linux/fs/libfs.c
<<
>>
Prefs
   1/*
   2 *      fs/libfs.c
   3 *      Library for filesystems writers.
   4 */
   5
   6#include <linux/module.h>
   7#include <linux/pagemap.h>
   8#include <linux/slab.h>
   9#include <linux/mount.h>
  10#include <linux/vfs.h>
  11#include <linux/quotaops.h>
  12#include <linux/mutex.h>
  13#include <linux/exportfs.h>
  14#include <linux/writeback.h>
  15#include <linux/buffer_head.h>
  16
  17#include <asm/uaccess.h>
  18
  19static inline int simple_positive(struct dentry *dentry)
  20{
  21        return dentry->d_inode && !d_unhashed(dentry);
  22}
  23
  24int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  25                   struct kstat *stat)
  26{
  27        struct inode *inode = dentry->d_inode;
  28        generic_fillattr(inode, stat);
  29        stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
  30        return 0;
  31}
  32
  33int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  34{
  35        buf->f_type = dentry->d_sb->s_magic;
  36        buf->f_bsize = PAGE_CACHE_SIZE;
  37        buf->f_namelen = NAME_MAX;
  38        return 0;
  39}
  40
  41/*
  42 * Retaining negative dentries for an in-memory filesystem just wastes
  43 * memory and lookup time: arrange for them to be deleted immediately.
  44 */
  45static int simple_delete_dentry(const struct dentry *dentry)
  46{
  47        return 1;
  48}
  49
  50/*
  51 * Lookup the data. This is trivial - if the dentry didn't already
  52 * exist, we know it is negative.  Set d_op to delete negative dentries.
  53 */
  54struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
  55{
  56        static const struct dentry_operations simple_dentry_operations = {
  57                .d_delete = simple_delete_dentry,
  58        };
  59
  60        if (dentry->d_name.len > NAME_MAX)
  61                return ERR_PTR(-ENAMETOOLONG);
  62        d_set_d_op(dentry, &simple_dentry_operations);
  63        d_add(dentry, NULL);
  64        return NULL;
  65}
  66
  67int dcache_dir_open(struct inode *inode, struct file *file)
  68{
  69        static struct qstr cursor_name = {.len = 1, .name = "."};
  70
  71        file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  72
  73        return file->private_data ? 0 : -ENOMEM;
  74}
  75
  76int dcache_dir_close(struct inode *inode, struct file *file)
  77{
  78        dput(file->private_data);
  79        return 0;
  80}
  81
  82loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
  83{
  84        struct dentry *dentry = file->f_path.dentry;
  85        mutex_lock(&dentry->d_inode->i_mutex);
  86        switch (origin) {
  87                case 1:
  88                        offset += file->f_pos;
  89                case 0:
  90                        if (offset >= 0)
  91                                break;
  92                default:
  93                        mutex_unlock(&dentry->d_inode->i_mutex);
  94                        return -EINVAL;
  95        }
  96        if (offset != file->f_pos) {
  97                file->f_pos = offset;
  98                if (file->f_pos >= 2) {
  99                        struct list_head *p;
 100                        struct dentry *cursor = file->private_data;
 101                        loff_t n = file->f_pos - 2;
 102
 103                        spin_lock(&dentry->d_lock);
 104                        /* d_lock not required for cursor */
 105                        list_del(&cursor->d_u.d_child);
 106                        p = dentry->d_subdirs.next;
 107                        while (n && p != &dentry->d_subdirs) {
 108                                struct dentry *next;
 109                                next = list_entry(p, struct dentry, d_u.d_child);
 110                                spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 111                                if (simple_positive(next))
 112                                        n--;
 113                                spin_unlock(&next->d_lock);
 114                                p = p->next;
 115                        }
 116                        list_add_tail(&cursor->d_u.d_child, p);
 117                        spin_unlock(&dentry->d_lock);
 118                }
 119        }
 120        mutex_unlock(&dentry->d_inode->i_mutex);
 121        return offset;
 122}
 123
 124/* Relationship between i_mode and the DT_xxx types */
 125static inline unsigned char dt_type(struct inode *inode)
 126{
 127        return (inode->i_mode >> 12) & 15;
 128}
 129
 130/*
 131 * Directory is locked and all positive dentries in it are safe, since
 132 * for ramfs-type trees they can't go away without unlink() or rmdir(),
 133 * both impossible due to the lock on directory.
 134 */
 135
 136int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
 137{
 138        struct dentry *dentry = filp->f_path.dentry;
 139        struct dentry *cursor = filp->private_data;
 140        struct list_head *p, *q = &cursor->d_u.d_child;
 141        ino_t ino;
 142        int i = filp->f_pos;
 143
 144        switch (i) {
 145                case 0:
 146                        ino = dentry->d_inode->i_ino;
 147                        if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
 148                                break;
 149                        filp->f_pos++;
 150                        i++;
 151                        /* fallthrough */
 152                case 1:
 153                        ino = parent_ino(dentry);
 154                        if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
 155                                break;
 156                        filp->f_pos++;
 157                        i++;
 158                        /* fallthrough */
 159                default:
 160                        spin_lock(&dentry->d_lock);
 161                        if (filp->f_pos == 2)
 162                                list_move(q, &dentry->d_subdirs);
 163
 164                        for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
 165                                struct dentry *next;
 166                                next = list_entry(p, struct dentry, d_u.d_child);
 167                                spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 168                                if (!simple_positive(next)) {
 169                                        spin_unlock(&next->d_lock);
 170                                        continue;
 171                                }
 172
 173                                spin_unlock(&next->d_lock);
 174                                spin_unlock(&dentry->d_lock);
 175                                if (filldir(dirent, next->d_name.name, 
 176                                            next->d_name.len, filp->f_pos, 
 177                                            next->d_inode->i_ino, 
 178                                            dt_type(next->d_inode)) < 0)
 179                                        return 0;
 180                                spin_lock(&dentry->d_lock);
 181                                spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
 182                                /* next is still alive */
 183                                list_move(q, p);
 184                                spin_unlock(&next->d_lock);
 185                                p = q;
 186                                filp->f_pos++;
 187                        }
 188                        spin_unlock(&dentry->d_lock);
 189        }
 190        return 0;
 191}
 192
 193ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
 194{
 195        return -EISDIR;
 196}
 197
 198const struct file_operations simple_dir_operations = {
 199        .open           = dcache_dir_open,
 200        .release        = dcache_dir_close,
 201        .llseek         = dcache_dir_lseek,
 202        .read           = generic_read_dir,
 203        .readdir        = dcache_readdir,
 204        .fsync          = noop_fsync,
 205};
 206
 207const struct inode_operations simple_dir_inode_operations = {
 208        .lookup         = simple_lookup,
 209};
 210
 211static const struct super_operations simple_super_operations = {
 212        .statfs         = simple_statfs,
 213};
 214
 215/*
 216 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
 217 * will never be mountable)
 218 */
 219struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
 220        const struct super_operations *ops,
 221        const struct dentry_operations *dops, unsigned long magic)
 222{
 223        struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
 224        struct dentry *dentry;
 225        struct inode *root;
 226        struct qstr d_name = {.name = name, .len = strlen(name)};
 227
 228        if (IS_ERR(s))
 229                return ERR_CAST(s);
 230
 231        s->s_flags = MS_NOUSER;
 232        s->s_maxbytes = MAX_LFS_FILESIZE;
 233        s->s_blocksize = PAGE_SIZE;
 234        s->s_blocksize_bits = PAGE_SHIFT;
 235        s->s_magic = magic;
 236        s->s_op = ops ? ops : &simple_super_operations;
 237        s->s_time_gran = 1;
 238        root = new_inode(s);
 239        if (!root)
 240                goto Enomem;
 241        /*
 242         * since this is the first inode, make it number 1. New inodes created
 243         * after this must take care not to collide with it (by passing
 244         * max_reserved of 1 to iunique).
 245         */
 246        root->i_ino = 1;
 247        root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
 248        root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
 249        dentry = d_alloc(NULL, &d_name);
 250        if (!dentry) {
 251                iput(root);
 252                goto Enomem;
 253        }
 254        dentry->d_sb = s;
 255        dentry->d_parent = dentry;
 256        d_instantiate(dentry, root);
 257        s->s_root = dentry;
 258        s->s_d_op = dops;
 259        s->s_flags |= MS_ACTIVE;
 260        return dget(s->s_root);
 261
 262Enomem:
 263        deactivate_locked_super(s);
 264        return ERR_PTR(-ENOMEM);
 265}
 266
 267int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
 268{
 269        struct inode *inode = old_dentry->d_inode;
 270
 271        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 272        inc_nlink(inode);
 273        ihold(inode);
 274        dget(dentry);
 275        d_instantiate(dentry, inode);
 276        return 0;
 277}
 278
 279int simple_empty(struct dentry *dentry)
 280{
 281        struct dentry *child;
 282        int ret = 0;
 283
 284        spin_lock(&dentry->d_lock);
 285        list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
 286                spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
 287                if (simple_positive(child)) {
 288                        spin_unlock(&child->d_lock);
 289                        goto out;
 290                }
 291                spin_unlock(&child->d_lock);
 292        }
 293        ret = 1;
 294out:
 295        spin_unlock(&dentry->d_lock);
 296        return ret;
 297}
 298
 299int simple_unlink(struct inode *dir, struct dentry *dentry)
 300{
 301        struct inode *inode = dentry->d_inode;
 302
 303        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
 304        drop_nlink(inode);
 305        dput(dentry);
 306        return 0;
 307}
 308
 309int simple_rmdir(struct inode *dir, struct dentry *dentry)
 310{
 311        if (!simple_empty(dentry))
 312                return -ENOTEMPTY;
 313
 314        drop_nlink(dentry->d_inode);
 315        simple_unlink(dir, dentry);
 316        drop_nlink(dir);
 317        return 0;
 318}
 319
 320int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
 321                struct inode *new_dir, struct dentry *new_dentry)
 322{
 323        struct inode *inode = old_dentry->d_inode;
 324        int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
 325
 326        if (!simple_empty(new_dentry))
 327                return -ENOTEMPTY;
 328
 329        if (new_dentry->d_inode) {
 330                simple_unlink(new_dir, new_dentry);
 331                if (they_are_dirs)
 332                        drop_nlink(old_dir);
 333        } else if (they_are_dirs) {
 334                drop_nlink(old_dir);
 335                inc_nlink(new_dir);
 336        }
 337
 338        old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
 339                new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
 340
 341        return 0;
 342}
 343
 344/**
 345 * simple_setattr - setattr for simple filesystem
 346 * @dentry: dentry
 347 * @iattr: iattr structure
 348 *
 349 * Returns 0 on success, -error on failure.
 350 *
 351 * simple_setattr is a simple ->setattr implementation without a proper
 352 * implementation of size changes.
 353 *
 354 * It can either be used for in-memory filesystems or special files
 355 * on simple regular filesystems.  Anything that needs to change on-disk
 356 * or wire state on size changes needs its own setattr method.
 357 */
 358int simple_setattr(struct dentry *dentry, struct iattr *iattr)
 359{
 360        struct inode *inode = dentry->d_inode;
 361        int error;
 362
 363        WARN_ON_ONCE(inode->i_op->truncate);
 364
 365        error = inode_change_ok(inode, iattr);
 366        if (error)
 367                return error;
 368
 369        if (iattr->ia_valid & ATTR_SIZE)
 370                truncate_setsize(inode, iattr->ia_size);
 371        setattr_copy(inode, iattr);
 372        mark_inode_dirty(inode);
 373        return 0;
 374}
 375EXPORT_SYMBOL(simple_setattr);
 376
 377int simple_readpage(struct file *file, struct page *page)
 378{
 379        clear_highpage(page);
 380        flush_dcache_page(page);
 381        SetPageUptodate(page);
 382        unlock_page(page);
 383        return 0;
 384}
 385
 386int simple_write_begin(struct file *file, struct address_space *mapping,
 387                        loff_t pos, unsigned len, unsigned flags,
 388                        struct page **pagep, void **fsdata)
 389{
 390        struct page *page;
 391        pgoff_t index;
 392
 393        index = pos >> PAGE_CACHE_SHIFT;
 394
 395        page = grab_cache_page_write_begin(mapping, index, flags);
 396        if (!page)
 397                return -ENOMEM;
 398
 399        *pagep = page;
 400
 401        if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
 402                unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 403
 404                zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
 405        }
 406        return 0;
 407}
 408
 409/**
 410 * simple_write_end - .write_end helper for non-block-device FSes
 411 * @available: See .write_end of address_space_operations
 412 * @file:               "
 413 * @mapping:            "
 414 * @pos:                "
 415 * @len:                "
 416 * @copied:             "
 417 * @page:               "
 418 * @fsdata:             "
 419 *
 420 * simple_write_end does the minimum needed for updating a page after writing is
 421 * done. It has the same API signature as the .write_end of
 422 * address_space_operations vector. So it can just be set onto .write_end for
 423 * FSes that don't need any other processing. i_mutex is assumed to be held.
 424 * Block based filesystems should use generic_write_end().
 425 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
 426 * is not called, so a filesystem that actually does store data in .write_inode
 427 * should extend on what's done here with a call to mark_inode_dirty() in the
 428 * case that i_size has changed.
 429 */
 430int simple_write_end(struct file *file, struct address_space *mapping,
 431                        loff_t pos, unsigned len, unsigned copied,
 432                        struct page *page, void *fsdata)
 433{
 434        struct inode *inode = page->mapping->host;
 435        loff_t last_pos = pos + copied;
 436
 437        /* zero the stale part of the page if we did a short copy */
 438        if (copied < len) {
 439                unsigned from = pos & (PAGE_CACHE_SIZE - 1);
 440
 441                zero_user(page, from + copied, len - copied);
 442        }
 443
 444        if (!PageUptodate(page))
 445                SetPageUptodate(page);
 446        /*
 447         * No need to use i_size_read() here, the i_size
 448         * cannot change under us because we hold the i_mutex.
 449         */
 450        if (last_pos > inode->i_size)
 451                i_size_write(inode, last_pos);
 452
 453        set_page_dirty(page);
 454        unlock_page(page);
 455        page_cache_release(page);
 456
 457        return copied;
 458}
 459
 460/*
 461 * the inodes created here are not hashed. If you use iunique to generate
 462 * unique inode values later for this filesystem, then you must take care
 463 * to pass it an appropriate max_reserved value to avoid collisions.
 464 */
 465int simple_fill_super(struct super_block *s, unsigned long magic,
 466                      struct tree_descr *files)
 467{
 468        struct inode *inode;
 469        struct dentry *root;
 470        struct dentry *dentry;
 471        int i;
 472
 473        s->s_blocksize = PAGE_CACHE_SIZE;
 474        s->s_blocksize_bits = PAGE_CACHE_SHIFT;
 475        s->s_magic = magic;
 476        s->s_op = &simple_super_operations;
 477        s->s_time_gran = 1;
 478
 479        inode = new_inode(s);
 480        if (!inode)
 481                return -ENOMEM;
 482        /*
 483         * because the root inode is 1, the files array must not contain an
 484         * entry at index 1
 485         */
 486        inode->i_ino = 1;
 487        inode->i_mode = S_IFDIR | 0755;
 488        inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 489        inode->i_op = &simple_dir_inode_operations;
 490        inode->i_fop = &simple_dir_operations;
 491        inode->i_nlink = 2;
 492        root = d_alloc_root(inode);
 493        if (!root) {
 494                iput(inode);
 495                return -ENOMEM;
 496        }
 497        for (i = 0; !files->name || files->name[0]; i++, files++) {
 498                if (!files->name)
 499                        continue;
 500
 501                /* warn if it tries to conflict with the root inode */
 502                if (unlikely(i == 1))
 503                        printk(KERN_WARNING "%s: %s passed in a files array"
 504                                "with an index of 1!\n", __func__,
 505                                s->s_type->name);
 506
 507                dentry = d_alloc_name(root, files->name);
 508                if (!dentry)
 509                        goto out;
 510                inode = new_inode(s);
 511                if (!inode)
 512                        goto out;
 513                inode->i_mode = S_IFREG | files->mode;
 514                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 515                inode->i_fop = files->ops;
 516                inode->i_ino = i;
 517                d_add(dentry, inode);
 518        }
 519        s->s_root = root;
 520        return 0;
 521out:
 522        d_genocide(root);
 523        dput(root);
 524        return -ENOMEM;
 525}
 526
 527static DEFINE_SPINLOCK(pin_fs_lock);
 528
 529int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
 530{
 531        struct vfsmount *mnt = NULL;
 532        spin_lock(&pin_fs_lock);
 533        if (unlikely(!*mount)) {
 534                spin_unlock(&pin_fs_lock);
 535                mnt = vfs_kern_mount(type, 0, type->name, NULL);
 536                if (IS_ERR(mnt))
 537                        return PTR_ERR(mnt);
 538                spin_lock(&pin_fs_lock);
 539                if (!*mount)
 540                        *mount = mnt;
 541        }
 542        mntget(*mount);
 543        ++*count;
 544        spin_unlock(&pin_fs_lock);
 545        mntput(mnt);
 546        return 0;
 547}
 548
 549void simple_release_fs(struct vfsmount **mount, int *count)
 550{
 551        struct vfsmount *mnt;
 552        spin_lock(&pin_fs_lock);
 553        mnt = *mount;
 554        if (!--*count)
 555                *mount = NULL;
 556        spin_unlock(&pin_fs_lock);
 557        mntput(mnt);
 558}
 559
 560/**
 561 * simple_read_from_buffer - copy data from the buffer to user space
 562 * @to: the user space buffer to read to
 563 * @count: the maximum number of bytes to read
 564 * @ppos: the current position in the buffer
 565 * @from: the buffer to read from
 566 * @available: the size of the buffer
 567 *
 568 * The simple_read_from_buffer() function reads up to @count bytes from the
 569 * buffer @from at offset @ppos into the user space address starting at @to.
 570 *
 571 * On success, the number of bytes read is returned and the offset @ppos is
 572 * advanced by this number, or negative value is returned on error.
 573 **/
 574ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
 575                                const void *from, size_t available)
 576{
 577        loff_t pos = *ppos;
 578        size_t ret;
 579
 580        if (pos < 0)
 581                return -EINVAL;
 582        if (pos >= available || !count)
 583                return 0;
 584        if (count > available - pos)
 585                count = available - pos;
 586        ret = copy_to_user(to, from + pos, count);
 587        if (ret == count)
 588                return -EFAULT;
 589        count -= ret;
 590        *ppos = pos + count;
 591        return count;
 592}
 593
 594/**
 595 * simple_write_to_buffer - copy data from user space to the buffer
 596 * @to: the buffer to write to
 597 * @available: the size of the buffer
 598 * @ppos: the current position in the buffer
 599 * @from: the user space buffer to read from
 600 * @count: the maximum number of bytes to read
 601 *
 602 * The simple_write_to_buffer() function reads up to @count bytes from the user
 603 * space address starting at @from into the buffer @to at offset @ppos.
 604 *
 605 * On success, the number of bytes written is returned and the offset @ppos is
 606 * advanced by this number, or negative value is returned on error.
 607 **/
 608ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
 609                const void __user *from, size_t count)
 610{
 611        loff_t pos = *ppos;
 612        size_t res;
 613
 614        if (pos < 0)
 615                return -EINVAL;
 616        if (pos >= available || !count)
 617                return 0;
 618        if (count > available - pos)
 619                count = available - pos;
 620        res = copy_from_user(to + pos, from, count);
 621        if (res == count)
 622                return -EFAULT;
 623        count -= res;
 624        *ppos = pos + count;
 625        return count;
 626}
 627
 628/**
 629 * memory_read_from_buffer - copy data from the buffer
 630 * @to: the kernel space buffer to read to
 631 * @count: the maximum number of bytes to read
 632 * @ppos: the current position in the buffer
 633 * @from: the buffer to read from
 634 * @available: the size of the buffer
 635 *
 636 * The memory_read_from_buffer() function reads up to @count bytes from the
 637 * buffer @from at offset @ppos into the kernel space address starting at @to.
 638 *
 639 * On success, the number of bytes read is returned and the offset @ppos is
 640 * advanced by this number, or negative value is returned on error.
 641 **/
 642ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
 643                                const void *from, size_t available)
 644{
 645        loff_t pos = *ppos;
 646
 647        if (pos < 0)
 648                return -EINVAL;
 649        if (pos >= available)
 650                return 0;
 651        if (count > available - pos)
 652                count = available - pos;
 653        memcpy(to, from + pos, count);
 654        *ppos = pos + count;
 655
 656        return count;
 657}
 658
 659/*
 660 * Transaction based IO.
 661 * The file expects a single write which triggers the transaction, and then
 662 * possibly a read which collects the result - which is stored in a
 663 * file-local buffer.
 664 */
 665
 666void simple_transaction_set(struct file *file, size_t n)
 667{
 668        struct simple_transaction_argresp *ar = file->private_data;
 669
 670        BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
 671
 672        /*
 673         * The barrier ensures that ar->size will really remain zero until
 674         * ar->data is ready for reading.
 675         */
 676        smp_mb();
 677        ar->size = n;
 678}
 679
 680char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
 681{
 682        struct simple_transaction_argresp *ar;
 683        static DEFINE_SPINLOCK(simple_transaction_lock);
 684
 685        if (size > SIMPLE_TRANSACTION_LIMIT - 1)
 686                return ERR_PTR(-EFBIG);
 687
 688        ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
 689        if (!ar)
 690                return ERR_PTR(-ENOMEM);
 691
 692        spin_lock(&simple_transaction_lock);
 693
 694        /* only one write allowed per open */
 695        if (file->private_data) {
 696                spin_unlock(&simple_transaction_lock);
 697                free_page((unsigned long)ar);
 698                return ERR_PTR(-EBUSY);
 699        }
 700
 701        file->private_data = ar;
 702
 703        spin_unlock(&simple_transaction_lock);
 704
 705        if (copy_from_user(ar->data, buf, size))
 706                return ERR_PTR(-EFAULT);
 707
 708        return ar->data;
 709}
 710
 711ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
 712{
 713        struct simple_transaction_argresp *ar = file->private_data;
 714
 715        if (!ar)
 716                return 0;
 717        return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
 718}
 719
 720int simple_transaction_release(struct inode *inode, struct file *file)
 721{
 722        free_page((unsigned long)file->private_data);
 723        return 0;
 724}
 725
 726/* Simple attribute files */
 727
 728struct simple_attr {
 729        int (*get)(void *, u64 *);
 730        int (*set)(void *, u64);
 731        char get_buf[24];       /* enough to store a u64 and "\n\0" */
 732        char set_buf[24];
 733        void *data;
 734        const char *fmt;        /* format for read operation */
 735        struct mutex mutex;     /* protects access to these buffers */
 736};
 737
 738/* simple_attr_open is called by an actual attribute open file operation
 739 * to set the attribute specific access operations. */
 740int simple_attr_open(struct inode *inode, struct file *file,
 741                     int (*get)(void *, u64 *), int (*set)(void *, u64),
 742                     const char *fmt)
 743{
 744        struct simple_attr *attr;
 745
 746        attr = kmalloc(sizeof(*attr), GFP_KERNEL);
 747        if (!attr)
 748                return -ENOMEM;
 749
 750        attr->get = get;
 751        attr->set = set;
 752        attr->data = inode->i_private;
 753        attr->fmt = fmt;
 754        mutex_init(&attr->mutex);
 755
 756        file->private_data = attr;
 757
 758        return nonseekable_open(inode, file);
 759}
 760
 761int simple_attr_release(struct inode *inode, struct file *file)
 762{
 763        kfree(file->private_data);
 764        return 0;
 765}
 766
 767/* read from the buffer that is filled with the get function */
 768ssize_t simple_attr_read(struct file *file, char __user *buf,
 769                         size_t len, loff_t *ppos)
 770{
 771        struct simple_attr *attr;
 772        size_t size;
 773        ssize_t ret;
 774
 775        attr = file->private_data;
 776
 777        if (!attr->get)
 778                return -EACCES;
 779
 780        ret = mutex_lock_interruptible(&attr->mutex);
 781        if (ret)
 782                return ret;
 783
 784        if (*ppos) {            /* continued read */
 785                size = strlen(attr->get_buf);
 786        } else {                /* first read */
 787                u64 val;
 788                ret = attr->get(attr->data, &val);
 789                if (ret)
 790                        goto out;
 791
 792                size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
 793                                 attr->fmt, (unsigned long long)val);
 794        }
 795
 796        ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
 797out:
 798        mutex_unlock(&attr->mutex);
 799        return ret;
 800}
 801
 802/* interpret the buffer as a number to call the set function with */
 803ssize_t simple_attr_write(struct file *file, const char __user *buf,
 804                          size_t len, loff_t *ppos)
 805{
 806        struct simple_attr *attr;
 807        u64 val;
 808        size_t size;
 809        ssize_t ret;
 810
 811        attr = file->private_data;
 812        if (!attr->set)
 813                return -EACCES;
 814
 815        ret = mutex_lock_interruptible(&attr->mutex);
 816        if (ret)
 817                return ret;
 818
 819        ret = -EFAULT;
 820        size = min(sizeof(attr->set_buf) - 1, len);
 821        if (copy_from_user(attr->set_buf, buf, size))
 822                goto out;
 823
 824        attr->set_buf[size] = '\0';
 825        val = simple_strtol(attr->set_buf, NULL, 0);
 826        ret = attr->set(attr->data, val);
 827        if (ret == 0)
 828                ret = len; /* on success, claim we got the whole input */
 829out:
 830        mutex_unlock(&attr->mutex);
 831        return ret;
 832}
 833
 834/**
 835 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
 836 * @sb:         filesystem to do the file handle conversion on
 837 * @fid:        file handle to convert
 838 * @fh_len:     length of the file handle in bytes
 839 * @fh_type:    type of file handle
 840 * @get_inode:  filesystem callback to retrieve inode
 841 *
 842 * This function decodes @fid as long as it has one of the well-known
 843 * Linux filehandle types and calls @get_inode on it to retrieve the
 844 * inode for the object specified in the file handle.
 845 */
 846struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
 847                int fh_len, int fh_type, struct inode *(*get_inode)
 848                        (struct super_block *sb, u64 ino, u32 gen))
 849{
 850        struct inode *inode = NULL;
 851
 852        if (fh_len < 2)
 853                return NULL;
 854
 855        switch (fh_type) {
 856        case FILEID_INO32_GEN:
 857        case FILEID_INO32_GEN_PARENT:
 858                inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
 859                break;
 860        }
 861
 862        return d_obtain_alias(inode);
 863}
 864EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
 865
 866/**
 867 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
 868 * @sb:         filesystem to do the file handle conversion on
 869 * @fid:        file handle to convert
 870 * @fh_len:     length of the file handle in bytes
 871 * @fh_type:    type of file handle
 872 * @get_inode:  filesystem callback to retrieve inode
 873 *
 874 * This function decodes @fid as long as it has one of the well-known
 875 * Linux filehandle types and calls @get_inode on it to retrieve the
 876 * inode for the _parent_ object specified in the file handle if it
 877 * is specified in the file handle, or NULL otherwise.
 878 */
 879struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
 880                int fh_len, int fh_type, struct inode *(*get_inode)
 881                        (struct super_block *sb, u64 ino, u32 gen))
 882{
 883        struct inode *inode = NULL;
 884
 885        if (fh_len <= 2)
 886                return NULL;
 887
 888        switch (fh_type) {
 889        case FILEID_INO32_GEN_PARENT:
 890                inode = get_inode(sb, fid->i32.parent_ino,
 891                                  (fh_len > 3 ? fid->i32.parent_gen : 0));
 892                break;
 893        }
 894
 895        return d_obtain_alias(inode);
 896}
 897EXPORT_SYMBOL_GPL(generic_fh_to_parent);
 898
 899/**
 900 * generic_file_fsync - generic fsync implementation for simple filesystems
 901 * @file:       file to synchronize
 902 * @datasync:   only synchronize essential metadata if true
 903 *
 904 * This is a generic implementation of the fsync method for simple
 905 * filesystems which track all non-inode metadata in the buffers list
 906 * hanging off the address_space structure.
 907 */
 908int generic_file_fsync(struct file *file, int datasync)
 909{
 910        struct inode *inode = file->f_mapping->host;
 911        int err;
 912        int ret;
 913
 914        ret = sync_mapping_buffers(inode->i_mapping);
 915        if (!(inode->i_state & I_DIRTY))
 916                return ret;
 917        if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 918                return ret;
 919
 920        err = sync_inode_metadata(inode, 1);
 921        if (ret == 0)
 922                ret = err;
 923        return ret;
 924}
 925EXPORT_SYMBOL(generic_file_fsync);
 926
 927/**
 928 * generic_check_addressable - Check addressability of file system
 929 * @blocksize_bits:     log of file system block size
 930 * @num_blocks:         number of blocks in file system
 931 *
 932 * Determine whether a file system with @num_blocks blocks (and a
 933 * block size of 2**@blocksize_bits) is addressable by the sector_t
 934 * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
 935 */
 936int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
 937{
 938        u64 last_fs_block = num_blocks - 1;
 939        u64 last_fs_page =
 940                last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
 941
 942        if (unlikely(num_blocks == 0))
 943                return 0;
 944
 945        if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
 946                return -EINVAL;
 947
 948        if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
 949            (last_fs_page > (pgoff_t)(~0ULL))) {
 950                return -EFBIG;
 951        }
 952        return 0;
 953}
 954EXPORT_SYMBOL(generic_check_addressable);
 955
 956/*
 957 * No-op implementation of ->fsync for in-memory filesystems.
 958 */
 959int noop_fsync(struct file *file, int datasync)
 960{
 961        return 0;
 962}
 963
 964EXPORT_SYMBOL(dcache_dir_close);
 965EXPORT_SYMBOL(dcache_dir_lseek);
 966EXPORT_SYMBOL(dcache_dir_open);
 967EXPORT_SYMBOL(dcache_readdir);
 968EXPORT_SYMBOL(generic_read_dir);
 969EXPORT_SYMBOL(mount_pseudo);
 970EXPORT_SYMBOL(simple_write_begin);
 971EXPORT_SYMBOL(simple_write_end);
 972EXPORT_SYMBOL(simple_dir_inode_operations);
 973EXPORT_SYMBOL(simple_dir_operations);
 974EXPORT_SYMBOL(simple_empty);
 975EXPORT_SYMBOL(simple_fill_super);
 976EXPORT_SYMBOL(simple_getattr);
 977EXPORT_SYMBOL(simple_link);
 978EXPORT_SYMBOL(simple_lookup);
 979EXPORT_SYMBOL(simple_pin_fs);
 980EXPORT_SYMBOL(simple_readpage);
 981EXPORT_SYMBOL(simple_release_fs);
 982EXPORT_SYMBOL(simple_rename);
 983EXPORT_SYMBOL(simple_rmdir);
 984EXPORT_SYMBOL(simple_statfs);
 985EXPORT_SYMBOL(noop_fsync);
 986EXPORT_SYMBOL(simple_unlink);
 987EXPORT_SYMBOL(simple_read_from_buffer);
 988EXPORT_SYMBOL(simple_write_to_buffer);
 989EXPORT_SYMBOL(memory_read_from_buffer);
 990EXPORT_SYMBOL(simple_transaction_set);
 991EXPORT_SYMBOL(simple_transaction_get);
 992EXPORT_SYMBOL(simple_transaction_read);
 993EXPORT_SYMBOL(simple_transaction_release);
 994EXPORT_SYMBOL_GPL(simple_attr_open);
 995EXPORT_SYMBOL_GPL(simple_attr_release);
 996EXPORT_SYMBOL_GPL(simple_attr_read);
 997EXPORT_SYMBOL_GPL(simple_attr_write);
 998