linux/fs/jfs/jfs_logmgr.c
<<
>>
Prefs
   1/*
   2 *   Copyright (C) International Business Machines Corp., 2000-2004
   3 *   Portions Copyright (C) Christoph Hellwig, 2001-2002
   4 *
   5 *   This program is free software;  you can redistribute it and/or modify
   6 *   it under the terms of the GNU General Public License as published by
   7 *   the Free Software Foundation; either version 2 of the License, or
   8 *   (at your option) any later version.
   9 *
  10 *   This program is distributed in the hope that it will be useful,
  11 *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
  12 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
  13 *   the GNU General Public License for more details.
  14 *
  15 *   You should have received a copy of the GNU General Public License
  16 *   along with this program;  if not, write to the Free Software
  17 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 */
  19
  20/*
  21 *      jfs_logmgr.c: log manager
  22 *
  23 * for related information, see transaction manager (jfs_txnmgr.c), and
  24 * recovery manager (jfs_logredo.c).
  25 *
  26 * note: for detail, RTFS.
  27 *
  28 *      log buffer manager:
  29 * special purpose buffer manager supporting log i/o requirements.
  30 * per log serial pageout of logpage
  31 * queuing i/o requests and redrive i/o at iodone
  32 * maintain current logpage buffer
  33 * no caching since append only
  34 * appropriate jfs buffer cache buffers as needed
  35 *
  36 *      group commit:
  37 * transactions which wrote COMMIT records in the same in-memory
  38 * log page during the pageout of previous/current log page(s) are
  39 * committed together by the pageout of the page.
  40 *
  41 *      TBD lazy commit:
  42 * transactions are committed asynchronously when the log page
  43 * containing it COMMIT is paged out when it becomes full;
  44 *
  45 *      serialization:
  46 * . a per log lock serialize log write.
  47 * . a per log lock serialize group commit.
  48 * . a per log lock serialize log open/close;
  49 *
  50 *      TBD log integrity:
  51 * careful-write (ping-pong) of last logpage to recover from crash
  52 * in overwrite.
  53 * detection of split (out-of-order) write of physical sectors
  54 * of last logpage via timestamp at end of each sector
  55 * with its mirror data array at trailer).
  56 *
  57 *      alternatives:
  58 * lsn - 64-bit monotonically increasing integer vs
  59 * 32-bit lspn and page eor.
  60 */
  61
  62#include <linux/fs.h>
  63#include <linux/blkdev.h>
  64#include <linux/interrupt.h>
  65#include <linux/completion.h>
  66#include <linux/kthread.h>
  67#include <linux/buffer_head.h>          /* for sync_blockdev() */
  68#include <linux/bio.h>
  69#include <linux/freezer.h>
  70#include <linux/delay.h>
  71#include <linux/mutex.h>
  72#include <linux/seq_file.h>
  73#include <linux/slab.h>
  74#include "jfs_incore.h"
  75#include "jfs_filsys.h"
  76#include "jfs_metapage.h"
  77#include "jfs_superblock.h"
  78#include "jfs_txnmgr.h"
  79#include "jfs_debug.h"
  80
  81
  82/*
  83 * lbuf's ready to be redriven.  Protected by log_redrive_lock (jfsIO thread)
  84 */
  85static struct lbuf *log_redrive_list;
  86static DEFINE_SPINLOCK(log_redrive_lock);
  87
  88
  89/*
  90 *      log read/write serialization (per log)
  91 */
  92#define LOG_LOCK_INIT(log)      mutex_init(&(log)->loglock)
  93#define LOG_LOCK(log)           mutex_lock(&((log)->loglock))
  94#define LOG_UNLOCK(log)         mutex_unlock(&((log)->loglock))
  95
  96
  97/*
  98 *      log group commit serialization (per log)
  99 */
 100
 101#define LOGGC_LOCK_INIT(log)    spin_lock_init(&(log)->gclock)
 102#define LOGGC_LOCK(log)         spin_lock_irq(&(log)->gclock)
 103#define LOGGC_UNLOCK(log)       spin_unlock_irq(&(log)->gclock)
 104#define LOGGC_WAKEUP(tblk)      wake_up_all(&(tblk)->gcwait)
 105
 106/*
 107 *      log sync serialization (per log)
 108 */
 109#define LOGSYNC_DELTA(logsize)          min((logsize)/8, 128*LOGPSIZE)
 110#define LOGSYNC_BARRIER(logsize)        ((logsize)/4)
 111/*
 112#define LOGSYNC_DELTA(logsize)          min((logsize)/4, 256*LOGPSIZE)
 113#define LOGSYNC_BARRIER(logsize)        ((logsize)/2)
 114*/
 115
 116
 117/*
 118 *      log buffer cache synchronization
 119 */
 120static DEFINE_SPINLOCK(jfsLCacheLock);
 121
 122#define LCACHE_LOCK(flags)      spin_lock_irqsave(&jfsLCacheLock, flags)
 123#define LCACHE_UNLOCK(flags)    spin_unlock_irqrestore(&jfsLCacheLock, flags)
 124
 125/*
 126 * See __SLEEP_COND in jfs_locks.h
 127 */
 128#define LCACHE_SLEEP_COND(wq, cond, flags)      \
 129do {                                            \
 130        if (cond)                               \
 131                break;                          \
 132        __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
 133} while (0)
 134
 135#define LCACHE_WAKEUP(event)    wake_up(event)
 136
 137
 138/*
 139 *      lbuf buffer cache (lCache) control
 140 */
 141/* log buffer manager pageout control (cumulative, inclusive) */
 142#define lbmREAD         0x0001
 143#define lbmWRITE        0x0002  /* enqueue at tail of write queue;
 144                                 * init pageout if at head of queue;
 145                                 */
 146#define lbmRELEASE      0x0004  /* remove from write queue
 147                                 * at completion of pageout;
 148                                 * do not free/recycle it yet:
 149                                 * caller will free it;
 150                                 */
 151#define lbmSYNC         0x0008  /* do not return to freelist
 152                                 * when removed from write queue;
 153                                 */
 154#define lbmFREE         0x0010  /* return to freelist
 155                                 * at completion of pageout;
 156                                 * the buffer may be recycled;
 157                                 */
 158#define lbmDONE         0x0020
 159#define lbmERROR        0x0040
 160#define lbmGC           0x0080  /* lbmIODone to perform post-GC processing
 161                                 * of log page
 162                                 */
 163#define lbmDIRECT       0x0100
 164
 165/*
 166 * Global list of active external journals
 167 */
 168static LIST_HEAD(jfs_external_logs);
 169static struct jfs_log *dummy_log = NULL;
 170static DEFINE_MUTEX(jfs_log_mutex);
 171
 172/*
 173 * forward references
 174 */
 175static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
 176                         struct lrd * lrd, struct tlock * tlck);
 177
 178static int lmNextPage(struct jfs_log * log);
 179static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
 180                           int activate);
 181
 182static int open_inline_log(struct super_block *sb);
 183static int open_dummy_log(struct super_block *sb);
 184static int lbmLogInit(struct jfs_log * log);
 185static void lbmLogShutdown(struct jfs_log * log);
 186static struct lbuf *lbmAllocate(struct jfs_log * log, int);
 187static void lbmFree(struct lbuf * bp);
 188static void lbmfree(struct lbuf * bp);
 189static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
 190static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
 191static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
 192static int lbmIOWait(struct lbuf * bp, int flag);
 193static bio_end_io_t lbmIODone;
 194static void lbmStartIO(struct lbuf * bp);
 195static void lmGCwrite(struct jfs_log * log, int cant_block);
 196static int lmLogSync(struct jfs_log * log, int hard_sync);
 197
 198
 199
 200/*
 201 *      statistics
 202 */
 203#ifdef CONFIG_JFS_STATISTICS
 204static struct lmStat {
 205        uint commit;            /* # of commit */
 206        uint pagedone;          /* # of page written */
 207        uint submitted;         /* # of pages submitted */
 208        uint full_page;         /* # of full pages submitted */
 209        uint partial_page;      /* # of partial pages submitted */
 210} lmStat;
 211#endif
 212
 213static void write_special_inodes(struct jfs_log *log,
 214                                 int (*writer)(struct address_space *))
 215{
 216        struct jfs_sb_info *sbi;
 217
 218        list_for_each_entry(sbi, &log->sb_list, log_list) {
 219                writer(sbi->ipbmap->i_mapping);
 220                writer(sbi->ipimap->i_mapping);
 221                writer(sbi->direct_inode->i_mapping);
 222        }
 223}
 224
 225/*
 226 * NAME:        lmLog()
 227 *
 228 * FUNCTION:    write a log record;
 229 *
 230 * PARAMETER:
 231 *
 232 * RETURN:      lsn - offset to the next log record to write (end-of-log);
 233 *              -1  - error;
 234 *
 235 * note: todo: log error handler
 236 */
 237int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
 238          struct tlock * tlck)
 239{
 240        int lsn;
 241        int diffp, difft;
 242        struct metapage *mp = NULL;
 243        unsigned long flags;
 244
 245        jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
 246                 log, tblk, lrd, tlck);
 247
 248        LOG_LOCK(log);
 249
 250        /* log by (out-of-transaction) JFS ? */
 251        if (tblk == NULL)
 252                goto writeRecord;
 253
 254        /* log from page ? */
 255        if (tlck == NULL ||
 256            tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
 257                goto writeRecord;
 258
 259        /*
 260         *      initialize/update page/transaction recovery lsn
 261         */
 262        lsn = log->lsn;
 263
 264        LOGSYNC_LOCK(log, flags);
 265
 266        /*
 267         * initialize page lsn if first log write of the page
 268         */
 269        if (mp->lsn == 0) {
 270                mp->log = log;
 271                mp->lsn = lsn;
 272                log->count++;
 273
 274                /* insert page at tail of logsynclist */
 275                list_add_tail(&mp->synclist, &log->synclist);
 276        }
 277
 278        /*
 279         *      initialize/update lsn of tblock of the page
 280         *
 281         * transaction inherits oldest lsn of pages associated
 282         * with allocation/deallocation of resources (their
 283         * log records are used to reconstruct allocation map
 284         * at recovery time: inode for inode allocation map,
 285         * B+-tree index of extent descriptors for block
 286         * allocation map);
 287         * allocation map pages inherit transaction lsn at
 288         * commit time to allow forwarding log syncpt past log
 289         * records associated with allocation/deallocation of
 290         * resources only after persistent map of these map pages
 291         * have been updated and propagated to home.
 292         */
 293        /*
 294         * initialize transaction lsn:
 295         */
 296        if (tblk->lsn == 0) {
 297                /* inherit lsn of its first page logged */
 298                tblk->lsn = mp->lsn;
 299                log->count++;
 300
 301                /* insert tblock after the page on logsynclist */
 302                list_add(&tblk->synclist, &mp->synclist);
 303        }
 304        /*
 305         * update transaction lsn:
 306         */
 307        else {
 308                /* inherit oldest/smallest lsn of page */
 309                logdiff(diffp, mp->lsn, log);
 310                logdiff(difft, tblk->lsn, log);
 311                if (diffp < difft) {
 312                        /* update tblock lsn with page lsn */
 313                        tblk->lsn = mp->lsn;
 314
 315                        /* move tblock after page on logsynclist */
 316                        list_move(&tblk->synclist, &mp->synclist);
 317                }
 318        }
 319
 320        LOGSYNC_UNLOCK(log, flags);
 321
 322        /*
 323         *      write the log record
 324         */
 325      writeRecord:
 326        lsn = lmWriteRecord(log, tblk, lrd, tlck);
 327
 328        /*
 329         * forward log syncpt if log reached next syncpt trigger
 330         */
 331        logdiff(diffp, lsn, log);
 332        if (diffp >= log->nextsync)
 333                lsn = lmLogSync(log, 0);
 334
 335        /* update end-of-log lsn */
 336        log->lsn = lsn;
 337
 338        LOG_UNLOCK(log);
 339
 340        /* return end-of-log address */
 341        return lsn;
 342}
 343
 344/*
 345 * NAME:        lmWriteRecord()
 346 *
 347 * FUNCTION:    move the log record to current log page
 348 *
 349 * PARAMETER:   cd      - commit descriptor
 350 *
 351 * RETURN:      end-of-log address
 352 *
 353 * serialization: LOG_LOCK() held on entry/exit
 354 */
 355static int
 356lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
 357              struct tlock * tlck)
 358{
 359        int lsn = 0;            /* end-of-log address */
 360        struct lbuf *bp;        /* dst log page buffer */
 361        struct logpage *lp;     /* dst log page */
 362        caddr_t dst;            /* destination address in log page */
 363        int dstoffset;          /* end-of-log offset in log page */
 364        int freespace;          /* free space in log page */
 365        caddr_t p;              /* src meta-data page */
 366        caddr_t src;
 367        int srclen;
 368        int nbytes;             /* number of bytes to move */
 369        int i;
 370        int len;
 371        struct linelock *linelock;
 372        struct lv *lv;
 373        struct lvd *lvd;
 374        int l2linesize;
 375
 376        len = 0;
 377
 378        /* retrieve destination log page to write */
 379        bp = (struct lbuf *) log->bp;
 380        lp = (struct logpage *) bp->l_ldata;
 381        dstoffset = log->eor;
 382
 383        /* any log data to write ? */
 384        if (tlck == NULL)
 385                goto moveLrd;
 386
 387        /*
 388         *      move log record data
 389         */
 390        /* retrieve source meta-data page to log */
 391        if (tlck->flag & tlckPAGELOCK) {
 392                p = (caddr_t) (tlck->mp->data);
 393                linelock = (struct linelock *) & tlck->lock;
 394        }
 395        /* retrieve source in-memory inode to log */
 396        else if (tlck->flag & tlckINODELOCK) {
 397                if (tlck->type & tlckDTREE)
 398                        p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
 399                else
 400                        p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
 401                linelock = (struct linelock *) & tlck->lock;
 402        }
 403#ifdef  _JFS_WIP
 404        else if (tlck->flag & tlckINLINELOCK) {
 405
 406                inlinelock = (struct inlinelock *) & tlck;
 407                p = (caddr_t) & inlinelock->pxd;
 408                linelock = (struct linelock *) & tlck;
 409        }
 410#endif                          /* _JFS_WIP */
 411        else {
 412                jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
 413                return 0;       /* Probably should trap */
 414        }
 415        l2linesize = linelock->l2linesize;
 416
 417      moveData:
 418        ASSERT(linelock->index <= linelock->maxcnt);
 419
 420        lv = linelock->lv;
 421        for (i = 0; i < linelock->index; i++, lv++) {
 422                if (lv->length == 0)
 423                        continue;
 424
 425                /* is page full ? */
 426                if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
 427                        /* page become full: move on to next page */
 428                        lmNextPage(log);
 429
 430                        bp = log->bp;
 431                        lp = (struct logpage *) bp->l_ldata;
 432                        dstoffset = LOGPHDRSIZE;
 433                }
 434
 435                /*
 436                 * move log vector data
 437                 */
 438                src = (u8 *) p + (lv->offset << l2linesize);
 439                srclen = lv->length << l2linesize;
 440                len += srclen;
 441                while (srclen > 0) {
 442                        freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
 443                        nbytes = min(freespace, srclen);
 444                        dst = (caddr_t) lp + dstoffset;
 445                        memcpy(dst, src, nbytes);
 446                        dstoffset += nbytes;
 447
 448                        /* is page not full ? */
 449                        if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
 450                                break;
 451
 452                        /* page become full: move on to next page */
 453                        lmNextPage(log);
 454
 455                        bp = (struct lbuf *) log->bp;
 456                        lp = (struct logpage *) bp->l_ldata;
 457                        dstoffset = LOGPHDRSIZE;
 458
 459                        srclen -= nbytes;
 460                        src += nbytes;
 461                }
 462
 463                /*
 464                 * move log vector descriptor
 465                 */
 466                len += 4;
 467                lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
 468                lvd->offset = cpu_to_le16(lv->offset);
 469                lvd->length = cpu_to_le16(lv->length);
 470                dstoffset += 4;
 471                jfs_info("lmWriteRecord: lv offset:%d length:%d",
 472                         lv->offset, lv->length);
 473        }
 474
 475        if ((i = linelock->next)) {
 476                linelock = (struct linelock *) lid_to_tlock(i);
 477                goto moveData;
 478        }
 479
 480        /*
 481         *      move log record descriptor
 482         */
 483      moveLrd:
 484        lrd->length = cpu_to_le16(len);
 485
 486        src = (caddr_t) lrd;
 487        srclen = LOGRDSIZE;
 488
 489        while (srclen > 0) {
 490                freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
 491                nbytes = min(freespace, srclen);
 492                dst = (caddr_t) lp + dstoffset;
 493                memcpy(dst, src, nbytes);
 494
 495                dstoffset += nbytes;
 496                srclen -= nbytes;
 497
 498                /* are there more to move than freespace of page ? */
 499                if (srclen)
 500                        goto pageFull;
 501
 502                /*
 503                 * end of log record descriptor
 504                 */
 505
 506                /* update last log record eor */
 507                log->eor = dstoffset;
 508                bp->l_eor = dstoffset;
 509                lsn = (log->page << L2LOGPSIZE) + dstoffset;
 510
 511                if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
 512                        tblk->clsn = lsn;
 513                        jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
 514                                 bp->l_eor);
 515
 516                        INCREMENT(lmStat.commit);       /* # of commit */
 517
 518                        /*
 519                         * enqueue tblock for group commit:
 520                         *
 521                         * enqueue tblock of non-trivial/synchronous COMMIT
 522                         * at tail of group commit queue
 523                         * (trivial/asynchronous COMMITs are ignored by
 524                         * group commit.)
 525                         */
 526                        LOGGC_LOCK(log);
 527
 528                        /* init tblock gc state */
 529                        tblk->flag = tblkGC_QUEUE;
 530                        tblk->bp = log->bp;
 531                        tblk->pn = log->page;
 532                        tblk->eor = log->eor;
 533
 534                        /* enqueue transaction to commit queue */
 535                        list_add_tail(&tblk->cqueue, &log->cqueue);
 536
 537                        LOGGC_UNLOCK(log);
 538                }
 539
 540                jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
 541                        le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
 542
 543                /* page not full ? */
 544                if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
 545                        return lsn;
 546
 547              pageFull:
 548                /* page become full: move on to next page */
 549                lmNextPage(log);
 550
 551                bp = (struct lbuf *) log->bp;
 552                lp = (struct logpage *) bp->l_ldata;
 553                dstoffset = LOGPHDRSIZE;
 554                src += nbytes;
 555        }
 556
 557        return lsn;
 558}
 559
 560
 561/*
 562 * NAME:        lmNextPage()
 563 *
 564 * FUNCTION:    write current page and allocate next page.
 565 *
 566 * PARAMETER:   log
 567 *
 568 * RETURN:      0
 569 *
 570 * serialization: LOG_LOCK() held on entry/exit
 571 */
 572static int lmNextPage(struct jfs_log * log)
 573{
 574        struct logpage *lp;
 575        int lspn;               /* log sequence page number */
 576        int pn;                 /* current page number */
 577        struct lbuf *bp;
 578        struct lbuf *nextbp;
 579        struct tblock *tblk;
 580
 581        /* get current log page number and log sequence page number */
 582        pn = log->page;
 583        bp = log->bp;
 584        lp = (struct logpage *) bp->l_ldata;
 585        lspn = le32_to_cpu(lp->h.page);
 586
 587        LOGGC_LOCK(log);
 588
 589        /*
 590         *      write or queue the full page at the tail of write queue
 591         */
 592        /* get the tail tblk on commit queue */
 593        if (list_empty(&log->cqueue))
 594                tblk = NULL;
 595        else
 596                tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
 597
 598        /* every tblk who has COMMIT record on the current page,
 599         * and has not been committed, must be on commit queue
 600         * since tblk is queued at commit queueu at the time
 601         * of writing its COMMIT record on the page before
 602         * page becomes full (even though the tblk thread
 603         * who wrote COMMIT record may have been suspended
 604         * currently);
 605         */
 606
 607        /* is page bound with outstanding tail tblk ? */
 608        if (tblk && tblk->pn == pn) {
 609                /* mark tblk for end-of-page */
 610                tblk->flag |= tblkGC_EOP;
 611
 612                if (log->cflag & logGC_PAGEOUT) {
 613                        /* if page is not already on write queue,
 614                         * just enqueue (no lbmWRITE to prevent redrive)
 615                         * buffer to wqueue to ensure correct serial order
 616                         * of the pages since log pages will be added
 617                         * continuously
 618                         */
 619                        if (bp->l_wqnext == NULL)
 620                                lbmWrite(log, bp, 0, 0);
 621                } else {
 622                        /*
 623                         * No current GC leader, initiate group commit
 624                         */
 625                        log->cflag |= logGC_PAGEOUT;
 626                        lmGCwrite(log, 0);
 627                }
 628        }
 629        /* page is not bound with outstanding tblk:
 630         * init write or mark it to be redriven (lbmWRITE)
 631         */
 632        else {
 633                /* finalize the page */
 634                bp->l_ceor = bp->l_eor;
 635                lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
 636                lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
 637        }
 638        LOGGC_UNLOCK(log);
 639
 640        /*
 641         *      allocate/initialize next page
 642         */
 643        /* if log wraps, the first data page of log is 2
 644         * (0 never used, 1 is superblock).
 645         */
 646        log->page = (pn == log->size - 1) ? 2 : pn + 1;
 647        log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
 648
 649        /* allocate/initialize next log page buffer */
 650        nextbp = lbmAllocate(log, log->page);
 651        nextbp->l_eor = log->eor;
 652        log->bp = nextbp;
 653
 654        /* initialize next log page */
 655        lp = (struct logpage *) nextbp->l_ldata;
 656        lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
 657        lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
 658
 659        return 0;
 660}
 661
 662
 663/*
 664 * NAME:        lmGroupCommit()
 665 *
 666 * FUNCTION:    group commit
 667 *      initiate pageout of the pages with COMMIT in the order of
 668 *      page number - redrive pageout of the page at the head of
 669 *      pageout queue until full page has been written.
 670 *
 671 * RETURN:
 672 *
 673 * NOTE:
 674 *      LOGGC_LOCK serializes log group commit queue, and
 675 *      transaction blocks on the commit queue.
 676 *      N.B. LOG_LOCK is NOT held during lmGroupCommit().
 677 */
 678int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
 679{
 680        int rc = 0;
 681
 682        LOGGC_LOCK(log);
 683
 684        /* group committed already ? */
 685        if (tblk->flag & tblkGC_COMMITTED) {
 686                if (tblk->flag & tblkGC_ERROR)
 687                        rc = -EIO;
 688
 689                LOGGC_UNLOCK(log);
 690                return rc;
 691        }
 692        jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
 693
 694        if (tblk->xflag & COMMIT_LAZY)
 695                tblk->flag |= tblkGC_LAZY;
 696
 697        if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
 698            (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
 699             || jfs_tlocks_low)) {
 700                /*
 701                 * No pageout in progress
 702                 *
 703                 * start group commit as its group leader.
 704                 */
 705                log->cflag |= logGC_PAGEOUT;
 706
 707                lmGCwrite(log, 0);
 708        }
 709
 710        if (tblk->xflag & COMMIT_LAZY) {
 711                /*
 712                 * Lazy transactions can leave now
 713                 */
 714                LOGGC_UNLOCK(log);
 715                return 0;
 716        }
 717
 718        /* lmGCwrite gives up LOGGC_LOCK, check again */
 719
 720        if (tblk->flag & tblkGC_COMMITTED) {
 721                if (tblk->flag & tblkGC_ERROR)
 722                        rc = -EIO;
 723
 724                LOGGC_UNLOCK(log);
 725                return rc;
 726        }
 727
 728        /* upcount transaction waiting for completion
 729         */
 730        log->gcrtc++;
 731        tblk->flag |= tblkGC_READY;
 732
 733        __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
 734                     LOGGC_LOCK(log), LOGGC_UNLOCK(log));
 735
 736        /* removed from commit queue */
 737        if (tblk->flag & tblkGC_ERROR)
 738                rc = -EIO;
 739
 740        LOGGC_UNLOCK(log);
 741        return rc;
 742}
 743
 744/*
 745 * NAME:        lmGCwrite()
 746 *
 747 * FUNCTION:    group commit write
 748 *      initiate write of log page, building a group of all transactions
 749 *      with commit records on that page.
 750 *
 751 * RETURN:      None
 752 *
 753 * NOTE:
 754 *      LOGGC_LOCK must be held by caller.
 755 *      N.B. LOG_LOCK is NOT held during lmGroupCommit().
 756 */
 757static void lmGCwrite(struct jfs_log * log, int cant_write)
 758{
 759        struct lbuf *bp;
 760        struct logpage *lp;
 761        int gcpn;               /* group commit page number */
 762        struct tblock *tblk;
 763        struct tblock *xtblk = NULL;
 764
 765        /*
 766         * build the commit group of a log page
 767         *
 768         * scan commit queue and make a commit group of all
 769         * transactions with COMMIT records on the same log page.
 770         */
 771        /* get the head tblk on the commit queue */
 772        gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
 773
 774        list_for_each_entry(tblk, &log->cqueue, cqueue) {
 775                if (tblk->pn != gcpn)
 776                        break;
 777
 778                xtblk = tblk;
 779
 780                /* state transition: (QUEUE, READY) -> COMMIT */
 781                tblk->flag |= tblkGC_COMMIT;
 782        }
 783        tblk = xtblk;           /* last tblk of the page */
 784
 785        /*
 786         * pageout to commit transactions on the log page.
 787         */
 788        bp = (struct lbuf *) tblk->bp;
 789        lp = (struct logpage *) bp->l_ldata;
 790        /* is page already full ? */
 791        if (tblk->flag & tblkGC_EOP) {
 792                /* mark page to free at end of group commit of the page */
 793                tblk->flag &= ~tblkGC_EOP;
 794                tblk->flag |= tblkGC_FREE;
 795                bp->l_ceor = bp->l_eor;
 796                lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
 797                lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
 798                         cant_write);
 799                INCREMENT(lmStat.full_page);
 800        }
 801        /* page is not yet full */
 802        else {
 803                bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
 804                lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
 805                lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
 806                INCREMENT(lmStat.partial_page);
 807        }
 808}
 809
 810/*
 811 * NAME:        lmPostGC()
 812 *
 813 * FUNCTION:    group commit post-processing
 814 *      Processes transactions after their commit records have been written
 815 *      to disk, redriving log I/O if necessary.
 816 *
 817 * RETURN:      None
 818 *
 819 * NOTE:
 820 *      This routine is called a interrupt time by lbmIODone
 821 */
 822static void lmPostGC(struct lbuf * bp)
 823{
 824        unsigned long flags;
 825        struct jfs_log *log = bp->l_log;
 826        struct logpage *lp;
 827        struct tblock *tblk, *temp;
 828
 829        //LOGGC_LOCK(log);
 830        spin_lock_irqsave(&log->gclock, flags);
 831        /*
 832         * current pageout of group commit completed.
 833         *
 834         * remove/wakeup transactions from commit queue who were
 835         * group committed with the current log page
 836         */
 837        list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
 838                if (!(tblk->flag & tblkGC_COMMIT))
 839                        break;
 840                /* if transaction was marked GC_COMMIT then
 841                 * it has been shipped in the current pageout
 842                 * and made it to disk - it is committed.
 843                 */
 844
 845                if (bp->l_flag & lbmERROR)
 846                        tblk->flag |= tblkGC_ERROR;
 847
 848                /* remove it from the commit queue */
 849                list_del(&tblk->cqueue);
 850                tblk->flag &= ~tblkGC_QUEUE;
 851
 852                if (tblk == log->flush_tblk) {
 853                        /* we can stop flushing the log now */
 854                        clear_bit(log_FLUSH, &log->flag);
 855                        log->flush_tblk = NULL;
 856                }
 857
 858                jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
 859                         tblk->flag);
 860
 861                if (!(tblk->xflag & COMMIT_FORCE))
 862                        /*
 863                         * Hand tblk over to lazy commit thread
 864                         */
 865                        txLazyUnlock(tblk);
 866                else {
 867                        /* state transition: COMMIT -> COMMITTED */
 868                        tblk->flag |= tblkGC_COMMITTED;
 869
 870                        if (tblk->flag & tblkGC_READY)
 871                                log->gcrtc--;
 872
 873                        LOGGC_WAKEUP(tblk);
 874                }
 875
 876                /* was page full before pageout ?
 877                 * (and this is the last tblk bound with the page)
 878                 */
 879                if (tblk->flag & tblkGC_FREE)
 880                        lbmFree(bp);
 881                /* did page become full after pageout ?
 882                 * (and this is the last tblk bound with the page)
 883                 */
 884                else if (tblk->flag & tblkGC_EOP) {
 885                        /* finalize the page */
 886                        lp = (struct logpage *) bp->l_ldata;
 887                        bp->l_ceor = bp->l_eor;
 888                        lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
 889                        jfs_info("lmPostGC: calling lbmWrite");
 890                        lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
 891                                 1);
 892                }
 893
 894        }
 895
 896        /* are there any transactions who have entered lnGroupCommit()
 897         * (whose COMMITs are after that of the last log page written.
 898         * They are waiting for new group commit (above at (SLEEP 1))
 899         * or lazy transactions are on a full (queued) log page,
 900         * select the latest ready transaction as new group leader and
 901         * wake her up to lead her group.
 902         */
 903        if ((!list_empty(&log->cqueue)) &&
 904            ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
 905             test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
 906                /*
 907                 * Call lmGCwrite with new group leader
 908                 */
 909                lmGCwrite(log, 1);
 910
 911        /* no transaction are ready yet (transactions are only just
 912         * queued (GC_QUEUE) and not entered for group commit yet).
 913         * the first transaction entering group commit
 914         * will elect herself as new group leader.
 915         */
 916        else
 917                log->cflag &= ~logGC_PAGEOUT;
 918
 919        //LOGGC_UNLOCK(log);
 920        spin_unlock_irqrestore(&log->gclock, flags);
 921        return;
 922}
 923
 924/*
 925 * NAME:        lmLogSync()
 926 *
 927 * FUNCTION:    write log SYNCPT record for specified log
 928 *      if new sync address is available
 929 *      (normally the case if sync() is executed by back-ground
 930 *      process).
 931 *      calculate new value of i_nextsync which determines when
 932 *      this code is called again.
 933 *
 934 * PARAMETERS:  log     - log structure
 935 *              hard_sync - 1 to force all metadata to be written
 936 *
 937 * RETURN:      0
 938 *
 939 * serialization: LOG_LOCK() held on entry/exit
 940 */
 941static int lmLogSync(struct jfs_log * log, int hard_sync)
 942{
 943        int logsize;
 944        int written;            /* written since last syncpt */
 945        int free;               /* free space left available */
 946        int delta;              /* additional delta to write normally */
 947        int more;               /* additional write granted */
 948        struct lrd lrd;
 949        int lsn;
 950        struct logsyncblk *lp;
 951        unsigned long flags;
 952
 953        /* push dirty metapages out to disk */
 954        if (hard_sync)
 955                write_special_inodes(log, filemap_fdatawrite);
 956        else
 957                write_special_inodes(log, filemap_flush);
 958
 959        /*
 960         *      forward syncpt
 961         */
 962        /* if last sync is same as last syncpt,
 963         * invoke sync point forward processing to update sync.
 964         */
 965
 966        if (log->sync == log->syncpt) {
 967                LOGSYNC_LOCK(log, flags);
 968                if (list_empty(&log->synclist))
 969                        log->sync = log->lsn;
 970                else {
 971                        lp = list_entry(log->synclist.next,
 972                                        struct logsyncblk, synclist);
 973                        log->sync = lp->lsn;
 974                }
 975                LOGSYNC_UNLOCK(log, flags);
 976
 977        }
 978
 979        /* if sync is different from last syncpt,
 980         * write a SYNCPT record with syncpt = sync.
 981         * reset syncpt = sync
 982         */
 983        if (log->sync != log->syncpt) {
 984                lrd.logtid = 0;
 985                lrd.backchain = 0;
 986                lrd.type = cpu_to_le16(LOG_SYNCPT);
 987                lrd.length = 0;
 988                lrd.log.syncpt.sync = cpu_to_le32(log->sync);
 989                lsn = lmWriteRecord(log, NULL, &lrd, NULL);
 990
 991                log->syncpt = log->sync;
 992        } else
 993                lsn = log->lsn;
 994
 995        /*
 996         *      setup next syncpt trigger (SWAG)
 997         */
 998        logsize = log->logsize;
 999
1000        logdiff(written, lsn, log);
1001        free = logsize - written;
1002        delta = LOGSYNC_DELTA(logsize);
1003        more = min(free / 2, delta);
1004        if (more < 2 * LOGPSIZE) {
1005                jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1006                /*
1007                 *      log wrapping
1008                 *
1009                 * option 1 - panic ? No.!
1010                 * option 2 - shutdown file systems
1011                 *            associated with log ?
1012                 * option 3 - extend log ?
1013                 * option 4 - second chance
1014                 *
1015                 * mark log wrapped, and continue.
1016                 * when all active transactions are completed,
1017                 * mark log valid for recovery.
1018                 * if crashed during invalid state, log state
1019                 * implies invalid log, forcing fsck().
1020                 */
1021                /* mark log state log wrap in log superblock */
1022                /* log->state = LOGWRAP; */
1023
1024                /* reset sync point computation */
1025                log->syncpt = log->sync = lsn;
1026                log->nextsync = delta;
1027        } else
1028                /* next syncpt trigger = written + more */
1029                log->nextsync = written + more;
1030
1031        /* if number of bytes written from last sync point is more
1032         * than 1/4 of the log size, stop new transactions from
1033         * starting until all current transactions are completed
1034         * by setting syncbarrier flag.
1035         */
1036        if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1037            (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1038                set_bit(log_SYNCBARRIER, &log->flag);
1039                jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1040                         log->syncpt);
1041                /*
1042                 * We may have to initiate group commit
1043                 */
1044                jfs_flush_journal(log, 0);
1045        }
1046
1047        return lsn;
1048}
1049
1050/*
1051 * NAME:        jfs_syncpt
1052 *
1053 * FUNCTION:    write log SYNCPT record for specified log
1054 *
1055 * PARAMETERS:  log       - log structure
1056 *              hard_sync - set to 1 to force metadata to be written
1057 */
1058void jfs_syncpt(struct jfs_log *log, int hard_sync)
1059{       LOG_LOCK(log);
1060        lmLogSync(log, hard_sync);
1061        LOG_UNLOCK(log);
1062}
1063
1064/*
1065 * NAME:        lmLogOpen()
1066 *
1067 * FUNCTION:    open the log on first open;
1068 *      insert filesystem in the active list of the log.
1069 *
1070 * PARAMETER:   ipmnt   - file system mount inode
1071 *              iplog   - log inode (out)
1072 *
1073 * RETURN:
1074 *
1075 * serialization:
1076 */
1077int lmLogOpen(struct super_block *sb)
1078{
1079        int rc;
1080        struct block_device *bdev;
1081        struct jfs_log *log;
1082        struct jfs_sb_info *sbi = JFS_SBI(sb);
1083
1084        if (sbi->flag & JFS_NOINTEGRITY)
1085                return open_dummy_log(sb);
1086
1087        if (sbi->mntflag & JFS_INLINELOG)
1088                return open_inline_log(sb);
1089
1090        mutex_lock(&jfs_log_mutex);
1091        list_for_each_entry(log, &jfs_external_logs, journal_list) {
1092                if (log->bdev->bd_dev == sbi->logdev) {
1093                        if (memcmp(log->uuid, sbi->loguuid,
1094                                   sizeof(log->uuid))) {
1095                                jfs_warn("wrong uuid on JFS journal\n");
1096                                mutex_unlock(&jfs_log_mutex);
1097                                return -EINVAL;
1098                        }
1099                        /*
1100                         * add file system to log active file system list
1101                         */
1102                        if ((rc = lmLogFileSystem(log, sbi, 1))) {
1103                                mutex_unlock(&jfs_log_mutex);
1104                                return rc;
1105                        }
1106                        goto journal_found;
1107                }
1108        }
1109
1110        if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
1111                mutex_unlock(&jfs_log_mutex);
1112                return -ENOMEM;
1113        }
1114        INIT_LIST_HEAD(&log->sb_list);
1115        init_waitqueue_head(&log->syncwait);
1116
1117        /*
1118         *      external log as separate logical volume
1119         *
1120         * file systems to log may have n-to-1 relationship;
1121         */
1122
1123        bdev = blkdev_get_by_dev(sbi->logdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1124                                 log);
1125        if (IS_ERR(bdev)) {
1126                rc = -PTR_ERR(bdev);
1127                goto free;
1128        }
1129
1130        log->bdev = bdev;
1131        memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
1132
1133        /*
1134         * initialize log:
1135         */
1136        if ((rc = lmLogInit(log)))
1137                goto close;
1138
1139        list_add(&log->journal_list, &jfs_external_logs);
1140
1141        /*
1142         * add file system to log active file system list
1143         */
1144        if ((rc = lmLogFileSystem(log, sbi, 1)))
1145                goto shutdown;
1146
1147journal_found:
1148        LOG_LOCK(log);
1149        list_add(&sbi->log_list, &log->sb_list);
1150        sbi->log = log;
1151        LOG_UNLOCK(log);
1152
1153        mutex_unlock(&jfs_log_mutex);
1154        return 0;
1155
1156        /*
1157         *      unwind on error
1158         */
1159      shutdown:         /* unwind lbmLogInit() */
1160        list_del(&log->journal_list);
1161        lbmLogShutdown(log);
1162
1163      close:            /* close external log device */
1164        blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1165
1166      free:             /* free log descriptor */
1167        mutex_unlock(&jfs_log_mutex);
1168        kfree(log);
1169
1170        jfs_warn("lmLogOpen: exit(%d)", rc);
1171        return rc;
1172}
1173
1174static int open_inline_log(struct super_block *sb)
1175{
1176        struct jfs_log *log;
1177        int rc;
1178
1179        if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1180                return -ENOMEM;
1181        INIT_LIST_HEAD(&log->sb_list);
1182        init_waitqueue_head(&log->syncwait);
1183
1184        set_bit(log_INLINELOG, &log->flag);
1185        log->bdev = sb->s_bdev;
1186        log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1187        log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1188            (L2LOGPSIZE - sb->s_blocksize_bits);
1189        log->l2bsize = sb->s_blocksize_bits;
1190        ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1191
1192        /*
1193         * initialize log.
1194         */
1195        if ((rc = lmLogInit(log))) {
1196                kfree(log);
1197                jfs_warn("lmLogOpen: exit(%d)", rc);
1198                return rc;
1199        }
1200
1201        list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1202        JFS_SBI(sb)->log = log;
1203
1204        return rc;
1205}
1206
1207static int open_dummy_log(struct super_block *sb)
1208{
1209        int rc;
1210
1211        mutex_lock(&jfs_log_mutex);
1212        if (!dummy_log) {
1213                dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1214                if (!dummy_log) {
1215                        mutex_unlock(&jfs_log_mutex);
1216                        return -ENOMEM;
1217                }
1218                INIT_LIST_HEAD(&dummy_log->sb_list);
1219                init_waitqueue_head(&dummy_log->syncwait);
1220                dummy_log->no_integrity = 1;
1221                /* Make up some stuff */
1222                dummy_log->base = 0;
1223                dummy_log->size = 1024;
1224                rc = lmLogInit(dummy_log);
1225                if (rc) {
1226                        kfree(dummy_log);
1227                        dummy_log = NULL;
1228                        mutex_unlock(&jfs_log_mutex);
1229                        return rc;
1230                }
1231        }
1232
1233        LOG_LOCK(dummy_log);
1234        list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1235        JFS_SBI(sb)->log = dummy_log;
1236        LOG_UNLOCK(dummy_log);
1237        mutex_unlock(&jfs_log_mutex);
1238
1239        return 0;
1240}
1241
1242/*
1243 * NAME:        lmLogInit()
1244 *
1245 * FUNCTION:    log initialization at first log open.
1246 *
1247 *      logredo() (or logformat()) should have been run previously.
1248 *      initialize the log from log superblock.
1249 *      set the log state in the superblock to LOGMOUNT and
1250 *      write SYNCPT log record.
1251 *
1252 * PARAMETER:   log     - log structure
1253 *
1254 * RETURN:      0       - if ok
1255 *              -EINVAL - bad log magic number or superblock dirty
1256 *              error returned from logwait()
1257 *
1258 * serialization: single first open thread
1259 */
1260int lmLogInit(struct jfs_log * log)
1261{
1262        int rc = 0;
1263        struct lrd lrd;
1264        struct logsuper *logsuper;
1265        struct lbuf *bpsuper;
1266        struct lbuf *bp;
1267        struct logpage *lp;
1268        int lsn = 0;
1269
1270        jfs_info("lmLogInit: log:0x%p", log);
1271
1272        /* initialize the group commit serialization lock */
1273        LOGGC_LOCK_INIT(log);
1274
1275        /* allocate/initialize the log write serialization lock */
1276        LOG_LOCK_INIT(log);
1277
1278        LOGSYNC_LOCK_INIT(log);
1279
1280        INIT_LIST_HEAD(&log->synclist);
1281
1282        INIT_LIST_HEAD(&log->cqueue);
1283        log->flush_tblk = NULL;
1284
1285        log->count = 0;
1286
1287        /*
1288         * initialize log i/o
1289         */
1290        if ((rc = lbmLogInit(log)))
1291                return rc;
1292
1293        if (!test_bit(log_INLINELOG, &log->flag))
1294                log->l2bsize = L2LOGPSIZE;
1295
1296        /* check for disabled journaling to disk */
1297        if (log->no_integrity) {
1298                /*
1299                 * Journal pages will still be filled.  When the time comes
1300                 * to actually do the I/O, the write is not done, and the
1301                 * endio routine is called directly.
1302                 */
1303                bp = lbmAllocate(log , 0);
1304                log->bp = bp;
1305                bp->l_pn = bp->l_eor = 0;
1306        } else {
1307                /*
1308                 * validate log superblock
1309                 */
1310                if ((rc = lbmRead(log, 1, &bpsuper)))
1311                        goto errout10;
1312
1313                logsuper = (struct logsuper *) bpsuper->l_ldata;
1314
1315                if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1316                        jfs_warn("*** Log Format Error ! ***");
1317                        rc = -EINVAL;
1318                        goto errout20;
1319                }
1320
1321                /* logredo() should have been run successfully. */
1322                if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1323                        jfs_warn("*** Log Is Dirty ! ***");
1324                        rc = -EINVAL;
1325                        goto errout20;
1326                }
1327
1328                /* initialize log from log superblock */
1329                if (test_bit(log_INLINELOG,&log->flag)) {
1330                        if (log->size != le32_to_cpu(logsuper->size)) {
1331                                rc = -EINVAL;
1332                                goto errout20;
1333                        }
1334                        jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1335                                 "size:0x%x", log,
1336                                 (unsigned long long) log->base, log->size);
1337                } else {
1338                        if (memcmp(logsuper->uuid, log->uuid, 16)) {
1339                                jfs_warn("wrong uuid on JFS log device");
1340                                goto errout20;
1341                        }
1342                        log->size = le32_to_cpu(logsuper->size);
1343                        log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1344                        jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1345                                 "size:0x%x", log,
1346                                 (unsigned long long) log->base, log->size);
1347                }
1348
1349                log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1350                log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1351
1352                /*
1353                 * initialize for log append write mode
1354                 */
1355                /* establish current/end-of-log page/buffer */
1356                if ((rc = lbmRead(log, log->page, &bp)))
1357                        goto errout20;
1358
1359                lp = (struct logpage *) bp->l_ldata;
1360
1361                jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1362                         le32_to_cpu(logsuper->end), log->page, log->eor,
1363                         le16_to_cpu(lp->h.eor));
1364
1365                log->bp = bp;
1366                bp->l_pn = log->page;
1367                bp->l_eor = log->eor;
1368
1369                /* if current page is full, move on to next page */
1370                if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1371                        lmNextPage(log);
1372
1373                /*
1374                 * initialize log syncpoint
1375                 */
1376                /*
1377                 * write the first SYNCPT record with syncpoint = 0
1378                 * (i.e., log redo up to HERE !);
1379                 * remove current page from lbm write queue at end of pageout
1380                 * (to write log superblock update), but do not release to
1381                 * freelist;
1382                 */
1383                lrd.logtid = 0;
1384                lrd.backchain = 0;
1385                lrd.type = cpu_to_le16(LOG_SYNCPT);
1386                lrd.length = 0;
1387                lrd.log.syncpt.sync = 0;
1388                lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1389                bp = log->bp;
1390                bp->l_ceor = bp->l_eor;
1391                lp = (struct logpage *) bp->l_ldata;
1392                lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1393                lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1394                if ((rc = lbmIOWait(bp, 0)))
1395                        goto errout30;
1396
1397                /*
1398                 * update/write superblock
1399                 */
1400                logsuper->state = cpu_to_le32(LOGMOUNT);
1401                log->serial = le32_to_cpu(logsuper->serial) + 1;
1402                logsuper->serial = cpu_to_le32(log->serial);
1403                lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1404                if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1405                        goto errout30;
1406        }
1407
1408        /* initialize logsync parameters */
1409        log->logsize = (log->size - 2) << L2LOGPSIZE;
1410        log->lsn = lsn;
1411        log->syncpt = lsn;
1412        log->sync = log->syncpt;
1413        log->nextsync = LOGSYNC_DELTA(log->logsize);
1414
1415        jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1416                 log->lsn, log->syncpt, log->sync);
1417
1418        /*
1419         * initialize for lazy/group commit
1420         */
1421        log->clsn = lsn;
1422
1423        return 0;
1424
1425        /*
1426         *      unwind on error
1427         */
1428      errout30:         /* release log page */
1429        log->wqueue = NULL;
1430        bp->l_wqnext = NULL;
1431        lbmFree(bp);
1432
1433      errout20:         /* release log superblock */
1434        lbmFree(bpsuper);
1435
1436      errout10:         /* unwind lbmLogInit() */
1437        lbmLogShutdown(log);
1438
1439        jfs_warn("lmLogInit: exit(%d)", rc);
1440        return rc;
1441}
1442
1443
1444/*
1445 * NAME:        lmLogClose()
1446 *
1447 * FUNCTION:    remove file system <ipmnt> from active list of log <iplog>
1448 *              and close it on last close.
1449 *
1450 * PARAMETER:   sb      - superblock
1451 *
1452 * RETURN:      errors from subroutines
1453 *
1454 * serialization:
1455 */
1456int lmLogClose(struct super_block *sb)
1457{
1458        struct jfs_sb_info *sbi = JFS_SBI(sb);
1459        struct jfs_log *log = sbi->log;
1460        struct block_device *bdev;
1461        int rc = 0;
1462
1463        jfs_info("lmLogClose: log:0x%p", log);
1464
1465        mutex_lock(&jfs_log_mutex);
1466        LOG_LOCK(log);
1467        list_del(&sbi->log_list);
1468        LOG_UNLOCK(log);
1469        sbi->log = NULL;
1470
1471        /*
1472         * We need to make sure all of the "written" metapages
1473         * actually make it to disk
1474         */
1475        sync_blockdev(sb->s_bdev);
1476
1477        if (test_bit(log_INLINELOG, &log->flag)) {
1478                /*
1479                 *      in-line log in host file system
1480                 */
1481                rc = lmLogShutdown(log);
1482                kfree(log);
1483                goto out;
1484        }
1485
1486        if (!log->no_integrity)
1487                lmLogFileSystem(log, sbi, 0);
1488
1489        if (!list_empty(&log->sb_list))
1490                goto out;
1491
1492        /*
1493         * TODO: ensure that the dummy_log is in a state to allow
1494         * lbmLogShutdown to deallocate all the buffers and call
1495         * kfree against dummy_log.  For now, leave dummy_log & its
1496         * buffers in memory, and resuse if another no-integrity mount
1497         * is requested.
1498         */
1499        if (log->no_integrity)
1500                goto out;
1501
1502        /*
1503         *      external log as separate logical volume
1504         */
1505        list_del(&log->journal_list);
1506        bdev = log->bdev;
1507        rc = lmLogShutdown(log);
1508
1509        blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1510
1511        kfree(log);
1512
1513      out:
1514        mutex_unlock(&jfs_log_mutex);
1515        jfs_info("lmLogClose: exit(%d)", rc);
1516        return rc;
1517}
1518
1519
1520/*
1521 * NAME:        jfs_flush_journal()
1522 *
1523 * FUNCTION:    initiate write of any outstanding transactions to the journal
1524 *              and optionally wait until they are all written to disk
1525 *
1526 *              wait == 0  flush until latest txn is committed, don't wait
1527 *              wait == 1  flush until latest txn is committed, wait
1528 *              wait > 1   flush until all txn's are complete, wait
1529 */
1530void jfs_flush_journal(struct jfs_log *log, int wait)
1531{
1532        int i;
1533        struct tblock *target = NULL;
1534
1535        /* jfs_write_inode may call us during read-only mount */
1536        if (!log)
1537                return;
1538
1539        jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1540
1541        LOGGC_LOCK(log);
1542
1543        if (!list_empty(&log->cqueue)) {
1544                /*
1545                 * This ensures that we will keep writing to the journal as long
1546                 * as there are unwritten commit records
1547                 */
1548                target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1549
1550                if (test_bit(log_FLUSH, &log->flag)) {
1551                        /*
1552                         * We're already flushing.
1553                         * if flush_tblk is NULL, we are flushing everything,
1554                         * so leave it that way.  Otherwise, update it to the
1555                         * latest transaction
1556                         */
1557                        if (log->flush_tblk)
1558                                log->flush_tblk = target;
1559                } else {
1560                        /* Only flush until latest transaction is committed */
1561                        log->flush_tblk = target;
1562                        set_bit(log_FLUSH, &log->flag);
1563
1564                        /*
1565                         * Initiate I/O on outstanding transactions
1566                         */
1567                        if (!(log->cflag & logGC_PAGEOUT)) {
1568                                log->cflag |= logGC_PAGEOUT;
1569                                lmGCwrite(log, 0);
1570                        }
1571                }
1572        }
1573        if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1574                /* Flush until all activity complete */
1575                set_bit(log_FLUSH, &log->flag);
1576                log->flush_tblk = NULL;
1577        }
1578
1579        if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1580                DECLARE_WAITQUEUE(__wait, current);
1581
1582                add_wait_queue(&target->gcwait, &__wait);
1583                set_current_state(TASK_UNINTERRUPTIBLE);
1584                LOGGC_UNLOCK(log);
1585                schedule();
1586                __set_current_state(TASK_RUNNING);
1587                LOGGC_LOCK(log);
1588                remove_wait_queue(&target->gcwait, &__wait);
1589        }
1590        LOGGC_UNLOCK(log);
1591
1592        if (wait < 2)
1593                return;
1594
1595        write_special_inodes(log, filemap_fdatawrite);
1596
1597        /*
1598         * If there was recent activity, we may need to wait
1599         * for the lazycommit thread to catch up
1600         */
1601        if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
1602                for (i = 0; i < 200; i++) {     /* Too much? */
1603                        msleep(250);
1604                        write_special_inodes(log, filemap_fdatawrite);
1605                        if (list_empty(&log->cqueue) &&
1606                            list_empty(&log->synclist))
1607                                break;
1608                }
1609        }
1610        assert(list_empty(&log->cqueue));
1611
1612#ifdef CONFIG_JFS_DEBUG
1613        if (!list_empty(&log->synclist)) {
1614                struct logsyncblk *lp;
1615
1616                printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
1617                list_for_each_entry(lp, &log->synclist, synclist) {
1618                        if (lp->xflag & COMMIT_PAGE) {
1619                                struct metapage *mp = (struct metapage *)lp;
1620                                print_hex_dump(KERN_ERR, "metapage: ",
1621                                               DUMP_PREFIX_ADDRESS, 16, 4,
1622                                               mp, sizeof(struct metapage), 0);
1623                                print_hex_dump(KERN_ERR, "page: ",
1624                                               DUMP_PREFIX_ADDRESS, 16,
1625                                               sizeof(long), mp->page,
1626                                               sizeof(struct page), 0);
1627                        } else
1628                                print_hex_dump(KERN_ERR, "tblock:",
1629                                               DUMP_PREFIX_ADDRESS, 16, 4,
1630                                               lp, sizeof(struct tblock), 0);
1631                }
1632        }
1633#else
1634        WARN_ON(!list_empty(&log->synclist));
1635#endif
1636        clear_bit(log_FLUSH, &log->flag);
1637}
1638
1639/*
1640 * NAME:        lmLogShutdown()
1641 *
1642 * FUNCTION:    log shutdown at last LogClose().
1643 *
1644 *              write log syncpt record.
1645 *              update super block to set redone flag to 0.
1646 *
1647 * PARAMETER:   log     - log inode
1648 *
1649 * RETURN:      0       - success
1650 *
1651 * serialization: single last close thread
1652 */
1653int lmLogShutdown(struct jfs_log * log)
1654{
1655        int rc;
1656        struct lrd lrd;
1657        int lsn;
1658        struct logsuper *logsuper;
1659        struct lbuf *bpsuper;
1660        struct lbuf *bp;
1661        struct logpage *lp;
1662
1663        jfs_info("lmLogShutdown: log:0x%p", log);
1664
1665        jfs_flush_journal(log, 2);
1666
1667        /*
1668         * write the last SYNCPT record with syncpoint = 0
1669         * (i.e., log redo up to HERE !)
1670         */
1671        lrd.logtid = 0;
1672        lrd.backchain = 0;
1673        lrd.type = cpu_to_le16(LOG_SYNCPT);
1674        lrd.length = 0;
1675        lrd.log.syncpt.sync = 0;
1676
1677        lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1678        bp = log->bp;
1679        lp = (struct logpage *) bp->l_ldata;
1680        lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1681        lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1682        lbmIOWait(log->bp, lbmFREE);
1683        log->bp = NULL;
1684
1685        /*
1686         * synchronous update log superblock
1687         * mark log state as shutdown cleanly
1688         * (i.e., Log does not need to be replayed).
1689         */
1690        if ((rc = lbmRead(log, 1, &bpsuper)))
1691                goto out;
1692
1693        logsuper = (struct logsuper *) bpsuper->l_ldata;
1694        logsuper->state = cpu_to_le32(LOGREDONE);
1695        logsuper->end = cpu_to_le32(lsn);
1696        lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1697        rc = lbmIOWait(bpsuper, lbmFREE);
1698
1699        jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1700                 lsn, log->page, log->eor);
1701
1702      out:
1703        /*
1704         * shutdown per log i/o
1705         */
1706        lbmLogShutdown(log);
1707
1708        if (rc) {
1709                jfs_warn("lmLogShutdown: exit(%d)", rc);
1710        }
1711        return rc;
1712}
1713
1714
1715/*
1716 * NAME:        lmLogFileSystem()
1717 *
1718 * FUNCTION:    insert (<activate> = true)/remove (<activate> = false)
1719 *      file system into/from log active file system list.
1720 *
1721 * PARAMETE:    log     - pointer to logs inode.
1722 *              fsdev   - kdev_t of filesystem.
1723 *              serial  - pointer to returned log serial number
1724 *              activate - insert/remove device from active list.
1725 *
1726 * RETURN:      0       - success
1727 *              errors returned by vms_iowait().
1728 */
1729static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1730                           int activate)
1731{
1732        int rc = 0;
1733        int i;
1734        struct logsuper *logsuper;
1735        struct lbuf *bpsuper;
1736        char *uuid = sbi->uuid;
1737
1738        /*
1739         * insert/remove file system device to log active file system list.
1740         */
1741        if ((rc = lbmRead(log, 1, &bpsuper)))
1742                return rc;
1743
1744        logsuper = (struct logsuper *) bpsuper->l_ldata;
1745        if (activate) {
1746                for (i = 0; i < MAX_ACTIVE; i++)
1747                        if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1748                                memcpy(logsuper->active[i].uuid, uuid, 16);
1749                                sbi->aggregate = i;
1750                                break;
1751                        }
1752                if (i == MAX_ACTIVE) {
1753                        jfs_warn("Too many file systems sharing journal!");
1754                        lbmFree(bpsuper);
1755                        return -EMFILE; /* Is there a better rc? */
1756                }
1757        } else {
1758                for (i = 0; i < MAX_ACTIVE; i++)
1759                        if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1760                                memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1761                                break;
1762                        }
1763                if (i == MAX_ACTIVE) {
1764                        jfs_warn("Somebody stomped on the journal!");
1765                        lbmFree(bpsuper);
1766                        return -EIO;
1767                }
1768
1769        }
1770
1771        /*
1772         * synchronous write log superblock:
1773         *
1774         * write sidestream bypassing write queue:
1775         * at file system mount, log super block is updated for
1776         * activation of the file system before any log record
1777         * (MOUNT record) of the file system, and at file system
1778         * unmount, all meta data for the file system has been
1779         * flushed before log super block is updated for deactivation
1780         * of the file system.
1781         */
1782        lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1783        rc = lbmIOWait(bpsuper, lbmFREE);
1784
1785        return rc;
1786}
1787
1788/*
1789 *              log buffer manager (lbm)
1790 *              ------------------------
1791 *
1792 * special purpose buffer manager supporting log i/o requirements.
1793 *
1794 * per log write queue:
1795 * log pageout occurs in serial order by fifo write queue and
1796 * restricting to a single i/o in pregress at any one time.
1797 * a circular singly-linked list
1798 * (log->wrqueue points to the tail, and buffers are linked via
1799 * bp->wrqueue field), and
1800 * maintains log page in pageout ot waiting for pageout in serial pageout.
1801 */
1802
1803/*
1804 *      lbmLogInit()
1805 *
1806 * initialize per log I/O setup at lmLogInit()
1807 */
1808static int lbmLogInit(struct jfs_log * log)
1809{                               /* log inode */
1810        int i;
1811        struct lbuf *lbuf;
1812
1813        jfs_info("lbmLogInit: log:0x%p", log);
1814
1815        /* initialize current buffer cursor */
1816        log->bp = NULL;
1817
1818        /* initialize log device write queue */
1819        log->wqueue = NULL;
1820
1821        /*
1822         * Each log has its own buffer pages allocated to it.  These are
1823         * not managed by the page cache.  This ensures that a transaction
1824         * writing to the log does not block trying to allocate a page from
1825         * the page cache (for the log).  This would be bad, since page
1826         * allocation waits on the kswapd thread that may be committing inodes
1827         * which would cause log activity.  Was that clear?  I'm trying to
1828         * avoid deadlock here.
1829         */
1830        init_waitqueue_head(&log->free_wait);
1831
1832        log->lbuf_free = NULL;
1833
1834        for (i = 0; i < LOGPAGES;) {
1835                char *buffer;
1836                uint offset;
1837                struct page *page;
1838
1839                buffer = (char *) get_zeroed_page(GFP_KERNEL);
1840                if (buffer == NULL)
1841                        goto error;
1842                page = virt_to_page(buffer);
1843                for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1844                        lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1845                        if (lbuf == NULL) {
1846                                if (offset == 0)
1847                                        free_page((unsigned long) buffer);
1848                                goto error;
1849                        }
1850                        if (offset) /* we already have one reference */
1851                                get_page(page);
1852                        lbuf->l_offset = offset;
1853                        lbuf->l_ldata = buffer + offset;
1854                        lbuf->l_page = page;
1855                        lbuf->l_log = log;
1856                        init_waitqueue_head(&lbuf->l_ioevent);
1857
1858                        lbuf->l_freelist = log->lbuf_free;
1859                        log->lbuf_free = lbuf;
1860                        i++;
1861                }
1862        }
1863
1864        return (0);
1865
1866      error:
1867        lbmLogShutdown(log);
1868        return -ENOMEM;
1869}
1870
1871
1872/*
1873 *      lbmLogShutdown()
1874 *
1875 * finalize per log I/O setup at lmLogShutdown()
1876 */
1877static void lbmLogShutdown(struct jfs_log * log)
1878{
1879        struct lbuf *lbuf;
1880
1881        jfs_info("lbmLogShutdown: log:0x%p", log);
1882
1883        lbuf = log->lbuf_free;
1884        while (lbuf) {
1885                struct lbuf *next = lbuf->l_freelist;
1886                __free_page(lbuf->l_page);
1887                kfree(lbuf);
1888                lbuf = next;
1889        }
1890}
1891
1892
1893/*
1894 *      lbmAllocate()
1895 *
1896 * allocate an empty log buffer
1897 */
1898static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1899{
1900        struct lbuf *bp;
1901        unsigned long flags;
1902
1903        /*
1904         * recycle from log buffer freelist if any
1905         */
1906        LCACHE_LOCK(flags);
1907        LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1908        log->lbuf_free = bp->l_freelist;
1909        LCACHE_UNLOCK(flags);
1910
1911        bp->l_flag = 0;
1912
1913        bp->l_wqnext = NULL;
1914        bp->l_freelist = NULL;
1915
1916        bp->l_pn = pn;
1917        bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1918        bp->l_ceor = 0;
1919
1920        return bp;
1921}
1922
1923
1924/*
1925 *      lbmFree()
1926 *
1927 * release a log buffer to freelist
1928 */
1929static void lbmFree(struct lbuf * bp)
1930{
1931        unsigned long flags;
1932
1933        LCACHE_LOCK(flags);
1934
1935        lbmfree(bp);
1936
1937        LCACHE_UNLOCK(flags);
1938}
1939
1940static void lbmfree(struct lbuf * bp)
1941{
1942        struct jfs_log *log = bp->l_log;
1943
1944        assert(bp->l_wqnext == NULL);
1945
1946        /*
1947         * return the buffer to head of freelist
1948         */
1949        bp->l_freelist = log->lbuf_free;
1950        log->lbuf_free = bp;
1951
1952        wake_up(&log->free_wait);
1953        return;
1954}
1955
1956
1957/*
1958 * NAME:        lbmRedrive
1959 *
1960 * FUNCTION:    add a log buffer to the log redrive list
1961 *
1962 * PARAMETER:
1963 *      bp      - log buffer
1964 *
1965 * NOTES:
1966 *      Takes log_redrive_lock.
1967 */
1968static inline void lbmRedrive(struct lbuf *bp)
1969{
1970        unsigned long flags;
1971
1972        spin_lock_irqsave(&log_redrive_lock, flags);
1973        bp->l_redrive_next = log_redrive_list;
1974        log_redrive_list = bp;
1975        spin_unlock_irqrestore(&log_redrive_lock, flags);
1976
1977        wake_up_process(jfsIOthread);
1978}
1979
1980
1981/*
1982 *      lbmRead()
1983 */
1984static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1985{
1986        struct bio *bio;
1987        struct lbuf *bp;
1988
1989        /*
1990         * allocate a log buffer
1991         */
1992        *bpp = bp = lbmAllocate(log, pn);
1993        jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
1994
1995        bp->l_flag |= lbmREAD;
1996
1997        bio = bio_alloc(GFP_NOFS, 1);
1998
1999        bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2000        bio->bi_bdev = log->bdev;
2001        bio->bi_io_vec[0].bv_page = bp->l_page;
2002        bio->bi_io_vec[0].bv_len = LOGPSIZE;
2003        bio->bi_io_vec[0].bv_offset = bp->l_offset;
2004
2005        bio->bi_vcnt = 1;
2006        bio->bi_idx = 0;
2007        bio->bi_size = LOGPSIZE;
2008
2009        bio->bi_end_io = lbmIODone;
2010        bio->bi_private = bp;
2011        submit_bio(READ_SYNC, bio);
2012
2013        wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2014
2015        return 0;
2016}
2017
2018
2019/*
2020 *      lbmWrite()
2021 *
2022 * buffer at head of pageout queue stays after completion of
2023 * partial-page pageout and redriven by explicit initiation of
2024 * pageout by caller until full-page pageout is completed and
2025 * released.
2026 *
2027 * device driver i/o done redrives pageout of new buffer at
2028 * head of pageout queue when current buffer at head of pageout
2029 * queue is released at the completion of its full-page pageout.
2030 *
2031 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2032 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2033 */
2034static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2035                     int cant_block)
2036{
2037        struct lbuf *tail;
2038        unsigned long flags;
2039
2040        jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2041
2042        /* map the logical block address to physical block address */
2043        bp->l_blkno =
2044            log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2045
2046        LCACHE_LOCK(flags);             /* disable+lock */
2047
2048        /*
2049         * initialize buffer for device driver
2050         */
2051        bp->l_flag = flag;
2052
2053        /*
2054         *      insert bp at tail of write queue associated with log
2055         *
2056         * (request is either for bp already/currently at head of queue
2057         * or new bp to be inserted at tail)
2058         */
2059        tail = log->wqueue;
2060
2061        /* is buffer not already on write queue ? */
2062        if (bp->l_wqnext == NULL) {
2063                /* insert at tail of wqueue */
2064                if (tail == NULL) {
2065                        log->wqueue = bp;
2066                        bp->l_wqnext = bp;
2067                } else {
2068                        log->wqueue = bp;
2069                        bp->l_wqnext = tail->l_wqnext;
2070                        tail->l_wqnext = bp;
2071                }
2072
2073                tail = bp;
2074        }
2075
2076        /* is buffer at head of wqueue and for write ? */
2077        if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2078                LCACHE_UNLOCK(flags);   /* unlock+enable */
2079                return;
2080        }
2081
2082        LCACHE_UNLOCK(flags);   /* unlock+enable */
2083
2084        if (cant_block)
2085                lbmRedrive(bp);
2086        else if (flag & lbmSYNC)
2087                lbmStartIO(bp);
2088        else {
2089                LOGGC_UNLOCK(log);
2090                lbmStartIO(bp);
2091                LOGGC_LOCK(log);
2092        }
2093}
2094
2095
2096/*
2097 *      lbmDirectWrite()
2098 *
2099 * initiate pageout bypassing write queue for sidestream
2100 * (e.g., log superblock) write;
2101 */
2102static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2103{
2104        jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2105                 bp, flag, bp->l_pn);
2106
2107        /*
2108         * initialize buffer for device driver
2109         */
2110        bp->l_flag = flag | lbmDIRECT;
2111
2112        /* map the logical block address to physical block address */
2113        bp->l_blkno =
2114            log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2115
2116        /*
2117         *      initiate pageout of the page
2118         */
2119        lbmStartIO(bp);
2120}
2121
2122
2123/*
2124 * NAME:        lbmStartIO()
2125 *
2126 * FUNCTION:    Interface to DD strategy routine
2127 *
2128 * RETURN:      none
2129 *
2130 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2131 */
2132static void lbmStartIO(struct lbuf * bp)
2133{
2134        struct bio *bio;
2135        struct jfs_log *log = bp->l_log;
2136
2137        jfs_info("lbmStartIO\n");
2138
2139        bio = bio_alloc(GFP_NOFS, 1);
2140        bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2141        bio->bi_bdev = log->bdev;
2142        bio->bi_io_vec[0].bv_page = bp->l_page;
2143        bio->bi_io_vec[0].bv_len = LOGPSIZE;
2144        bio->bi_io_vec[0].bv_offset = bp->l_offset;
2145
2146        bio->bi_vcnt = 1;
2147        bio->bi_idx = 0;
2148        bio->bi_size = LOGPSIZE;
2149
2150        bio->bi_end_io = lbmIODone;
2151        bio->bi_private = bp;
2152
2153        /* check if journaling to disk has been disabled */
2154        if (log->no_integrity) {
2155                bio->bi_size = 0;
2156                lbmIODone(bio, 0);
2157        } else {
2158                submit_bio(WRITE_SYNC, bio);
2159                INCREMENT(lmStat.submitted);
2160        }
2161}
2162
2163
2164/*
2165 *      lbmIOWait()
2166 */
2167static int lbmIOWait(struct lbuf * bp, int flag)
2168{
2169        unsigned long flags;
2170        int rc = 0;
2171
2172        jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2173
2174        LCACHE_LOCK(flags);             /* disable+lock */
2175
2176        LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2177
2178        rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2179
2180        if (flag & lbmFREE)
2181                lbmfree(bp);
2182
2183        LCACHE_UNLOCK(flags);   /* unlock+enable */
2184
2185        jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2186        return rc;
2187}
2188
2189/*
2190 *      lbmIODone()
2191 *
2192 * executed at INTIODONE level
2193 */
2194static void lbmIODone(struct bio *bio, int error)
2195{
2196        struct lbuf *bp = bio->bi_private;
2197        struct lbuf *nextbp, *tail;
2198        struct jfs_log *log;
2199        unsigned long flags;
2200
2201        /*
2202         * get back jfs buffer bound to the i/o buffer
2203         */
2204        jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2205
2206        LCACHE_LOCK(flags);             /* disable+lock */
2207
2208        bp->l_flag |= lbmDONE;
2209
2210        if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2211                bp->l_flag |= lbmERROR;
2212
2213                jfs_err("lbmIODone: I/O error in JFS log");
2214        }
2215
2216        bio_put(bio);
2217
2218        /*
2219         *      pagein completion
2220         */
2221        if (bp->l_flag & lbmREAD) {
2222                bp->l_flag &= ~lbmREAD;
2223
2224                LCACHE_UNLOCK(flags);   /* unlock+enable */
2225
2226                /* wakeup I/O initiator */
2227                LCACHE_WAKEUP(&bp->l_ioevent);
2228
2229                return;
2230        }
2231
2232        /*
2233         *      pageout completion
2234         *
2235         * the bp at the head of write queue has completed pageout.
2236         *
2237         * if single-commit/full-page pageout, remove the current buffer
2238         * from head of pageout queue, and redrive pageout with
2239         * the new buffer at head of pageout queue;
2240         * otherwise, the partial-page pageout buffer stays at
2241         * the head of pageout queue to be redriven for pageout
2242         * by lmGroupCommit() until full-page pageout is completed.
2243         */
2244        bp->l_flag &= ~lbmWRITE;
2245        INCREMENT(lmStat.pagedone);
2246
2247        /* update committed lsn */
2248        log = bp->l_log;
2249        log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2250
2251        if (bp->l_flag & lbmDIRECT) {
2252                LCACHE_WAKEUP(&bp->l_ioevent);
2253                LCACHE_UNLOCK(flags);
2254                return;
2255        }
2256
2257        tail = log->wqueue;
2258
2259        /* single element queue */
2260        if (bp == tail) {
2261                /* remove head buffer of full-page pageout
2262                 * from log device write queue
2263                 */
2264                if (bp->l_flag & lbmRELEASE) {
2265                        log->wqueue = NULL;
2266                        bp->l_wqnext = NULL;
2267                }
2268        }
2269        /* multi element queue */
2270        else {
2271                /* remove head buffer of full-page pageout
2272                 * from log device write queue
2273                 */
2274                if (bp->l_flag & lbmRELEASE) {
2275                        nextbp = tail->l_wqnext = bp->l_wqnext;
2276                        bp->l_wqnext = NULL;
2277
2278                        /*
2279                         * redrive pageout of next page at head of write queue:
2280                         * redrive next page without any bound tblk
2281                         * (i.e., page w/o any COMMIT records), or
2282                         * first page of new group commit which has been
2283                         * queued after current page (subsequent pageout
2284                         * is performed synchronously, except page without
2285                         * any COMMITs) by lmGroupCommit() as indicated
2286                         * by lbmWRITE flag;
2287                         */
2288                        if (nextbp->l_flag & lbmWRITE) {
2289                                /*
2290                                 * We can't do the I/O at interrupt time.
2291                                 * The jfsIO thread can do it
2292                                 */
2293                                lbmRedrive(nextbp);
2294                        }
2295                }
2296        }
2297
2298        /*
2299         *      synchronous pageout:
2300         *
2301         * buffer has not necessarily been removed from write queue
2302         * (e.g., synchronous write of partial-page with COMMIT):
2303         * leave buffer for i/o initiator to dispose
2304         */
2305        if (bp->l_flag & lbmSYNC) {
2306                LCACHE_UNLOCK(flags);   /* unlock+enable */
2307
2308                /* wakeup I/O initiator */
2309                LCACHE_WAKEUP(&bp->l_ioevent);
2310        }
2311
2312        /*
2313         *      Group Commit pageout:
2314         */
2315        else if (bp->l_flag & lbmGC) {
2316                LCACHE_UNLOCK(flags);
2317                lmPostGC(bp);
2318        }
2319
2320        /*
2321         *      asynchronous pageout:
2322         *
2323         * buffer must have been removed from write queue:
2324         * insert buffer at head of freelist where it can be recycled
2325         */
2326        else {
2327                assert(bp->l_flag & lbmRELEASE);
2328                assert(bp->l_flag & lbmFREE);
2329                lbmfree(bp);
2330
2331                LCACHE_UNLOCK(flags);   /* unlock+enable */
2332        }
2333}
2334
2335int jfsIOWait(void *arg)
2336{
2337        struct lbuf *bp;
2338
2339        do {
2340                spin_lock_irq(&log_redrive_lock);
2341                while ((bp = log_redrive_list)) {
2342                        log_redrive_list = bp->l_redrive_next;
2343                        bp->l_redrive_next = NULL;
2344                        spin_unlock_irq(&log_redrive_lock);
2345                        lbmStartIO(bp);
2346                        spin_lock_irq(&log_redrive_lock);
2347                }
2348
2349                if (freezing(current)) {
2350                        spin_unlock_irq(&log_redrive_lock);
2351                        refrigerator();
2352                } else {
2353                        set_current_state(TASK_INTERRUPTIBLE);
2354                        spin_unlock_irq(&log_redrive_lock);
2355                        schedule();
2356                        __set_current_state(TASK_RUNNING);
2357                }
2358        } while (!kthread_should_stop());
2359
2360        jfs_info("jfsIOWait being killed!");
2361        return 0;
2362}
2363
2364/*
2365 * NAME:        lmLogFormat()/jfs_logform()
2366 *
2367 * FUNCTION:    format file system log
2368 *
2369 * PARAMETERS:
2370 *      log     - volume log
2371 *      logAddress - start address of log space in FS block
2372 *      logSize - length of log space in FS block;
2373 *
2374 * RETURN:      0       - success
2375 *              -EIO    - i/o error
2376 *
2377 * XXX: We're synchronously writing one page at a time.  This needs to
2378 *      be improved by writing multiple pages at once.
2379 */
2380int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2381{
2382        int rc = -EIO;
2383        struct jfs_sb_info *sbi;
2384        struct logsuper *logsuper;
2385        struct logpage *lp;
2386        int lspn;               /* log sequence page number */
2387        struct lrd *lrd_ptr;
2388        int npages = 0;
2389        struct lbuf *bp;
2390
2391        jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2392                 (long long)logAddress, logSize);
2393
2394        sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2395
2396        /* allocate a log buffer */
2397        bp = lbmAllocate(log, 1);
2398
2399        npages = logSize >> sbi->l2nbperpage;
2400
2401        /*
2402         *      log space:
2403         *
2404         * page 0 - reserved;
2405         * page 1 - log superblock;
2406         * page 2 - log data page: A SYNC log record is written
2407         *          into this page at logform time;
2408         * pages 3-N - log data page: set to empty log data pages;
2409         */
2410        /*
2411         *      init log superblock: log page 1
2412         */
2413        logsuper = (struct logsuper *) bp->l_ldata;
2414
2415        logsuper->magic = cpu_to_le32(LOGMAGIC);
2416        logsuper->version = cpu_to_le32(LOGVERSION);
2417        logsuper->state = cpu_to_le32(LOGREDONE);
2418        logsuper->flag = cpu_to_le32(sbi->mntflag);     /* ? */
2419        logsuper->size = cpu_to_le32(npages);
2420        logsuper->bsize = cpu_to_le32(sbi->bsize);
2421        logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2422        logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2423
2424        bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2425        bp->l_blkno = logAddress + sbi->nbperpage;
2426        lbmStartIO(bp);
2427        if ((rc = lbmIOWait(bp, 0)))
2428                goto exit;
2429
2430        /*
2431         *      init pages 2 to npages-1 as log data pages:
2432         *
2433         * log page sequence number (lpsn) initialization:
2434         *
2435         * pn:   0     1     2     3                 n-1
2436         *       +-----+-----+=====+=====+===.....===+=====+
2437         * lspn:             N-1   0     1           N-2
2438         *                   <--- N page circular file ---->
2439         *
2440         * the N (= npages-2) data pages of the log is maintained as
2441         * a circular file for the log records;
2442         * lpsn grows by 1 monotonically as each log page is written
2443         * to the circular file of the log;
2444         * and setLogpage() will not reset the page number even if
2445         * the eor is equal to LOGPHDRSIZE. In order for binary search
2446         * still work in find log end process, we have to simulate the
2447         * log wrap situation at the log format time.
2448         * The 1st log page written will have the highest lpsn. Then
2449         * the succeeding log pages will have ascending order of
2450         * the lspn starting from 0, ... (N-2)
2451         */
2452        lp = (struct logpage *) bp->l_ldata;
2453        /*
2454         * initialize 1st log page to be written: lpsn = N - 1,
2455         * write a SYNCPT log record is written to this page
2456         */
2457        lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2458        lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2459
2460        lrd_ptr = (struct lrd *) &lp->data;
2461        lrd_ptr->logtid = 0;
2462        lrd_ptr->backchain = 0;
2463        lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2464        lrd_ptr->length = 0;
2465        lrd_ptr->log.syncpt.sync = 0;
2466
2467        bp->l_blkno += sbi->nbperpage;
2468        bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2469        lbmStartIO(bp);
2470        if ((rc = lbmIOWait(bp, 0)))
2471                goto exit;
2472
2473        /*
2474         *      initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
2475         */
2476        for (lspn = 0; lspn < npages - 3; lspn++) {
2477                lp->h.page = lp->t.page = cpu_to_le32(lspn);
2478                lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2479
2480                bp->l_blkno += sbi->nbperpage;
2481                bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2482                lbmStartIO(bp);
2483                if ((rc = lbmIOWait(bp, 0)))
2484                        goto exit;
2485        }
2486
2487        rc = 0;
2488exit:
2489        /*
2490         *      finalize log
2491         */
2492        /* release the buffer */
2493        lbmFree(bp);
2494
2495        return rc;
2496}
2497
2498#ifdef CONFIG_JFS_STATISTICS
2499static int jfs_lmstats_proc_show(struct seq_file *m, void *v)
2500{
2501        seq_printf(m,
2502                       "JFS Logmgr stats\n"
2503                       "================\n"
2504                       "commits = %d\n"
2505                       "writes submitted = %d\n"
2506                       "writes completed = %d\n"
2507                       "full pages submitted = %d\n"
2508                       "partial pages submitted = %d\n",
2509                       lmStat.commit,
2510                       lmStat.submitted,
2511                       lmStat.pagedone,
2512                       lmStat.full_page,
2513                       lmStat.partial_page);
2514        return 0;
2515}
2516
2517static int jfs_lmstats_proc_open(struct inode *inode, struct file *file)
2518{
2519        return single_open(file, jfs_lmstats_proc_show, NULL);
2520}
2521
2522const struct file_operations jfs_lmstats_proc_fops = {
2523        .owner          = THIS_MODULE,
2524        .open           = jfs_lmstats_proc_open,
2525        .read           = seq_read,
2526        .llseek         = seq_lseek,
2527        .release        = single_release,
2528};
2529#endif /* CONFIG_JFS_STATISTICS */
2530