linux/fs/inode.c
<<
>>
Prefs
   1/*
   2 * linux/fs/inode.c
   3 *
   4 * (C) 1997 Linus Torvalds
   5 */
   6
   7#include <linux/fs.h>
   8#include <linux/mm.h>
   9#include <linux/dcache.h>
  10#include <linux/init.h>
  11#include <linux/slab.h>
  12#include <linux/writeback.h>
  13#include <linux/module.h>
  14#include <linux/backing-dev.h>
  15#include <linux/wait.h>
  16#include <linux/rwsem.h>
  17#include <linux/hash.h>
  18#include <linux/swap.h>
  19#include <linux/security.h>
  20#include <linux/pagemap.h>
  21#include <linux/cdev.h>
  22#include <linux/bootmem.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mount.h>
  25#include <linux/async.h>
  26#include <linux/posix_acl.h>
  27#include <linux/ima.h>
  28
  29/*
  30 * This is needed for the following functions:
  31 *  - inode_has_buffers
  32 *  - invalidate_bdev
  33 *
  34 * FIXME: remove all knowledge of the buffer layer from this file
  35 */
  36#include <linux/buffer_head.h>
  37
  38/*
  39 * New inode.c implementation.
  40 *
  41 * This implementation has the basic premise of trying
  42 * to be extremely low-overhead and SMP-safe, yet be
  43 * simple enough to be "obviously correct".
  44 *
  45 * Famous last words.
  46 */
  47
  48/* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
  49
  50/* #define INODE_PARANOIA 1 */
  51/* #define INODE_DEBUG 1 */
  52
  53/*
  54 * Inode lookup is no longer as critical as it used to be:
  55 * most of the lookups are going to be through the dcache.
  56 */
  57#define I_HASHBITS      i_hash_shift
  58#define I_HASHMASK      i_hash_mask
  59
  60static unsigned int i_hash_mask __read_mostly;
  61static unsigned int i_hash_shift __read_mostly;
  62
  63/*
  64 * Each inode can be on two separate lists. One is
  65 * the hash list of the inode, used for lookups. The
  66 * other linked list is the "type" list:
  67 *  "in_use" - valid inode, i_count > 0, i_nlink > 0
  68 *  "dirty"  - as "in_use" but also dirty
  69 *  "unused" - valid inode, i_count = 0
  70 *
  71 * A "dirty" list is maintained for each super block,
  72 * allowing for low-overhead inode sync() operations.
  73 */
  74
  75static LIST_HEAD(inode_lru);
  76static struct hlist_head *inode_hashtable __read_mostly;
  77
  78/*
  79 * A simple spinlock to protect the list manipulations.
  80 *
  81 * NOTE! You also have to own the lock if you change
  82 * the i_state of an inode while it is in use..
  83 */
  84DEFINE_SPINLOCK(inode_lock);
  85
  86/*
  87 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
  88 * icache shrinking path, and the umount path.  Without this exclusion,
  89 * by the time prune_icache calls iput for the inode whose pages it has
  90 * been invalidating, or by the time it calls clear_inode & destroy_inode
  91 * from its final dispose_list, the struct super_block they refer to
  92 * (for inode->i_sb->s_op) may already have been freed and reused.
  93 *
  94 * We make this an rwsem because the fastpath is icache shrinking. In
  95 * some cases a filesystem may be doing a significant amount of work in
  96 * its inode reclaim code, so this should improve parallelism.
  97 */
  98static DECLARE_RWSEM(iprune_sem);
  99
 100/*
 101 * Statistics gathering..
 102 */
 103struct inodes_stat_t inodes_stat;
 104
 105static DEFINE_PER_CPU(unsigned int, nr_inodes);
 106
 107static struct kmem_cache *inode_cachep __read_mostly;
 108
 109static int get_nr_inodes(void)
 110{
 111        int i;
 112        int sum = 0;
 113        for_each_possible_cpu(i)
 114                sum += per_cpu(nr_inodes, i);
 115        return sum < 0 ? 0 : sum;
 116}
 117
 118static inline int get_nr_inodes_unused(void)
 119{
 120        return inodes_stat.nr_unused;
 121}
 122
 123int get_nr_dirty_inodes(void)
 124{
 125        /* not actually dirty inodes, but a wild approximation */
 126        int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
 127        return nr_dirty > 0 ? nr_dirty : 0;
 128}
 129
 130/*
 131 * Handle nr_inode sysctl
 132 */
 133#ifdef CONFIG_SYSCTL
 134int proc_nr_inodes(ctl_table *table, int write,
 135                   void __user *buffer, size_t *lenp, loff_t *ppos)
 136{
 137        inodes_stat.nr_inodes = get_nr_inodes();
 138        return proc_dointvec(table, write, buffer, lenp, ppos);
 139}
 140#endif
 141
 142static void wake_up_inode(struct inode *inode)
 143{
 144        /*
 145         * Prevent speculative execution through spin_unlock(&inode_lock);
 146         */
 147        smp_mb();
 148        wake_up_bit(&inode->i_state, __I_NEW);
 149}
 150
 151/**
 152 * inode_init_always - perform inode structure intialisation
 153 * @sb: superblock inode belongs to
 154 * @inode: inode to initialise
 155 *
 156 * These are initializations that need to be done on every inode
 157 * allocation as the fields are not initialised by slab allocation.
 158 */
 159int inode_init_always(struct super_block *sb, struct inode *inode)
 160{
 161        static const struct address_space_operations empty_aops;
 162        static const struct inode_operations empty_iops;
 163        static const struct file_operations empty_fops;
 164        struct address_space *const mapping = &inode->i_data;
 165
 166        inode->i_sb = sb;
 167        inode->i_blkbits = sb->s_blocksize_bits;
 168        inode->i_flags = 0;
 169        atomic_set(&inode->i_count, 1);
 170        inode->i_op = &empty_iops;
 171        inode->i_fop = &empty_fops;
 172        inode->i_nlink = 1;
 173        inode->i_uid = 0;
 174        inode->i_gid = 0;
 175        atomic_set(&inode->i_writecount, 0);
 176        inode->i_size = 0;
 177        inode->i_blocks = 0;
 178        inode->i_bytes = 0;
 179        inode->i_generation = 0;
 180#ifdef CONFIG_QUOTA
 181        memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
 182#endif
 183        inode->i_pipe = NULL;
 184        inode->i_bdev = NULL;
 185        inode->i_cdev = NULL;
 186        inode->i_rdev = 0;
 187        inode->dirtied_when = 0;
 188
 189        if (security_inode_alloc(inode))
 190                goto out;
 191        spin_lock_init(&inode->i_lock);
 192        lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 193
 194        mutex_init(&inode->i_mutex);
 195        lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
 196
 197        init_rwsem(&inode->i_alloc_sem);
 198        lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
 199
 200        mapping->a_ops = &empty_aops;
 201        mapping->host = inode;
 202        mapping->flags = 0;
 203        mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
 204        mapping->assoc_mapping = NULL;
 205        mapping->backing_dev_info = &default_backing_dev_info;
 206        mapping->writeback_index = 0;
 207
 208        /*
 209         * If the block_device provides a backing_dev_info for client
 210         * inodes then use that.  Otherwise the inode share the bdev's
 211         * backing_dev_info.
 212         */
 213        if (sb->s_bdev) {
 214                struct backing_dev_info *bdi;
 215
 216                bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
 217                mapping->backing_dev_info = bdi;
 218        }
 219        inode->i_private = NULL;
 220        inode->i_mapping = mapping;
 221#ifdef CONFIG_FS_POSIX_ACL
 222        inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
 223#endif
 224
 225#ifdef CONFIG_FSNOTIFY
 226        inode->i_fsnotify_mask = 0;
 227#endif
 228
 229        this_cpu_inc(nr_inodes);
 230
 231        return 0;
 232out:
 233        return -ENOMEM;
 234}
 235EXPORT_SYMBOL(inode_init_always);
 236
 237static struct inode *alloc_inode(struct super_block *sb)
 238{
 239        struct inode *inode;
 240
 241        if (sb->s_op->alloc_inode)
 242                inode = sb->s_op->alloc_inode(sb);
 243        else
 244                inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 245
 246        if (!inode)
 247                return NULL;
 248
 249        if (unlikely(inode_init_always(sb, inode))) {
 250                if (inode->i_sb->s_op->destroy_inode)
 251                        inode->i_sb->s_op->destroy_inode(inode);
 252                else
 253                        kmem_cache_free(inode_cachep, inode);
 254                return NULL;
 255        }
 256
 257        return inode;
 258}
 259
 260void free_inode_nonrcu(struct inode *inode)
 261{
 262        kmem_cache_free(inode_cachep, inode);
 263}
 264EXPORT_SYMBOL(free_inode_nonrcu);
 265
 266void __destroy_inode(struct inode *inode)
 267{
 268        BUG_ON(inode_has_buffers(inode));
 269        security_inode_free(inode);
 270        fsnotify_inode_delete(inode);
 271#ifdef CONFIG_FS_POSIX_ACL
 272        if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
 273                posix_acl_release(inode->i_acl);
 274        if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
 275                posix_acl_release(inode->i_default_acl);
 276#endif
 277        this_cpu_dec(nr_inodes);
 278}
 279EXPORT_SYMBOL(__destroy_inode);
 280
 281static void i_callback(struct rcu_head *head)
 282{
 283        struct inode *inode = container_of(head, struct inode, i_rcu);
 284        INIT_LIST_HEAD(&inode->i_dentry);
 285        kmem_cache_free(inode_cachep, inode);
 286}
 287
 288static void destroy_inode(struct inode *inode)
 289{
 290        BUG_ON(!list_empty(&inode->i_lru));
 291        __destroy_inode(inode);
 292        if (inode->i_sb->s_op->destroy_inode)
 293                inode->i_sb->s_op->destroy_inode(inode);
 294        else
 295                call_rcu(&inode->i_rcu, i_callback);
 296}
 297
 298void address_space_init_once(struct address_space *mapping)
 299{
 300        memset(mapping, 0, sizeof(*mapping));
 301        INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
 302        spin_lock_init(&mapping->tree_lock);
 303        spin_lock_init(&mapping->i_mmap_lock);
 304        INIT_LIST_HEAD(&mapping->private_list);
 305        spin_lock_init(&mapping->private_lock);
 306        INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
 307        INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
 308        mutex_init(&mapping->unmap_mutex);
 309}
 310EXPORT_SYMBOL(address_space_init_once);
 311
 312/*
 313 * These are initializations that only need to be done
 314 * once, because the fields are idempotent across use
 315 * of the inode, so let the slab aware of that.
 316 */
 317void inode_init_once(struct inode *inode)
 318{
 319        memset(inode, 0, sizeof(*inode));
 320        INIT_HLIST_NODE(&inode->i_hash);
 321        INIT_LIST_HEAD(&inode->i_dentry);
 322        INIT_LIST_HEAD(&inode->i_devices);
 323        INIT_LIST_HEAD(&inode->i_wb_list);
 324        INIT_LIST_HEAD(&inode->i_lru);
 325        address_space_init_once(&inode->i_data);
 326        i_size_ordered_init(inode);
 327#ifdef CONFIG_FSNOTIFY
 328        INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
 329#endif
 330}
 331EXPORT_SYMBOL(inode_init_once);
 332
 333static void init_once(void *foo)
 334{
 335        struct inode *inode = (struct inode *) foo;
 336
 337        inode_init_once(inode);
 338}
 339
 340/*
 341 * inode_lock must be held
 342 */
 343void __iget(struct inode *inode)
 344{
 345        atomic_inc(&inode->i_count);
 346}
 347
 348/*
 349 * get additional reference to inode; caller must already hold one.
 350 */
 351void ihold(struct inode *inode)
 352{
 353        WARN_ON(atomic_inc_return(&inode->i_count) < 2);
 354}
 355EXPORT_SYMBOL(ihold);
 356
 357static void inode_lru_list_add(struct inode *inode)
 358{
 359        if (list_empty(&inode->i_lru)) {
 360                list_add(&inode->i_lru, &inode_lru);
 361                inodes_stat.nr_unused++;
 362        }
 363}
 364
 365static void inode_lru_list_del(struct inode *inode)
 366{
 367        if (!list_empty(&inode->i_lru)) {
 368                list_del_init(&inode->i_lru);
 369                inodes_stat.nr_unused--;
 370        }
 371}
 372
 373static inline void __inode_sb_list_add(struct inode *inode)
 374{
 375        list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 376}
 377
 378/**
 379 * inode_sb_list_add - add inode to the superblock list of inodes
 380 * @inode: inode to add
 381 */
 382void inode_sb_list_add(struct inode *inode)
 383{
 384        spin_lock(&inode_lock);
 385        __inode_sb_list_add(inode);
 386        spin_unlock(&inode_lock);
 387}
 388EXPORT_SYMBOL_GPL(inode_sb_list_add);
 389
 390static inline void __inode_sb_list_del(struct inode *inode)
 391{
 392        list_del_init(&inode->i_sb_list);
 393}
 394
 395static unsigned long hash(struct super_block *sb, unsigned long hashval)
 396{
 397        unsigned long tmp;
 398
 399        tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 400                        L1_CACHE_BYTES;
 401        tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
 402        return tmp & I_HASHMASK;
 403}
 404
 405/**
 406 *      __insert_inode_hash - hash an inode
 407 *      @inode: unhashed inode
 408 *      @hashval: unsigned long value used to locate this object in the
 409 *              inode_hashtable.
 410 *
 411 *      Add an inode to the inode hash for this superblock.
 412 */
 413void __insert_inode_hash(struct inode *inode, unsigned long hashval)
 414{
 415        struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
 416
 417        spin_lock(&inode_lock);
 418        hlist_add_head(&inode->i_hash, b);
 419        spin_unlock(&inode_lock);
 420}
 421EXPORT_SYMBOL(__insert_inode_hash);
 422
 423/**
 424 *      __remove_inode_hash - remove an inode from the hash
 425 *      @inode: inode to unhash
 426 *
 427 *      Remove an inode from the superblock.
 428 */
 429static void __remove_inode_hash(struct inode *inode)
 430{
 431        hlist_del_init(&inode->i_hash);
 432}
 433
 434/**
 435 *      remove_inode_hash - remove an inode from the hash
 436 *      @inode: inode to unhash
 437 *
 438 *      Remove an inode from the superblock.
 439 */
 440void remove_inode_hash(struct inode *inode)
 441{
 442        spin_lock(&inode_lock);
 443        hlist_del_init(&inode->i_hash);
 444        spin_unlock(&inode_lock);
 445}
 446EXPORT_SYMBOL(remove_inode_hash);
 447
 448void end_writeback(struct inode *inode)
 449{
 450        might_sleep();
 451        BUG_ON(inode->i_data.nrpages);
 452        BUG_ON(!list_empty(&inode->i_data.private_list));
 453        BUG_ON(!(inode->i_state & I_FREEING));
 454        BUG_ON(inode->i_state & I_CLEAR);
 455        inode_sync_wait(inode);
 456        /* don't need i_lock here, no concurrent mods to i_state */
 457        inode->i_state = I_FREEING | I_CLEAR;
 458}
 459EXPORT_SYMBOL(end_writeback);
 460
 461static void evict(struct inode *inode)
 462{
 463        const struct super_operations *op = inode->i_sb->s_op;
 464
 465        if (op->evict_inode) {
 466                op->evict_inode(inode);
 467        } else {
 468                if (inode->i_data.nrpages)
 469                        truncate_inode_pages(&inode->i_data, 0);
 470                end_writeback(inode);
 471        }
 472        if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 473                bd_forget(inode);
 474        if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 475                cd_forget(inode);
 476}
 477
 478/*
 479 * dispose_list - dispose of the contents of a local list
 480 * @head: the head of the list to free
 481 *
 482 * Dispose-list gets a local list with local inodes in it, so it doesn't
 483 * need to worry about list corruption and SMP locks.
 484 */
 485static void dispose_list(struct list_head *head)
 486{
 487        while (!list_empty(head)) {
 488                struct inode *inode;
 489
 490                inode = list_first_entry(head, struct inode, i_lru);
 491                list_del_init(&inode->i_lru);
 492
 493                evict(inode);
 494
 495                spin_lock(&inode_lock);
 496                __remove_inode_hash(inode);
 497                __inode_sb_list_del(inode);
 498                spin_unlock(&inode_lock);
 499
 500                wake_up_inode(inode);
 501                destroy_inode(inode);
 502        }
 503}
 504
 505/**
 506 * evict_inodes - evict all evictable inodes for a superblock
 507 * @sb:         superblock to operate on
 508 *
 509 * Make sure that no inodes with zero refcount are retained.  This is
 510 * called by superblock shutdown after having MS_ACTIVE flag removed,
 511 * so any inode reaching zero refcount during or after that call will
 512 * be immediately evicted.
 513 */
 514void evict_inodes(struct super_block *sb)
 515{
 516        struct inode *inode, *next;
 517        LIST_HEAD(dispose);
 518
 519        down_write(&iprune_sem);
 520
 521        spin_lock(&inode_lock);
 522        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 523                if (atomic_read(&inode->i_count))
 524                        continue;
 525
 526                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 527                        WARN_ON(1);
 528                        continue;
 529                }
 530
 531                inode->i_state |= I_FREEING;
 532
 533                /*
 534                 * Move the inode off the IO lists and LRU once I_FREEING is
 535                 * set so that it won't get moved back on there if it is dirty.
 536                 */
 537                list_move(&inode->i_lru, &dispose);
 538                list_del_init(&inode->i_wb_list);
 539                if (!(inode->i_state & (I_DIRTY | I_SYNC)))
 540                        inodes_stat.nr_unused--;
 541        }
 542        spin_unlock(&inode_lock);
 543
 544        dispose_list(&dispose);
 545        up_write(&iprune_sem);
 546}
 547
 548/**
 549 * invalidate_inodes    - attempt to free all inodes on a superblock
 550 * @sb:         superblock to operate on
 551 * @kill_dirty: flag to guide handling of dirty inodes
 552 *
 553 * Attempts to free all inodes for a given superblock.  If there were any
 554 * busy inodes return a non-zero value, else zero.
 555 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
 556 * them as busy.
 557 */
 558int invalidate_inodes(struct super_block *sb, bool kill_dirty)
 559{
 560        int busy = 0;
 561        struct inode *inode, *next;
 562        LIST_HEAD(dispose);
 563
 564        down_write(&iprune_sem);
 565
 566        spin_lock(&inode_lock);
 567        list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
 568                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE))
 569                        continue;
 570                if (inode->i_state & I_DIRTY && !kill_dirty) {
 571                        busy = 1;
 572                        continue;
 573                }
 574                if (atomic_read(&inode->i_count)) {
 575                        busy = 1;
 576                        continue;
 577                }
 578
 579                inode->i_state |= I_FREEING;
 580
 581                /*
 582                 * Move the inode off the IO lists and LRU once I_FREEING is
 583                 * set so that it won't get moved back on there if it is dirty.
 584                 */
 585                list_move(&inode->i_lru, &dispose);
 586                list_del_init(&inode->i_wb_list);
 587                if (!(inode->i_state & (I_DIRTY | I_SYNC)))
 588                        inodes_stat.nr_unused--;
 589        }
 590        spin_unlock(&inode_lock);
 591
 592        dispose_list(&dispose);
 593        up_write(&iprune_sem);
 594
 595        return busy;
 596}
 597
 598static int can_unuse(struct inode *inode)
 599{
 600        if (inode->i_state & ~I_REFERENCED)
 601                return 0;
 602        if (inode_has_buffers(inode))
 603                return 0;
 604        if (atomic_read(&inode->i_count))
 605                return 0;
 606        if (inode->i_data.nrpages)
 607                return 0;
 608        return 1;
 609}
 610
 611/*
 612 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
 613 * temporary list and then are freed outside inode_lock by dispose_list().
 614 *
 615 * Any inodes which are pinned purely because of attached pagecache have their
 616 * pagecache removed.  If the inode has metadata buffers attached to
 617 * mapping->private_list then try to remove them.
 618 *
 619 * If the inode has the I_REFERENCED flag set, then it means that it has been
 620 * used recently - the flag is set in iput_final(). When we encounter such an
 621 * inode, clear the flag and move it to the back of the LRU so it gets another
 622 * pass through the LRU before it gets reclaimed. This is necessary because of
 623 * the fact we are doing lazy LRU updates to minimise lock contention so the
 624 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
 625 * with this flag set because they are the inodes that are out of order.
 626 */
 627static void prune_icache(int nr_to_scan)
 628{
 629        LIST_HEAD(freeable);
 630        int nr_scanned;
 631        unsigned long reap = 0;
 632
 633        down_read(&iprune_sem);
 634        spin_lock(&inode_lock);
 635        for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
 636                struct inode *inode;
 637
 638                if (list_empty(&inode_lru))
 639                        break;
 640
 641                inode = list_entry(inode_lru.prev, struct inode, i_lru);
 642
 643                /*
 644                 * Referenced or dirty inodes are still in use. Give them
 645                 * another pass through the LRU as we canot reclaim them now.
 646                 */
 647                if (atomic_read(&inode->i_count) ||
 648                    (inode->i_state & ~I_REFERENCED)) {
 649                        list_del_init(&inode->i_lru);
 650                        inodes_stat.nr_unused--;
 651                        continue;
 652                }
 653
 654                /* recently referenced inodes get one more pass */
 655                if (inode->i_state & I_REFERENCED) {
 656                        list_move(&inode->i_lru, &inode_lru);
 657                        inode->i_state &= ~I_REFERENCED;
 658                        continue;
 659                }
 660                if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 661                        __iget(inode);
 662                        spin_unlock(&inode_lock);
 663                        if (remove_inode_buffers(inode))
 664                                reap += invalidate_mapping_pages(&inode->i_data,
 665                                                                0, -1);
 666                        iput(inode);
 667                        spin_lock(&inode_lock);
 668
 669                        if (inode != list_entry(inode_lru.next,
 670                                                struct inode, i_lru))
 671                                continue;       /* wrong inode or list_empty */
 672                        if (!can_unuse(inode))
 673                                continue;
 674                }
 675                WARN_ON(inode->i_state & I_NEW);
 676                inode->i_state |= I_FREEING;
 677
 678                /*
 679                 * Move the inode off the IO lists and LRU once I_FREEING is
 680                 * set so that it won't get moved back on there if it is dirty.
 681                 */
 682                list_move(&inode->i_lru, &freeable);
 683                list_del_init(&inode->i_wb_list);
 684                inodes_stat.nr_unused--;
 685        }
 686        if (current_is_kswapd())
 687                __count_vm_events(KSWAPD_INODESTEAL, reap);
 688        else
 689                __count_vm_events(PGINODESTEAL, reap);
 690        spin_unlock(&inode_lock);
 691
 692        dispose_list(&freeable);
 693        up_read(&iprune_sem);
 694}
 695
 696/*
 697 * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
 698 * "unused" means that no dentries are referring to the inodes: the files are
 699 * not open and the dcache references to those inodes have already been
 700 * reclaimed.
 701 *
 702 * This function is passed the number of inodes to scan, and it returns the
 703 * total number of remaining possibly-reclaimable inodes.
 704 */
 705static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
 706{
 707        if (nr) {
 708                /*
 709                 * Nasty deadlock avoidance.  We may hold various FS locks,
 710                 * and we don't want to recurse into the FS that called us
 711                 * in clear_inode() and friends..
 712                 */
 713                if (!(gfp_mask & __GFP_FS))
 714                        return -1;
 715                prune_icache(nr);
 716        }
 717        return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
 718}
 719
 720static struct shrinker icache_shrinker = {
 721        .shrink = shrink_icache_memory,
 722        .seeks = DEFAULT_SEEKS,
 723};
 724
 725static void __wait_on_freeing_inode(struct inode *inode);
 726/*
 727 * Called with the inode lock held.
 728 */
 729static struct inode *find_inode(struct super_block *sb,
 730                                struct hlist_head *head,
 731                                int (*test)(struct inode *, void *),
 732                                void *data)
 733{
 734        struct hlist_node *node;
 735        struct inode *inode = NULL;
 736
 737repeat:
 738        hlist_for_each_entry(inode, node, head, i_hash) {
 739                if (inode->i_sb != sb)
 740                        continue;
 741                if (!test(inode, data))
 742                        continue;
 743                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 744                        __wait_on_freeing_inode(inode);
 745                        goto repeat;
 746                }
 747                __iget(inode);
 748                return inode;
 749        }
 750        return NULL;
 751}
 752
 753/*
 754 * find_inode_fast is the fast path version of find_inode, see the comment at
 755 * iget_locked for details.
 756 */
 757static struct inode *find_inode_fast(struct super_block *sb,
 758                                struct hlist_head *head, unsigned long ino)
 759{
 760        struct hlist_node *node;
 761        struct inode *inode = NULL;
 762
 763repeat:
 764        hlist_for_each_entry(inode, node, head, i_hash) {
 765                if (inode->i_ino != ino)
 766                        continue;
 767                if (inode->i_sb != sb)
 768                        continue;
 769                if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
 770                        __wait_on_freeing_inode(inode);
 771                        goto repeat;
 772                }
 773                __iget(inode);
 774                return inode;
 775        }
 776        return NULL;
 777}
 778
 779/*
 780 * Each cpu owns a range of LAST_INO_BATCH numbers.
 781 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
 782 * to renew the exhausted range.
 783 *
 784 * This does not significantly increase overflow rate because every CPU can
 785 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
 786 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
 787 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
 788 * overflow rate by 2x, which does not seem too significant.
 789 *
 790 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 791 * error if st_ino won't fit in target struct field. Use 32bit counter
 792 * here to attempt to avoid that.
 793 */
 794#define LAST_INO_BATCH 1024
 795static DEFINE_PER_CPU(unsigned int, last_ino);
 796
 797unsigned int get_next_ino(void)
 798{
 799        unsigned int *p = &get_cpu_var(last_ino);
 800        unsigned int res = *p;
 801
 802#ifdef CONFIG_SMP
 803        if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
 804                static atomic_t shared_last_ino;
 805                int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
 806
 807                res = next - LAST_INO_BATCH;
 808        }
 809#endif
 810
 811        *p = ++res;
 812        put_cpu_var(last_ino);
 813        return res;
 814}
 815EXPORT_SYMBOL(get_next_ino);
 816
 817/**
 818 *      new_inode       - obtain an inode
 819 *      @sb: superblock
 820 *
 821 *      Allocates a new inode for given superblock. The default gfp_mask
 822 *      for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
 823 *      If HIGHMEM pages are unsuitable or it is known that pages allocated
 824 *      for the page cache are not reclaimable or migratable,
 825 *      mapping_set_gfp_mask() must be called with suitable flags on the
 826 *      newly created inode's mapping
 827 *
 828 */
 829struct inode *new_inode(struct super_block *sb)
 830{
 831        struct inode *inode;
 832
 833        spin_lock_prefetch(&inode_lock);
 834
 835        inode = alloc_inode(sb);
 836        if (inode) {
 837                spin_lock(&inode_lock);
 838                __inode_sb_list_add(inode);
 839                inode->i_state = 0;
 840                spin_unlock(&inode_lock);
 841        }
 842        return inode;
 843}
 844EXPORT_SYMBOL(new_inode);
 845
 846void unlock_new_inode(struct inode *inode)
 847{
 848#ifdef CONFIG_DEBUG_LOCK_ALLOC
 849        if (S_ISDIR(inode->i_mode)) {
 850                struct file_system_type *type = inode->i_sb->s_type;
 851
 852                /* Set new key only if filesystem hasn't already changed it */
 853                if (!lockdep_match_class(&inode->i_mutex,
 854                    &type->i_mutex_key)) {
 855                        /*
 856                         * ensure nobody is actually holding i_mutex
 857                         */
 858                        mutex_destroy(&inode->i_mutex);
 859                        mutex_init(&inode->i_mutex);
 860                        lockdep_set_class(&inode->i_mutex,
 861                                          &type->i_mutex_dir_key);
 862                }
 863        }
 864#endif
 865        /*
 866         * This is special!  We do not need the spinlock when clearing I_NEW,
 867         * because we're guaranteed that nobody else tries to do anything about
 868         * the state of the inode when it is locked, as we just created it (so
 869         * there can be no old holders that haven't tested I_NEW).
 870         * However we must emit the memory barrier so that other CPUs reliably
 871         * see the clearing of I_NEW after the other inode initialisation has
 872         * completed.
 873         */
 874        smp_mb();
 875        WARN_ON(!(inode->i_state & I_NEW));
 876        inode->i_state &= ~I_NEW;
 877        wake_up_inode(inode);
 878}
 879EXPORT_SYMBOL(unlock_new_inode);
 880
 881/*
 882 * This is called without the inode lock held.. Be careful.
 883 *
 884 * We no longer cache the sb_flags in i_flags - see fs.h
 885 *      -- rmk@arm.uk.linux.org
 886 */
 887static struct inode *get_new_inode(struct super_block *sb,
 888                                struct hlist_head *head,
 889                                int (*test)(struct inode *, void *),
 890                                int (*set)(struct inode *, void *),
 891                                void *data)
 892{
 893        struct inode *inode;
 894
 895        inode = alloc_inode(sb);
 896        if (inode) {
 897                struct inode *old;
 898
 899                spin_lock(&inode_lock);
 900                /* We released the lock, so.. */
 901                old = find_inode(sb, head, test, data);
 902                if (!old) {
 903                        if (set(inode, data))
 904                                goto set_failed;
 905
 906                        hlist_add_head(&inode->i_hash, head);
 907                        __inode_sb_list_add(inode);
 908                        inode->i_state = I_NEW;
 909                        spin_unlock(&inode_lock);
 910
 911                        /* Return the locked inode with I_NEW set, the
 912                         * caller is responsible for filling in the contents
 913                         */
 914                        return inode;
 915                }
 916
 917                /*
 918                 * Uhhuh, somebody else created the same inode under
 919                 * us. Use the old inode instead of the one we just
 920                 * allocated.
 921                 */
 922                spin_unlock(&inode_lock);
 923                destroy_inode(inode);
 924                inode = old;
 925                wait_on_inode(inode);
 926        }
 927        return inode;
 928
 929set_failed:
 930        spin_unlock(&inode_lock);
 931        destroy_inode(inode);
 932        return NULL;
 933}
 934
 935/*
 936 * get_new_inode_fast is the fast path version of get_new_inode, see the
 937 * comment at iget_locked for details.
 938 */
 939static struct inode *get_new_inode_fast(struct super_block *sb,
 940                                struct hlist_head *head, unsigned long ino)
 941{
 942        struct inode *inode;
 943
 944        inode = alloc_inode(sb);
 945        if (inode) {
 946                struct inode *old;
 947
 948                spin_lock(&inode_lock);
 949                /* We released the lock, so.. */
 950                old = find_inode_fast(sb, head, ino);
 951                if (!old) {
 952                        inode->i_ino = ino;
 953                        hlist_add_head(&inode->i_hash, head);
 954                        __inode_sb_list_add(inode);
 955                        inode->i_state = I_NEW;
 956                        spin_unlock(&inode_lock);
 957
 958                        /* Return the locked inode with I_NEW set, the
 959                         * caller is responsible for filling in the contents
 960                         */
 961                        return inode;
 962                }
 963
 964                /*
 965                 * Uhhuh, somebody else created the same inode under
 966                 * us. Use the old inode instead of the one we just
 967                 * allocated.
 968                 */
 969                spin_unlock(&inode_lock);
 970                destroy_inode(inode);
 971                inode = old;
 972                wait_on_inode(inode);
 973        }
 974        return inode;
 975}
 976
 977/*
 978 * search the inode cache for a matching inode number.
 979 * If we find one, then the inode number we are trying to
 980 * allocate is not unique and so we should not use it.
 981 *
 982 * Returns 1 if the inode number is unique, 0 if it is not.
 983 */
 984static int test_inode_iunique(struct super_block *sb, unsigned long ino)
 985{
 986        struct hlist_head *b = inode_hashtable + hash(sb, ino);
 987        struct hlist_node *node;
 988        struct inode *inode;
 989
 990        hlist_for_each_entry(inode, node, b, i_hash) {
 991                if (inode->i_ino == ino && inode->i_sb == sb)
 992                        return 0;
 993        }
 994
 995        return 1;
 996}
 997
 998/**
 999 *      iunique - get a unique inode number
1000 *      @sb: superblock
1001 *      @max_reserved: highest reserved inode number
1002 *
1003 *      Obtain an inode number that is unique on the system for a given
1004 *      superblock. This is used by file systems that have no natural
1005 *      permanent inode numbering system. An inode number is returned that
1006 *      is higher than the reserved limit but unique.
1007 *
1008 *      BUGS:
1009 *      With a large number of inodes live on the file system this function
1010 *      currently becomes quite slow.
1011 */
1012ino_t iunique(struct super_block *sb, ino_t max_reserved)
1013{
1014        /*
1015         * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1016         * error if st_ino won't fit in target struct field. Use 32bit counter
1017         * here to attempt to avoid that.
1018         */
1019        static DEFINE_SPINLOCK(iunique_lock);
1020        static unsigned int counter;
1021        ino_t res;
1022
1023        spin_lock(&inode_lock);
1024        spin_lock(&iunique_lock);
1025        do {
1026                if (counter <= max_reserved)
1027                        counter = max_reserved + 1;
1028                res = counter++;
1029        } while (!test_inode_iunique(sb, res));
1030        spin_unlock(&iunique_lock);
1031        spin_unlock(&inode_lock);
1032
1033        return res;
1034}
1035EXPORT_SYMBOL(iunique);
1036
1037struct inode *igrab(struct inode *inode)
1038{
1039        spin_lock(&inode_lock);
1040        if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
1041                __iget(inode);
1042        else
1043                /*
1044                 * Handle the case where s_op->clear_inode is not been
1045                 * called yet, and somebody is calling igrab
1046                 * while the inode is getting freed.
1047                 */
1048                inode = NULL;
1049        spin_unlock(&inode_lock);
1050        return inode;
1051}
1052EXPORT_SYMBOL(igrab);
1053
1054/**
1055 * ifind - internal function, you want ilookup5() or iget5().
1056 * @sb:         super block of file system to search
1057 * @head:       the head of the list to search
1058 * @test:       callback used for comparisons between inodes
1059 * @data:       opaque data pointer to pass to @test
1060 * @wait:       if true wait for the inode to be unlocked, if false do not
1061 *
1062 * ifind() searches for the inode specified by @data in the inode
1063 * cache. This is a generalized version of ifind_fast() for file systems where
1064 * the inode number is not sufficient for unique identification of an inode.
1065 *
1066 * If the inode is in the cache, the inode is returned with an incremented
1067 * reference count.
1068 *
1069 * Otherwise NULL is returned.
1070 *
1071 * Note, @test is called with the inode_lock held, so can't sleep.
1072 */
1073static struct inode *ifind(struct super_block *sb,
1074                struct hlist_head *head, int (*test)(struct inode *, void *),
1075                void *data, const int wait)
1076{
1077        struct inode *inode;
1078
1079        spin_lock(&inode_lock);
1080        inode = find_inode(sb, head, test, data);
1081        if (inode) {
1082                spin_unlock(&inode_lock);
1083                if (likely(wait))
1084                        wait_on_inode(inode);
1085                return inode;
1086        }
1087        spin_unlock(&inode_lock);
1088        return NULL;
1089}
1090
1091/**
1092 * ifind_fast - internal function, you want ilookup() or iget().
1093 * @sb:         super block of file system to search
1094 * @head:       head of the list to search
1095 * @ino:        inode number to search for
1096 *
1097 * ifind_fast() searches for the inode @ino in the inode cache. This is for
1098 * file systems where the inode number is sufficient for unique identification
1099 * of an inode.
1100 *
1101 * If the inode is in the cache, the inode is returned with an incremented
1102 * reference count.
1103 *
1104 * Otherwise NULL is returned.
1105 */
1106static struct inode *ifind_fast(struct super_block *sb,
1107                struct hlist_head *head, unsigned long ino)
1108{
1109        struct inode *inode;
1110
1111        spin_lock(&inode_lock);
1112        inode = find_inode_fast(sb, head, ino);
1113        if (inode) {
1114                spin_unlock(&inode_lock);
1115                wait_on_inode(inode);
1116                return inode;
1117        }
1118        spin_unlock(&inode_lock);
1119        return NULL;
1120}
1121
1122/**
1123 * ilookup5_nowait - search for an inode in the inode cache
1124 * @sb:         super block of file system to search
1125 * @hashval:    hash value (usually inode number) to search for
1126 * @test:       callback used for comparisons between inodes
1127 * @data:       opaque data pointer to pass to @test
1128 *
1129 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1130 * @data in the inode cache. This is a generalized version of ilookup() for
1131 * file systems where the inode number is not sufficient for unique
1132 * identification of an inode.
1133 *
1134 * If the inode is in the cache, the inode is returned with an incremented
1135 * reference count.  Note, the inode lock is not waited upon so you have to be
1136 * very careful what you do with the returned inode.  You probably should be
1137 * using ilookup5() instead.
1138 *
1139 * Otherwise NULL is returned.
1140 *
1141 * Note, @test is called with the inode_lock held, so can't sleep.
1142 */
1143struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1144                int (*test)(struct inode *, void *), void *data)
1145{
1146        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1147
1148        return ifind(sb, head, test, data, 0);
1149}
1150EXPORT_SYMBOL(ilookup5_nowait);
1151
1152/**
1153 * ilookup5 - search for an inode in the inode cache
1154 * @sb:         super block of file system to search
1155 * @hashval:    hash value (usually inode number) to search for
1156 * @test:       callback used for comparisons between inodes
1157 * @data:       opaque data pointer to pass to @test
1158 *
1159 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1160 * @data in the inode cache. This is a generalized version of ilookup() for
1161 * file systems where the inode number is not sufficient for unique
1162 * identification of an inode.
1163 *
1164 * If the inode is in the cache, the inode lock is waited upon and the inode is
1165 * returned with an incremented reference count.
1166 *
1167 * Otherwise NULL is returned.
1168 *
1169 * Note, @test is called with the inode_lock held, so can't sleep.
1170 */
1171struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1172                int (*test)(struct inode *, void *), void *data)
1173{
1174        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1175
1176        return ifind(sb, head, test, data, 1);
1177}
1178EXPORT_SYMBOL(ilookup5);
1179
1180/**
1181 * ilookup - search for an inode in the inode cache
1182 * @sb:         super block of file system to search
1183 * @ino:        inode number to search for
1184 *
1185 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1186 * This is for file systems where the inode number is sufficient for unique
1187 * identification of an inode.
1188 *
1189 * If the inode is in the cache, the inode is returned with an incremented
1190 * reference count.
1191 *
1192 * Otherwise NULL is returned.
1193 */
1194struct inode *ilookup(struct super_block *sb, unsigned long ino)
1195{
1196        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1197
1198        return ifind_fast(sb, head, ino);
1199}
1200EXPORT_SYMBOL(ilookup);
1201
1202/**
1203 * iget5_locked - obtain an inode from a mounted file system
1204 * @sb:         super block of file system
1205 * @hashval:    hash value (usually inode number) to get
1206 * @test:       callback used for comparisons between inodes
1207 * @set:        callback used to initialize a new struct inode
1208 * @data:       opaque data pointer to pass to @test and @set
1209 *
1210 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1211 * and @data in the inode cache and if present it is returned with an increased
1212 * reference count. This is a generalized version of iget_locked() for file
1213 * systems where the inode number is not sufficient for unique identification
1214 * of an inode.
1215 *
1216 * If the inode is not in cache, get_new_inode() is called to allocate a new
1217 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1218 * file system gets to fill it in before unlocking it via unlock_new_inode().
1219 *
1220 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1221 */
1222struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1223                int (*test)(struct inode *, void *),
1224                int (*set)(struct inode *, void *), void *data)
1225{
1226        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1227        struct inode *inode;
1228
1229        inode = ifind(sb, head, test, data, 1);
1230        if (inode)
1231                return inode;
1232        /*
1233         * get_new_inode() will do the right thing, re-trying the search
1234         * in case it had to block at any point.
1235         */
1236        return get_new_inode(sb, head, test, set, data);
1237}
1238EXPORT_SYMBOL(iget5_locked);
1239
1240/**
1241 * iget_locked - obtain an inode from a mounted file system
1242 * @sb:         super block of file system
1243 * @ino:        inode number to get
1244 *
1245 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1246 * the inode cache and if present it is returned with an increased reference
1247 * count. This is for file systems where the inode number is sufficient for
1248 * unique identification of an inode.
1249 *
1250 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1251 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1252 * The file system gets to fill it in before unlocking it via
1253 * unlock_new_inode().
1254 */
1255struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1256{
1257        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1258        struct inode *inode;
1259
1260        inode = ifind_fast(sb, head, ino);
1261        if (inode)
1262                return inode;
1263        /*
1264         * get_new_inode_fast() will do the right thing, re-trying the search
1265         * in case it had to block at any point.
1266         */
1267        return get_new_inode_fast(sb, head, ino);
1268}
1269EXPORT_SYMBOL(iget_locked);
1270
1271int insert_inode_locked(struct inode *inode)
1272{
1273        struct super_block *sb = inode->i_sb;
1274        ino_t ino = inode->i_ino;
1275        struct hlist_head *head = inode_hashtable + hash(sb, ino);
1276
1277        inode->i_state |= I_NEW;
1278        while (1) {
1279                struct hlist_node *node;
1280                struct inode *old = NULL;
1281                spin_lock(&inode_lock);
1282                hlist_for_each_entry(old, node, head, i_hash) {
1283                        if (old->i_ino != ino)
1284                                continue;
1285                        if (old->i_sb != sb)
1286                                continue;
1287                        if (old->i_state & (I_FREEING|I_WILL_FREE))
1288                                continue;
1289                        break;
1290                }
1291                if (likely(!node)) {
1292                        hlist_add_head(&inode->i_hash, head);
1293                        spin_unlock(&inode_lock);
1294                        return 0;
1295                }
1296                __iget(old);
1297                spin_unlock(&inode_lock);
1298                wait_on_inode(old);
1299                if (unlikely(!inode_unhashed(old))) {
1300                        iput(old);
1301                        return -EBUSY;
1302                }
1303                iput(old);
1304        }
1305}
1306EXPORT_SYMBOL(insert_inode_locked);
1307
1308int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1309                int (*test)(struct inode *, void *), void *data)
1310{
1311        struct super_block *sb = inode->i_sb;
1312        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1313
1314        inode->i_state |= I_NEW;
1315
1316        while (1) {
1317                struct hlist_node *node;
1318                struct inode *old = NULL;
1319
1320                spin_lock(&inode_lock);
1321                hlist_for_each_entry(old, node, head, i_hash) {
1322                        if (old->i_sb != sb)
1323                                continue;
1324                        if (!test(old, data))
1325                                continue;
1326                        if (old->i_state & (I_FREEING|I_WILL_FREE))
1327                                continue;
1328                        break;
1329                }
1330                if (likely(!node)) {
1331                        hlist_add_head(&inode->i_hash, head);
1332                        spin_unlock(&inode_lock);
1333                        return 0;
1334                }
1335                __iget(old);
1336                spin_unlock(&inode_lock);
1337                wait_on_inode(old);
1338                if (unlikely(!inode_unhashed(old))) {
1339                        iput(old);
1340                        return -EBUSY;
1341                }
1342                iput(old);
1343        }
1344}
1345EXPORT_SYMBOL(insert_inode_locked4);
1346
1347
1348int generic_delete_inode(struct inode *inode)
1349{
1350        return 1;
1351}
1352EXPORT_SYMBOL(generic_delete_inode);
1353
1354/*
1355 * Normal UNIX filesystem behaviour: delete the
1356 * inode when the usage count drops to zero, and
1357 * i_nlink is zero.
1358 */
1359int generic_drop_inode(struct inode *inode)
1360{
1361        return !inode->i_nlink || inode_unhashed(inode);
1362}
1363EXPORT_SYMBOL_GPL(generic_drop_inode);
1364
1365/*
1366 * Called when we're dropping the last reference
1367 * to an inode.
1368 *
1369 * Call the FS "drop_inode()" function, defaulting to
1370 * the legacy UNIX filesystem behaviour.  If it tells
1371 * us to evict inode, do so.  Otherwise, retain inode
1372 * in cache if fs is alive, sync and evict if fs is
1373 * shutting down.
1374 */
1375static void iput_final(struct inode *inode)
1376{
1377        struct super_block *sb = inode->i_sb;
1378        const struct super_operations *op = inode->i_sb->s_op;
1379        int drop;
1380
1381        if (op && op->drop_inode)
1382                drop = op->drop_inode(inode);
1383        else
1384                drop = generic_drop_inode(inode);
1385
1386        if (!drop) {
1387                if (sb->s_flags & MS_ACTIVE) {
1388                        inode->i_state |= I_REFERENCED;
1389                        if (!(inode->i_state & (I_DIRTY|I_SYNC))) {
1390                                inode_lru_list_add(inode);
1391                        }
1392                        spin_unlock(&inode_lock);
1393                        return;
1394                }
1395                WARN_ON(inode->i_state & I_NEW);
1396                inode->i_state |= I_WILL_FREE;
1397                spin_unlock(&inode_lock);
1398                write_inode_now(inode, 1);
1399                spin_lock(&inode_lock);
1400                WARN_ON(inode->i_state & I_NEW);
1401                inode->i_state &= ~I_WILL_FREE;
1402                __remove_inode_hash(inode);
1403        }
1404
1405        WARN_ON(inode->i_state & I_NEW);
1406        inode->i_state |= I_FREEING;
1407
1408        /*
1409         * Move the inode off the IO lists and LRU once I_FREEING is
1410         * set so that it won't get moved back on there if it is dirty.
1411         */
1412        inode_lru_list_del(inode);
1413        list_del_init(&inode->i_wb_list);
1414
1415        __inode_sb_list_del(inode);
1416        spin_unlock(&inode_lock);
1417        evict(inode);
1418        remove_inode_hash(inode);
1419        wake_up_inode(inode);
1420        BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1421        destroy_inode(inode);
1422}
1423
1424/**
1425 *      iput    - put an inode
1426 *      @inode: inode to put
1427 *
1428 *      Puts an inode, dropping its usage count. If the inode use count hits
1429 *      zero, the inode is then freed and may also be destroyed.
1430 *
1431 *      Consequently, iput() can sleep.
1432 */
1433void iput(struct inode *inode)
1434{
1435        if (inode) {
1436                BUG_ON(inode->i_state & I_CLEAR);
1437
1438                if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1439                        iput_final(inode);
1440        }
1441}
1442EXPORT_SYMBOL(iput);
1443
1444/**
1445 *      bmap    - find a block number in a file
1446 *      @inode: inode of file
1447 *      @block: block to find
1448 *
1449 *      Returns the block number on the device holding the inode that
1450 *      is the disk block number for the block of the file requested.
1451 *      That is, asked for block 4 of inode 1 the function will return the
1452 *      disk block relative to the disk start that holds that block of the
1453 *      file.
1454 */
1455sector_t bmap(struct inode *inode, sector_t block)
1456{
1457        sector_t res = 0;
1458        if (inode->i_mapping->a_ops->bmap)
1459                res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1460        return res;
1461}
1462EXPORT_SYMBOL(bmap);
1463
1464/*
1465 * With relative atime, only update atime if the previous atime is
1466 * earlier than either the ctime or mtime or if at least a day has
1467 * passed since the last atime update.
1468 */
1469static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1470                             struct timespec now)
1471{
1472
1473        if (!(mnt->mnt_flags & MNT_RELATIME))
1474                return 1;
1475        /*
1476         * Is mtime younger than atime? If yes, update atime:
1477         */
1478        if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1479                return 1;
1480        /*
1481         * Is ctime younger than atime? If yes, update atime:
1482         */
1483        if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1484                return 1;
1485
1486        /*
1487         * Is the previous atime value older than a day? If yes,
1488         * update atime:
1489         */
1490        if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1491                return 1;
1492        /*
1493         * Good, we can skip the atime update:
1494         */
1495        return 0;
1496}
1497
1498/**
1499 *      touch_atime     -       update the access time
1500 *      @mnt: mount the inode is accessed on
1501 *      @dentry: dentry accessed
1502 *
1503 *      Update the accessed time on an inode and mark it for writeback.
1504 *      This function automatically handles read only file systems and media,
1505 *      as well as the "noatime" flag and inode specific "noatime" markers.
1506 */
1507void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1508{
1509        struct inode *inode = dentry->d_inode;
1510        struct timespec now;
1511
1512        if (inode->i_flags & S_NOATIME)
1513                return;
1514        if (IS_NOATIME(inode))
1515                return;
1516        if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1517                return;
1518
1519        if (mnt->mnt_flags & MNT_NOATIME)
1520                return;
1521        if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1522                return;
1523
1524        now = current_fs_time(inode->i_sb);
1525
1526        if (!relatime_need_update(mnt, inode, now))
1527                return;
1528
1529        if (timespec_equal(&inode->i_atime, &now))
1530                return;
1531
1532        if (mnt_want_write(mnt))
1533                return;
1534
1535        inode->i_atime = now;
1536        mark_inode_dirty_sync(inode);
1537        mnt_drop_write(mnt);
1538}
1539EXPORT_SYMBOL(touch_atime);
1540
1541/**
1542 *      file_update_time        -       update mtime and ctime time
1543 *      @file: file accessed
1544 *
1545 *      Update the mtime and ctime members of an inode and mark the inode
1546 *      for writeback.  Note that this function is meant exclusively for
1547 *      usage in the file write path of filesystems, and filesystems may
1548 *      choose to explicitly ignore update via this function with the
1549 *      S_NOCMTIME inode flag, e.g. for network filesystem where these
1550 *      timestamps are handled by the server.
1551 */
1552
1553void file_update_time(struct file *file)
1554{
1555        struct inode *inode = file->f_path.dentry->d_inode;
1556        struct timespec now;
1557        enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1558
1559        /* First try to exhaust all avenues to not sync */
1560        if (IS_NOCMTIME(inode))
1561                return;
1562
1563        now = current_fs_time(inode->i_sb);
1564        if (!timespec_equal(&inode->i_mtime, &now))
1565                sync_it = S_MTIME;
1566
1567        if (!timespec_equal(&inode->i_ctime, &now))
1568                sync_it |= S_CTIME;
1569
1570        if (IS_I_VERSION(inode))
1571                sync_it |= S_VERSION;
1572
1573        if (!sync_it)
1574                return;
1575
1576        /* Finally allowed to write? Takes lock. */
1577        if (mnt_want_write_file(file))
1578                return;
1579
1580        /* Only change inode inside the lock region */
1581        if (sync_it & S_VERSION)
1582                inode_inc_iversion(inode);
1583        if (sync_it & S_CTIME)
1584                inode->i_ctime = now;
1585        if (sync_it & S_MTIME)
1586                inode->i_mtime = now;
1587        mark_inode_dirty_sync(inode);
1588        mnt_drop_write(file->f_path.mnt);
1589}
1590EXPORT_SYMBOL(file_update_time);
1591
1592int inode_needs_sync(struct inode *inode)
1593{
1594        if (IS_SYNC(inode))
1595                return 1;
1596        if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1597                return 1;
1598        return 0;
1599}
1600EXPORT_SYMBOL(inode_needs_sync);
1601
1602int inode_wait(void *word)
1603{
1604        schedule();
1605        return 0;
1606}
1607EXPORT_SYMBOL(inode_wait);
1608
1609/*
1610 * If we try to find an inode in the inode hash while it is being
1611 * deleted, we have to wait until the filesystem completes its
1612 * deletion before reporting that it isn't found.  This function waits
1613 * until the deletion _might_ have completed.  Callers are responsible
1614 * to recheck inode state.
1615 *
1616 * It doesn't matter if I_NEW is not set initially, a call to
1617 * wake_up_inode() after removing from the hash list will DTRT.
1618 *
1619 * This is called with inode_lock held.
1620 */
1621static void __wait_on_freeing_inode(struct inode *inode)
1622{
1623        wait_queue_head_t *wq;
1624        DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1625        wq = bit_waitqueue(&inode->i_state, __I_NEW);
1626        prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1627        spin_unlock(&inode_lock);
1628        schedule();
1629        finish_wait(wq, &wait.wait);
1630        spin_lock(&inode_lock);
1631}
1632
1633static __initdata unsigned long ihash_entries;
1634static int __init set_ihash_entries(char *str)
1635{
1636        if (!str)
1637                return 0;
1638        ihash_entries = simple_strtoul(str, &str, 0);
1639        return 1;
1640}
1641__setup("ihash_entries=", set_ihash_entries);
1642
1643/*
1644 * Initialize the waitqueues and inode hash table.
1645 */
1646void __init inode_init_early(void)
1647{
1648        int loop;
1649
1650        /* If hashes are distributed across NUMA nodes, defer
1651         * hash allocation until vmalloc space is available.
1652         */
1653        if (hashdist)
1654                return;
1655
1656        inode_hashtable =
1657                alloc_large_system_hash("Inode-cache",
1658                                        sizeof(struct hlist_head),
1659                                        ihash_entries,
1660                                        14,
1661                                        HASH_EARLY,
1662                                        &i_hash_shift,
1663                                        &i_hash_mask,
1664                                        0);
1665
1666        for (loop = 0; loop < (1 << i_hash_shift); loop++)
1667                INIT_HLIST_HEAD(&inode_hashtable[loop]);
1668}
1669
1670void __init inode_init(void)
1671{
1672        int loop;
1673
1674        /* inode slab cache */
1675        inode_cachep = kmem_cache_create("inode_cache",
1676                                         sizeof(struct inode),
1677                                         0,
1678                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1679                                         SLAB_MEM_SPREAD),
1680                                         init_once);
1681        register_shrinker(&icache_shrinker);
1682
1683        /* Hash may have been set up in inode_init_early */
1684        if (!hashdist)
1685                return;
1686
1687        inode_hashtable =
1688                alloc_large_system_hash("Inode-cache",
1689                                        sizeof(struct hlist_head),
1690                                        ihash_entries,
1691                                        14,
1692                                        0,
1693                                        &i_hash_shift,
1694                                        &i_hash_mask,
1695                                        0);
1696
1697        for (loop = 0; loop < (1 << i_hash_shift); loop++)
1698                INIT_HLIST_HEAD(&inode_hashtable[loop]);
1699}
1700
1701void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1702{
1703        inode->i_mode = mode;
1704        if (S_ISCHR(mode)) {
1705                inode->i_fop = &def_chr_fops;
1706                inode->i_rdev = rdev;
1707        } else if (S_ISBLK(mode)) {
1708                inode->i_fop = &def_blk_fops;
1709                inode->i_rdev = rdev;
1710        } else if (S_ISFIFO(mode))
1711                inode->i_fop = &def_fifo_fops;
1712        else if (S_ISSOCK(mode))
1713                inode->i_fop = &bad_sock_fops;
1714        else
1715                printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1716                                  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1717                                  inode->i_ino);
1718}
1719EXPORT_SYMBOL(init_special_inode);
1720
1721/**
1722 * Init uid,gid,mode for new inode according to posix standards
1723 * @inode: New inode
1724 * @dir: Directory inode
1725 * @mode: mode of the new inode
1726 */
1727void inode_init_owner(struct inode *inode, const struct inode *dir,
1728                        mode_t mode)
1729{
1730        inode->i_uid = current_fsuid();
1731        if (dir && dir->i_mode & S_ISGID) {
1732                inode->i_gid = dir->i_gid;
1733                if (S_ISDIR(mode))
1734                        mode |= S_ISGID;
1735        } else
1736                inode->i_gid = current_fsgid();
1737        inode->i_mode = mode;
1738}
1739EXPORT_SYMBOL(inode_init_owner);
1740