linux/fs/jbd2/journal.c
<<
>>
Prefs
   1/*
   2 * linux/fs/jbd2/journal.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   5 *
   6 * Copyright 1998 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Generic filesystem journal-writing code; part of the ext2fs
  13 * journaling system.
  14 *
  15 * This file manages journals: areas of disk reserved for logging
  16 * transactional updates.  This includes the kernel journaling thread
  17 * which is responsible for scheduling updates to the log.
  18 *
  19 * We do not actually manage the physical storage of the journal in this
  20 * file: that is left to a per-journal policy function, which allows us
  21 * to store the journal within a filesystem-specified area for ext2
  22 * journaling (ext2 can use a reserved inode for storing the log).
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/time.h>
  27#include <linux/fs.h>
  28#include <linux/jbd2.h>
  29#include <linux/errno.h>
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/mm.h>
  33#include <linux/freezer.h>
  34#include <linux/pagemap.h>
  35#include <linux/kthread.h>
  36#include <linux/poison.h>
  37#include <linux/proc_fs.h>
  38#include <linux/debugfs.h>
  39#include <linux/seq_file.h>
  40#include <linux/math64.h>
  41#include <linux/hash.h>
  42#include <linux/log2.h>
  43#include <linux/vmalloc.h>
  44#include <linux/backing-dev.h>
  45#include <linux/bitops.h>
  46#include <linux/ratelimit.h>
  47
  48#define CREATE_TRACE_POINTS
  49#include <trace/events/jbd2.h>
  50
  51#include <asm/uaccess.h>
  52#include <asm/page.h>
  53#include <asm/system.h>
  54
  55EXPORT_SYMBOL(jbd2_journal_extend);
  56EXPORT_SYMBOL(jbd2_journal_stop);
  57EXPORT_SYMBOL(jbd2_journal_lock_updates);
  58EXPORT_SYMBOL(jbd2_journal_unlock_updates);
  59EXPORT_SYMBOL(jbd2_journal_get_write_access);
  60EXPORT_SYMBOL(jbd2_journal_get_create_access);
  61EXPORT_SYMBOL(jbd2_journal_get_undo_access);
  62EXPORT_SYMBOL(jbd2_journal_set_triggers);
  63EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
  64EXPORT_SYMBOL(jbd2_journal_release_buffer);
  65EXPORT_SYMBOL(jbd2_journal_forget);
  66#if 0
  67EXPORT_SYMBOL(journal_sync_buffer);
  68#endif
  69EXPORT_SYMBOL(jbd2_journal_flush);
  70EXPORT_SYMBOL(jbd2_journal_revoke);
  71
  72EXPORT_SYMBOL(jbd2_journal_init_dev);
  73EXPORT_SYMBOL(jbd2_journal_init_inode);
  74EXPORT_SYMBOL(jbd2_journal_update_format);
  75EXPORT_SYMBOL(jbd2_journal_check_used_features);
  76EXPORT_SYMBOL(jbd2_journal_check_available_features);
  77EXPORT_SYMBOL(jbd2_journal_set_features);
  78EXPORT_SYMBOL(jbd2_journal_load);
  79EXPORT_SYMBOL(jbd2_journal_destroy);
  80EXPORT_SYMBOL(jbd2_journal_abort);
  81EXPORT_SYMBOL(jbd2_journal_errno);
  82EXPORT_SYMBOL(jbd2_journal_ack_err);
  83EXPORT_SYMBOL(jbd2_journal_clear_err);
  84EXPORT_SYMBOL(jbd2_log_wait_commit);
  85EXPORT_SYMBOL(jbd2_log_start_commit);
  86EXPORT_SYMBOL(jbd2_journal_start_commit);
  87EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
  88EXPORT_SYMBOL(jbd2_journal_wipe);
  89EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
  90EXPORT_SYMBOL(jbd2_journal_invalidatepage);
  91EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
  92EXPORT_SYMBOL(jbd2_journal_force_commit);
  93EXPORT_SYMBOL(jbd2_journal_file_inode);
  94EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
  95EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
  96EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
  97EXPORT_SYMBOL(jbd2_inode_cache);
  98
  99static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
 100static void __journal_abort_soft (journal_t *journal, int errno);
 101static int jbd2_journal_create_slab(size_t slab_size);
 102
 103/*
 104 * Helper function used to manage commit timeouts
 105 */
 106
 107static void commit_timeout(unsigned long __data)
 108{
 109        struct task_struct * p = (struct task_struct *) __data;
 110
 111        wake_up_process(p);
 112}
 113
 114/*
 115 * kjournald2: The main thread function used to manage a logging device
 116 * journal.
 117 *
 118 * This kernel thread is responsible for two things:
 119 *
 120 * 1) COMMIT:  Every so often we need to commit the current state of the
 121 *    filesystem to disk.  The journal thread is responsible for writing
 122 *    all of the metadata buffers to disk.
 123 *
 124 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 125 *    of the data in that part of the log has been rewritten elsewhere on
 126 *    the disk.  Flushing these old buffers to reclaim space in the log is
 127 *    known as checkpointing, and this thread is responsible for that job.
 128 */
 129
 130static int kjournald2(void *arg)
 131{
 132        journal_t *journal = arg;
 133        transaction_t *transaction;
 134
 135        /*
 136         * Set up an interval timer which can be used to trigger a commit wakeup
 137         * after the commit interval expires
 138         */
 139        setup_timer(&journal->j_commit_timer, commit_timeout,
 140                        (unsigned long)current);
 141
 142        /* Record that the journal thread is running */
 143        journal->j_task = current;
 144        wake_up(&journal->j_wait_done_commit);
 145
 146        /*
 147         * And now, wait forever for commit wakeup events.
 148         */
 149        write_lock(&journal->j_state_lock);
 150
 151loop:
 152        if (journal->j_flags & JBD2_UNMOUNT)
 153                goto end_loop;
 154
 155        jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
 156                journal->j_commit_sequence, journal->j_commit_request);
 157
 158        if (journal->j_commit_sequence != journal->j_commit_request) {
 159                jbd_debug(1, "OK, requests differ\n");
 160                write_unlock(&journal->j_state_lock);
 161                del_timer_sync(&journal->j_commit_timer);
 162                jbd2_journal_commit_transaction(journal);
 163                write_lock(&journal->j_state_lock);
 164                goto loop;
 165        }
 166
 167        wake_up(&journal->j_wait_done_commit);
 168        if (freezing(current)) {
 169                /*
 170                 * The simpler the better. Flushing journal isn't a
 171                 * good idea, because that depends on threads that may
 172                 * be already stopped.
 173                 */
 174                jbd_debug(1, "Now suspending kjournald2\n");
 175                write_unlock(&journal->j_state_lock);
 176                refrigerator();
 177                write_lock(&journal->j_state_lock);
 178        } else {
 179                /*
 180                 * We assume on resume that commits are already there,
 181                 * so we don't sleep
 182                 */
 183                DEFINE_WAIT(wait);
 184                int should_sleep = 1;
 185
 186                prepare_to_wait(&journal->j_wait_commit, &wait,
 187                                TASK_INTERRUPTIBLE);
 188                if (journal->j_commit_sequence != journal->j_commit_request)
 189                        should_sleep = 0;
 190                transaction = journal->j_running_transaction;
 191                if (transaction && time_after_eq(jiffies,
 192                                                transaction->t_expires))
 193                        should_sleep = 0;
 194                if (journal->j_flags & JBD2_UNMOUNT)
 195                        should_sleep = 0;
 196                if (should_sleep) {
 197                        write_unlock(&journal->j_state_lock);
 198                        schedule();
 199                        write_lock(&journal->j_state_lock);
 200                }
 201                finish_wait(&journal->j_wait_commit, &wait);
 202        }
 203
 204        jbd_debug(1, "kjournald2 wakes\n");
 205
 206        /*
 207         * Were we woken up by a commit wakeup event?
 208         */
 209        transaction = journal->j_running_transaction;
 210        if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 211                journal->j_commit_request = transaction->t_tid;
 212                jbd_debug(1, "woke because of timeout\n");
 213        }
 214        goto loop;
 215
 216end_loop:
 217        write_unlock(&journal->j_state_lock);
 218        del_timer_sync(&journal->j_commit_timer);
 219        journal->j_task = NULL;
 220        wake_up(&journal->j_wait_done_commit);
 221        jbd_debug(1, "Journal thread exiting.\n");
 222        return 0;
 223}
 224
 225static int jbd2_journal_start_thread(journal_t *journal)
 226{
 227        struct task_struct *t;
 228
 229        t = kthread_run(kjournald2, journal, "jbd2/%s",
 230                        journal->j_devname);
 231        if (IS_ERR(t))
 232                return PTR_ERR(t);
 233
 234        wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 235        return 0;
 236}
 237
 238static void journal_kill_thread(journal_t *journal)
 239{
 240        write_lock(&journal->j_state_lock);
 241        journal->j_flags |= JBD2_UNMOUNT;
 242
 243        while (journal->j_task) {
 244                wake_up(&journal->j_wait_commit);
 245                write_unlock(&journal->j_state_lock);
 246                wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
 247                write_lock(&journal->j_state_lock);
 248        }
 249        write_unlock(&journal->j_state_lock);
 250}
 251
 252/*
 253 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
 254 *
 255 * Writes a metadata buffer to a given disk block.  The actual IO is not
 256 * performed but a new buffer_head is constructed which labels the data
 257 * to be written with the correct destination disk block.
 258 *
 259 * Any magic-number escaping which needs to be done will cause a
 260 * copy-out here.  If the buffer happens to start with the
 261 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
 262 * magic number is only written to the log for descripter blocks.  In
 263 * this case, we copy the data and replace the first word with 0, and we
 264 * return a result code which indicates that this buffer needs to be
 265 * marked as an escaped buffer in the corresponding log descriptor
 266 * block.  The missing word can then be restored when the block is read
 267 * during recovery.
 268 *
 269 * If the source buffer has already been modified by a new transaction
 270 * since we took the last commit snapshot, we use the frozen copy of
 271 * that data for IO.  If we end up using the existing buffer_head's data
 272 * for the write, then we *have* to lock the buffer to prevent anyone
 273 * else from using and possibly modifying it while the IO is in
 274 * progress.
 275 *
 276 * The function returns a pointer to the buffer_heads to be used for IO.
 277 *
 278 * We assume that the journal has already been locked in this function.
 279 *
 280 * Return value:
 281 *  <0: Error
 282 * >=0: Finished OK
 283 *
 284 * On success:
 285 * Bit 0 set == escape performed on the data
 286 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 287 */
 288
 289int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
 290                                  struct journal_head  *jh_in,
 291                                  struct journal_head **jh_out,
 292                                  unsigned long long blocknr)
 293{
 294        int need_copy_out = 0;
 295        int done_copy_out = 0;
 296        int do_escape = 0;
 297        char *mapped_data;
 298        struct buffer_head *new_bh;
 299        struct journal_head *new_jh;
 300        struct page *new_page;
 301        unsigned int new_offset;
 302        struct buffer_head *bh_in = jh2bh(jh_in);
 303        journal_t *journal = transaction->t_journal;
 304
 305        /*
 306         * The buffer really shouldn't be locked: only the current committing
 307         * transaction is allowed to write it, so nobody else is allowed
 308         * to do any IO.
 309         *
 310         * akpm: except if we're journalling data, and write() output is
 311         * also part of a shared mapping, and another thread has
 312         * decided to launch a writepage() against this buffer.
 313         */
 314        J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 315
 316retry_alloc:
 317        new_bh = alloc_buffer_head(GFP_NOFS);
 318        if (!new_bh) {
 319                /*
 320                 * Failure is not an option, but __GFP_NOFAIL is going
 321                 * away; so we retry ourselves here.
 322                 */
 323                congestion_wait(BLK_RW_ASYNC, HZ/50);
 324                goto retry_alloc;
 325        }
 326
 327        /* keep subsequent assertions sane */
 328        new_bh->b_state = 0;
 329        init_buffer(new_bh, NULL, NULL);
 330        atomic_set(&new_bh->b_count, 1);
 331        new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
 332
 333        /*
 334         * If a new transaction has already done a buffer copy-out, then
 335         * we use that version of the data for the commit.
 336         */
 337        jbd_lock_bh_state(bh_in);
 338repeat:
 339        if (jh_in->b_frozen_data) {
 340                done_copy_out = 1;
 341                new_page = virt_to_page(jh_in->b_frozen_data);
 342                new_offset = offset_in_page(jh_in->b_frozen_data);
 343        } else {
 344                new_page = jh2bh(jh_in)->b_page;
 345                new_offset = offset_in_page(jh2bh(jh_in)->b_data);
 346        }
 347
 348        mapped_data = kmap_atomic(new_page, KM_USER0);
 349        /*
 350         * Fire data frozen trigger if data already wasn't frozen.  Do this
 351         * before checking for escaping, as the trigger may modify the magic
 352         * offset.  If a copy-out happens afterwards, it will have the correct
 353         * data in the buffer.
 354         */
 355        if (!done_copy_out)
 356                jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
 357                                           jh_in->b_triggers);
 358
 359        /*
 360         * Check for escaping
 361         */
 362        if (*((__be32 *)(mapped_data + new_offset)) ==
 363                                cpu_to_be32(JBD2_MAGIC_NUMBER)) {
 364                need_copy_out = 1;
 365                do_escape = 1;
 366        }
 367        kunmap_atomic(mapped_data, KM_USER0);
 368
 369        /*
 370         * Do we need to do a data copy?
 371         */
 372        if (need_copy_out && !done_copy_out) {
 373                char *tmp;
 374
 375                jbd_unlock_bh_state(bh_in);
 376                tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
 377                if (!tmp) {
 378                        jbd2_journal_put_journal_head(new_jh);
 379                        return -ENOMEM;
 380                }
 381                jbd_lock_bh_state(bh_in);
 382                if (jh_in->b_frozen_data) {
 383                        jbd2_free(tmp, bh_in->b_size);
 384                        goto repeat;
 385                }
 386
 387                jh_in->b_frozen_data = tmp;
 388                mapped_data = kmap_atomic(new_page, KM_USER0);
 389                memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
 390                kunmap_atomic(mapped_data, KM_USER0);
 391
 392                new_page = virt_to_page(tmp);
 393                new_offset = offset_in_page(tmp);
 394                done_copy_out = 1;
 395
 396                /*
 397                 * This isn't strictly necessary, as we're using frozen
 398                 * data for the escaping, but it keeps consistency with
 399                 * b_frozen_data usage.
 400                 */
 401                jh_in->b_frozen_triggers = jh_in->b_triggers;
 402        }
 403
 404        /*
 405         * Did we need to do an escaping?  Now we've done all the
 406         * copying, we can finally do so.
 407         */
 408        if (do_escape) {
 409                mapped_data = kmap_atomic(new_page, KM_USER0);
 410                *((unsigned int *)(mapped_data + new_offset)) = 0;
 411                kunmap_atomic(mapped_data, KM_USER0);
 412        }
 413
 414        set_bh_page(new_bh, new_page, new_offset);
 415        new_jh->b_transaction = NULL;
 416        new_bh->b_size = jh2bh(jh_in)->b_size;
 417        new_bh->b_bdev = transaction->t_journal->j_dev;
 418        new_bh->b_blocknr = blocknr;
 419        set_buffer_mapped(new_bh);
 420        set_buffer_dirty(new_bh);
 421
 422        *jh_out = new_jh;
 423
 424        /*
 425         * The to-be-written buffer needs to get moved to the io queue,
 426         * and the original buffer whose contents we are shadowing or
 427         * copying is moved to the transaction's shadow queue.
 428         */
 429        JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 430        spin_lock(&journal->j_list_lock);
 431        __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
 432        spin_unlock(&journal->j_list_lock);
 433        jbd_unlock_bh_state(bh_in);
 434
 435        JBUFFER_TRACE(new_jh, "file as BJ_IO");
 436        jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
 437
 438        return do_escape | (done_copy_out << 1);
 439}
 440
 441/*
 442 * Allocation code for the journal file.  Manage the space left in the
 443 * journal, so that we can begin checkpointing when appropriate.
 444 */
 445
 446/*
 447 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
 448 *
 449 * Called with the journal already locked.
 450 *
 451 * Called under j_state_lock
 452 */
 453
 454int __jbd2_log_space_left(journal_t *journal)
 455{
 456        int left = journal->j_free;
 457
 458        /* assert_spin_locked(&journal->j_state_lock); */
 459
 460        /*
 461         * Be pessimistic here about the number of those free blocks which
 462         * might be required for log descriptor control blocks.
 463         */
 464
 465#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
 466
 467        left -= MIN_LOG_RESERVED_BLOCKS;
 468
 469        if (left <= 0)
 470                return 0;
 471        left -= (left >> 3);
 472        return left;
 473}
 474
 475/*
 476 * Called with j_state_lock locked for writing.
 477 * Returns true if a transaction commit was started.
 478 */
 479int __jbd2_log_start_commit(journal_t *journal, tid_t target)
 480{
 481        /*
 482         * Are we already doing a recent enough commit?
 483         */
 484        if (!tid_geq(journal->j_commit_request, target)) {
 485                /*
 486                 * We want a new commit: OK, mark the request and wakeup the
 487                 * commit thread.  We do _not_ do the commit ourselves.
 488                 */
 489
 490                journal->j_commit_request = target;
 491                jbd_debug(1, "JBD: requesting commit %d/%d\n",
 492                          journal->j_commit_request,
 493                          journal->j_commit_sequence);
 494                wake_up(&journal->j_wait_commit);
 495                return 1;
 496        }
 497        return 0;
 498}
 499
 500int jbd2_log_start_commit(journal_t *journal, tid_t tid)
 501{
 502        int ret;
 503
 504        write_lock(&journal->j_state_lock);
 505        ret = __jbd2_log_start_commit(journal, tid);
 506        write_unlock(&journal->j_state_lock);
 507        return ret;
 508}
 509
 510/*
 511 * Force and wait upon a commit if the calling process is not within
 512 * transaction.  This is used for forcing out undo-protected data which contains
 513 * bitmaps, when the fs is running out of space.
 514 *
 515 * We can only force the running transaction if we don't have an active handle;
 516 * otherwise, we will deadlock.
 517 *
 518 * Returns true if a transaction was started.
 519 */
 520int jbd2_journal_force_commit_nested(journal_t *journal)
 521{
 522        transaction_t *transaction = NULL;
 523        tid_t tid;
 524        int need_to_start = 0;
 525
 526        read_lock(&journal->j_state_lock);
 527        if (journal->j_running_transaction && !current->journal_info) {
 528                transaction = journal->j_running_transaction;
 529                if (!tid_geq(journal->j_commit_request, transaction->t_tid))
 530                        need_to_start = 1;
 531        } else if (journal->j_committing_transaction)
 532                transaction = journal->j_committing_transaction;
 533
 534        if (!transaction) {
 535                read_unlock(&journal->j_state_lock);
 536                return 0;       /* Nothing to retry */
 537        }
 538
 539        tid = transaction->t_tid;
 540        read_unlock(&journal->j_state_lock);
 541        if (need_to_start)
 542                jbd2_log_start_commit(journal, tid);
 543        jbd2_log_wait_commit(journal, tid);
 544        return 1;
 545}
 546
 547/*
 548 * Start a commit of the current running transaction (if any).  Returns true
 549 * if a transaction is going to be committed (or is currently already
 550 * committing), and fills its tid in at *ptid
 551 */
 552int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
 553{
 554        int ret = 0;
 555
 556        write_lock(&journal->j_state_lock);
 557        if (journal->j_running_transaction) {
 558                tid_t tid = journal->j_running_transaction->t_tid;
 559
 560                __jbd2_log_start_commit(journal, tid);
 561                /* There's a running transaction and we've just made sure
 562                 * it's commit has been scheduled. */
 563                if (ptid)
 564                        *ptid = tid;
 565                ret = 1;
 566        } else if (journal->j_committing_transaction) {
 567                /*
 568                 * If ext3_write_super() recently started a commit, then we
 569                 * have to wait for completion of that transaction
 570                 */
 571                if (ptid)
 572                        *ptid = journal->j_committing_transaction->t_tid;
 573                ret = 1;
 574        }
 575        write_unlock(&journal->j_state_lock);
 576        return ret;
 577}
 578
 579/*
 580 * Wait for a specified commit to complete.
 581 * The caller may not hold the journal lock.
 582 */
 583int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
 584{
 585        int err = 0;
 586
 587        read_lock(&journal->j_state_lock);
 588#ifdef CONFIG_JBD2_DEBUG
 589        if (!tid_geq(journal->j_commit_request, tid)) {
 590                printk(KERN_EMERG
 591                       "%s: error: j_commit_request=%d, tid=%d\n",
 592                       __func__, journal->j_commit_request, tid);
 593        }
 594#endif
 595        while (tid_gt(tid, journal->j_commit_sequence)) {
 596                jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
 597                                  tid, journal->j_commit_sequence);
 598                wake_up(&journal->j_wait_commit);
 599                read_unlock(&journal->j_state_lock);
 600                wait_event(journal->j_wait_done_commit,
 601                                !tid_gt(tid, journal->j_commit_sequence));
 602                read_lock(&journal->j_state_lock);
 603        }
 604        read_unlock(&journal->j_state_lock);
 605
 606        if (unlikely(is_journal_aborted(journal))) {
 607                printk(KERN_EMERG "journal commit I/O error\n");
 608                err = -EIO;
 609        }
 610        return err;
 611}
 612
 613/*
 614 * Log buffer allocation routines:
 615 */
 616
 617int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
 618{
 619        unsigned long blocknr;
 620
 621        write_lock(&journal->j_state_lock);
 622        J_ASSERT(journal->j_free > 1);
 623
 624        blocknr = journal->j_head;
 625        journal->j_head++;
 626        journal->j_free--;
 627        if (journal->j_head == journal->j_last)
 628                journal->j_head = journal->j_first;
 629        write_unlock(&journal->j_state_lock);
 630        return jbd2_journal_bmap(journal, blocknr, retp);
 631}
 632
 633/*
 634 * Conversion of logical to physical block numbers for the journal
 635 *
 636 * On external journals the journal blocks are identity-mapped, so
 637 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 638 * ready.
 639 */
 640int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
 641                 unsigned long long *retp)
 642{
 643        int err = 0;
 644        unsigned long long ret;
 645
 646        if (journal->j_inode) {
 647                ret = bmap(journal->j_inode, blocknr);
 648                if (ret)
 649                        *retp = ret;
 650                else {
 651                        printk(KERN_ALERT "%s: journal block not found "
 652                                        "at offset %lu on %s\n",
 653                               __func__, blocknr, journal->j_devname);
 654                        err = -EIO;
 655                        __journal_abort_soft(journal, err);
 656                }
 657        } else {
 658                *retp = blocknr; /* +journal->j_blk_offset */
 659        }
 660        return err;
 661}
 662
 663/*
 664 * We play buffer_head aliasing tricks to write data/metadata blocks to
 665 * the journal without copying their contents, but for journal
 666 * descriptor blocks we do need to generate bona fide buffers.
 667 *
 668 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
 669 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 670 * But we don't bother doing that, so there will be coherency problems with
 671 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 672 */
 673struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
 674{
 675        struct buffer_head *bh;
 676        unsigned long long blocknr;
 677        int err;
 678
 679        err = jbd2_journal_next_log_block(journal, &blocknr);
 680
 681        if (err)
 682                return NULL;
 683
 684        bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 685        if (!bh)
 686                return NULL;
 687        lock_buffer(bh);
 688        memset(bh->b_data, 0, journal->j_blocksize);
 689        set_buffer_uptodate(bh);
 690        unlock_buffer(bh);
 691        BUFFER_TRACE(bh, "return this buffer");
 692        return jbd2_journal_add_journal_head(bh);
 693}
 694
 695struct jbd2_stats_proc_session {
 696        journal_t *journal;
 697        struct transaction_stats_s *stats;
 698        int start;
 699        int max;
 700};
 701
 702static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
 703{
 704        return *pos ? NULL : SEQ_START_TOKEN;
 705}
 706
 707static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
 708{
 709        return NULL;
 710}
 711
 712static int jbd2_seq_info_show(struct seq_file *seq, void *v)
 713{
 714        struct jbd2_stats_proc_session *s = seq->private;
 715
 716        if (v != SEQ_START_TOKEN)
 717                return 0;
 718        seq_printf(seq, "%lu transaction, each up to %u blocks\n",
 719                        s->stats->ts_tid,
 720                        s->journal->j_max_transaction_buffers);
 721        if (s->stats->ts_tid == 0)
 722                return 0;
 723        seq_printf(seq, "average: \n  %ums waiting for transaction\n",
 724            jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
 725        seq_printf(seq, "  %ums running transaction\n",
 726            jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
 727        seq_printf(seq, "  %ums transaction was being locked\n",
 728            jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
 729        seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
 730            jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
 731        seq_printf(seq, "  %ums logging transaction\n",
 732            jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
 733        seq_printf(seq, "  %lluus average transaction commit time\n",
 734                   div_u64(s->journal->j_average_commit_time, 1000));
 735        seq_printf(seq, "  %lu handles per transaction\n",
 736            s->stats->run.rs_handle_count / s->stats->ts_tid);
 737        seq_printf(seq, "  %lu blocks per transaction\n",
 738            s->stats->run.rs_blocks / s->stats->ts_tid);
 739        seq_printf(seq, "  %lu logged blocks per transaction\n",
 740            s->stats->run.rs_blocks_logged / s->stats->ts_tid);
 741        return 0;
 742}
 743
 744static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
 745{
 746}
 747
 748static const struct seq_operations jbd2_seq_info_ops = {
 749        .start  = jbd2_seq_info_start,
 750        .next   = jbd2_seq_info_next,
 751        .stop   = jbd2_seq_info_stop,
 752        .show   = jbd2_seq_info_show,
 753};
 754
 755static int jbd2_seq_info_open(struct inode *inode, struct file *file)
 756{
 757        journal_t *journal = PDE(inode)->data;
 758        struct jbd2_stats_proc_session *s;
 759        int rc, size;
 760
 761        s = kmalloc(sizeof(*s), GFP_KERNEL);
 762        if (s == NULL)
 763                return -ENOMEM;
 764        size = sizeof(struct transaction_stats_s);
 765        s->stats = kmalloc(size, GFP_KERNEL);
 766        if (s->stats == NULL) {
 767                kfree(s);
 768                return -ENOMEM;
 769        }
 770        spin_lock(&journal->j_history_lock);
 771        memcpy(s->stats, &journal->j_stats, size);
 772        s->journal = journal;
 773        spin_unlock(&journal->j_history_lock);
 774
 775        rc = seq_open(file, &jbd2_seq_info_ops);
 776        if (rc == 0) {
 777                struct seq_file *m = file->private_data;
 778                m->private = s;
 779        } else {
 780                kfree(s->stats);
 781                kfree(s);
 782        }
 783        return rc;
 784
 785}
 786
 787static int jbd2_seq_info_release(struct inode *inode, struct file *file)
 788{
 789        struct seq_file *seq = file->private_data;
 790        struct jbd2_stats_proc_session *s = seq->private;
 791        kfree(s->stats);
 792        kfree(s);
 793        return seq_release(inode, file);
 794}
 795
 796static const struct file_operations jbd2_seq_info_fops = {
 797        .owner          = THIS_MODULE,
 798        .open           = jbd2_seq_info_open,
 799        .read           = seq_read,
 800        .llseek         = seq_lseek,
 801        .release        = jbd2_seq_info_release,
 802};
 803
 804static struct proc_dir_entry *proc_jbd2_stats;
 805
 806static void jbd2_stats_proc_init(journal_t *journal)
 807{
 808        journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
 809        if (journal->j_proc_entry) {
 810                proc_create_data("info", S_IRUGO, journal->j_proc_entry,
 811                                 &jbd2_seq_info_fops, journal);
 812        }
 813}
 814
 815static void jbd2_stats_proc_exit(journal_t *journal)
 816{
 817        remove_proc_entry("info", journal->j_proc_entry);
 818        remove_proc_entry(journal->j_devname, proc_jbd2_stats);
 819}
 820
 821/*
 822 * Management for journal control blocks: functions to create and
 823 * destroy journal_t structures, and to initialise and read existing
 824 * journal blocks from disk.  */
 825
 826/* First: create and setup a journal_t object in memory.  We initialise
 827 * very few fields yet: that has to wait until we have created the
 828 * journal structures from from scratch, or loaded them from disk. */
 829
 830static journal_t * journal_init_common (void)
 831{
 832        journal_t *journal;
 833        int err;
 834
 835        journal = kzalloc(sizeof(*journal), GFP_KERNEL);
 836        if (!journal)
 837                return NULL;
 838
 839        init_waitqueue_head(&journal->j_wait_transaction_locked);
 840        init_waitqueue_head(&journal->j_wait_logspace);
 841        init_waitqueue_head(&journal->j_wait_done_commit);
 842        init_waitqueue_head(&journal->j_wait_checkpoint);
 843        init_waitqueue_head(&journal->j_wait_commit);
 844        init_waitqueue_head(&journal->j_wait_updates);
 845        mutex_init(&journal->j_barrier);
 846        mutex_init(&journal->j_checkpoint_mutex);
 847        spin_lock_init(&journal->j_revoke_lock);
 848        spin_lock_init(&journal->j_list_lock);
 849        rwlock_init(&journal->j_state_lock);
 850
 851        journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
 852        journal->j_min_batch_time = 0;
 853        journal->j_max_batch_time = 15000; /* 15ms */
 854
 855        /* The journal is marked for error until we succeed with recovery! */
 856        journal->j_flags = JBD2_ABORT;
 857
 858        /* Set up a default-sized revoke table for the new mount. */
 859        err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
 860        if (err) {
 861                kfree(journal);
 862                return NULL;
 863        }
 864
 865        spin_lock_init(&journal->j_history_lock);
 866
 867        return journal;
 868}
 869
 870/* jbd2_journal_init_dev and jbd2_journal_init_inode:
 871 *
 872 * Create a journal structure assigned some fixed set of disk blocks to
 873 * the journal.  We don't actually touch those disk blocks yet, but we
 874 * need to set up all of the mapping information to tell the journaling
 875 * system where the journal blocks are.
 876 *
 877 */
 878
 879/**
 880 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
 881 *  @bdev: Block device on which to create the journal
 882 *  @fs_dev: Device which hold journalled filesystem for this journal.
 883 *  @start: Block nr Start of journal.
 884 *  @len:  Length of the journal in blocks.
 885 *  @blocksize: blocksize of journalling device
 886 *
 887 *  Returns: a newly created journal_t *
 888 *
 889 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
 890 *  range of blocks on an arbitrary block device.
 891 *
 892 */
 893journal_t * jbd2_journal_init_dev(struct block_device *bdev,
 894                        struct block_device *fs_dev,
 895                        unsigned long long start, int len, int blocksize)
 896{
 897        journal_t *journal = journal_init_common();
 898        struct buffer_head *bh;
 899        char *p;
 900        int n;
 901
 902        if (!journal)
 903                return NULL;
 904
 905        /* journal descriptor can store up to n blocks -bzzz */
 906        journal->j_blocksize = blocksize;
 907        journal->j_dev = bdev;
 908        journal->j_fs_dev = fs_dev;
 909        journal->j_blk_offset = start;
 910        journal->j_maxlen = len;
 911        bdevname(journal->j_dev, journal->j_devname);
 912        p = journal->j_devname;
 913        while ((p = strchr(p, '/')))
 914                *p = '!';
 915        jbd2_stats_proc_init(journal);
 916        n = journal->j_blocksize / sizeof(journal_block_tag_t);
 917        journal->j_wbufsize = n;
 918        journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
 919        if (!journal->j_wbuf) {
 920                printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
 921                        __func__);
 922                goto out_err;
 923        }
 924
 925        bh = __getblk(journal->j_dev, start, journal->j_blocksize);
 926        if (!bh) {
 927                printk(KERN_ERR
 928                       "%s: Cannot get buffer for journal superblock\n",
 929                       __func__);
 930                goto out_err;
 931        }
 932        journal->j_sb_buffer = bh;
 933        journal->j_superblock = (journal_superblock_t *)bh->b_data;
 934
 935        return journal;
 936out_err:
 937        kfree(journal->j_wbuf);
 938        jbd2_stats_proc_exit(journal);
 939        kfree(journal);
 940        return NULL;
 941}
 942
 943/**
 944 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
 945 *  @inode: An inode to create the journal in
 946 *
 947 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
 948 * the journal.  The inode must exist already, must support bmap() and
 949 * must have all data blocks preallocated.
 950 */
 951journal_t * jbd2_journal_init_inode (struct inode *inode)
 952{
 953        struct buffer_head *bh;
 954        journal_t *journal = journal_init_common();
 955        char *p;
 956        int err;
 957        int n;
 958        unsigned long long blocknr;
 959
 960        if (!journal)
 961                return NULL;
 962
 963        journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
 964        journal->j_inode = inode;
 965        bdevname(journal->j_dev, journal->j_devname);
 966        p = journal->j_devname;
 967        while ((p = strchr(p, '/')))
 968                *p = '!';
 969        p = journal->j_devname + strlen(journal->j_devname);
 970        sprintf(p, "-%lu", journal->j_inode->i_ino);
 971        jbd_debug(1,
 972                  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
 973                  journal, inode->i_sb->s_id, inode->i_ino,
 974                  (long long) inode->i_size,
 975                  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
 976
 977        journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
 978        journal->j_blocksize = inode->i_sb->s_blocksize;
 979        jbd2_stats_proc_init(journal);
 980
 981        /* journal descriptor can store up to n blocks -bzzz */
 982        n = journal->j_blocksize / sizeof(journal_block_tag_t);
 983        journal->j_wbufsize = n;
 984        journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
 985        if (!journal->j_wbuf) {
 986                printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
 987                        __func__);
 988                goto out_err;
 989        }
 990
 991        err = jbd2_journal_bmap(journal, 0, &blocknr);
 992        /* If that failed, give up */
 993        if (err) {
 994                printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
 995                       __func__);
 996                goto out_err;
 997        }
 998
 999        bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1000        if (!bh) {
1001                printk(KERN_ERR
1002                       "%s: Cannot get buffer for journal superblock\n",
1003                       __func__);
1004                goto out_err;
1005        }
1006        journal->j_sb_buffer = bh;
1007        journal->j_superblock = (journal_superblock_t *)bh->b_data;
1008
1009        return journal;
1010out_err:
1011        kfree(journal->j_wbuf);
1012        jbd2_stats_proc_exit(journal);
1013        kfree(journal);
1014        return NULL;
1015}
1016
1017/*
1018 * If the journal init or create aborts, we need to mark the journal
1019 * superblock as being NULL to prevent the journal destroy from writing
1020 * back a bogus superblock.
1021 */
1022static void journal_fail_superblock (journal_t *journal)
1023{
1024        struct buffer_head *bh = journal->j_sb_buffer;
1025        brelse(bh);
1026        journal->j_sb_buffer = NULL;
1027}
1028
1029/*
1030 * Given a journal_t structure, initialise the various fields for
1031 * startup of a new journaling session.  We use this both when creating
1032 * a journal, and after recovering an old journal to reset it for
1033 * subsequent use.
1034 */
1035
1036static int journal_reset(journal_t *journal)
1037{
1038        journal_superblock_t *sb = journal->j_superblock;
1039        unsigned long long first, last;
1040
1041        first = be32_to_cpu(sb->s_first);
1042        last = be32_to_cpu(sb->s_maxlen);
1043        if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1044                printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1045                       first, last);
1046                journal_fail_superblock(journal);
1047                return -EINVAL;
1048        }
1049
1050        journal->j_first = first;
1051        journal->j_last = last;
1052
1053        journal->j_head = first;
1054        journal->j_tail = first;
1055        journal->j_free = last - first;
1056
1057        journal->j_tail_sequence = journal->j_transaction_sequence;
1058        journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1059        journal->j_commit_request = journal->j_commit_sequence;
1060
1061        journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1062
1063        /* Add the dynamic fields and write it to disk. */
1064        jbd2_journal_update_superblock(journal, 1);
1065        return jbd2_journal_start_thread(journal);
1066}
1067
1068/**
1069 * void jbd2_journal_update_superblock() - Update journal sb on disk.
1070 * @journal: The journal to update.
1071 * @wait: Set to '0' if you don't want to wait for IO completion.
1072 *
1073 * Update a journal's dynamic superblock fields and write it to disk,
1074 * optionally waiting for the IO to complete.
1075 */
1076void jbd2_journal_update_superblock(journal_t *journal, int wait)
1077{
1078        journal_superblock_t *sb = journal->j_superblock;
1079        struct buffer_head *bh = journal->j_sb_buffer;
1080
1081        /*
1082         * As a special case, if the on-disk copy is already marked as needing
1083         * no recovery (s_start == 0) and there are no outstanding transactions
1084         * in the filesystem, then we can safely defer the superblock update
1085         * until the next commit by setting JBD2_FLUSHED.  This avoids
1086         * attempting a write to a potential-readonly device.
1087         */
1088        if (sb->s_start == 0 && journal->j_tail_sequence ==
1089                                journal->j_transaction_sequence) {
1090                jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1091                        "(start %ld, seq %d, errno %d)\n",
1092                        journal->j_tail, journal->j_tail_sequence,
1093                        journal->j_errno);
1094                goto out;
1095        }
1096
1097        if (buffer_write_io_error(bh)) {
1098                /*
1099                 * Oh, dear.  A previous attempt to write the journal
1100                 * superblock failed.  This could happen because the
1101                 * USB device was yanked out.  Or it could happen to
1102                 * be a transient write error and maybe the block will
1103                 * be remapped.  Nothing we can do but to retry the
1104                 * write and hope for the best.
1105                 */
1106                printk(KERN_ERR "JBD2: previous I/O error detected "
1107                       "for journal superblock update for %s.\n",
1108                       journal->j_devname);
1109                clear_buffer_write_io_error(bh);
1110                set_buffer_uptodate(bh);
1111        }
1112
1113        read_lock(&journal->j_state_lock);
1114        jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1115                  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1116
1117        sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1118        sb->s_start    = cpu_to_be32(journal->j_tail);
1119        sb->s_errno    = cpu_to_be32(journal->j_errno);
1120        read_unlock(&journal->j_state_lock);
1121
1122        BUFFER_TRACE(bh, "marking dirty");
1123        mark_buffer_dirty(bh);
1124        if (wait) {
1125                sync_dirty_buffer(bh);
1126                if (buffer_write_io_error(bh)) {
1127                        printk(KERN_ERR "JBD2: I/O error detected "
1128                               "when updating journal superblock for %s.\n",
1129                               journal->j_devname);
1130                        clear_buffer_write_io_error(bh);
1131                        set_buffer_uptodate(bh);
1132                }
1133        } else
1134                write_dirty_buffer(bh, WRITE);
1135
1136out:
1137        /* If we have just flushed the log (by marking s_start==0), then
1138         * any future commit will have to be careful to update the
1139         * superblock again to re-record the true start of the log. */
1140
1141        write_lock(&journal->j_state_lock);
1142        if (sb->s_start)
1143                journal->j_flags &= ~JBD2_FLUSHED;
1144        else
1145                journal->j_flags |= JBD2_FLUSHED;
1146        write_unlock(&journal->j_state_lock);
1147}
1148
1149/*
1150 * Read the superblock for a given journal, performing initial
1151 * validation of the format.
1152 */
1153
1154static int journal_get_superblock(journal_t *journal)
1155{
1156        struct buffer_head *bh;
1157        journal_superblock_t *sb;
1158        int err = -EIO;
1159
1160        bh = journal->j_sb_buffer;
1161
1162        J_ASSERT(bh != NULL);
1163        if (!buffer_uptodate(bh)) {
1164                ll_rw_block(READ, 1, &bh);
1165                wait_on_buffer(bh);
1166                if (!buffer_uptodate(bh)) {
1167                        printk (KERN_ERR
1168                                "JBD: IO error reading journal superblock\n");
1169                        goto out;
1170                }
1171        }
1172
1173        sb = journal->j_superblock;
1174
1175        err = -EINVAL;
1176
1177        if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1178            sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1179                printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1180                goto out;
1181        }
1182
1183        switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1184        case JBD2_SUPERBLOCK_V1:
1185                journal->j_format_version = 1;
1186                break;
1187        case JBD2_SUPERBLOCK_V2:
1188                journal->j_format_version = 2;
1189                break;
1190        default:
1191                printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1192                goto out;
1193        }
1194
1195        if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1196                journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1197        else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1198                printk (KERN_WARNING "JBD: journal file too short\n");
1199                goto out;
1200        }
1201
1202        return 0;
1203
1204out:
1205        journal_fail_superblock(journal);
1206        return err;
1207}
1208
1209/*
1210 * Load the on-disk journal superblock and read the key fields into the
1211 * journal_t.
1212 */
1213
1214static int load_superblock(journal_t *journal)
1215{
1216        int err;
1217        journal_superblock_t *sb;
1218
1219        err = journal_get_superblock(journal);
1220        if (err)
1221                return err;
1222
1223        sb = journal->j_superblock;
1224
1225        journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1226        journal->j_tail = be32_to_cpu(sb->s_start);
1227        journal->j_first = be32_to_cpu(sb->s_first);
1228        journal->j_last = be32_to_cpu(sb->s_maxlen);
1229        journal->j_errno = be32_to_cpu(sb->s_errno);
1230
1231        return 0;
1232}
1233
1234
1235/**
1236 * int jbd2_journal_load() - Read journal from disk.
1237 * @journal: Journal to act on.
1238 *
1239 * Given a journal_t structure which tells us which disk blocks contain
1240 * a journal, read the journal from disk to initialise the in-memory
1241 * structures.
1242 */
1243int jbd2_journal_load(journal_t *journal)
1244{
1245        int err;
1246        journal_superblock_t *sb;
1247
1248        err = load_superblock(journal);
1249        if (err)
1250                return err;
1251
1252        sb = journal->j_superblock;
1253        /* If this is a V2 superblock, then we have to check the
1254         * features flags on it. */
1255
1256        if (journal->j_format_version >= 2) {
1257                if ((sb->s_feature_ro_compat &
1258                     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1259                    (sb->s_feature_incompat &
1260                     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1261                        printk (KERN_WARNING
1262                                "JBD: Unrecognised features on journal\n");
1263                        return -EINVAL;
1264                }
1265        }
1266
1267        /*
1268         * Create a slab for this blocksize
1269         */
1270        err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1271        if (err)
1272                return err;
1273
1274        /* Let the recovery code check whether it needs to recover any
1275         * data from the journal. */
1276        if (jbd2_journal_recover(journal))
1277                goto recovery_error;
1278
1279        if (journal->j_failed_commit) {
1280                printk(KERN_ERR "JBD2: journal transaction %u on %s "
1281                       "is corrupt.\n", journal->j_failed_commit,
1282                       journal->j_devname);
1283                return -EIO;
1284        }
1285
1286        /* OK, we've finished with the dynamic journal bits:
1287         * reinitialise the dynamic contents of the superblock in memory
1288         * and reset them on disk. */
1289        if (journal_reset(journal))
1290                goto recovery_error;
1291
1292        journal->j_flags &= ~JBD2_ABORT;
1293        journal->j_flags |= JBD2_LOADED;
1294        return 0;
1295
1296recovery_error:
1297        printk (KERN_WARNING "JBD: recovery failed\n");
1298        return -EIO;
1299}
1300
1301/**
1302 * void jbd2_journal_destroy() - Release a journal_t structure.
1303 * @journal: Journal to act on.
1304 *
1305 * Release a journal_t structure once it is no longer in use by the
1306 * journaled object.
1307 * Return <0 if we couldn't clean up the journal.
1308 */
1309int jbd2_journal_destroy(journal_t *journal)
1310{
1311        int err = 0;
1312
1313        /* Wait for the commit thread to wake up and die. */
1314        journal_kill_thread(journal);
1315
1316        /* Force a final log commit */
1317        if (journal->j_running_transaction)
1318                jbd2_journal_commit_transaction(journal);
1319
1320        /* Force any old transactions to disk */
1321
1322        /* Totally anal locking here... */
1323        spin_lock(&journal->j_list_lock);
1324        while (journal->j_checkpoint_transactions != NULL) {
1325                spin_unlock(&journal->j_list_lock);
1326                mutex_lock(&journal->j_checkpoint_mutex);
1327                jbd2_log_do_checkpoint(journal);
1328                mutex_unlock(&journal->j_checkpoint_mutex);
1329                spin_lock(&journal->j_list_lock);
1330        }
1331
1332        J_ASSERT(journal->j_running_transaction == NULL);
1333        J_ASSERT(journal->j_committing_transaction == NULL);
1334        J_ASSERT(journal->j_checkpoint_transactions == NULL);
1335        spin_unlock(&journal->j_list_lock);
1336
1337        if (journal->j_sb_buffer) {
1338                if (!is_journal_aborted(journal)) {
1339                        /* We can now mark the journal as empty. */
1340                        journal->j_tail = 0;
1341                        journal->j_tail_sequence =
1342                                ++journal->j_transaction_sequence;
1343                        jbd2_journal_update_superblock(journal, 1);
1344                } else {
1345                        err = -EIO;
1346                }
1347                brelse(journal->j_sb_buffer);
1348        }
1349
1350        if (journal->j_proc_entry)
1351                jbd2_stats_proc_exit(journal);
1352        if (journal->j_inode)
1353                iput(journal->j_inode);
1354        if (journal->j_revoke)
1355                jbd2_journal_destroy_revoke(journal);
1356        kfree(journal->j_wbuf);
1357        kfree(journal);
1358
1359        return err;
1360}
1361
1362
1363/**
1364 *int jbd2_journal_check_used_features () - Check if features specified are used.
1365 * @journal: Journal to check.
1366 * @compat: bitmask of compatible features
1367 * @ro: bitmask of features that force read-only mount
1368 * @incompat: bitmask of incompatible features
1369 *
1370 * Check whether the journal uses all of a given set of
1371 * features.  Return true (non-zero) if it does.
1372 **/
1373
1374int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1375                                 unsigned long ro, unsigned long incompat)
1376{
1377        journal_superblock_t *sb;
1378
1379        if (!compat && !ro && !incompat)
1380                return 1;
1381        /* Load journal superblock if it is not loaded yet. */
1382        if (journal->j_format_version == 0 &&
1383            journal_get_superblock(journal) != 0)
1384                return 0;
1385        if (journal->j_format_version == 1)
1386                return 0;
1387
1388        sb = journal->j_superblock;
1389
1390        if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1391            ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1392            ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1393                return 1;
1394
1395        return 0;
1396}
1397
1398/**
1399 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1400 * @journal: Journal to check.
1401 * @compat: bitmask of compatible features
1402 * @ro: bitmask of features that force read-only mount
1403 * @incompat: bitmask of incompatible features
1404 *
1405 * Check whether the journaling code supports the use of
1406 * all of a given set of features on this journal.  Return true
1407 * (non-zero) if it can. */
1408
1409int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1410                                      unsigned long ro, unsigned long incompat)
1411{
1412        if (!compat && !ro && !incompat)
1413                return 1;
1414
1415        /* We can support any known requested features iff the
1416         * superblock is in version 2.  Otherwise we fail to support any
1417         * extended sb features. */
1418
1419        if (journal->j_format_version != 2)
1420                return 0;
1421
1422        if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1423            (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1424            (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1425                return 1;
1426
1427        return 0;
1428}
1429
1430/**
1431 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1432 * @journal: Journal to act on.
1433 * @compat: bitmask of compatible features
1434 * @ro: bitmask of features that force read-only mount
1435 * @incompat: bitmask of incompatible features
1436 *
1437 * Mark a given journal feature as present on the
1438 * superblock.  Returns true if the requested features could be set.
1439 *
1440 */
1441
1442int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1443                          unsigned long ro, unsigned long incompat)
1444{
1445        journal_superblock_t *sb;
1446
1447        if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1448                return 1;
1449
1450        if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1451                return 0;
1452
1453        jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1454                  compat, ro, incompat);
1455
1456        sb = journal->j_superblock;
1457
1458        sb->s_feature_compat    |= cpu_to_be32(compat);
1459        sb->s_feature_ro_compat |= cpu_to_be32(ro);
1460        sb->s_feature_incompat  |= cpu_to_be32(incompat);
1461
1462        return 1;
1463}
1464
1465/*
1466 * jbd2_journal_clear_features () - Clear a given journal feature in the
1467 *                                  superblock
1468 * @journal: Journal to act on.
1469 * @compat: bitmask of compatible features
1470 * @ro: bitmask of features that force read-only mount
1471 * @incompat: bitmask of incompatible features
1472 *
1473 * Clear a given journal feature as present on the
1474 * superblock.
1475 */
1476void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1477                                unsigned long ro, unsigned long incompat)
1478{
1479        journal_superblock_t *sb;
1480
1481        jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1482                  compat, ro, incompat);
1483
1484        sb = journal->j_superblock;
1485
1486        sb->s_feature_compat    &= ~cpu_to_be32(compat);
1487        sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1488        sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1489}
1490EXPORT_SYMBOL(jbd2_journal_clear_features);
1491
1492/**
1493 * int jbd2_journal_update_format () - Update on-disk journal structure.
1494 * @journal: Journal to act on.
1495 *
1496 * Given an initialised but unloaded journal struct, poke about in the
1497 * on-disk structure to update it to the most recent supported version.
1498 */
1499int jbd2_journal_update_format (journal_t *journal)
1500{
1501        journal_superblock_t *sb;
1502        int err;
1503
1504        err = journal_get_superblock(journal);
1505        if (err)
1506                return err;
1507
1508        sb = journal->j_superblock;
1509
1510        switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1511        case JBD2_SUPERBLOCK_V2:
1512                return 0;
1513        case JBD2_SUPERBLOCK_V1:
1514                return journal_convert_superblock_v1(journal, sb);
1515        default:
1516                break;
1517        }
1518        return -EINVAL;
1519}
1520
1521static int journal_convert_superblock_v1(journal_t *journal,
1522                                         journal_superblock_t *sb)
1523{
1524        int offset, blocksize;
1525        struct buffer_head *bh;
1526
1527        printk(KERN_WARNING
1528                "JBD: Converting superblock from version 1 to 2.\n");
1529
1530        /* Pre-initialise new fields to zero */
1531        offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1532        blocksize = be32_to_cpu(sb->s_blocksize);
1533        memset(&sb->s_feature_compat, 0, blocksize-offset);
1534
1535        sb->s_nr_users = cpu_to_be32(1);
1536        sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1537        journal->j_format_version = 2;
1538
1539        bh = journal->j_sb_buffer;
1540        BUFFER_TRACE(bh, "marking dirty");
1541        mark_buffer_dirty(bh);
1542        sync_dirty_buffer(bh);
1543        return 0;
1544}
1545
1546
1547/**
1548 * int jbd2_journal_flush () - Flush journal
1549 * @journal: Journal to act on.
1550 *
1551 * Flush all data for a given journal to disk and empty the journal.
1552 * Filesystems can use this when remounting readonly to ensure that
1553 * recovery does not need to happen on remount.
1554 */
1555
1556int jbd2_journal_flush(journal_t *journal)
1557{
1558        int err = 0;
1559        transaction_t *transaction = NULL;
1560        unsigned long old_tail;
1561
1562        write_lock(&journal->j_state_lock);
1563
1564        /* Force everything buffered to the log... */
1565        if (journal->j_running_transaction) {
1566                transaction = journal->j_running_transaction;
1567                __jbd2_log_start_commit(journal, transaction->t_tid);
1568        } else if (journal->j_committing_transaction)
1569                transaction = journal->j_committing_transaction;
1570
1571        /* Wait for the log commit to complete... */
1572        if (transaction) {
1573                tid_t tid = transaction->t_tid;
1574
1575                write_unlock(&journal->j_state_lock);
1576                jbd2_log_wait_commit(journal, tid);
1577        } else {
1578                write_unlock(&journal->j_state_lock);
1579        }
1580
1581        /* ...and flush everything in the log out to disk. */
1582        spin_lock(&journal->j_list_lock);
1583        while (!err && journal->j_checkpoint_transactions != NULL) {
1584                spin_unlock(&journal->j_list_lock);
1585                mutex_lock(&journal->j_checkpoint_mutex);
1586                err = jbd2_log_do_checkpoint(journal);
1587                mutex_unlock(&journal->j_checkpoint_mutex);
1588                spin_lock(&journal->j_list_lock);
1589        }
1590        spin_unlock(&journal->j_list_lock);
1591
1592        if (is_journal_aborted(journal))
1593                return -EIO;
1594
1595        jbd2_cleanup_journal_tail(journal);
1596
1597        /* Finally, mark the journal as really needing no recovery.
1598         * This sets s_start==0 in the underlying superblock, which is
1599         * the magic code for a fully-recovered superblock.  Any future
1600         * commits of data to the journal will restore the current
1601         * s_start value. */
1602        write_lock(&journal->j_state_lock);
1603        old_tail = journal->j_tail;
1604        journal->j_tail = 0;
1605        write_unlock(&journal->j_state_lock);
1606        jbd2_journal_update_superblock(journal, 1);
1607        write_lock(&journal->j_state_lock);
1608        journal->j_tail = old_tail;
1609
1610        J_ASSERT(!journal->j_running_transaction);
1611        J_ASSERT(!journal->j_committing_transaction);
1612        J_ASSERT(!journal->j_checkpoint_transactions);
1613        J_ASSERT(journal->j_head == journal->j_tail);
1614        J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1615        write_unlock(&journal->j_state_lock);
1616        return 0;
1617}
1618
1619/**
1620 * int jbd2_journal_wipe() - Wipe journal contents
1621 * @journal: Journal to act on.
1622 * @write: flag (see below)
1623 *
1624 * Wipe out all of the contents of a journal, safely.  This will produce
1625 * a warning if the journal contains any valid recovery information.
1626 * Must be called between journal_init_*() and jbd2_journal_load().
1627 *
1628 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1629 * we merely suppress recovery.
1630 */
1631
1632int jbd2_journal_wipe(journal_t *journal, int write)
1633{
1634        int err = 0;
1635
1636        J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1637
1638        err = load_superblock(journal);
1639        if (err)
1640                return err;
1641
1642        if (!journal->j_tail)
1643                goto no_recovery;
1644
1645        printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1646                write ? "Clearing" : "Ignoring");
1647
1648        err = jbd2_journal_skip_recovery(journal);
1649        if (write)
1650                jbd2_journal_update_superblock(journal, 1);
1651
1652 no_recovery:
1653        return err;
1654}
1655
1656/*
1657 * Journal abort has very specific semantics, which we describe
1658 * for journal abort.
1659 *
1660 * Two internal functions, which provide abort to the jbd layer
1661 * itself are here.
1662 */
1663
1664/*
1665 * Quick version for internal journal use (doesn't lock the journal).
1666 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1667 * and don't attempt to make any other journal updates.
1668 */
1669void __jbd2_journal_abort_hard(journal_t *journal)
1670{
1671        transaction_t *transaction;
1672
1673        if (journal->j_flags & JBD2_ABORT)
1674                return;
1675
1676        printk(KERN_ERR "Aborting journal on device %s.\n",
1677               journal->j_devname);
1678
1679        write_lock(&journal->j_state_lock);
1680        journal->j_flags |= JBD2_ABORT;
1681        transaction = journal->j_running_transaction;
1682        if (transaction)
1683                __jbd2_log_start_commit(journal, transaction->t_tid);
1684        write_unlock(&journal->j_state_lock);
1685}
1686
1687/* Soft abort: record the abort error status in the journal superblock,
1688 * but don't do any other IO. */
1689static void __journal_abort_soft (journal_t *journal, int errno)
1690{
1691        if (journal->j_flags & JBD2_ABORT)
1692                return;
1693
1694        if (!journal->j_errno)
1695                journal->j_errno = errno;
1696
1697        __jbd2_journal_abort_hard(journal);
1698
1699        if (errno)
1700                jbd2_journal_update_superblock(journal, 1);
1701}
1702
1703/**
1704 * void jbd2_journal_abort () - Shutdown the journal immediately.
1705 * @journal: the journal to shutdown.
1706 * @errno:   an error number to record in the journal indicating
1707 *           the reason for the shutdown.
1708 *
1709 * Perform a complete, immediate shutdown of the ENTIRE
1710 * journal (not of a single transaction).  This operation cannot be
1711 * undone without closing and reopening the journal.
1712 *
1713 * The jbd2_journal_abort function is intended to support higher level error
1714 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1715 * mode.
1716 *
1717 * Journal abort has very specific semantics.  Any existing dirty,
1718 * unjournaled buffers in the main filesystem will still be written to
1719 * disk by bdflush, but the journaling mechanism will be suspended
1720 * immediately and no further transaction commits will be honoured.
1721 *
1722 * Any dirty, journaled buffers will be written back to disk without
1723 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1724 * filesystem, but we _do_ attempt to leave as much data as possible
1725 * behind for fsck to use for cleanup.
1726 *
1727 * Any attempt to get a new transaction handle on a journal which is in
1728 * ABORT state will just result in an -EROFS error return.  A
1729 * jbd2_journal_stop on an existing handle will return -EIO if we have
1730 * entered abort state during the update.
1731 *
1732 * Recursive transactions are not disturbed by journal abort until the
1733 * final jbd2_journal_stop, which will receive the -EIO error.
1734 *
1735 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1736 * which will be recorded (if possible) in the journal superblock.  This
1737 * allows a client to record failure conditions in the middle of a
1738 * transaction without having to complete the transaction to record the
1739 * failure to disk.  ext3_error, for example, now uses this
1740 * functionality.
1741 *
1742 * Errors which originate from within the journaling layer will NOT
1743 * supply an errno; a null errno implies that absolutely no further
1744 * writes are done to the journal (unless there are any already in
1745 * progress).
1746 *
1747 */
1748
1749void jbd2_journal_abort(journal_t *journal, int errno)
1750{
1751        __journal_abort_soft(journal, errno);
1752}
1753
1754/**
1755 * int jbd2_journal_errno () - returns the journal's error state.
1756 * @journal: journal to examine.
1757 *
1758 * This is the errno number set with jbd2_journal_abort(), the last
1759 * time the journal was mounted - if the journal was stopped
1760 * without calling abort this will be 0.
1761 *
1762 * If the journal has been aborted on this mount time -EROFS will
1763 * be returned.
1764 */
1765int jbd2_journal_errno(journal_t *journal)
1766{
1767        int err;
1768
1769        read_lock(&journal->j_state_lock);
1770        if (journal->j_flags & JBD2_ABORT)
1771                err = -EROFS;
1772        else
1773                err = journal->j_errno;
1774        read_unlock(&journal->j_state_lock);
1775        return err;
1776}
1777
1778/**
1779 * int jbd2_journal_clear_err () - clears the journal's error state
1780 * @journal: journal to act on.
1781 *
1782 * An error must be cleared or acked to take a FS out of readonly
1783 * mode.
1784 */
1785int jbd2_journal_clear_err(journal_t *journal)
1786{
1787        int err = 0;
1788
1789        write_lock(&journal->j_state_lock);
1790        if (journal->j_flags & JBD2_ABORT)
1791                err = -EROFS;
1792        else
1793                journal->j_errno = 0;
1794        write_unlock(&journal->j_state_lock);
1795        return err;
1796}
1797
1798/**
1799 * void jbd2_journal_ack_err() - Ack journal err.
1800 * @journal: journal to act on.
1801 *
1802 * An error must be cleared or acked to take a FS out of readonly
1803 * mode.
1804 */
1805void jbd2_journal_ack_err(journal_t *journal)
1806{
1807        write_lock(&journal->j_state_lock);
1808        if (journal->j_errno)
1809                journal->j_flags |= JBD2_ACK_ERR;
1810        write_unlock(&journal->j_state_lock);
1811}
1812
1813int jbd2_journal_blocks_per_page(struct inode *inode)
1814{
1815        return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1816}
1817
1818/*
1819 * helper functions to deal with 32 or 64bit block numbers.
1820 */
1821size_t journal_tag_bytes(journal_t *journal)
1822{
1823        if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1824                return JBD2_TAG_SIZE64;
1825        else
1826                return JBD2_TAG_SIZE32;
1827}
1828
1829/*
1830 * JBD memory management
1831 *
1832 * These functions are used to allocate block-sized chunks of memory
1833 * used for making copies of buffer_head data.  Very often it will be
1834 * page-sized chunks of data, but sometimes it will be in
1835 * sub-page-size chunks.  (For example, 16k pages on Power systems
1836 * with a 4k block file system.)  For blocks smaller than a page, we
1837 * use a SLAB allocator.  There are slab caches for each block size,
1838 * which are allocated at mount time, if necessary, and we only free
1839 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1840 * this reason we don't need to a mutex to protect access to
1841 * jbd2_slab[] allocating or releasing memory; only in
1842 * jbd2_journal_create_slab().
1843 */
1844#define JBD2_MAX_SLABS 8
1845static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1846
1847static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1848        "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1849        "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1850};
1851
1852
1853static void jbd2_journal_destroy_slabs(void)
1854{
1855        int i;
1856
1857        for (i = 0; i < JBD2_MAX_SLABS; i++) {
1858                if (jbd2_slab[i])
1859                        kmem_cache_destroy(jbd2_slab[i]);
1860                jbd2_slab[i] = NULL;
1861        }
1862}
1863
1864static int jbd2_journal_create_slab(size_t size)
1865{
1866        static DEFINE_MUTEX(jbd2_slab_create_mutex);
1867        int i = order_base_2(size) - 10;
1868        size_t slab_size;
1869
1870        if (size == PAGE_SIZE)
1871                return 0;
1872
1873        if (i >= JBD2_MAX_SLABS)
1874                return -EINVAL;
1875
1876        if (unlikely(i < 0))
1877                i = 0;
1878        mutex_lock(&jbd2_slab_create_mutex);
1879        if (jbd2_slab[i]) {
1880                mutex_unlock(&jbd2_slab_create_mutex);
1881                return 0;       /* Already created */
1882        }
1883
1884        slab_size = 1 << (i+10);
1885        jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1886                                         slab_size, 0, NULL);
1887        mutex_unlock(&jbd2_slab_create_mutex);
1888        if (!jbd2_slab[i]) {
1889                printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1890                return -ENOMEM;
1891        }
1892        return 0;
1893}
1894
1895static struct kmem_cache *get_slab(size_t size)
1896{
1897        int i = order_base_2(size) - 10;
1898
1899        BUG_ON(i >= JBD2_MAX_SLABS);
1900        if (unlikely(i < 0))
1901                i = 0;
1902        BUG_ON(jbd2_slab[i] == NULL);
1903        return jbd2_slab[i];
1904}
1905
1906void *jbd2_alloc(size_t size, gfp_t flags)
1907{
1908        void *ptr;
1909
1910        BUG_ON(size & (size-1)); /* Must be a power of 2 */
1911
1912        flags |= __GFP_REPEAT;
1913        if (size == PAGE_SIZE)
1914                ptr = (void *)__get_free_pages(flags, 0);
1915        else if (size > PAGE_SIZE) {
1916                int order = get_order(size);
1917
1918                if (order < 3)
1919                        ptr = (void *)__get_free_pages(flags, order);
1920                else
1921                        ptr = vmalloc(size);
1922        } else
1923                ptr = kmem_cache_alloc(get_slab(size), flags);
1924
1925        /* Check alignment; SLUB has gotten this wrong in the past,
1926         * and this can lead to user data corruption! */
1927        BUG_ON(((unsigned long) ptr) & (size-1));
1928
1929        return ptr;
1930}
1931
1932void jbd2_free(void *ptr, size_t size)
1933{
1934        if (size == PAGE_SIZE) {
1935                free_pages((unsigned long)ptr, 0);
1936                return;
1937        }
1938        if (size > PAGE_SIZE) {
1939                int order = get_order(size);
1940
1941                if (order < 3)
1942                        free_pages((unsigned long)ptr, order);
1943                else
1944                        vfree(ptr);
1945                return;
1946        }
1947        kmem_cache_free(get_slab(size), ptr);
1948};
1949
1950/*
1951 * Journal_head storage management
1952 */
1953static struct kmem_cache *jbd2_journal_head_cache;
1954#ifdef CONFIG_JBD2_DEBUG
1955static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1956#endif
1957
1958static int journal_init_jbd2_journal_head_cache(void)
1959{
1960        int retval;
1961
1962        J_ASSERT(jbd2_journal_head_cache == NULL);
1963        jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1964                                sizeof(struct journal_head),
1965                                0,              /* offset */
1966                                SLAB_TEMPORARY, /* flags */
1967                                NULL);          /* ctor */
1968        retval = 0;
1969        if (!jbd2_journal_head_cache) {
1970                retval = -ENOMEM;
1971                printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1972        }
1973        return retval;
1974}
1975
1976static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1977{
1978        if (jbd2_journal_head_cache) {
1979                kmem_cache_destroy(jbd2_journal_head_cache);
1980                jbd2_journal_head_cache = NULL;
1981        }
1982}
1983
1984/*
1985 * journal_head splicing and dicing
1986 */
1987static struct journal_head *journal_alloc_journal_head(void)
1988{
1989        struct journal_head *ret;
1990
1991#ifdef CONFIG_JBD2_DEBUG
1992        atomic_inc(&nr_journal_heads);
1993#endif
1994        ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1995        if (!ret) {
1996                jbd_debug(1, "out of memory for journal_head\n");
1997                pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
1998                while (!ret) {
1999                        yield();
2000                        ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2001                }
2002        }
2003        return ret;
2004}
2005
2006static void journal_free_journal_head(struct journal_head *jh)
2007{
2008#ifdef CONFIG_JBD2_DEBUG
2009        atomic_dec(&nr_journal_heads);
2010        memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2011#endif
2012        kmem_cache_free(jbd2_journal_head_cache, jh);
2013}
2014
2015/*
2016 * A journal_head is attached to a buffer_head whenever JBD has an
2017 * interest in the buffer.
2018 *
2019 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2020 * is set.  This bit is tested in core kernel code where we need to take
2021 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2022 * there.
2023 *
2024 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2025 *
2026 * When a buffer has its BH_JBD bit set it is immune from being released by
2027 * core kernel code, mainly via ->b_count.
2028 *
2029 * A journal_head may be detached from its buffer_head when the journal_head's
2030 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2031 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2032 * journal_head can be dropped if needed.
2033 *
2034 * Various places in the kernel want to attach a journal_head to a buffer_head
2035 * _before_ attaching the journal_head to a transaction.  To protect the
2036 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2037 * journal_head's b_jcount refcount by one.  The caller must call
2038 * jbd2_journal_put_journal_head() to undo this.
2039 *
2040 * So the typical usage would be:
2041 *
2042 *      (Attach a journal_head if needed.  Increments b_jcount)
2043 *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2044 *      ...
2045 *      jh->b_transaction = xxx;
2046 *      jbd2_journal_put_journal_head(jh);
2047 *
2048 * Now, the journal_head's b_jcount is zero, but it is safe from being released
2049 * because it has a non-zero b_transaction.
2050 */
2051
2052/*
2053 * Give a buffer_head a journal_head.
2054 *
2055 * Doesn't need the journal lock.
2056 * May sleep.
2057 */
2058struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2059{
2060        struct journal_head *jh;
2061        struct journal_head *new_jh = NULL;
2062
2063repeat:
2064        if (!buffer_jbd(bh)) {
2065                new_jh = journal_alloc_journal_head();
2066                memset(new_jh, 0, sizeof(*new_jh));
2067        }
2068
2069        jbd_lock_bh_journal_head(bh);
2070        if (buffer_jbd(bh)) {
2071                jh = bh2jh(bh);
2072        } else {
2073                J_ASSERT_BH(bh,
2074                        (atomic_read(&bh->b_count) > 0) ||
2075                        (bh->b_page && bh->b_page->mapping));
2076
2077                if (!new_jh) {
2078                        jbd_unlock_bh_journal_head(bh);
2079                        goto repeat;
2080                }
2081
2082                jh = new_jh;
2083                new_jh = NULL;          /* We consumed it */
2084                set_buffer_jbd(bh);
2085                bh->b_private = jh;
2086                jh->b_bh = bh;
2087                get_bh(bh);
2088                BUFFER_TRACE(bh, "added journal_head");
2089        }
2090        jh->b_jcount++;
2091        jbd_unlock_bh_journal_head(bh);
2092        if (new_jh)
2093                journal_free_journal_head(new_jh);
2094        return bh->b_private;
2095}
2096
2097/*
2098 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2099 * having a journal_head, return NULL
2100 */
2101struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2102{
2103        struct journal_head *jh = NULL;
2104
2105        jbd_lock_bh_journal_head(bh);
2106        if (buffer_jbd(bh)) {
2107                jh = bh2jh(bh);
2108                jh->b_jcount++;
2109        }
2110        jbd_unlock_bh_journal_head(bh);
2111        return jh;
2112}
2113
2114static void __journal_remove_journal_head(struct buffer_head *bh)
2115{
2116        struct journal_head *jh = bh2jh(bh);
2117
2118        J_ASSERT_JH(jh, jh->b_jcount >= 0);
2119
2120        get_bh(bh);
2121        if (jh->b_jcount == 0) {
2122                if (jh->b_transaction == NULL &&
2123                                jh->b_next_transaction == NULL &&
2124                                jh->b_cp_transaction == NULL) {
2125                        J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2126                        J_ASSERT_BH(bh, buffer_jbd(bh));
2127                        J_ASSERT_BH(bh, jh2bh(jh) == bh);
2128                        BUFFER_TRACE(bh, "remove journal_head");
2129                        if (jh->b_frozen_data) {
2130                                printk(KERN_WARNING "%s: freeing "
2131                                                "b_frozen_data\n",
2132                                                __func__);
2133                                jbd2_free(jh->b_frozen_data, bh->b_size);
2134                        }
2135                        if (jh->b_committed_data) {
2136                                printk(KERN_WARNING "%s: freeing "
2137                                                "b_committed_data\n",
2138                                                __func__);
2139                                jbd2_free(jh->b_committed_data, bh->b_size);
2140                        }
2141                        bh->b_private = NULL;
2142                        jh->b_bh = NULL;        /* debug, really */
2143                        clear_buffer_jbd(bh);
2144                        __brelse(bh);
2145                        journal_free_journal_head(jh);
2146                } else {
2147                        BUFFER_TRACE(bh, "journal_head was locked");
2148                }
2149        }
2150}
2151
2152/*
2153 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2154 * and has a zero b_jcount then remove and release its journal_head.   If we did
2155 * see that the buffer is not used by any transaction we also "logically"
2156 * decrement ->b_count.
2157 *
2158 * We in fact take an additional increment on ->b_count as a convenience,
2159 * because the caller usually wants to do additional things with the bh
2160 * after calling here.
2161 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2162 * time.  Once the caller has run __brelse(), the buffer is eligible for
2163 * reaping by try_to_free_buffers().
2164 */
2165void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2166{
2167        jbd_lock_bh_journal_head(bh);
2168        __journal_remove_journal_head(bh);
2169        jbd_unlock_bh_journal_head(bh);
2170}
2171
2172/*
2173 * Drop a reference on the passed journal_head.  If it fell to zero then try to
2174 * release the journal_head from the buffer_head.
2175 */
2176void jbd2_journal_put_journal_head(struct journal_head *jh)
2177{
2178        struct buffer_head *bh = jh2bh(jh);
2179
2180        jbd_lock_bh_journal_head(bh);
2181        J_ASSERT_JH(jh, jh->b_jcount > 0);
2182        --jh->b_jcount;
2183        if (!jh->b_jcount && !jh->b_transaction) {
2184                __journal_remove_journal_head(bh);
2185                __brelse(bh);
2186        }
2187        jbd_unlock_bh_journal_head(bh);
2188}
2189
2190/*
2191 * Initialize jbd inode head
2192 */
2193void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2194{
2195        jinode->i_transaction = NULL;
2196        jinode->i_next_transaction = NULL;
2197        jinode->i_vfs_inode = inode;
2198        jinode->i_flags = 0;
2199        INIT_LIST_HEAD(&jinode->i_list);
2200}
2201
2202/*
2203 * Function to be called before we start removing inode from memory (i.e.,
2204 * clear_inode() is a fine place to be called from). It removes inode from
2205 * transaction's lists.
2206 */
2207void jbd2_journal_release_jbd_inode(journal_t *journal,
2208                                    struct jbd2_inode *jinode)
2209{
2210        if (!journal)
2211                return;
2212restart:
2213        spin_lock(&journal->j_list_lock);
2214        /* Is commit writing out inode - we have to wait */
2215        if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2216                wait_queue_head_t *wq;
2217                DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2218                wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2219                prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2220                spin_unlock(&journal->j_list_lock);
2221                schedule();
2222                finish_wait(wq, &wait.wait);
2223                goto restart;
2224        }
2225
2226        if (jinode->i_transaction) {
2227                list_del(&jinode->i_list);
2228                jinode->i_transaction = NULL;
2229        }
2230        spin_unlock(&journal->j_list_lock);
2231}
2232
2233/*
2234 * debugfs tunables
2235 */
2236#ifdef CONFIG_JBD2_DEBUG
2237u8 jbd2_journal_enable_debug __read_mostly;
2238EXPORT_SYMBOL(jbd2_journal_enable_debug);
2239
2240#define JBD2_DEBUG_NAME "jbd2-debug"
2241
2242static struct dentry *jbd2_debugfs_dir;
2243static struct dentry *jbd2_debug;
2244
2245static void __init jbd2_create_debugfs_entry(void)
2246{
2247        jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2248        if (jbd2_debugfs_dir)
2249                jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2250                                               S_IRUGO | S_IWUSR,
2251                                               jbd2_debugfs_dir,
2252                                               &jbd2_journal_enable_debug);
2253}
2254
2255static void __exit jbd2_remove_debugfs_entry(void)
2256{
2257        debugfs_remove(jbd2_debug);
2258        debugfs_remove(jbd2_debugfs_dir);
2259}
2260
2261#else
2262
2263static void __init jbd2_create_debugfs_entry(void)
2264{
2265}
2266
2267static void __exit jbd2_remove_debugfs_entry(void)
2268{
2269}
2270
2271#endif
2272
2273#ifdef CONFIG_PROC_FS
2274
2275#define JBD2_STATS_PROC_NAME "fs/jbd2"
2276
2277static void __init jbd2_create_jbd_stats_proc_entry(void)
2278{
2279        proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2280}
2281
2282static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2283{
2284        if (proc_jbd2_stats)
2285                remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2286}
2287
2288#else
2289
2290#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2291#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2292
2293#endif
2294
2295struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2296
2297static int __init journal_init_handle_cache(void)
2298{
2299        jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2300        if (jbd2_handle_cache == NULL) {
2301                printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2302                return -ENOMEM;
2303        }
2304        jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2305        if (jbd2_inode_cache == NULL) {
2306                printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2307                kmem_cache_destroy(jbd2_handle_cache);
2308                return -ENOMEM;
2309        }
2310        return 0;
2311}
2312
2313static void jbd2_journal_destroy_handle_cache(void)
2314{
2315        if (jbd2_handle_cache)
2316                kmem_cache_destroy(jbd2_handle_cache);
2317        if (jbd2_inode_cache)
2318                kmem_cache_destroy(jbd2_inode_cache);
2319
2320}
2321
2322/*
2323 * Module startup and shutdown
2324 */
2325
2326static int __init journal_init_caches(void)
2327{
2328        int ret;
2329
2330        ret = jbd2_journal_init_revoke_caches();
2331        if (ret == 0)
2332                ret = journal_init_jbd2_journal_head_cache();
2333        if (ret == 0)
2334                ret = journal_init_handle_cache();
2335        return ret;
2336}
2337
2338static void jbd2_journal_destroy_caches(void)
2339{
2340        jbd2_journal_destroy_revoke_caches();
2341        jbd2_journal_destroy_jbd2_journal_head_cache();
2342        jbd2_journal_destroy_handle_cache();
2343        jbd2_journal_destroy_slabs();
2344}
2345
2346static int __init journal_init(void)
2347{
2348        int ret;
2349
2350        BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2351
2352        ret = journal_init_caches();
2353        if (ret == 0) {
2354                jbd2_create_debugfs_entry();
2355                jbd2_create_jbd_stats_proc_entry();
2356        } else {
2357                jbd2_journal_destroy_caches();
2358        }
2359        return ret;
2360}
2361
2362static void __exit journal_exit(void)
2363{
2364#ifdef CONFIG_JBD2_DEBUG
2365        int n = atomic_read(&nr_journal_heads);
2366        if (n)
2367                printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2368#endif
2369        jbd2_remove_debugfs_entry();
2370        jbd2_remove_jbd_stats_proc_entry();
2371        jbd2_journal_destroy_caches();
2372}
2373
2374/* 
2375 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 
2376 * tracing infrastructure to map a dev_t to a device name.
2377 *
2378 * The caller should use rcu_read_lock() in order to make sure the
2379 * device name stays valid until its done with it.  We use
2380 * rcu_read_lock() as well to make sure we're safe in case the caller
2381 * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2382 * nested.
2383 */
2384struct devname_cache {
2385        struct rcu_head rcu;
2386        dev_t           device;
2387        char            devname[BDEVNAME_SIZE];
2388};
2389#define CACHE_SIZE_BITS 6
2390static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2391static DEFINE_SPINLOCK(devname_cache_lock);
2392
2393static void free_devcache(struct rcu_head *rcu)
2394{
2395        kfree(rcu);
2396}
2397
2398const char *jbd2_dev_to_name(dev_t device)
2399{
2400        int     i = hash_32(device, CACHE_SIZE_BITS);
2401        char    *ret;
2402        struct block_device *bd;
2403        static struct devname_cache *new_dev;
2404
2405        rcu_read_lock();
2406        if (devcache[i] && devcache[i]->device == device) {
2407                ret = devcache[i]->devname;
2408                rcu_read_unlock();
2409                return ret;
2410        }
2411        rcu_read_unlock();
2412
2413        new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2414        if (!new_dev)
2415                return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2416        spin_lock(&devname_cache_lock);
2417        if (devcache[i]) {
2418                if (devcache[i]->device == device) {
2419                        kfree(new_dev);
2420                        ret = devcache[i]->devname;
2421                        spin_unlock(&devname_cache_lock);
2422                        return ret;
2423                }
2424                call_rcu(&devcache[i]->rcu, free_devcache);
2425        }
2426        devcache[i] = new_dev;
2427        devcache[i]->device = device;
2428        bd = bdget(device);
2429        if (bd) {
2430                bdevname(bd, devcache[i]->devname);
2431                bdput(bd);
2432        } else
2433                __bdevname(device, devcache[i]->devname);
2434        ret = devcache[i]->devname;
2435        spin_unlock(&devname_cache_lock);
2436        return ret;
2437}
2438EXPORT_SYMBOL(jbd2_dev_to_name);
2439
2440MODULE_LICENSE("GPL");
2441module_init(journal_init);
2442module_exit(journal_exit);
2443
2444