3_get_group_desc(inode->i_sb,
2712                                                block_group, NULL);
2713                        if (!desc)
2714                                goto make_io;
2715
2716                        bitmap_bh = sb_getblk(inode->i_sb,
2717                                        le32_to_cpu(desc->bg_inode_bitmap));
2718                        if (!bitmap_bh)
2719                                goto make_io;
2720
2721                        /*
2722                         * If the inode bitmap isn't in cache then the
2723                         * optimisation may end up performing two reads instead
2724                         * of one, so skip it.
2725                         */
2726                        if (!buffer_uptodate(bitmap_bh)) {
2727                                brelse(bitmap_bh);
2728                                goto make_io;
2729                        }
2730                        for (i = start; i < start + inodes_per_buffer; i++) {
2731                                if (i == inode_offset)
2732                                        continue;
2733                                if (ext3_test_bit(i, bitmap_bh->b_data))
2734                                        break;
2735                        }
2736                        brelse(bitmap_bh);
2737                        if (i == start + inodes_per_buffer) {
2738                                /* all other inodes are free, so skip I/O */
2739                                memset(bh->b_data, 0, bh->b_size);
2740                                set_buffer_uptodate(bh);
2741                                unlock_buffer(bh);
2742                                goto has_buffer;
2743                        }
2744                }
2745
2746make_io:
2747                /*
2748                 * There are other valid inodes in the buffer, this inode
2749                 * has in-inode xattrs, or we don't have this inode in memory.
2750                 * Read the block from disk.
2751                 */
2752                get_bh(bh);
2753                bh->b_end_io = end_buffer_read_sync;
2754                submit_bh(READ_META, bh);
2755                wait_on_buffer(bh);
2756                if (!buffer_uptodate(bh)) {
2757                        ext3_error(inode->i_sb, "ext3_get_inode_loc",
2758                                        "unable to read inode block - "
2759                                        "inode=%lu, block="E3FSBLK,
2760                                        inode->i_ino, block);
2761                        brelse(bh);
2762                        return -EIO;
2763                }
2764        }
2765has_buffer:
2766        iloc->bh = bh;
2767        return 0;
2768}
2769
2770int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2771{
2772        /* We have all inode data except xattrs in memory here. */
2773        return __ext3_get_inode_loc(inode, iloc,
2774                !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2775}
2776
2777void ext3_set_inode_flags(struct inode *inode)
2778{
2779        unsigned int flags = EXT3_I(inode)->i_flags;
2780
2781        inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2782        if (flags & EXT3_SYNC_FL)
2783                inode->i_flags |= S_SYNC;
2784        if (flags & EXT3_APPEND_FL)
2785                inode->i_flags |= S_APPEND;
2786        if (flags & EXT3_IMMUTABLE_FL)
2787                inode->i_flags |= S_IMMUTABLE;
2788        if (flags & EXT3_NOATIME_FL)
2789                inode->i_flags |= S_NOATIME;
2790        if (flags & EXT3_DIRSYNC_FL)
2791                inode->i_flags |= S_DIRSYNC;
2792}
2793
2794/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2795void ext3_get_inode_flags(struct ext3_inode_info *ei)
2796{
2797        unsigned int flags = ei->vfs_inode.i_flags;
2798
2799        ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2800                        EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2801        if (flags & S_SYNC)
2802                ei->i_flags |= EXT3_SYNC_FL;
2803        if (flags & S_APPEND)
2804                ei->i_flags |= EXT3_APPEND_FL;
2805        if (flags & S_IMMUTABLE)
2806                ei->i_flags |= EXT3_IMMUTABLE_FL;
2807        if (flags & S_NOATIME)
2808                ei->i_flags |= EXT3_NOATIME_FL;
2809        if (flags & S_DIRSYNC)
2810                ei->i_flags |= EXT3_DIRSYNC_FL;
2811}
2812
2813struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2814{
2815        struct ext3_iloc iloc;
2816        struct ext3_inode *raw_inode;
2817        struct ext3_inode_info *ei;
2818        struct buffer_head *bh;
2819        struct inode *inode;
2820        journal_t *journal = EXT3_SB(sb)->s_journal;
2821        transaction_t *transaction;
2822        long ret;
2823        int block;
2824
2825        inode = iget_locked(sb, ino);
2826        if (!inode)
2827                return ERR_PTR(-ENOMEM);
2828        if (!(inode->i_state & I_NEW))
2829                return inode;
2830
2831        ei = EXT3_I(inode);
2832        ei->i_block_alloc_info = NULL;
2833
2834        ret = __ext3_get_inode_loc(inode, &iloc, 0);
2835        if (ret < 0)
2836                goto bad_inode;
2837        bh = iloc.bh;
2838        raw_inode = ext3_raw_inode(&iloc);
2839        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2840        inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2841        inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2842        if(!(test_opt (inode->i_sb, NO_UID32))) {
2843                inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2844                inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2845        }
2846        inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2847        inode->i_size = le32_to_cpu(raw_inode->i_size);
2848        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2849        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2850        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2851        inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2852
2853        ei->i_state_flags = 0;
2854        ei->i_dir_start_lookup = 0;
2855        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2856        /* We now have enough fields to check if the inode was active or not.
2857         * This is needed because nfsd might try to access dead inodes
2858         * the test is that same one that e2fsck uses
2859         * NeilBrown 1999oct15
2860         */
2861        if (inode->i_nlink == 0) {
2862                if (inode->i_mode == 0 ||
2863                    !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2864                        /* this inode is deleted */
2865                        brelse (bh);
2866                        ret = -ESTALE;
2867                        goto bad_inode;
2868                }
2869                /* The only unlinked inodes we let through here have
2870                 * valid i_mode and are being read by the orphan
2871                 * recovery code: that's fine, we're about to complete
2872                 * the process of deleting those. */
2873        }
2874        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2875        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2876#ifdef EXT3_FRAGMENTS
2877        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2878        ei->i_frag_no = raw_inode->i_frag;
2879        ei->i_frag_size = raw_inode->i_fsize;
2880#endif
2881        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2882        if (!S_ISREG(inode->i_mode)) {
2883                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2884        } else {
2885                inode->i_size |=
2886                        ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2887        }
2888        ei->i_disksize = inode->i_size;
2889        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2890        ei->i_block_group = iloc.block_group;
2891        /*
2892         * NOTE! The in-memory inode i_data array is in little-endian order
2893         * even on big-endian machines: we do NOT byteswap the block numbers!
2894         */
2895        for (block = 0; block < EXT3_N_BLOCKS; block++)
2896                ei->i_data[block] = raw_inode->i_block[block];
2897        INIT_LIST_HEAD(&ei->i_orphan);
2898
2899        /*
2900         * Set transaction id's of transactions that have to be committed
2901         * to finish f[data]sync. We set them to currently running transaction
2902         * as we cannot be sure that the inode or some of its metadata isn't
2903         * part of the transaction - the inode could have been reclaimed and
2904         * now it is reread from disk.
2905         */
2906        if (journal) {
2907                tid_t tid;
2908
2909                spin_lock(&journal->j_state_lock);
2910                if (journal->j_running_transaction)
2911                        transaction = journal->j_running_transaction;
2912                else
2913                        transaction = journal->j_committing_transaction;
2914                if (transaction)
2915                        tid = transaction->t_tid;
2916                else
2917                        tid = journal->j_commit_sequence;
2918                spin_unlock(&journal->j_state_lock);
2919                atomic_set(&ei->i_sync_tid, tid);
2920                atomic_set(&ei->i_datasync_tid, tid);
2921        }
2922
2923        if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2924            EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2925                /*
2926                 * When mke2fs creates big inodes it does not zero out
2927                 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2928                 * so ignore those first few inodes.
2929                 */
2930                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2931                if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2932                    EXT3_INODE_SIZE(inode->i_sb)) {
2933                        brelse (bh);
2934                        ret = -EIO;
2935                        goto bad_inode;
2936                }
2937                if (ei->i_extra_isize == 0) {
2938                        /* The extra space is currently unused. Use it. */
2939                        ei->i_extra_isize = sizeof(struct ext3_inode) -
2940                                            EXT3_GOOD_OLD_INODE_SIZE;
2941                } else {
2942                        __le32 *magic = (void *)raw_inode +
2943                                        EXT3_GOOD_OLD_INODE_SIZE +
2944                                        ei->i_extra_isize;
2945                        if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2946                                 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
2947                }
2948        } else
2949                ei->i_extra_isize = 0;
2950
2951        if (S_ISREG(inode->i_mode)) {
2952                inode->i_op = &ext3_file_inode_operations;
2953                inode->i_fop = &ext3_file_operations;
2954                ext3_set_aops(inode);
2955        } else if (S_ISDIR(inode->i_mode)) {
2956                inode->i_op = &ext3_dir_inode_operations;
2957                inode->i_fop = &ext3_dir_operations;
2958        } else if (S_ISLNK(inode->i_mode)) {
2959                if (ext3_inode_is_fast_symlink(inode)) {
2960                        inode->i_op = &ext3_fast_symlink_inode_operations;
2961                        nd_terminate_link(ei->i_data, inode->i_size,
2962                                sizeof(ei->i_data) - 1);
2963                } else {
2964                        inode->i_op = &ext3_symlink_inode_operations;
2965                        ext3_set_aops(inode);
2966                }
2967        } else {
2968                inode->i_op = &ext3_special_inode_operations;
2969                if (raw_inode->i_block[0])
2970                        init_special_inode(inode, inode->i_mode,
2971                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2972                else
2973                        init_special_inode(inode, inode->i_mode,
2974                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2975        }
2976        brelse (iloc.bh);
2977        ext3_set_inode_flags(inode);
2978        unlock_new_inode(inode);
2979        return inode;
2980
2981bad_inode:
2982        iget_failed(inode);
2983        return ERR_PTR(ret);
2984}
2985
2986/*
2987 * Post the struct inode info into an on-disk inode location in the
2988 * buffer-cache.  This gobbles the caller's reference to the
2989 * buffer_head in the inode location struct.
2990 *
2991 * The caller must have write access to iloc->bh.
2992 */
2993static int ext3_do_update_inode(handle_t *handle,
2994                                struct inode *inode,
2995                                struct ext3_iloc *iloc)
2996{
2997        struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2998        struct ext3_inode_info *ei = EXT3_I(inode);
2999        struct buffer_head *bh = iloc->bh;
3000        int err = 0, rc, block;
3001
3002again:
3003        /* we can't allow multiple procs in here at once, its a bit racey */
3004        lock_buffer(bh);
3005
3006        /* For fields not not tracking in the in-memory inode,
3007         * initialise them to zero for new inodes. */
3008        if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3009                memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3010
3011        ext3_get_inode_flags(ei);
3012        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3013        if(!(test_opt(inode->i_sb, NO_UID32))) {
3014                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3015                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3016/*
3017 * Fix up interoperability with old kernels. Otherwise, old inodes get
3018 * re-used with the upper 16 bits of the uid/gid intact
3019 */
3020                if(!ei->i_dtime) {
3021                        raw_inode->i_uid_high =
3022                                cpu_to_le16(high_16_bits(inode->i_uid));
3023                        raw_inode->i_gid_high =
3024                                cpu_to_le16(high_16_bits(inode->i_gid));
3025                } else {
3026                        raw_inode->i_uid_high = 0;
3027                        raw_inode->i_gid_high = 0;
3028                }
3029        } else {
3030                raw_inode->i_uid_low =
3031                        cpu_to_le16(fs_high2lowuid(inode->i_uid));
3032                raw_inode->i_gid_low =
3033                        cpu_to_le16(fs_high2lowgid(inode->i_gid));
3034                raw_inode->i_uid_high = 0;
3035                raw_inode->i_gid_high = 0;
3036        }
3037        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3038        raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3039        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3040        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3041        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3042        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3043        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3044        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3045#ifdef EXT3_FRAGMENTS
3046        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3047        raw_inode->i_frag = ei->i_frag_no;
3048        raw_inode->i_fsize = ei->i_frag_size;
3049#endif
3050        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3051        if (!S_ISREG(inode->i_mode)) {
3052                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3053        } else {
3054                raw_inode->i_size_high =
3055                        cpu_to_le32(ei->i_disksize >> 32);
3056                if (ei->i_disksize > 0x7fffffffULL) {
3057                        struct super_block *sb = inode->i_sb;
3058                        if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3059                                        EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3060                            EXT3_SB(sb)->s_es->s_rev_level ==
3061                                        cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3062                               /* If this is the first large file
3063                                * created, add a flag to the superblock.
3064                                */
3065                                unlock_buffer(bh);
3066                                err = ext3_journal_get_write_access(handle,
3067                                                EXT3_SB(sb)->s_sbh);
3068                                if (err)
3069                                        goto out_brelse;
3070
3071                                ext3_update_dynamic_rev(sb);
3072                                EXT3_SET_RO_COMPAT_FEATURE(sb,
3073                                        EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3074                                handle->h_sync = 1;
3075                                err = ext3_journal_dirty_metadata(handle,
3076                                                EXT3_SB(sb)->s_sbh);
3077                                /* get our lock and start over */
3078                                goto again;
3079                        }
3080                }
3081        }
3082        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3083        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3084                if (old_valid_dev(inode->i_rdev)) {
3085                        raw_inode->i_block[0] =
3086                                cpu_to_le32(old_encode_dev(inode->i_rdev));
3087                        raw_inode->i_block[1] = 0;
3088                } else {
3089                        raw_inode->i_block[0] = 0;
3090                        raw_inode->i_block[1] =
3091                                cpu_to_le32(new_encode_dev(inode->i_rdev));
3092                        raw_inode->i_block[2] = 0;
3093                }
3094        } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3095                raw_inode->i_block[block] = ei->i_data[block];
3096
3097        if (ei->i_extra_isize)
3098                raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3099
3100        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3101        unlock_buffer(bh);
3102        rc = ext3_journal_dirty_metadata(handle, bh);
3103        if (!err)
3104                err = rc;
3105        ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3106
3107        atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3108out_brelse:
3109        brelse (bh);
3110        ext3_std_error(inode->i_sb, err);
3111        return err;
3112}
3113
3114/*
3115 * ext3_write_inode()
3116 *
3117 * We are called from a few places:
3118 *
3119 * - Within generic_file_write() for O_SYNC files.
3120 *   Here, there will be no transaction running. We wait for any running
3121 *   trasnaction to commit.
3122 *
3123 * - Within sys_sync(), kupdate and such.
3124 *   We wait on commit, if tol to.
3125 *
3126 * - Within prune_icache() (PF_MEMALLOC == true)
3127 *   Here we simply return.  We can't afford to block kswapd on the
3128 *   journal commit.
3129 *
3130 * In all cases it is actually safe for us to return without doing anything,
3131 * because the inode has been copied into a raw inode buffer in
3132 * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3133 * knfsd.
3134 *
3135 * Note that we are absolutely dependent upon all inode dirtiers doing the
3136 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3137 * which we are interested.
3138 *
3139 * It would be a bug for them to not do this.  The code:
3140 *
3141 *      mark_inode_dirty(inode)
3142 *      stuff();
3143 *      inode->i_size = expr;
3144 *
3145 * is in error because a kswapd-driven write_inode() could occur while
3146 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3147 * will no longer be on the superblock's dirty inode list.
3148 */
3149int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3150{
3151        if (current->flags & PF_MEMALLOC)
3152                return 0;
3153
3154        if (ext3_journal_current_handle()) {
3155                jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3156                dump_stack();
3157                return -EIO;
3158        }
3159
3160        if (wbc->sync_mode != WB_SYNC_ALL)
3161                return 0;
3162
3163        return ext3_force_commit(inode->i_sb);
3164}
3165
3166/*
3167 * ext3_setattr()
3168 *
3169 * Called from notify_change.
3170 *
3171 * We want to trap VFS attempts to truncate the file as soon as
3172 * possible.  In particular, we want to make sure that when the VFS
3173 * shrinks i_size, we put the inode on the orphan list and modify
3174 * i_disksize immediately, so that during the subsequent flushing of
3175 * dirty pages and freeing of disk blocks, we can guarantee that any
3176 * commit will leave the blocks being flushed in an unused state on
3177 * disk.  (On recovery, the inode will get truncated and the blocks will
3178 * be freed, so we have a strong guarantee that no future commit will
3179 * leave these blocks visible to the user.)
3180 *
3181 * Called with inode->sem down.
3182 */
3183int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3184{
3185        struct inode *inode = dentry->d_inode;
3186        int error, rc = 0;
3187        const unsigned int ia_valid = attr->ia_valid;
3188
3189        error = inode_change_ok(inode, attr);
3190        if (error)
3191                return error;
3192
3193        if (is_quota_modification(inode, attr))
3194                dquot_initialize(inode);
3195        if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3196                (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3197                handle_t *handle;
3198
3199                /* (user+group)*(old+new) structure, inode write (sb,
3200                 * inode block, ? - but truncate inode update has it) */
3201                handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3202                                        EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3203                if (IS_ERR(handle)) {
3204                        error = PTR_ERR(handle);
3205                        goto err_out;
3206                }
3207                error = dquot_transfer(inode, attr);
3208                if (error) {
3209                        ext3_journal_stop(handle);
3210                        return error;
3211                }
3212                /* Update corresponding info in inode so that everything is in
3213                 * one transaction */
3214                if (attr->ia_valid & ATTR_UID)
3215                        inode->i_uid = attr->ia_uid;
3216                if (attr->ia_valid & ATTR_GID)
3217                        inode->i_gid = attr->ia_gid;
3218                error = ext3_mark_inode_dirty(handle, inode);
3219                ext3_journal_stop(handle);
3220        }
3221
3222        if (S_ISREG(inode->i_mode) &&
3223            attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3224                handle_t *handle;
3225
3226                handle = ext3_journal_start(inode, 3);
3227                if (IS_ERR(handle)) {
3228                        error = PTR_ERR(handle);
3229                        goto err_out;
3230                }
3231
3232                error = ext3_orphan_add(handle, inode);
3233                EXT3_I(inode)->i_disksize = attr->ia_size;
3234                rc = ext3_mark_inode_dirty(handle, inode);
3235                if (!error)
3236                        error = rc;
3237                ext3_journal_stop(handle);
3238        }
3239
3240        if ((attr->ia_valid & ATTR_SIZE) &&
3241            attr->ia_size != i_size_read(inode)) {
3242                rc = vmtruncate(inode, attr->ia_size);
3243                if (rc)
3244                        goto err_out;
3245        }
3246
3247        setattr_copy(inode, attr);
3248        mark_inode_dirty(inode);
3249
3250        if (ia_valid & ATTR_MODE)
3251                rc = ext3_acl_chmod(inode);
3252
3253err_out:
3254        ext3_std_error(inode->i_sb, error);
3255        if (!error)
3256                error = rc;
3257        return error;
3258}
3259
3260
3261/*
3262 * How many blocks doth make a writepage()?
3263 *
3264 * With N blocks per page, it may be:
3265 * N data blocks
3266 * 2 indirect block
3267 * 2 dindirect
3268 * 1 tindirect
3269 * N+5 bitmap blocks (from the above)
3270 * N+5 group descriptor summary blocks
3271 * 1 inode block
3272 * 1 superblock.
3273 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3274 *
3275 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3276 *
3277 * With ordered or writeback data it's the same, less the N data blocks.
3278 *
3279 * If the inode's direct blocks can hold an integral number of pages then a
3280 * page cannot straddle two indirect blocks, and we can only touch one indirect
3281 * and dindirect block, and the "5" above becomes "3".
3282 *
3283 * This still overestimates under most circumstances.  If we were to pass the
3284 * start and end offsets in here as well we could do block_to_path() on each
3285 * block and work out the exact number of indirects which are touched.  Pah.
3286 */
3287
3288static int ext3_writepage_trans_blocks(struct inode *inode)
3289{
3290        int bpp = ext3_journal_blocks_per_page(inode);
3291        int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3292        int ret;
3293
3294        if (ext3_should_journal_data(inode))
3295                ret = 3 * (bpp + indirects) + 2;
3296        else
3297                ret = 2 * (bpp + indirects) + 2;
3298
3299#ifdef CONFIG_QUOTA
3300        /* We know that structure was already allocated during dquot_initialize so
3301         * we will be updating only the data blocks + inodes */
3302        ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3303#endif
3304
3305        return ret;
3306}
3307
3308/*
3309 * The caller must have previously called ext3_reserve_inode_write().
3310 * Give this, we know that the caller already has write access to iloc->bh.
3311 */
3312int ext3_mark_iloc_dirty(handle_t *handle,
3313                struct inode *inode, struct ext3_iloc *iloc)
3314{
3315        int err = 0;
3316
3317        /* the do_update_inode consumes one bh->b_count */
3318        get_bh(iloc->bh);
3319
3320        /* ext3_do_update_inode() does journal_dirty_metadata */
3321        err = ext3_do_update_inode(handle, inode, iloc);
3322        put_bh(iloc->bh);
3323        return err;
3324}
3325
3326/*
3327 * On success, We end up with an outstanding reference count against
3328 * iloc->bh.  This _must_ be cleaned up later.
3329 */
3330
3331int
3332ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3333                         struct ext3_iloc *iloc)
3334{
3335        int err = 0;
3336        if (handle) {
3337                err = ext3_get_inode_loc(inode, iloc);
3338                if (!err) {
3339                        BUFFER_TRACE(iloc->bh, "get_write_access");
3340                        err = ext3_journal_get_write_access(handle, iloc->bh);
3341                        if (err) {
3342                                brelse(iloc->bh);
3343                                iloc->bh = NULL;
3344                        }
3345                }
3346        }
3347        ext3_std_error(inode->i_sb, err);
3348        return err;
3349}
3350
3351/*
3352 * What we do here is to mark the in-core inode as clean with respect to inode
3353 * dirtiness (it may still be data-dirty).
3354 * This means that the in-core inode may be reaped by prune_icache
3355 * without having to perform any I/O.  This is a very good thing,
3356 * because *any* task may call prune_icache - even ones which
3357 * have a transaction open against a different journal.
3358 *
3359 * Is this cheating?  Not really.  Sure, we haven't written the
3360 * inode out, but prune_icache isn't a user-visible syncing function.
3361 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3362 * we start and wait on commits.
3363 *
3364 * Is this efficient/effective?  Well, we're being nice to the system
3365 * by cleaning up our inodes proactively so they can be reaped
3366 * without I/O.  But we are potentially leaving up to five seconds'
3367 * worth of inodes floating about which prune_icache wants us to
3368 * write out.  One way to fix that would be to get prune_icache()
3369 * to do a write_super() to free up some memory.  It has the desired
3370 * effect.
3371 */
3372int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3373{
3374        struct ext3_iloc iloc;
3375        int err;
3376
3377        might_sleep();
3378        err = ext3_reserve_inode_write(handle, inode, &iloc);
3379        if (!err)
3380                err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3381        return err;
3382}
3383
3384/*
3385 * ext3_dirty_inode() is called from __mark_inode_dirty()
3386 *
3387 * We're really interested in the case where a file is being extended.
3388 * i_size has been changed by generic_commit_write() and we thus need
3389 * to include the updated inode in the current transaction.
3390 *
3391 * Also, dquot_alloc_space() will always dirty the inode when blocks
3392 * are allocated to the file.
3393 *
3394 * If the inode is marked synchronous, we don't honour that here - doing
3395 * so would cause a commit on atime updates, which we don't bother doing.
3396 * We handle synchronous inodes at the highest possible level.
3397 */
3398void ext3_dirty_inode(struct inode *inode)
3399{
3400        handle_t *current_handle = ext3_journal_current_handle();
3401        handle_t *handle;
3402
3403        handle = ext3_journal_start(inode, 2);
3404        if (IS_ERR(handle))
3405                goto out;
3406        if (current_handle &&
3407                current_handle->h_transaction != handle->h_transaction) {
3408                /* This task has a transaction open against a different fs */
3409                printk(KERN_EMERG "%s: transactions do not match!\n",
3410                       __func__);
3411        } else {
3412                jbd_debug(5, "marking dirty.  outer handle=%p\n",
3413                                current_handle);
3414                ext3_mark_inode_dirty(handle, inode);
3415        }
3416        ext3_journal_stop(handle);
3417out:
3418        return;
3419}
3420
3421#if 0
3422/*
3423 * Bind an inode's backing buffer_head into this transaction, to prevent
3424 * it from being flushed to disk early.  Unlike
3425 * ext3_reserve_inode_write, this leaves behind no bh reference and
3426 * returns no iloc structure, so the caller needs to repeat the iloc
3427 * lookup to mark the inode dirty later.
3428 */
3429static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3430{
3431        struct ext3_iloc iloc;
3432
3433        int err = 0;
3434        if (handle) {
3435                err = ext3_get_inode_loc(inode, &iloc);
3436                if (!err) {
3437                        BUFFER_TRACE(iloc.bh, "get_write_access");
3438                        err = journal_get_write_access(handle, iloc.bh);
3439                        if (!err)
3440                                err = ext3_journal_dirty_metadata(handle,
3441                                                                  iloc.bh);
3442                        brelse(iloc.bh);
3443                }
3444        }
3445        ext3_std_error(inode->i_sb, err);
3446        return err;
3447}
3448#endif
3449
3450int ext3_change_inode_journal_flag(struct inode *inode, int val)
3451{
3452        journal_t *journal;
3453        handle_t *handle;
3454        int err;
3455
3456        /*
3457         * We have to be very careful here: changing a data block's
3458         * journaling status dynamically is dangerous.  If we write a
3459         * data block to the journal, change the status and then delete
3460         * that block, we risk forgetting to revoke the old log record
3461         * from the journal and so a subsequent replay can corrupt data.
3462         * So, first we make sure that the journal is empty and that
3463         * nobody is changing anything.
3464         */
3465
3466        journal = EXT3_JOURNAL(inode);
3467        if (is_journal_aborted(journal))
3468                return -EROFS;
3469
3470        journal_lock_updates(journal);
3471        journal_flush(journal);
3472
3473        /*
3474         * OK, there are no updates running now, and all cached data is
3475         * synced to disk.  We are now in a completely consistent state
3476         * which doesn't have anything in the journal, and we know that
3477         * no filesystem updates are running, so it is safe to modify
3478         * the inode's in-core data-journaling state flag now.
3479         */
3480
3481        if (val)
3482                EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3483        else
3484                EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3485        ext3_set_aops(inode);
3486
3487        journal_unlock_updates(journal);
3488
3489        /* Finally we can mark the inode as dirty. */
3490
3491        handle = ext3_journal_start(inode, 1);
3492        if (IS_ERR(handle))
3493                return PTR_ERR(handle);
3494
3495        err = ext3_mark_inode_dirty(handle, inode);
3496        handle->h_sync = 1;
3497        ext3_journal_stop(handle);
3498        ext3_std_error(inode->i_sb, err);
3499
3500        return err;
3501}
3502