linux/fs/ext4/page-io.c
<<
>>
Prefs
   1/*
   2 * linux/fs/ext4/page-io.c
   3 *
   4 * This contains the new page_io functions for ext4
   5 *
   6 * Written by Theodore Ts'o, 2010.
   7 */
   8
   9#include <linux/module.h>
  10#include <linux/fs.h>
  11#include <linux/time.h>
  12#include <linux/jbd2.h>
  13#include <linux/highuid.h>
  14#include <linux/pagemap.h>
  15#include <linux/quotaops.h>
  16#include <linux/string.h>
  17#include <linux/buffer_head.h>
  18#include <linux/writeback.h>
  19#include <linux/pagevec.h>
  20#include <linux/mpage.h>
  21#include <linux/namei.h>
  22#include <linux/uio.h>
  23#include <linux/bio.h>
  24#include <linux/workqueue.h>
  25#include <linux/kernel.h>
  26#include <linux/slab.h>
  27
  28#include "ext4_jbd2.h"
  29#include "xattr.h"
  30#include "acl.h"
  31#include "ext4_extents.h"
  32
  33static struct kmem_cache *io_page_cachep, *io_end_cachep;
  34
  35int __init ext4_init_pageio(void)
  36{
  37        io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
  38        if (io_page_cachep == NULL)
  39                return -ENOMEM;
  40        io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
  41        if (io_end_cachep == NULL) {
  42                kmem_cache_destroy(io_page_cachep);
  43                return -ENOMEM;
  44        }
  45        return 0;
  46}
  47
  48void ext4_exit_pageio(void)
  49{
  50        kmem_cache_destroy(io_end_cachep);
  51        kmem_cache_destroy(io_page_cachep);
  52}
  53
  54void ext4_ioend_wait(struct inode *inode)
  55{
  56        wait_queue_head_t *wq = ext4_ioend_wq(inode);
  57
  58        wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
  59}
  60
  61static void put_io_page(struct ext4_io_page *io_page)
  62{
  63        if (atomic_dec_and_test(&io_page->p_count)) {
  64                end_page_writeback(io_page->p_page);
  65                put_page(io_page->p_page);
  66                kmem_cache_free(io_page_cachep, io_page);
  67        }
  68}
  69
  70void ext4_free_io_end(ext4_io_end_t *io)
  71{
  72        int i;
  73        wait_queue_head_t *wq;
  74
  75        BUG_ON(!io);
  76        if (io->page)
  77                put_page(io->page);
  78        for (i = 0; i < io->num_io_pages; i++)
  79                put_io_page(io->pages[i]);
  80        io->num_io_pages = 0;
  81        wq = ext4_ioend_wq(io->inode);
  82        if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count) &&
  83            waitqueue_active(wq))
  84                wake_up_all(wq);
  85        kmem_cache_free(io_end_cachep, io);
  86}
  87
  88/*
  89 * check a range of space and convert unwritten extents to written.
  90 */
  91int ext4_end_io_nolock(ext4_io_end_t *io)
  92{
  93        struct inode *inode = io->inode;
  94        loff_t offset = io->offset;
  95        ssize_t size = io->size;
  96        wait_queue_head_t *wq;
  97        int ret = 0;
  98
  99        ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
 100                   "list->prev 0x%p\n",
 101                   io, inode->i_ino, io->list.next, io->list.prev);
 102
 103        if (list_empty(&io->list))
 104                return ret;
 105
 106        if (!(io->flag & EXT4_IO_END_UNWRITTEN))
 107                return ret;
 108
 109        ret = ext4_convert_unwritten_extents(inode, offset, size);
 110        if (ret < 0) {
 111                printk(KERN_EMERG "%s: failed to convert unwritten "
 112                        "extents to written extents, error is %d "
 113                        "io is still on inode %lu aio dio list\n",
 114                       __func__, ret, inode->i_ino);
 115                return ret;
 116        }
 117
 118        if (io->iocb)
 119                aio_complete(io->iocb, io->result, 0);
 120        /* clear the DIO AIO unwritten flag */
 121        if (io->flag & EXT4_IO_END_UNWRITTEN) {
 122                io->flag &= ~EXT4_IO_END_UNWRITTEN;
 123                /* Wake up anyone waiting on unwritten extent conversion */
 124                wq = ext4_ioend_wq(io->inode);
 125                if (atomic_dec_and_test(&EXT4_I(inode)->i_aiodio_unwritten) &&
 126                    waitqueue_active(wq)) {
 127                        wake_up_all(wq);
 128                }
 129        }
 130
 131        return ret;
 132}
 133
 134/*
 135 * work on completed aio dio IO, to convert unwritten extents to extents
 136 */
 137static void ext4_end_io_work(struct work_struct *work)
 138{
 139        ext4_io_end_t           *io = container_of(work, ext4_io_end_t, work);
 140        struct inode            *inode = io->inode;
 141        struct ext4_inode_info  *ei = EXT4_I(inode);
 142        unsigned long           flags;
 143        int                     ret;
 144
 145        mutex_lock(&inode->i_mutex);
 146        ret = ext4_end_io_nolock(io);
 147        if (ret < 0) {
 148                mutex_unlock(&inode->i_mutex);
 149                return;
 150        }
 151
 152        spin_lock_irqsave(&ei->i_completed_io_lock, flags);
 153        if (!list_empty(&io->list))
 154                list_del_init(&io->list);
 155        spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
 156        mutex_unlock(&inode->i_mutex);
 157        ext4_free_io_end(io);
 158}
 159
 160ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
 161{
 162        ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
 163        if (io) {
 164                atomic_inc(&EXT4_I(inode)->i_ioend_count);
 165                io->inode = inode;
 166                INIT_WORK(&io->work, ext4_end_io_work);
 167                INIT_LIST_HEAD(&io->list);
 168        }
 169        return io;
 170}
 171
 172/*
 173 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 174 * provides compatibility with dmesg scrapers that look for a specific
 175 * buffer I/O error message.  We really need a unified error reporting
 176 * structure to userspace ala Digital Unix's uerf system, but it's
 177 * probably not going to happen in my lifetime, due to LKML politics...
 178 */
 179static void buffer_io_error(struct buffer_head *bh)
 180{
 181        char b[BDEVNAME_SIZE];
 182        printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
 183                        bdevname(bh->b_bdev, b),
 184                        (unsigned long long)bh->b_blocknr);
 185}
 186
 187static void ext4_end_bio(struct bio *bio, int error)
 188{
 189        ext4_io_end_t *io_end = bio->bi_private;
 190        struct workqueue_struct *wq;
 191        struct inode *inode;
 192        unsigned long flags;
 193        int i;
 194        sector_t bi_sector = bio->bi_sector;
 195
 196        BUG_ON(!io_end);
 197        bio->bi_private = NULL;
 198        bio->bi_end_io = NULL;
 199        if (test_bit(BIO_UPTODATE, &bio->bi_flags))
 200                error = 0;
 201        bio_put(bio);
 202
 203        for (i = 0; i < io_end->num_io_pages; i++) {
 204                struct page *page = io_end->pages[i]->p_page;
 205                struct buffer_head *bh, *head;
 206                int partial_write = 0;
 207
 208                head = page_buffers(page);
 209                if (error)
 210                        SetPageError(page);
 211                BUG_ON(!head);
 212                if (head->b_size != PAGE_CACHE_SIZE) {
 213                        loff_t offset;
 214                        loff_t io_end_offset = io_end->offset + io_end->size;
 215
 216                        offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
 217                        bh = head;
 218                        do {
 219                                if ((offset >= io_end->offset) &&
 220                                    (offset+bh->b_size <= io_end_offset)) {
 221                                        if (error)
 222                                                buffer_io_error(bh);
 223
 224                                }
 225                                if (buffer_delay(bh))
 226                                        partial_write = 1;
 227                                else if (!buffer_mapped(bh))
 228                                        clear_buffer_dirty(bh);
 229                                else if (buffer_dirty(bh))
 230                                        partial_write = 1;
 231                                offset += bh->b_size;
 232                                bh = bh->b_this_page;
 233                        } while (bh != head);
 234                }
 235
 236                /*
 237                 * If this is a partial write which happened to make
 238                 * all buffers uptodate then we can optimize away a
 239                 * bogus readpage() for the next read(). Here we
 240                 * 'discover' whether the page went uptodate as a
 241                 * result of this (potentially partial) write.
 242                 */
 243                if (!partial_write)
 244                        SetPageUptodate(page);
 245
 246                put_io_page(io_end->pages[i]);
 247        }
 248        io_end->num_io_pages = 0;
 249        inode = io_end->inode;
 250
 251        if (error) {
 252                io_end->flag |= EXT4_IO_END_ERROR;
 253                ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
 254                             "(offset %llu size %ld starting block %llu)",
 255                             inode->i_ino,
 256                             (unsigned long long) io_end->offset,
 257                             (long) io_end->size,
 258                             (unsigned long long)
 259                             bi_sector >> (inode->i_blkbits - 9));
 260        }
 261
 262        /* Add the io_end to per-inode completed io list*/
 263        spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
 264        list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
 265        spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
 266
 267        wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
 268        /* queue the work to convert unwritten extents to written */
 269        queue_work(wq, &io_end->work);
 270}
 271
 272void ext4_io_submit(struct ext4_io_submit *io)
 273{
 274        struct bio *bio = io->io_bio;
 275
 276        if (bio) {
 277                bio_get(io->io_bio);
 278                submit_bio(io->io_op, io->io_bio);
 279                BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
 280                bio_put(io->io_bio);
 281        }
 282        io->io_bio = 0;
 283        io->io_op = 0;
 284        io->io_end = 0;
 285}
 286
 287static int io_submit_init(struct ext4_io_submit *io,
 288                          struct inode *inode,
 289                          struct writeback_control *wbc,
 290                          struct buffer_head *bh)
 291{
 292        ext4_io_end_t *io_end;
 293        struct page *page = bh->b_page;
 294        int nvecs = bio_get_nr_vecs(bh->b_bdev);
 295        struct bio *bio;
 296
 297        io_end = ext4_init_io_end(inode, GFP_NOFS);
 298        if (!io_end)
 299                return -ENOMEM;
 300        do {
 301                bio = bio_alloc(GFP_NOIO, nvecs);
 302                nvecs >>= 1;
 303        } while (bio == NULL);
 304
 305        bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 306        bio->bi_bdev = bh->b_bdev;
 307        bio->bi_private = io->io_end = io_end;
 308        bio->bi_end_io = ext4_end_bio;
 309
 310        io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
 311
 312        io->io_bio = bio;
 313        io->io_op = (wbc->sync_mode == WB_SYNC_ALL ?
 314                        WRITE_SYNC_PLUG : WRITE);
 315        io->io_next_block = bh->b_blocknr;
 316        return 0;
 317}
 318
 319static int io_submit_add_bh(struct ext4_io_submit *io,
 320                            struct ext4_io_page *io_page,
 321                            struct inode *inode,
 322                            struct writeback_control *wbc,
 323                            struct buffer_head *bh)
 324{
 325        ext4_io_end_t *io_end;
 326        int ret;
 327
 328        if (buffer_new(bh)) {
 329                clear_buffer_new(bh);
 330                unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 331        }
 332
 333        if (!buffer_mapped(bh) || buffer_delay(bh)) {
 334                if (!buffer_mapped(bh))
 335                        clear_buffer_dirty(bh);
 336                if (io->io_bio)
 337                        ext4_io_submit(io);
 338                return 0;
 339        }
 340
 341        if (io->io_bio && bh->b_blocknr != io->io_next_block) {
 342submit_and_retry:
 343                ext4_io_submit(io);
 344        }
 345        if (io->io_bio == NULL) {
 346                ret = io_submit_init(io, inode, wbc, bh);
 347                if (ret)
 348                        return ret;
 349        }
 350        io_end = io->io_end;
 351        if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
 352            (io_end->pages[io_end->num_io_pages-1] != io_page))
 353                goto submit_and_retry;
 354        if (buffer_uninit(bh))
 355                io->io_end->flag |= EXT4_IO_END_UNWRITTEN;
 356        io->io_end->size += bh->b_size;
 357        io->io_next_block++;
 358        ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
 359        if (ret != bh->b_size)
 360                goto submit_and_retry;
 361        if ((io_end->num_io_pages == 0) ||
 362            (io_end->pages[io_end->num_io_pages-1] != io_page)) {
 363                io_end->pages[io_end->num_io_pages++] = io_page;
 364                atomic_inc(&io_page->p_count);
 365        }
 366        return 0;
 367}
 368
 369int ext4_bio_write_page(struct ext4_io_submit *io,
 370                        struct page *page,
 371                        int len,
 372                        struct writeback_control *wbc)
 373{
 374        struct inode *inode = page->mapping->host;
 375        unsigned block_start, block_end, blocksize;
 376        struct ext4_io_page *io_page;
 377        struct buffer_head *bh, *head;
 378        int ret = 0;
 379
 380        blocksize = 1 << inode->i_blkbits;
 381
 382        BUG_ON(!PageLocked(page));
 383        BUG_ON(PageWriteback(page));
 384        set_page_writeback(page);
 385        ClearPageError(page);
 386
 387        io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
 388        if (!io_page) {
 389                set_page_dirty(page);
 390                unlock_page(page);
 391                return -ENOMEM;
 392        }
 393        io_page->p_page = page;
 394        atomic_set(&io_page->p_count, 1);
 395        get_page(page);
 396
 397        for (bh = head = page_buffers(page), block_start = 0;
 398             bh != head || !block_start;
 399             block_start = block_end, bh = bh->b_this_page) {
 400
 401                block_end = block_start + blocksize;
 402                if (block_start >= len) {
 403                        clear_buffer_dirty(bh);
 404                        set_buffer_uptodate(bh);
 405                        continue;
 406                }
 407                clear_buffer_dirty(bh);
 408                ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
 409                if (ret) {
 410                        /*
 411                         * We only get here on ENOMEM.  Not much else
 412                         * we can do but mark the page as dirty, and
 413                         * better luck next time.
 414                         */
 415                        set_page_dirty(page);
 416                        break;
 417                }
 418        }
 419        unlock_page(page);
 420        /*
 421         * If the page was truncated before we could do the writeback,
 422         * or we had a memory allocation error while trying to write
 423         * the first buffer head, we won't have submitted any pages for
 424         * I/O.  In that case we need to make sure we've cleared the
 425         * PageWriteback bit from the page to prevent the system from
 426         * wedging later on.
 427         */
 428        put_io_page(io_page);
 429        return ret;
 430}
 431