linux/fs/jbd/journal.c
<<
>>
Prefs
   1/*
   2 * linux/fs/jbd/journal.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   5 *
   6 * Copyright 1998 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Generic filesystem journal-writing code; part of the ext2fs
  13 * journaling system.
  14 *
  15 * This file manages journals: areas of disk reserved for logging
  16 * transactional updates.  This includes the kernel journaling thread
  17 * which is responsible for scheduling updates to the log.
  18 *
  19 * We do not actually manage the physical storage of the journal in this
  20 * file: that is left to a per-journal policy function, which allows us
  21 * to store the journal within a filesystem-specified area for ext2
  22 * journaling (ext2 can use a reserved inode for storing the log).
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/time.h>
  27#include <linux/fs.h>
  28#include <linux/jbd.h>
  29#include <linux/errno.h>
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/mm.h>
  33#include <linux/freezer.h>
  34#include <linux/pagemap.h>
  35#include <linux/kthread.h>
  36#include <linux/poison.h>
  37#include <linux/proc_fs.h>
  38#include <linux/debugfs.h>
  39#include <linux/ratelimit.h>
  40
  41#include <asm/uaccess.h>
  42#include <asm/page.h>
  43
  44EXPORT_SYMBOL(journal_start);
  45EXPORT_SYMBOL(journal_restart);
  46EXPORT_SYMBOL(journal_extend);
  47EXPORT_SYMBOL(journal_stop);
  48EXPORT_SYMBOL(journal_lock_updates);
  49EXPORT_SYMBOL(journal_unlock_updates);
  50EXPORT_SYMBOL(journal_get_write_access);
  51EXPORT_SYMBOL(journal_get_create_access);
  52EXPORT_SYMBOL(journal_get_undo_access);
  53EXPORT_SYMBOL(journal_dirty_data);
  54EXPORT_SYMBOL(journal_dirty_metadata);
  55EXPORT_SYMBOL(journal_release_buffer);
  56EXPORT_SYMBOL(journal_forget);
  57#if 0
  58EXPORT_SYMBOL(journal_sync_buffer);
  59#endif
  60EXPORT_SYMBOL(journal_flush);
  61EXPORT_SYMBOL(journal_revoke);
  62
  63EXPORT_SYMBOL(journal_init_dev);
  64EXPORT_SYMBOL(journal_init_inode);
  65EXPORT_SYMBOL(journal_update_format);
  66EXPORT_SYMBOL(journal_check_used_features);
  67EXPORT_SYMBOL(journal_check_available_features);
  68EXPORT_SYMBOL(journal_set_features);
  69EXPORT_SYMBOL(journal_create);
  70EXPORT_SYMBOL(journal_load);
  71EXPORT_SYMBOL(journal_destroy);
  72EXPORT_SYMBOL(journal_abort);
  73EXPORT_SYMBOL(journal_errno);
  74EXPORT_SYMBOL(journal_ack_err);
  75EXPORT_SYMBOL(journal_clear_err);
  76EXPORT_SYMBOL(log_wait_commit);
  77EXPORT_SYMBOL(log_start_commit);
  78EXPORT_SYMBOL(journal_start_commit);
  79EXPORT_SYMBOL(journal_force_commit_nested);
  80EXPORT_SYMBOL(journal_wipe);
  81EXPORT_SYMBOL(journal_blocks_per_page);
  82EXPORT_SYMBOL(journal_invalidatepage);
  83EXPORT_SYMBOL(journal_try_to_free_buffers);
  84EXPORT_SYMBOL(journal_force_commit);
  85
  86static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
  87static void __journal_abort_soft (journal_t *journal, int errno);
  88static const char *journal_dev_name(journal_t *journal, char *buffer);
  89
  90/*
  91 * Helper function used to manage commit timeouts
  92 */
  93
  94static void commit_timeout(unsigned long __data)
  95{
  96        struct task_struct * p = (struct task_struct *) __data;
  97
  98        wake_up_process(p);
  99}
 100
 101/*
 102 * kjournald: The main thread function used to manage a logging device
 103 * journal.
 104 *
 105 * This kernel thread is responsible for two things:
 106 *
 107 * 1) COMMIT:  Every so often we need to commit the current state of the
 108 *    filesystem to disk.  The journal thread is responsible for writing
 109 *    all of the metadata buffers to disk.
 110 *
 111 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 112 *    of the data in that part of the log has been rewritten elsewhere on
 113 *    the disk.  Flushing these old buffers to reclaim space in the log is
 114 *    known as checkpointing, and this thread is responsible for that job.
 115 */
 116
 117static int kjournald(void *arg)
 118{
 119        journal_t *journal = arg;
 120        transaction_t *transaction;
 121
 122        /*
 123         * Set up an interval timer which can be used to trigger a commit wakeup
 124         * after the commit interval expires
 125         */
 126        setup_timer(&journal->j_commit_timer, commit_timeout,
 127                        (unsigned long)current);
 128
 129        /* Record that the journal thread is running */
 130        journal->j_task = current;
 131        wake_up(&journal->j_wait_done_commit);
 132
 133        printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
 134                        journal->j_commit_interval / HZ);
 135
 136        /*
 137         * And now, wait forever for commit wakeup events.
 138         */
 139        spin_lock(&journal->j_state_lock);
 140
 141loop:
 142        if (journal->j_flags & JFS_UNMOUNT)
 143                goto end_loop;
 144
 145        jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
 146                journal->j_commit_sequence, journal->j_commit_request);
 147
 148        if (journal->j_commit_sequence != journal->j_commit_request) {
 149                jbd_debug(1, "OK, requests differ\n");
 150                spin_unlock(&journal->j_state_lock);
 151                del_timer_sync(&journal->j_commit_timer);
 152                journal_commit_transaction(journal);
 153                spin_lock(&journal->j_state_lock);
 154                goto loop;
 155        }
 156
 157        wake_up(&journal->j_wait_done_commit);
 158        if (freezing(current)) {
 159                /*
 160                 * The simpler the better. Flushing journal isn't a
 161                 * good idea, because that depends on threads that may
 162                 * be already stopped.
 163                 */
 164                jbd_debug(1, "Now suspending kjournald\n");
 165                spin_unlock(&journal->j_state_lock);
 166                refrigerator();
 167                spin_lock(&journal->j_state_lock);
 168        } else {
 169                /*
 170                 * We assume on resume that commits are already there,
 171                 * so we don't sleep
 172                 */
 173                DEFINE_WAIT(wait);
 174                int should_sleep = 1;
 175
 176                prepare_to_wait(&journal->j_wait_commit, &wait,
 177                                TASK_INTERRUPTIBLE);
 178                if (journal->j_commit_sequence != journal->j_commit_request)
 179                        should_sleep = 0;
 180                transaction = journal->j_running_transaction;
 181                if (transaction && time_after_eq(jiffies,
 182                                                transaction->t_expires))
 183                        should_sleep = 0;
 184                if (journal->j_flags & JFS_UNMOUNT)
 185                        should_sleep = 0;
 186                if (should_sleep) {
 187                        spin_unlock(&journal->j_state_lock);
 188                        schedule();
 189                        spin_lock(&journal->j_state_lock);
 190                }
 191                finish_wait(&journal->j_wait_commit, &wait);
 192        }
 193
 194        jbd_debug(1, "kjournald wakes\n");
 195
 196        /*
 197         * Were we woken up by a commit wakeup event?
 198         */
 199        transaction = journal->j_running_transaction;
 200        if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 201                journal->j_commit_request = transaction->t_tid;
 202                jbd_debug(1, "woke because of timeout\n");
 203        }
 204        goto loop;
 205
 206end_loop:
 207        spin_unlock(&journal->j_state_lock);
 208        del_timer_sync(&journal->j_commit_timer);
 209        journal->j_task = NULL;
 210        wake_up(&journal->j_wait_done_commit);
 211        jbd_debug(1, "Journal thread exiting.\n");
 212        return 0;
 213}
 214
 215static int journal_start_thread(journal_t *journal)
 216{
 217        struct task_struct *t;
 218
 219        t = kthread_run(kjournald, journal, "kjournald");
 220        if (IS_ERR(t))
 221                return PTR_ERR(t);
 222
 223        wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 224        return 0;
 225}
 226
 227static void journal_kill_thread(journal_t *journal)
 228{
 229        spin_lock(&journal->j_state_lock);
 230        journal->j_flags |= JFS_UNMOUNT;
 231
 232        while (journal->j_task) {
 233                wake_up(&journal->j_wait_commit);
 234                spin_unlock(&journal->j_state_lock);
 235                wait_event(journal->j_wait_done_commit,
 236                                journal->j_task == NULL);
 237                spin_lock(&journal->j_state_lock);
 238        }
 239        spin_unlock(&journal->j_state_lock);
 240}
 241
 242/*
 243 * journal_write_metadata_buffer: write a metadata buffer to the journal.
 244 *
 245 * Writes a metadata buffer to a given disk block.  The actual IO is not
 246 * performed but a new buffer_head is constructed which labels the data
 247 * to be written with the correct destination disk block.
 248 *
 249 * Any magic-number escaping which needs to be done will cause a
 250 * copy-out here.  If the buffer happens to start with the
 251 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
 252 * magic number is only written to the log for descripter blocks.  In
 253 * this case, we copy the data and replace the first word with 0, and we
 254 * return a result code which indicates that this buffer needs to be
 255 * marked as an escaped buffer in the corresponding log descriptor
 256 * block.  The missing word can then be restored when the block is read
 257 * during recovery.
 258 *
 259 * If the source buffer has already been modified by a new transaction
 260 * since we took the last commit snapshot, we use the frozen copy of
 261 * that data for IO.  If we end up using the existing buffer_head's data
 262 * for the write, then we *have* to lock the buffer to prevent anyone
 263 * else from using and possibly modifying it while the IO is in
 264 * progress.
 265 *
 266 * The function returns a pointer to the buffer_heads to be used for IO.
 267 *
 268 * We assume that the journal has already been locked in this function.
 269 *
 270 * Return value:
 271 *  <0: Error
 272 * >=0: Finished OK
 273 *
 274 * On success:
 275 * Bit 0 set == escape performed on the data
 276 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 277 */
 278
 279int journal_write_metadata_buffer(transaction_t *transaction,
 280                                  struct journal_head  *jh_in,
 281                                  struct journal_head **jh_out,
 282                                  unsigned int blocknr)
 283{
 284        int need_copy_out = 0;
 285        int done_copy_out = 0;
 286        int do_escape = 0;
 287        char *mapped_data;
 288        struct buffer_head *new_bh;
 289        struct journal_head *new_jh;
 290        struct page *new_page;
 291        unsigned int new_offset;
 292        struct buffer_head *bh_in = jh2bh(jh_in);
 293        journal_t *journal = transaction->t_journal;
 294
 295        /*
 296         * The buffer really shouldn't be locked: only the current committing
 297         * transaction is allowed to write it, so nobody else is allowed
 298         * to do any IO.
 299         *
 300         * akpm: except if we're journalling data, and write() output is
 301         * also part of a shared mapping, and another thread has
 302         * decided to launch a writepage() against this buffer.
 303         */
 304        J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 305
 306        new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
 307        /* keep subsequent assertions sane */
 308        new_bh->b_state = 0;
 309        init_buffer(new_bh, NULL, NULL);
 310        atomic_set(&new_bh->b_count, 1);
 311        new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
 312
 313        /*
 314         * If a new transaction has already done a buffer copy-out, then
 315         * we use that version of the data for the commit.
 316         */
 317        jbd_lock_bh_state(bh_in);
 318repeat:
 319        if (jh_in->b_frozen_data) {
 320                done_copy_out = 1;
 321                new_page = virt_to_page(jh_in->b_frozen_data);
 322                new_offset = offset_in_page(jh_in->b_frozen_data);
 323        } else {
 324                new_page = jh2bh(jh_in)->b_page;
 325                new_offset = offset_in_page(jh2bh(jh_in)->b_data);
 326        }
 327
 328        mapped_data = kmap_atomic(new_page, KM_USER0);
 329        /*
 330         * Check for escaping
 331         */
 332        if (*((__be32 *)(mapped_data + new_offset)) ==
 333                                cpu_to_be32(JFS_MAGIC_NUMBER)) {
 334                need_copy_out = 1;
 335                do_escape = 1;
 336        }
 337        kunmap_atomic(mapped_data, KM_USER0);
 338
 339        /*
 340         * Do we need to do a data copy?
 341         */
 342        if (need_copy_out && !done_copy_out) {
 343                char *tmp;
 344
 345                jbd_unlock_bh_state(bh_in);
 346                tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
 347                jbd_lock_bh_state(bh_in);
 348                if (jh_in->b_frozen_data) {
 349                        jbd_free(tmp, bh_in->b_size);
 350                        goto repeat;
 351                }
 352
 353                jh_in->b_frozen_data = tmp;
 354                mapped_data = kmap_atomic(new_page, KM_USER0);
 355                memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
 356                kunmap_atomic(mapped_data, KM_USER0);
 357
 358                new_page = virt_to_page(tmp);
 359                new_offset = offset_in_page(tmp);
 360                done_copy_out = 1;
 361        }
 362
 363        /*
 364         * Did we need to do an escaping?  Now we've done all the
 365         * copying, we can finally do so.
 366         */
 367        if (do_escape) {
 368                mapped_data = kmap_atomic(new_page, KM_USER0);
 369                *((unsigned int *)(mapped_data + new_offset)) = 0;
 370                kunmap_atomic(mapped_data, KM_USER0);
 371        }
 372
 373        set_bh_page(new_bh, new_page, new_offset);
 374        new_jh->b_transaction = NULL;
 375        new_bh->b_size = jh2bh(jh_in)->b_size;
 376        new_bh->b_bdev = transaction->t_journal->j_dev;
 377        new_bh->b_blocknr = blocknr;
 378        set_buffer_mapped(new_bh);
 379        set_buffer_dirty(new_bh);
 380
 381        *jh_out = new_jh;
 382
 383        /*
 384         * The to-be-written buffer needs to get moved to the io queue,
 385         * and the original buffer whose contents we are shadowing or
 386         * copying is moved to the transaction's shadow queue.
 387         */
 388        JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 389        spin_lock(&journal->j_list_lock);
 390        __journal_file_buffer(jh_in, transaction, BJ_Shadow);
 391        spin_unlock(&journal->j_list_lock);
 392        jbd_unlock_bh_state(bh_in);
 393
 394        JBUFFER_TRACE(new_jh, "file as BJ_IO");
 395        journal_file_buffer(new_jh, transaction, BJ_IO);
 396
 397        return do_escape | (done_copy_out << 1);
 398}
 399
 400/*
 401 * Allocation code for the journal file.  Manage the space left in the
 402 * journal, so that we can begin checkpointing when appropriate.
 403 */
 404
 405/*
 406 * __log_space_left: Return the number of free blocks left in the journal.
 407 *
 408 * Called with the journal already locked.
 409 *
 410 * Called under j_state_lock
 411 */
 412
 413int __log_space_left(journal_t *journal)
 414{
 415        int left = journal->j_free;
 416
 417        assert_spin_locked(&journal->j_state_lock);
 418
 419        /*
 420         * Be pessimistic here about the number of those free blocks which
 421         * might be required for log descriptor control blocks.
 422         */
 423
 424#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
 425
 426        left -= MIN_LOG_RESERVED_BLOCKS;
 427
 428        if (left <= 0)
 429                return 0;
 430        left -= (left >> 3);
 431        return left;
 432}
 433
 434/*
 435 * Called under j_state_lock.  Returns true if a transaction commit was started.
 436 */
 437int __log_start_commit(journal_t *journal, tid_t target)
 438{
 439        /*
 440         * Are we already doing a recent enough commit?
 441         */
 442        if (!tid_geq(journal->j_commit_request, target)) {
 443                /*
 444                 * We want a new commit: OK, mark the request and wakeup the
 445                 * commit thread.  We do _not_ do the commit ourselves.
 446                 */
 447
 448                journal->j_commit_request = target;
 449                jbd_debug(1, "JBD: requesting commit %d/%d\n",
 450                          journal->j_commit_request,
 451                          journal->j_commit_sequence);
 452                wake_up(&journal->j_wait_commit);
 453                return 1;
 454        }
 455        return 0;
 456}
 457
 458int log_start_commit(journal_t *journal, tid_t tid)
 459{
 460        int ret;
 461
 462        spin_lock(&journal->j_state_lock);
 463        ret = __log_start_commit(journal, tid);
 464        spin_unlock(&journal->j_state_lock);
 465        return ret;
 466}
 467
 468/*
 469 * Force and wait upon a commit if the calling process is not within
 470 * transaction.  This is used for forcing out undo-protected data which contains
 471 * bitmaps, when the fs is running out of space.
 472 *
 473 * We can only force the running transaction if we don't have an active handle;
 474 * otherwise, we will deadlock.
 475 *
 476 * Returns true if a transaction was started.
 477 */
 478int journal_force_commit_nested(journal_t *journal)
 479{
 480        transaction_t *transaction = NULL;
 481        tid_t tid;
 482
 483        spin_lock(&journal->j_state_lock);
 484        if (journal->j_running_transaction && !current->journal_info) {
 485                transaction = journal->j_running_transaction;
 486                __log_start_commit(journal, transaction->t_tid);
 487        } else if (journal->j_committing_transaction)
 488                transaction = journal->j_committing_transaction;
 489
 490        if (!transaction) {
 491                spin_unlock(&journal->j_state_lock);
 492                return 0;       /* Nothing to retry */
 493        }
 494
 495        tid = transaction->t_tid;
 496        spin_unlock(&journal->j_state_lock);
 497        log_wait_commit(journal, tid);
 498        return 1;
 499}
 500
 501/*
 502 * Start a commit of the current running transaction (if any).  Returns true
 503 * if a transaction is going to be committed (or is currently already
 504 * committing), and fills its tid in at *ptid
 505 */
 506int journal_start_commit(journal_t *journal, tid_t *ptid)
 507{
 508        int ret = 0;
 509
 510        spin_lock(&journal->j_state_lock);
 511        if (journal->j_running_transaction) {
 512                tid_t tid = journal->j_running_transaction->t_tid;
 513
 514                __log_start_commit(journal, tid);
 515                /* There's a running transaction and we've just made sure
 516                 * it's commit has been scheduled. */
 517                if (ptid)
 518                        *ptid = tid;
 519                ret = 1;
 520        } else if (journal->j_committing_transaction) {
 521                /*
 522                 * If ext3_write_super() recently started a commit, then we
 523                 * have to wait for completion of that transaction
 524                 */
 525                if (ptid)
 526                        *ptid = journal->j_committing_transaction->t_tid;
 527                ret = 1;
 528        }
 529        spin_unlock(&journal->j_state_lock);
 530        return ret;
 531}
 532
 533/*
 534 * Wait for a specified commit to complete.
 535 * The caller may not hold the journal lock.
 536 */
 537int log_wait_commit(journal_t *journal, tid_t tid)
 538{
 539        int err = 0;
 540
 541#ifdef CONFIG_JBD_DEBUG
 542        spin_lock(&journal->j_state_lock);
 543        if (!tid_geq(journal->j_commit_request, tid)) {
 544                printk(KERN_EMERG
 545                       "%s: error: j_commit_request=%d, tid=%d\n",
 546                       __func__, journal->j_commit_request, tid);
 547        }
 548        spin_unlock(&journal->j_state_lock);
 549#endif
 550        spin_lock(&journal->j_state_lock);
 551        while (tid_gt(tid, journal->j_commit_sequence)) {
 552                jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
 553                                  tid, journal->j_commit_sequence);
 554                wake_up(&journal->j_wait_commit);
 555                spin_unlock(&journal->j_state_lock);
 556                wait_event(journal->j_wait_done_commit,
 557                                !tid_gt(tid, journal->j_commit_sequence));
 558                spin_lock(&journal->j_state_lock);
 559        }
 560        spin_unlock(&journal->j_state_lock);
 561
 562        if (unlikely(is_journal_aborted(journal))) {
 563                printk(KERN_EMERG "journal commit I/O error\n");
 564                err = -EIO;
 565        }
 566        return err;
 567}
 568
 569/*
 570 * Return 1 if a given transaction has not yet sent barrier request
 571 * connected with a transaction commit. If 0 is returned, transaction
 572 * may or may not have sent the barrier. Used to avoid sending barrier
 573 * twice in common cases.
 574 */
 575int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
 576{
 577        int ret = 0;
 578        transaction_t *commit_trans;
 579
 580        if (!(journal->j_flags & JFS_BARRIER))
 581                return 0;
 582        spin_lock(&journal->j_state_lock);
 583        /* Transaction already committed? */
 584        if (tid_geq(journal->j_commit_sequence, tid))
 585                goto out;
 586        /*
 587         * Transaction is being committed and we already proceeded to
 588         * writing commit record?
 589         */
 590        commit_trans = journal->j_committing_transaction;
 591        if (commit_trans && commit_trans->t_tid == tid &&
 592            commit_trans->t_state >= T_COMMIT_RECORD)
 593                goto out;
 594        ret = 1;
 595out:
 596        spin_unlock(&journal->j_state_lock);
 597        return ret;
 598}
 599EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
 600
 601/*
 602 * Log buffer allocation routines:
 603 */
 604
 605int journal_next_log_block(journal_t *journal, unsigned int *retp)
 606{
 607        unsigned int blocknr;
 608
 609        spin_lock(&journal->j_state_lock);
 610        J_ASSERT(journal->j_free > 1);
 611
 612        blocknr = journal->j_head;
 613        journal->j_head++;
 614        journal->j_free--;
 615        if (journal->j_head == journal->j_last)
 616                journal->j_head = journal->j_first;
 617        spin_unlock(&journal->j_state_lock);
 618        return journal_bmap(journal, blocknr, retp);
 619}
 620
 621/*
 622 * Conversion of logical to physical block numbers for the journal
 623 *
 624 * On external journals the journal blocks are identity-mapped, so
 625 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 626 * ready.
 627 */
 628int journal_bmap(journal_t *journal, unsigned int blocknr,
 629                 unsigned int *retp)
 630{
 631        int err = 0;
 632        unsigned int ret;
 633
 634        if (journal->j_inode) {
 635                ret = bmap(journal->j_inode, blocknr);
 636                if (ret)
 637                        *retp = ret;
 638                else {
 639                        char b[BDEVNAME_SIZE];
 640
 641                        printk(KERN_ALERT "%s: journal block not found "
 642                                        "at offset %u on %s\n",
 643                                __func__,
 644                                blocknr,
 645                                bdevname(journal->j_dev, b));
 646                        err = -EIO;
 647                        __journal_abort_soft(journal, err);
 648                }
 649        } else {
 650                *retp = blocknr; /* +journal->j_blk_offset */
 651        }
 652        return err;
 653}
 654
 655/*
 656 * We play buffer_head aliasing tricks to write data/metadata blocks to
 657 * the journal without copying their contents, but for journal
 658 * descriptor blocks we do need to generate bona fide buffers.
 659 *
 660 * After the caller of journal_get_descriptor_buffer() has finished modifying
 661 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 662 * But we don't bother doing that, so there will be coherency problems with
 663 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 664 */
 665struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
 666{
 667        struct buffer_head *bh;
 668        unsigned int blocknr;
 669        int err;
 670
 671        err = journal_next_log_block(journal, &blocknr);
 672
 673        if (err)
 674                return NULL;
 675
 676        bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 677        if (!bh)
 678                return NULL;
 679        lock_buffer(bh);
 680        memset(bh->b_data, 0, journal->j_blocksize);
 681        set_buffer_uptodate(bh);
 682        unlock_buffer(bh);
 683        BUFFER_TRACE(bh, "return this buffer");
 684        return journal_add_journal_head(bh);
 685}
 686
 687/*
 688 * Management for journal control blocks: functions to create and
 689 * destroy journal_t structures, and to initialise and read existing
 690 * journal blocks from disk.  */
 691
 692/* First: create and setup a journal_t object in memory.  We initialise
 693 * very few fields yet: that has to wait until we have created the
 694 * journal structures from from scratch, or loaded them from disk. */
 695
 696static journal_t * journal_init_common (void)
 697{
 698        journal_t *journal;
 699        int err;
 700
 701        journal = kzalloc(sizeof(*journal), GFP_KERNEL);
 702        if (!journal)
 703                goto fail;
 704
 705        init_waitqueue_head(&journal->j_wait_transaction_locked);
 706        init_waitqueue_head(&journal->j_wait_logspace);
 707        init_waitqueue_head(&journal->j_wait_done_commit);
 708        init_waitqueue_head(&journal->j_wait_checkpoint);
 709        init_waitqueue_head(&journal->j_wait_commit);
 710        init_waitqueue_head(&journal->j_wait_updates);
 711        mutex_init(&journal->j_barrier);
 712        mutex_init(&journal->j_checkpoint_mutex);
 713        spin_lock_init(&journal->j_revoke_lock);
 714        spin_lock_init(&journal->j_list_lock);
 715        spin_lock_init(&journal->j_state_lock);
 716
 717        journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
 718
 719        /* The journal is marked for error until we succeed with recovery! */
 720        journal->j_flags = JFS_ABORT;
 721
 722        /* Set up a default-sized revoke table for the new mount. */
 723        err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
 724        if (err) {
 725                kfree(journal);
 726                goto fail;
 727        }
 728        return journal;
 729fail:
 730        return NULL;
 731}
 732
 733/* journal_init_dev and journal_init_inode:
 734 *
 735 * Create a journal structure assigned some fixed set of disk blocks to
 736 * the journal.  We don't actually touch those disk blocks yet, but we
 737 * need to set up all of the mapping information to tell the journaling
 738 * system where the journal blocks are.
 739 *
 740 */
 741
 742/**
 743 *  journal_t * journal_init_dev() - creates and initialises a journal structure
 744 *  @bdev: Block device on which to create the journal
 745 *  @fs_dev: Device which hold journalled filesystem for this journal.
 746 *  @start: Block nr Start of journal.
 747 *  @len:  Length of the journal in blocks.
 748 *  @blocksize: blocksize of journalling device
 749 *
 750 *  Returns: a newly created journal_t *
 751 *
 752 *  journal_init_dev creates a journal which maps a fixed contiguous
 753 *  range of blocks on an arbitrary block device.
 754 *
 755 */
 756journal_t * journal_init_dev(struct block_device *bdev,
 757                        struct block_device *fs_dev,
 758                        int start, int len, int blocksize)
 759{
 760        journal_t *journal = journal_init_common();
 761        struct buffer_head *bh;
 762        int n;
 763
 764        if (!journal)
 765                return NULL;
 766
 767        /* journal descriptor can store up to n blocks -bzzz */
 768        journal->j_blocksize = blocksize;
 769        n = journal->j_blocksize / sizeof(journal_block_tag_t);
 770        journal->j_wbufsize = n;
 771        journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
 772        if (!journal->j_wbuf) {
 773                printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
 774                        __func__);
 775                goto out_err;
 776        }
 777        journal->j_dev = bdev;
 778        journal->j_fs_dev = fs_dev;
 779        journal->j_blk_offset = start;
 780        journal->j_maxlen = len;
 781
 782        bh = __getblk(journal->j_dev, start, journal->j_blocksize);
 783        if (!bh) {
 784                printk(KERN_ERR
 785                       "%s: Cannot get buffer for journal superblock\n",
 786                       __func__);
 787                goto out_err;
 788        }
 789        journal->j_sb_buffer = bh;
 790        journal->j_superblock = (journal_superblock_t *)bh->b_data;
 791
 792        return journal;
 793out_err:
 794        kfree(journal->j_wbuf);
 795        kfree(journal);
 796        return NULL;
 797}
 798
 799/**
 800 *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
 801 *  @inode: An inode to create the journal in
 802 *
 803 * journal_init_inode creates a journal which maps an on-disk inode as
 804 * the journal.  The inode must exist already, must support bmap() and
 805 * must have all data blocks preallocated.
 806 */
 807journal_t * journal_init_inode (struct inode *inode)
 808{
 809        struct buffer_head *bh;
 810        journal_t *journal = journal_init_common();
 811        int err;
 812        int n;
 813        unsigned int blocknr;
 814
 815        if (!journal)
 816                return NULL;
 817
 818        journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
 819        journal->j_inode = inode;
 820        jbd_debug(1,
 821                  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
 822                  journal, inode->i_sb->s_id, inode->i_ino,
 823                  (long long) inode->i_size,
 824                  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
 825
 826        journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
 827        journal->j_blocksize = inode->i_sb->s_blocksize;
 828
 829        /* journal descriptor can store up to n blocks -bzzz */
 830        n = journal->j_blocksize / sizeof(journal_block_tag_t);
 831        journal->j_wbufsize = n;
 832        journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
 833        if (!journal->j_wbuf) {
 834                printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
 835                        __func__);
 836                goto out_err;
 837        }
 838
 839        err = journal_bmap(journal, 0, &blocknr);
 840        /* If that failed, give up */
 841        if (err) {
 842                printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
 843                       __func__);
 844                goto out_err;
 845        }
 846
 847        bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 848        if (!bh) {
 849                printk(KERN_ERR
 850                       "%s: Cannot get buffer for journal superblock\n",
 851                       __func__);
 852                goto out_err;
 853        }
 854        journal->j_sb_buffer = bh;
 855        journal->j_superblock = (journal_superblock_t *)bh->b_data;
 856
 857        return journal;
 858out_err:
 859        kfree(journal->j_wbuf);
 860        kfree(journal);
 861        return NULL;
 862}
 863
 864/*
 865 * If the journal init or create aborts, we need to mark the journal
 866 * superblock as being NULL to prevent the journal destroy from writing
 867 * back a bogus superblock.
 868 */
 869static void journal_fail_superblock (journal_t *journal)
 870{
 871        struct buffer_head *bh = journal->j_sb_buffer;
 872        brelse(bh);
 873        journal->j_sb_buffer = NULL;
 874}
 875
 876/*
 877 * Given a journal_t structure, initialise the various fields for
 878 * startup of a new journaling session.  We use this both when creating
 879 * a journal, and after recovering an old journal to reset it for
 880 * subsequent use.
 881 */
 882
 883static int journal_reset(journal_t *journal)
 884{
 885        journal_superblock_t *sb = journal->j_superblock;
 886        unsigned int first, last;
 887
 888        first = be32_to_cpu(sb->s_first);
 889        last = be32_to_cpu(sb->s_maxlen);
 890        if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
 891                printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
 892                       first, last);
 893                journal_fail_superblock(journal);
 894                return -EINVAL;
 895        }
 896
 897        journal->j_first = first;
 898        journal->j_last = last;
 899
 900        journal->j_head = first;
 901        journal->j_tail = first;
 902        journal->j_free = last - first;
 903
 904        journal->j_tail_sequence = journal->j_transaction_sequence;
 905        journal->j_commit_sequence = journal->j_transaction_sequence - 1;
 906        journal->j_commit_request = journal->j_commit_sequence;
 907
 908        journal->j_max_transaction_buffers = journal->j_maxlen / 4;
 909
 910        /* Add the dynamic fields and write it to disk. */
 911        journal_update_superblock(journal, 1);
 912        return journal_start_thread(journal);
 913}
 914
 915/**
 916 * int journal_create() - Initialise the new journal file
 917 * @journal: Journal to create. This structure must have been initialised
 918 *
 919 * Given a journal_t structure which tells us which disk blocks we can
 920 * use, create a new journal superblock and initialise all of the
 921 * journal fields from scratch.
 922 **/
 923int journal_create(journal_t *journal)
 924{
 925        unsigned int blocknr;
 926        struct buffer_head *bh;
 927        journal_superblock_t *sb;
 928        int i, err;
 929
 930        if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
 931                printk (KERN_ERR "Journal length (%d blocks) too short.\n",
 932                        journal->j_maxlen);
 933                journal_fail_superblock(journal);
 934                return -EINVAL;
 935        }
 936
 937        if (journal->j_inode == NULL) {
 938                /*
 939                 * We don't know what block to start at!
 940                 */
 941                printk(KERN_EMERG
 942                       "%s: creation of journal on external device!\n",
 943                       __func__);
 944                BUG();
 945        }
 946
 947        /* Zero out the entire journal on disk.  We cannot afford to
 948           have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
 949        jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
 950        for (i = 0; i < journal->j_maxlen; i++) {
 951                err = journal_bmap(journal, i, &blocknr);
 952                if (err)
 953                        return err;
 954                bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 955                if (unlikely(!bh))
 956                        return -ENOMEM;
 957                lock_buffer(bh);
 958                memset (bh->b_data, 0, journal->j_blocksize);
 959                BUFFER_TRACE(bh, "marking dirty");
 960                mark_buffer_dirty(bh);
 961                BUFFER_TRACE(bh, "marking uptodate");
 962                set_buffer_uptodate(bh);
 963                unlock_buffer(bh);
 964                __brelse(bh);
 965        }
 966
 967        sync_blockdev(journal->j_dev);
 968        jbd_debug(1, "JBD: journal cleared.\n");
 969
 970        /* OK, fill in the initial static fields in the new superblock */
 971        sb = journal->j_superblock;
 972
 973        sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
 974        sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
 975
 976        sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
 977        sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
 978        sb->s_first     = cpu_to_be32(1);
 979
 980        journal->j_transaction_sequence = 1;
 981
 982        journal->j_flags &= ~JFS_ABORT;
 983        journal->j_format_version = 2;
 984
 985        return journal_reset(journal);
 986}
 987
 988/**
 989 * void journal_update_superblock() - Update journal sb on disk.
 990 * @journal: The journal to update.
 991 * @wait: Set to '0' if you don't want to wait for IO completion.
 992 *
 993 * Update a journal's dynamic superblock fields and write it to disk,
 994 * optionally waiting for the IO to complete.
 995 */
 996void journal_update_superblock(journal_t *journal, int wait)
 997{
 998        journal_superblock_t *sb = journal->j_superblock;
 999        struct buffer_head *bh = journal->j_sb_buffer;
1000
1001        /*
1002         * As a special case, if the on-disk copy is already marked as needing
1003         * no recovery (s_start == 0) and there are no outstanding transactions
1004         * in the filesystem, then we can safely defer the superblock update
1005         * until the next commit by setting JFS_FLUSHED.  This avoids
1006         * attempting a write to a potential-readonly device.
1007         */
1008        if (sb->s_start == 0 && journal->j_tail_sequence ==
1009                                journal->j_transaction_sequence) {
1010                jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1011                        "(start %u, seq %d, errno %d)\n",
1012                        journal->j_tail, journal->j_tail_sequence,
1013                        journal->j_errno);
1014                goto out;
1015        }
1016
1017        if (buffer_write_io_error(bh)) {
1018                char b[BDEVNAME_SIZE];
1019                /*
1020                 * Oh, dear.  A previous attempt to write the journal
1021                 * superblock failed.  This could happen because the
1022                 * USB device was yanked out.  Or it could happen to
1023                 * be a transient write error and maybe the block will
1024                 * be remapped.  Nothing we can do but to retry the
1025                 * write and hope for the best.
1026                 */
1027                printk(KERN_ERR "JBD: previous I/O error detected "
1028                       "for journal superblock update for %s.\n",
1029                       journal_dev_name(journal, b));
1030                clear_buffer_write_io_error(bh);
1031                set_buffer_uptodate(bh);
1032        }
1033
1034        spin_lock(&journal->j_state_lock);
1035        jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
1036                  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1037
1038        sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1039        sb->s_start    = cpu_to_be32(journal->j_tail);
1040        sb->s_errno    = cpu_to_be32(journal->j_errno);
1041        spin_unlock(&journal->j_state_lock);
1042
1043        BUFFER_TRACE(bh, "marking dirty");
1044        mark_buffer_dirty(bh);
1045        if (wait) {
1046                sync_dirty_buffer(bh);
1047                if (buffer_write_io_error(bh)) {
1048                        char b[BDEVNAME_SIZE];
1049                        printk(KERN_ERR "JBD: I/O error detected "
1050                               "when updating journal superblock for %s.\n",
1051                               journal_dev_name(journal, b));
1052                        clear_buffer_write_io_error(bh);
1053                        set_buffer_uptodate(bh);
1054                }
1055        } else
1056                write_dirty_buffer(bh, WRITE);
1057
1058out:
1059        /* If we have just flushed the log (by marking s_start==0), then
1060         * any future commit will have to be careful to update the
1061         * superblock again to re-record the true start of the log. */
1062
1063        spin_lock(&journal->j_state_lock);
1064        if (sb->s_start)
1065                journal->j_flags &= ~JFS_FLUSHED;
1066        else
1067                journal->j_flags |= JFS_FLUSHED;
1068        spin_unlock(&journal->j_state_lock);
1069}
1070
1071/*
1072 * Read the superblock for a given journal, performing initial
1073 * validation of the format.
1074 */
1075
1076static int journal_get_superblock(journal_t *journal)
1077{
1078        struct buffer_head *bh;
1079        journal_superblock_t *sb;
1080        int err = -EIO;
1081
1082        bh = journal->j_sb_buffer;
1083
1084        J_ASSERT(bh != NULL);
1085        if (!buffer_uptodate(bh)) {
1086                ll_rw_block(READ, 1, &bh);
1087                wait_on_buffer(bh);
1088                if (!buffer_uptodate(bh)) {
1089                        printk (KERN_ERR
1090                                "JBD: IO error reading journal superblock\n");
1091                        goto out;
1092                }
1093        }
1094
1095        sb = journal->j_superblock;
1096
1097        err = -EINVAL;
1098
1099        if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1100            sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1101                printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1102                goto out;
1103        }
1104
1105        switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1106        case JFS_SUPERBLOCK_V1:
1107                journal->j_format_version = 1;
1108                break;
1109        case JFS_SUPERBLOCK_V2:
1110                journal->j_format_version = 2;
1111                break;
1112        default:
1113                printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1114                goto out;
1115        }
1116
1117        if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1118                journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1119        else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1120                printk (KERN_WARNING "JBD: journal file too short\n");
1121                goto out;
1122        }
1123
1124        return 0;
1125
1126out:
1127        journal_fail_superblock(journal);
1128        return err;
1129}
1130
1131/*
1132 * Load the on-disk journal superblock and read the key fields into the
1133 * journal_t.
1134 */
1135
1136static int load_superblock(journal_t *journal)
1137{
1138        int err;
1139        journal_superblock_t *sb;
1140
1141        err = journal_get_superblock(journal);
1142        if (err)
1143                return err;
1144
1145        sb = journal->j_superblock;
1146
1147        journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1148        journal->j_tail = be32_to_cpu(sb->s_start);
1149        journal->j_first = be32_to_cpu(sb->s_first);
1150        journal->j_last = be32_to_cpu(sb->s_maxlen);
1151        journal->j_errno = be32_to_cpu(sb->s_errno);
1152
1153        return 0;
1154}
1155
1156
1157/**
1158 * int journal_load() - Read journal from disk.
1159 * @journal: Journal to act on.
1160 *
1161 * Given a journal_t structure which tells us which disk blocks contain
1162 * a journal, read the journal from disk to initialise the in-memory
1163 * structures.
1164 */
1165int journal_load(journal_t *journal)
1166{
1167        int err;
1168        journal_superblock_t *sb;
1169
1170        err = load_superblock(journal);
1171        if (err)
1172                return err;
1173
1174        sb = journal->j_superblock;
1175        /* If this is a V2 superblock, then we have to check the
1176         * features flags on it. */
1177
1178        if (journal->j_format_version >= 2) {
1179                if ((sb->s_feature_ro_compat &
1180                     ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1181                    (sb->s_feature_incompat &
1182                     ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1183                        printk (KERN_WARNING
1184                                "JBD: Unrecognised features on journal\n");
1185                        return -EINVAL;
1186                }
1187        }
1188
1189        /* Let the recovery code check whether it needs to recover any
1190         * data from the journal. */
1191        if (journal_recover(journal))
1192                goto recovery_error;
1193
1194        /* OK, we've finished with the dynamic journal bits:
1195         * reinitialise the dynamic contents of the superblock in memory
1196         * and reset them on disk. */
1197        if (journal_reset(journal))
1198                goto recovery_error;
1199
1200        journal->j_flags &= ~JFS_ABORT;
1201        journal->j_flags |= JFS_LOADED;
1202        return 0;
1203
1204recovery_error:
1205        printk (KERN_WARNING "JBD: recovery failed\n");
1206        return -EIO;
1207}
1208
1209/**
1210 * void journal_destroy() - Release a journal_t structure.
1211 * @journal: Journal to act on.
1212 *
1213 * Release a journal_t structure once it is no longer in use by the
1214 * journaled object.
1215 * Return <0 if we couldn't clean up the journal.
1216 */
1217int journal_destroy(journal_t *journal)
1218{
1219        int err = 0;
1220
1221        
1222        /* Wait for the commit thread to wake up and die. */
1223        journal_kill_thread(journal);
1224
1225        /* Force a final log commit */
1226        if (journal->j_running_transaction)
1227                journal_commit_transaction(journal);
1228
1229        /* Force any old transactions to disk */
1230
1231        /* Totally anal locking here... */
1232        spin_lock(&journal->j_list_lock);
1233        while (journal->j_checkpoint_transactions != NULL) {
1234                spin_unlock(&journal->j_list_lock);
1235                log_do_checkpoint(journal);
1236                spin_lock(&journal->j_list_lock);
1237        }
1238
1239        J_ASSERT(journal->j_running_transaction == NULL);
1240        J_ASSERT(journal->j_committing_transaction == NULL);
1241        J_ASSERT(journal->j_checkpoint_transactions == NULL);
1242        spin_unlock(&journal->j_list_lock);
1243
1244        if (journal->j_sb_buffer) {
1245                if (!is_journal_aborted(journal)) {
1246                        /* We can now mark the journal as empty. */
1247                        journal->j_tail = 0;
1248                        journal->j_tail_sequence =
1249                                ++journal->j_transaction_sequence;
1250                        journal_update_superblock(journal, 1);
1251                } else {
1252                        err = -EIO;
1253                }
1254                brelse(journal->j_sb_buffer);
1255        }
1256
1257        if (journal->j_inode)
1258                iput(journal->j_inode);
1259        if (journal->j_revoke)
1260                journal_destroy_revoke(journal);
1261        kfree(journal->j_wbuf);
1262        kfree(journal);
1263
1264        return err;
1265}
1266
1267
1268/**
1269 *int journal_check_used_features () - Check if features specified are used.
1270 * @journal: Journal to check.
1271 * @compat: bitmask of compatible features
1272 * @ro: bitmask of features that force read-only mount
1273 * @incompat: bitmask of incompatible features
1274 *
1275 * Check whether the journal uses all of a given set of
1276 * features.  Return true (non-zero) if it does.
1277 **/
1278
1279int journal_check_used_features (journal_t *journal, unsigned long compat,
1280                                 unsigned long ro, unsigned long incompat)
1281{
1282        journal_superblock_t *sb;
1283
1284        if (!compat && !ro && !incompat)
1285                return 1;
1286        if (journal->j_format_version == 1)
1287                return 0;
1288
1289        sb = journal->j_superblock;
1290
1291        if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1292            ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1293            ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1294                return 1;
1295
1296        return 0;
1297}
1298
1299/**
1300 * int journal_check_available_features() - Check feature set in journalling layer
1301 * @journal: Journal to check.
1302 * @compat: bitmask of compatible features
1303 * @ro: bitmask of features that force read-only mount
1304 * @incompat: bitmask of incompatible features
1305 *
1306 * Check whether the journaling code supports the use of
1307 * all of a given set of features on this journal.  Return true
1308 * (non-zero) if it can. */
1309
1310int journal_check_available_features (journal_t *journal, unsigned long compat,
1311                                      unsigned long ro, unsigned long incompat)
1312{
1313        if (!compat && !ro && !incompat)
1314                return 1;
1315
1316        /* We can support any known requested features iff the
1317         * superblock is in version 2.  Otherwise we fail to support any
1318         * extended sb features. */
1319
1320        if (journal->j_format_version != 2)
1321                return 0;
1322
1323        if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1324            (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1325            (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1326                return 1;
1327
1328        return 0;
1329}
1330
1331/**
1332 * int journal_set_features () - Mark a given journal feature in the superblock
1333 * @journal: Journal to act on.
1334 * @compat: bitmask of compatible features
1335 * @ro: bitmask of features that force read-only mount
1336 * @incompat: bitmask of incompatible features
1337 *
1338 * Mark a given journal feature as present on the
1339 * superblock.  Returns true if the requested features could be set.
1340 *
1341 */
1342
1343int journal_set_features (journal_t *journal, unsigned long compat,
1344                          unsigned long ro, unsigned long incompat)
1345{
1346        journal_superblock_t *sb;
1347
1348        if (journal_check_used_features(journal, compat, ro, incompat))
1349                return 1;
1350
1351        if (!journal_check_available_features(journal, compat, ro, incompat))
1352                return 0;
1353
1354        jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1355                  compat, ro, incompat);
1356
1357        sb = journal->j_superblock;
1358
1359        sb->s_feature_compat    |= cpu_to_be32(compat);
1360        sb->s_feature_ro_compat |= cpu_to_be32(ro);
1361        sb->s_feature_incompat  |= cpu_to_be32(incompat);
1362
1363        return 1;
1364}
1365
1366
1367/**
1368 * int journal_update_format () - Update on-disk journal structure.
1369 * @journal: Journal to act on.
1370 *
1371 * Given an initialised but unloaded journal struct, poke about in the
1372 * on-disk structure to update it to the most recent supported version.
1373 */
1374int journal_update_format (journal_t *journal)
1375{
1376        journal_superblock_t *sb;
1377        int err;
1378
1379        err = journal_get_superblock(journal);
1380        if (err)
1381                return err;
1382
1383        sb = journal->j_superblock;
1384
1385        switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1386        case JFS_SUPERBLOCK_V2:
1387                return 0;
1388        case JFS_SUPERBLOCK_V1:
1389                return journal_convert_superblock_v1(journal, sb);
1390        default:
1391                break;
1392        }
1393        return -EINVAL;
1394}
1395
1396static int journal_convert_superblock_v1(journal_t *journal,
1397                                         journal_superblock_t *sb)
1398{
1399        int offset, blocksize;
1400        struct buffer_head *bh;
1401
1402        printk(KERN_WARNING
1403                "JBD: Converting superblock from version 1 to 2.\n");
1404
1405        /* Pre-initialise new fields to zero */
1406        offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1407        blocksize = be32_to_cpu(sb->s_blocksize);
1408        memset(&sb->s_feature_compat, 0, blocksize-offset);
1409
1410        sb->s_nr_users = cpu_to_be32(1);
1411        sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1412        journal->j_format_version = 2;
1413
1414        bh = journal->j_sb_buffer;
1415        BUFFER_TRACE(bh, "marking dirty");
1416        mark_buffer_dirty(bh);
1417        sync_dirty_buffer(bh);
1418        return 0;
1419}
1420
1421
1422/**
1423 * int journal_flush () - Flush journal
1424 * @journal: Journal to act on.
1425 *
1426 * Flush all data for a given journal to disk and empty the journal.
1427 * Filesystems can use this when remounting readonly to ensure that
1428 * recovery does not need to happen on remount.
1429 */
1430
1431int journal_flush(journal_t *journal)
1432{
1433        int err = 0;
1434        transaction_t *transaction = NULL;
1435        unsigned int old_tail;
1436
1437        spin_lock(&journal->j_state_lock);
1438
1439        /* Force everything buffered to the log... */
1440        if (journal->j_running_transaction) {
1441                transaction = journal->j_running_transaction;
1442                __log_start_commit(journal, transaction->t_tid);
1443        } else if (journal->j_committing_transaction)
1444                transaction = journal->j_committing_transaction;
1445
1446        /* Wait for the log commit to complete... */
1447        if (transaction) {
1448                tid_t tid = transaction->t_tid;
1449
1450                spin_unlock(&journal->j_state_lock);
1451                log_wait_commit(journal, tid);
1452        } else {
1453                spin_unlock(&journal->j_state_lock);
1454        }
1455
1456        /* ...and flush everything in the log out to disk. */
1457        spin_lock(&journal->j_list_lock);
1458        while (!err && journal->j_checkpoint_transactions != NULL) {
1459                spin_unlock(&journal->j_list_lock);
1460                mutex_lock(&journal->j_checkpoint_mutex);
1461                err = log_do_checkpoint(journal);
1462                mutex_unlock(&journal->j_checkpoint_mutex);
1463                spin_lock(&journal->j_list_lock);
1464        }
1465        spin_unlock(&journal->j_list_lock);
1466
1467        if (is_journal_aborted(journal))
1468                return -EIO;
1469
1470        cleanup_journal_tail(journal);
1471
1472        /* Finally, mark the journal as really needing no recovery.
1473         * This sets s_start==0 in the underlying superblock, which is
1474         * the magic code for a fully-recovered superblock.  Any future
1475         * commits of data to the journal will restore the current
1476         * s_start value. */
1477        spin_lock(&journal->j_state_lock);
1478        old_tail = journal->j_tail;
1479        journal->j_tail = 0;
1480        spin_unlock(&journal->j_state_lock);
1481        journal_update_superblock(journal, 1);
1482        spin_lock(&journal->j_state_lock);
1483        journal->j_tail = old_tail;
1484
1485        J_ASSERT(!journal->j_running_transaction);
1486        J_ASSERT(!journal->j_committing_transaction);
1487        J_ASSERT(!journal->j_checkpoint_transactions);
1488        J_ASSERT(journal->j_head == journal->j_tail);
1489        J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1490        spin_unlock(&journal->j_state_lock);
1491        return 0;
1492}
1493
1494/**
1495 * int journal_wipe() - Wipe journal contents
1496 * @journal: Journal to act on.
1497 * @write: flag (see below)
1498 *
1499 * Wipe out all of the contents of a journal, safely.  This will produce
1500 * a warning if the journal contains any valid recovery information.
1501 * Must be called between journal_init_*() and journal_load().
1502 *
1503 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1504 * we merely suppress recovery.
1505 */
1506
1507int journal_wipe(journal_t *journal, int write)
1508{
1509        int err = 0;
1510
1511        J_ASSERT (!(journal->j_flags & JFS_LOADED));
1512
1513        err = load_superblock(journal);
1514        if (err)
1515                return err;
1516
1517        if (!journal->j_tail)
1518                goto no_recovery;
1519
1520        printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1521                write ? "Clearing" : "Ignoring");
1522
1523        err = journal_skip_recovery(journal);
1524        if (write)
1525                journal_update_superblock(journal, 1);
1526
1527 no_recovery:
1528        return err;
1529}
1530
1531/*
1532 * journal_dev_name: format a character string to describe on what
1533 * device this journal is present.
1534 */
1535
1536static const char *journal_dev_name(journal_t *journal, char *buffer)
1537{
1538        struct block_device *bdev;
1539
1540        if (journal->j_inode)
1541                bdev = journal->j_inode->i_sb->s_bdev;
1542        else
1543                bdev = journal->j_dev;
1544
1545        return bdevname(bdev, buffer);
1546}
1547
1548/*
1549 * Journal abort has very specific semantics, which we describe
1550 * for journal abort.
1551 *
1552 * Two internal function, which provide abort to te jbd layer
1553 * itself are here.
1554 */
1555
1556/*
1557 * Quick version for internal journal use (doesn't lock the journal).
1558 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1559 * and don't attempt to make any other journal updates.
1560 */
1561static void __journal_abort_hard(journal_t *journal)
1562{
1563        transaction_t *transaction;
1564        char b[BDEVNAME_SIZE];
1565
1566        if (journal->j_flags & JFS_ABORT)
1567                return;
1568
1569        printk(KERN_ERR "Aborting journal on device %s.\n",
1570                journal_dev_name(journal, b));
1571
1572        spin_lock(&journal->j_state_lock);
1573        journal->j_flags |= JFS_ABORT;
1574        transaction = journal->j_running_transaction;
1575        if (transaction)
1576                __log_start_commit(journal, transaction->t_tid);
1577        spin_unlock(&journal->j_state_lock);
1578}
1579
1580/* Soft abort: record the abort error status in the journal superblock,
1581 * but don't do any other IO. */
1582static void __journal_abort_soft (journal_t *journal, int errno)
1583{
1584        if (journal->j_flags & JFS_ABORT)
1585                return;
1586
1587        if (!journal->j_errno)
1588                journal->j_errno = errno;
1589
1590        __journal_abort_hard(journal);
1591
1592        if (errno)
1593                journal_update_superblock(journal, 1);
1594}
1595
1596/**
1597 * void journal_abort () - Shutdown the journal immediately.
1598 * @journal: the journal to shutdown.
1599 * @errno:   an error number to record in the journal indicating
1600 *           the reason for the shutdown.
1601 *
1602 * Perform a complete, immediate shutdown of the ENTIRE
1603 * journal (not of a single transaction).  This operation cannot be
1604 * undone without closing and reopening the journal.
1605 *
1606 * The journal_abort function is intended to support higher level error
1607 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1608 * mode.
1609 *
1610 * Journal abort has very specific semantics.  Any existing dirty,
1611 * unjournaled buffers in the main filesystem will still be written to
1612 * disk by bdflush, but the journaling mechanism will be suspended
1613 * immediately and no further transaction commits will be honoured.
1614 *
1615 * Any dirty, journaled buffers will be written back to disk without
1616 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1617 * filesystem, but we _do_ attempt to leave as much data as possible
1618 * behind for fsck to use for cleanup.
1619 *
1620 * Any attempt to get a new transaction handle on a journal which is in
1621 * ABORT state will just result in an -EROFS error return.  A
1622 * journal_stop on an existing handle will return -EIO if we have
1623 * entered abort state during the update.
1624 *
1625 * Recursive transactions are not disturbed by journal abort until the
1626 * final journal_stop, which will receive the -EIO error.
1627 *
1628 * Finally, the journal_abort call allows the caller to supply an errno
1629 * which will be recorded (if possible) in the journal superblock.  This
1630 * allows a client to record failure conditions in the middle of a
1631 * transaction without having to complete the transaction to record the
1632 * failure to disk.  ext3_error, for example, now uses this
1633 * functionality.
1634 *
1635 * Errors which originate from within the journaling layer will NOT
1636 * supply an errno; a null errno implies that absolutely no further
1637 * writes are done to the journal (unless there are any already in
1638 * progress).
1639 *
1640 */
1641
1642void journal_abort(journal_t *journal, int errno)
1643{
1644        __journal_abort_soft(journal, errno);
1645}
1646
1647/**
1648 * int journal_errno () - returns the journal's error state.
1649 * @journal: journal to examine.
1650 *
1651 * This is the errno numbet set with journal_abort(), the last
1652 * time the journal was mounted - if the journal was stopped
1653 * without calling abort this will be 0.
1654 *
1655 * If the journal has been aborted on this mount time -EROFS will
1656 * be returned.
1657 */
1658int journal_errno(journal_t *journal)
1659{
1660        int err;
1661
1662        spin_lock(&journal->j_state_lock);
1663        if (journal->j_flags & JFS_ABORT)
1664                err = -EROFS;
1665        else
1666                err = journal->j_errno;
1667        spin_unlock(&journal->j_state_lock);
1668        return err;
1669}
1670
1671/**
1672 * int journal_clear_err () - clears the journal's error state
1673 * @journal: journal to act on.
1674 *
1675 * An error must be cleared or Acked to take a FS out of readonly
1676 * mode.
1677 */
1678int journal_clear_err(journal_t *journal)
1679{
1680        int err = 0;
1681
1682        spin_lock(&journal->j_state_lock);
1683        if (journal->j_flags & JFS_ABORT)
1684                err = -EROFS;
1685        else
1686                journal->j_errno = 0;
1687        spin_unlock(&journal->j_state_lock);
1688        return err;
1689}
1690
1691/**
1692 * void journal_ack_err() - Ack journal err.
1693 * @journal: journal to act on.
1694 *
1695 * An error must be cleared or Acked to take a FS out of readonly
1696 * mode.
1697 */
1698void journal_ack_err(journal_t *journal)
1699{
1700        spin_lock(&journal->j_state_lock);
1701        if (journal->j_errno)
1702                journal->j_flags |= JFS_ACK_ERR;
1703        spin_unlock(&journal->j_state_lock);
1704}
1705
1706int journal_blocks_per_page(struct inode *inode)
1707{
1708        return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1709}
1710
1711/*
1712 * Journal_head storage management
1713 */
1714static struct kmem_cache *journal_head_cache;
1715#ifdef CONFIG_JBD_DEBUG
1716static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1717#endif
1718
1719static int journal_init_journal_head_cache(void)
1720{
1721        int retval;
1722
1723        J_ASSERT(journal_head_cache == NULL);
1724        journal_head_cache = kmem_cache_create("journal_head",
1725                                sizeof(struct journal_head),
1726                                0,              /* offset */
1727                                SLAB_TEMPORARY, /* flags */
1728                                NULL);          /* ctor */
1729        retval = 0;
1730        if (!journal_head_cache) {
1731                retval = -ENOMEM;
1732                printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1733        }
1734        return retval;
1735}
1736
1737static void journal_destroy_journal_head_cache(void)
1738{
1739        if (journal_head_cache) {
1740                kmem_cache_destroy(journal_head_cache);
1741                journal_head_cache = NULL;
1742        }
1743}
1744
1745/*
1746 * journal_head splicing and dicing
1747 */
1748static struct journal_head *journal_alloc_journal_head(void)
1749{
1750        struct journal_head *ret;
1751
1752#ifdef CONFIG_JBD_DEBUG
1753        atomic_inc(&nr_journal_heads);
1754#endif
1755        ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1756        if (ret == NULL) {
1757                jbd_debug(1, "out of memory for journal_head\n");
1758                printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1759                                   __func__);
1760
1761                while (ret == NULL) {
1762                        yield();
1763                        ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1764                }
1765        }
1766        return ret;
1767}
1768
1769static void journal_free_journal_head(struct journal_head *jh)
1770{
1771#ifdef CONFIG_JBD_DEBUG
1772        atomic_dec(&nr_journal_heads);
1773        memset(jh, JBD_POISON_FREE, sizeof(*jh));
1774#endif
1775        kmem_cache_free(journal_head_cache, jh);
1776}
1777
1778/*
1779 * A journal_head is attached to a buffer_head whenever JBD has an
1780 * interest in the buffer.
1781 *
1782 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1783 * is set.  This bit is tested in core kernel code where we need to take
1784 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1785 * there.
1786 *
1787 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1788 *
1789 * When a buffer has its BH_JBD bit set it is immune from being released by
1790 * core kernel code, mainly via ->b_count.
1791 *
1792 * A journal_head may be detached from its buffer_head when the journal_head's
1793 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1794 * Various places in JBD call journal_remove_journal_head() to indicate that the
1795 * journal_head can be dropped if needed.
1796 *
1797 * Various places in the kernel want to attach a journal_head to a buffer_head
1798 * _before_ attaching the journal_head to a transaction.  To protect the
1799 * journal_head in this situation, journal_add_journal_head elevates the
1800 * journal_head's b_jcount refcount by one.  The caller must call
1801 * journal_put_journal_head() to undo this.
1802 *
1803 * So the typical usage would be:
1804 *
1805 *      (Attach a journal_head if needed.  Increments b_jcount)
1806 *      struct journal_head *jh = journal_add_journal_head(bh);
1807 *      ...
1808 *      jh->b_transaction = xxx;
1809 *      journal_put_journal_head(jh);
1810 *
1811 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1812 * because it has a non-zero b_transaction.
1813 */
1814
1815/*
1816 * Give a buffer_head a journal_head.
1817 *
1818 * Doesn't need the journal lock.
1819 * May sleep.
1820 */
1821struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1822{
1823        struct journal_head *jh;
1824        struct journal_head *new_jh = NULL;
1825
1826repeat:
1827        if (!buffer_jbd(bh)) {
1828                new_jh = journal_alloc_journal_head();
1829                memset(new_jh, 0, sizeof(*new_jh));
1830        }
1831
1832        jbd_lock_bh_journal_head(bh);
1833        if (buffer_jbd(bh)) {
1834                jh = bh2jh(bh);
1835        } else {
1836                J_ASSERT_BH(bh,
1837                        (atomic_read(&bh->b_count) > 0) ||
1838                        (bh->b_page && bh->b_page->mapping));
1839
1840                if (!new_jh) {
1841                        jbd_unlock_bh_journal_head(bh);
1842                        goto repeat;
1843                }
1844
1845                jh = new_jh;
1846                new_jh = NULL;          /* We consumed it */
1847                set_buffer_jbd(bh);
1848                bh->b_private = jh;
1849                jh->b_bh = bh;
1850                get_bh(bh);
1851                BUFFER_TRACE(bh, "added journal_head");
1852        }
1853        jh->b_jcount++;
1854        jbd_unlock_bh_journal_head(bh);
1855        if (new_jh)
1856                journal_free_journal_head(new_jh);
1857        return bh->b_private;
1858}
1859
1860/*
1861 * Grab a ref against this buffer_head's journal_head.  If it ended up not
1862 * having a journal_head, return NULL
1863 */
1864struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1865{
1866        struct journal_head *jh = NULL;
1867
1868        jbd_lock_bh_journal_head(bh);
1869        if (buffer_jbd(bh)) {
1870                jh = bh2jh(bh);
1871                jh->b_jcount++;
1872        }
1873        jbd_unlock_bh_journal_head(bh);
1874        return jh;
1875}
1876
1877static void __journal_remove_journal_head(struct buffer_head *bh)
1878{
1879        struct journal_head *jh = bh2jh(bh);
1880
1881        J_ASSERT_JH(jh, jh->b_jcount >= 0);
1882
1883        get_bh(bh);
1884        if (jh->b_jcount == 0) {
1885                if (jh->b_transaction == NULL &&
1886                                jh->b_next_transaction == NULL &&
1887                                jh->b_cp_transaction == NULL) {
1888                        J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1889                        J_ASSERT_BH(bh, buffer_jbd(bh));
1890                        J_ASSERT_BH(bh, jh2bh(jh) == bh);
1891                        BUFFER_TRACE(bh, "remove journal_head");
1892                        if (jh->b_frozen_data) {
1893                                printk(KERN_WARNING "%s: freeing "
1894                                                "b_frozen_data\n",
1895                                                __func__);
1896                                jbd_free(jh->b_frozen_data, bh->b_size);
1897                        }
1898                        if (jh->b_committed_data) {
1899                                printk(KERN_WARNING "%s: freeing "
1900                                                "b_committed_data\n",
1901                                                __func__);
1902                                jbd_free(jh->b_committed_data, bh->b_size);
1903                        }
1904                        bh->b_private = NULL;
1905                        jh->b_bh = NULL;        /* debug, really */
1906                        clear_buffer_jbd(bh);
1907                        __brelse(bh);
1908                        journal_free_journal_head(jh);
1909                } else {
1910                        BUFFER_TRACE(bh, "journal_head was locked");
1911                }
1912        }
1913}
1914
1915/*
1916 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1917 * and has a zero b_jcount then remove and release its journal_head.   If we did
1918 * see that the buffer is not used by any transaction we also "logically"
1919 * decrement ->b_count.
1920 *
1921 * We in fact take an additional increment on ->b_count as a convenience,
1922 * because the caller usually wants to do additional things with the bh
1923 * after calling here.
1924 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1925 * time.  Once the caller has run __brelse(), the buffer is eligible for
1926 * reaping by try_to_free_buffers().
1927 */
1928void journal_remove_journal_head(struct buffer_head *bh)
1929{
1930        jbd_lock_bh_journal_head(bh);
1931        __journal_remove_journal_head(bh);
1932        jbd_unlock_bh_journal_head(bh);
1933}
1934
1935/*
1936 * Drop a reference on the passed journal_head.  If it fell to zero then try to
1937 * release the journal_head from the buffer_head.
1938 */
1939void journal_put_journal_head(struct journal_head *jh)
1940{
1941        struct buffer_head *bh = jh2bh(jh);
1942
1943        jbd_lock_bh_journal_head(bh);
1944        J_ASSERT_JH(jh, jh->b_jcount > 0);
1945        --jh->b_jcount;
1946        if (!jh->b_jcount && !jh->b_transaction) {
1947                __journal_remove_journal_head(bh);
1948                __brelse(bh);
1949        }
1950        jbd_unlock_bh_journal_head(bh);
1951}
1952
1953/*
1954 * debugfs tunables
1955 */
1956#ifdef CONFIG_JBD_DEBUG
1957
1958u8 journal_enable_debug __read_mostly;
1959EXPORT_SYMBOL(journal_enable_debug);
1960
1961static struct dentry *jbd_debugfs_dir;
1962static struct dentry *jbd_debug;
1963
1964static void __init jbd_create_debugfs_entry(void)
1965{
1966        jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1967        if (jbd_debugfs_dir)
1968                jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
1969                                               jbd_debugfs_dir,
1970                                               &journal_enable_debug);
1971}
1972
1973static void __exit jbd_remove_debugfs_entry(void)
1974{
1975        debugfs_remove(jbd_debug);
1976        debugfs_remove(jbd_debugfs_dir);
1977}
1978
1979#else
1980
1981static inline void jbd_create_debugfs_entry(void)
1982{
1983}
1984
1985static inline void jbd_remove_debugfs_entry(void)
1986{
1987}
1988
1989#endif
1990
1991struct kmem_cache *jbd_handle_cache;
1992
1993static int __init journal_init_handle_cache(void)
1994{
1995        jbd_handle_cache = kmem_cache_create("journal_handle",
1996                                sizeof(handle_t),
1997                                0,              /* offset */
1998                                SLAB_TEMPORARY, /* flags */
1999                                NULL);          /* ctor */
2000        if (jbd_handle_cache == NULL) {
2001                printk(KERN_EMERG "JBD: failed to create handle cache\n");
2002                return -ENOMEM;
2003        }
2004        return 0;
2005}
2006
2007static void journal_destroy_handle_cache(void)
2008{
2009        if (jbd_handle_cache)
2010                kmem_cache_destroy(jbd_handle_cache);
2011}
2012
2013/*
2014 * Module startup and shutdown
2015 */
2016
2017static int __init journal_init_caches(void)
2018{
2019        int ret;
2020
2021        ret = journal_init_revoke_caches();
2022        if (ret == 0)
2023                ret = journal_init_journal_head_cache();
2024        if (ret == 0)
2025                ret = journal_init_handle_cache();
2026        return ret;
2027}
2028
2029static void journal_destroy_caches(void)
2030{
2031        journal_destroy_revoke_caches();
2032        journal_destroy_journal_head_cache();
2033        journal_destroy_handle_cache();
2034}
2035
2036static int __init journal_init(void)
2037{
2038        int ret;
2039
2040        BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2041
2042        ret = journal_init_caches();
2043        if (ret != 0)
2044                journal_destroy_caches();
2045        jbd_create_debugfs_entry();
2046        return ret;
2047}
2048
2049static void __exit journal_exit(void)
2050{
2051#ifdef CONFIG_JBD_DEBUG
2052        int n = atomic_read(&nr_journal_heads);
2053        if (n)
2054                printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2055#endif
2056        jbd_remove_debugfs_entry();
2057        journal_destroy_caches();
2058}
2059
2060MODULE_LICENSE("GPL");
2061module_init(journal_init);
2062module_exit(journal_exit);
2063
2064