linux/fs/namespace.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/namespace.c
   3 *
   4 * (C) Copyright Al Viro 2000, 2001
   5 *      Released under GPL v2.
   6 *
   7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
   8 * Heavily rewritten.
   9 */
  10
  11#include <linux/syscalls.h>
  12#include <linux/slab.h>
  13#include <linux/sched.h>
  14#include <linux/spinlock.h>
  15#include <linux/percpu.h>
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/acct.h>
  19#include <linux/capability.h>
  20#include <linux/cpumask.h>
  21#include <linux/module.h>
  22#include <linux/sysfs.h>
  23#include <linux/seq_file.h>
  24#include <linux/mnt_namespace.h>
  25#include <linux/namei.h>
  26#include <linux/nsproxy.h>
  27#include <linux/security.h>
  28#include <linux/mount.h>
  29#include <linux/ramfs.h>
  30#include <linux/log2.h>
  31#include <linux/idr.h>
  32#include <linux/fs_struct.h>
  33#include <linux/fsnotify.h>
  34#include <asm/uaccess.h>
  35#include <asm/unistd.h>
  36#include "pnode.h"
  37#include "internal.h"
  38
  39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  40#define HASH_SIZE (1UL << HASH_SHIFT)
  41
  42static int event;
  43static DEFINE_IDA(mnt_id_ida);
  44static DEFINE_IDA(mnt_group_ida);
  45static DEFINE_SPINLOCK(mnt_id_lock);
  46static int mnt_id_start = 0;
  47static int mnt_group_start = 1;
  48
  49static struct list_head *mount_hashtable __read_mostly;
  50static struct kmem_cache *mnt_cache __read_mostly;
  51static struct rw_semaphore namespace_sem;
  52
  53/* /sys/fs */
  54struct kobject *fs_kobj;
  55EXPORT_SYMBOL_GPL(fs_kobj);
  56
  57/*
  58 * vfsmount lock may be taken for read to prevent changes to the
  59 * vfsmount hash, ie. during mountpoint lookups or walking back
  60 * up the tree.
  61 *
  62 * It should be taken for write in all cases where the vfsmount
  63 * tree or hash is modified or when a vfsmount structure is modified.
  64 */
  65DEFINE_BRLOCK(vfsmount_lock);
  66
  67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  68{
  69        unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  70        tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  71        tmp = tmp + (tmp >> HASH_SHIFT);
  72        return tmp & (HASH_SIZE - 1);
  73}
  74
  75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  76
  77/*
  78 * allocation is serialized by namespace_sem, but we need the spinlock to
  79 * serialize with freeing.
  80 */
  81static int mnt_alloc_id(struct vfsmount *mnt)
  82{
  83        int res;
  84
  85retry:
  86        ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  87        spin_lock(&mnt_id_lock);
  88        res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  89        if (!res)
  90                mnt_id_start = mnt->mnt_id + 1;
  91        spin_unlock(&mnt_id_lock);
  92        if (res == -EAGAIN)
  93                goto retry;
  94
  95        return res;
  96}
  97
  98static void mnt_free_id(struct vfsmount *mnt)
  99{
 100        int id = mnt->mnt_id;
 101        spin_lock(&mnt_id_lock);
 102        ida_remove(&mnt_id_ida, id);
 103        if (mnt_id_start > id)
 104                mnt_id_start = id;
 105        spin_unlock(&mnt_id_lock);
 106}
 107
 108/*
 109 * Allocate a new peer group ID
 110 *
 111 * mnt_group_ida is protected by namespace_sem
 112 */
 113static int mnt_alloc_group_id(struct vfsmount *mnt)
 114{
 115        int res;
 116
 117        if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
 118                return -ENOMEM;
 119
 120        res = ida_get_new_above(&mnt_group_ida,
 121                                mnt_group_start,
 122                                &mnt->mnt_group_id);
 123        if (!res)
 124                mnt_group_start = mnt->mnt_group_id + 1;
 125
 126        return res;
 127}
 128
 129/*
 130 * Release a peer group ID
 131 */
 132void mnt_release_group_id(struct vfsmount *mnt)
 133{
 134        int id = mnt->mnt_group_id;
 135        ida_remove(&mnt_group_ida, id);
 136        if (mnt_group_start > id)
 137                mnt_group_start = id;
 138        mnt->mnt_group_id = 0;
 139}
 140
 141/*
 142 * vfsmount lock must be held for read
 143 */
 144static inline void mnt_add_count(struct vfsmount *mnt, int n)
 145{
 146#ifdef CONFIG_SMP
 147        this_cpu_add(mnt->mnt_pcp->mnt_count, n);
 148#else
 149        preempt_disable();
 150        mnt->mnt_count += n;
 151        preempt_enable();
 152#endif
 153}
 154
 155static inline void mnt_set_count(struct vfsmount *mnt, int n)
 156{
 157#ifdef CONFIG_SMP
 158        this_cpu_write(mnt->mnt_pcp->mnt_count, n);
 159#else
 160        mnt->mnt_count = n;
 161#endif
 162}
 163
 164/*
 165 * vfsmount lock must be held for read
 166 */
 167static inline void mnt_inc_count(struct vfsmount *mnt)
 168{
 169        mnt_add_count(mnt, 1);
 170}
 171
 172/*
 173 * vfsmount lock must be held for read
 174 */
 175static inline void mnt_dec_count(struct vfsmount *mnt)
 176{
 177        mnt_add_count(mnt, -1);
 178}
 179
 180/*
 181 * vfsmount lock must be held for write
 182 */
 183unsigned int mnt_get_count(struct vfsmount *mnt)
 184{
 185#ifdef CONFIG_SMP
 186        unsigned int count = 0;
 187        int cpu;
 188
 189        for_each_possible_cpu(cpu) {
 190                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
 191        }
 192
 193        return count;
 194#else
 195        return mnt->mnt_count;
 196#endif
 197}
 198
 199struct vfsmount *alloc_vfsmnt(const char *name)
 200{
 201        struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
 202        if (mnt) {
 203                int err;
 204
 205                err = mnt_alloc_id(mnt);
 206                if (err)
 207                        goto out_free_cache;
 208
 209                if (name) {
 210                        mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
 211                        if (!mnt->mnt_devname)
 212                                goto out_free_id;
 213                }
 214
 215#ifdef CONFIG_SMP
 216                mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
 217                if (!mnt->mnt_pcp)
 218                        goto out_free_devname;
 219
 220                this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
 221#else
 222                mnt->mnt_count = 1;
 223                mnt->mnt_writers = 0;
 224#endif
 225
 226                INIT_LIST_HEAD(&mnt->mnt_hash);
 227                INIT_LIST_HEAD(&mnt->mnt_child);
 228                INIT_LIST_HEAD(&mnt->mnt_mounts);
 229                INIT_LIST_HEAD(&mnt->mnt_list);
 230                INIT_LIST_HEAD(&mnt->mnt_expire);
 231                INIT_LIST_HEAD(&mnt->mnt_share);
 232                INIT_LIST_HEAD(&mnt->mnt_slave_list);
 233                INIT_LIST_HEAD(&mnt->mnt_slave);
 234#ifdef CONFIG_FSNOTIFY
 235                INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
 236#endif
 237        }
 238        return mnt;
 239
 240#ifdef CONFIG_SMP
 241out_free_devname:
 242        kfree(mnt->mnt_devname);
 243#endif
 244out_free_id:
 245        mnt_free_id(mnt);
 246out_free_cache:
 247        kmem_cache_free(mnt_cache, mnt);
 248        return NULL;
 249}
 250
 251/*
 252 * Most r/o checks on a fs are for operations that take
 253 * discrete amounts of time, like a write() or unlink().
 254 * We must keep track of when those operations start
 255 * (for permission checks) and when they end, so that
 256 * we can determine when writes are able to occur to
 257 * a filesystem.
 258 */
 259/*
 260 * __mnt_is_readonly: check whether a mount is read-only
 261 * @mnt: the mount to check for its write status
 262 *
 263 * This shouldn't be used directly ouside of the VFS.
 264 * It does not guarantee that the filesystem will stay
 265 * r/w, just that it is right *now*.  This can not and
 266 * should not be used in place of IS_RDONLY(inode).
 267 * mnt_want/drop_write() will _keep_ the filesystem
 268 * r/w.
 269 */
 270int __mnt_is_readonly(struct vfsmount *mnt)
 271{
 272        if (mnt->mnt_flags & MNT_READONLY)
 273                return 1;
 274        if (mnt->mnt_sb->s_flags & MS_RDONLY)
 275                return 1;
 276        return 0;
 277}
 278EXPORT_SYMBOL_GPL(__mnt_is_readonly);
 279
 280static inline void mnt_inc_writers(struct vfsmount *mnt)
 281{
 282#ifdef CONFIG_SMP
 283        this_cpu_inc(mnt->mnt_pcp->mnt_writers);
 284#else
 285        mnt->mnt_writers++;
 286#endif
 287}
 288
 289static inline void mnt_dec_writers(struct vfsmount *mnt)
 290{
 291#ifdef CONFIG_SMP
 292        this_cpu_dec(mnt->mnt_pcp->mnt_writers);
 293#else
 294        mnt->mnt_writers--;
 295#endif
 296}
 297
 298static unsigned int mnt_get_writers(struct vfsmount *mnt)
 299{
 300#ifdef CONFIG_SMP
 301        unsigned int count = 0;
 302        int cpu;
 303
 304        for_each_possible_cpu(cpu) {
 305                count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
 306        }
 307
 308        return count;
 309#else
 310        return mnt->mnt_writers;
 311#endif
 312}
 313
 314/*
 315 * Most r/o checks on a fs are for operations that take
 316 * discrete amounts of time, like a write() or unlink().
 317 * We must keep track of when those operations start
 318 * (for permission checks) and when they end, so that
 319 * we can determine when writes are able to occur to
 320 * a filesystem.
 321 */
 322/**
 323 * mnt_want_write - get write access to a mount
 324 * @mnt: the mount on which to take a write
 325 *
 326 * This tells the low-level filesystem that a write is
 327 * about to be performed to it, and makes sure that
 328 * writes are allowed before returning success.  When
 329 * the write operation is finished, mnt_drop_write()
 330 * must be called.  This is effectively a refcount.
 331 */
 332int mnt_want_write(struct vfsmount *mnt)
 333{
 334        int ret = 0;
 335
 336        preempt_disable();
 337        mnt_inc_writers(mnt);
 338        /*
 339         * The store to mnt_inc_writers must be visible before we pass
 340         * MNT_WRITE_HOLD loop below, so that the slowpath can see our
 341         * incremented count after it has set MNT_WRITE_HOLD.
 342         */
 343        smp_mb();
 344        while (mnt->mnt_flags & MNT_WRITE_HOLD)
 345                cpu_relax();
 346        /*
 347         * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
 348         * be set to match its requirements. So we must not load that until
 349         * MNT_WRITE_HOLD is cleared.
 350         */
 351        smp_rmb();
 352        if (__mnt_is_readonly(mnt)) {
 353                mnt_dec_writers(mnt);
 354                ret = -EROFS;
 355                goto out;
 356        }
 357out:
 358        preempt_enable();
 359        return ret;
 360}
 361EXPORT_SYMBOL_GPL(mnt_want_write);
 362
 363/**
 364 * mnt_clone_write - get write access to a mount
 365 * @mnt: the mount on which to take a write
 366 *
 367 * This is effectively like mnt_want_write, except
 368 * it must only be used to take an extra write reference
 369 * on a mountpoint that we already know has a write reference
 370 * on it. This allows some optimisation.
 371 *
 372 * After finished, mnt_drop_write must be called as usual to
 373 * drop the reference.
 374 */
 375int mnt_clone_write(struct vfsmount *mnt)
 376{
 377        /* superblock may be r/o */
 378        if (__mnt_is_readonly(mnt))
 379                return -EROFS;
 380        preempt_disable();
 381        mnt_inc_writers(mnt);
 382        preempt_enable();
 383        return 0;
 384}
 385EXPORT_SYMBOL_GPL(mnt_clone_write);
 386
 387/**
 388 * mnt_want_write_file - get write access to a file's mount
 389 * @file: the file who's mount on which to take a write
 390 *
 391 * This is like mnt_want_write, but it takes a file and can
 392 * do some optimisations if the file is open for write already
 393 */
 394int mnt_want_write_file(struct file *file)
 395{
 396        struct inode *inode = file->f_dentry->d_inode;
 397        if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
 398                return mnt_want_write(file->f_path.mnt);
 399        else
 400                return mnt_clone_write(file->f_path.mnt);
 401}
 402EXPORT_SYMBOL_GPL(mnt_want_write_file);
 403
 404/**
 405 * mnt_drop_write - give up write access to a mount
 406 * @mnt: the mount on which to give up write access
 407 *
 408 * Tells the low-level filesystem that we are done
 409 * performing writes to it.  Must be matched with
 410 * mnt_want_write() call above.
 411 */
 412void mnt_drop_write(struct vfsmount *mnt)
 413{
 414        preempt_disable();
 415        mnt_dec_writers(mnt);
 416        preempt_enable();
 417}
 418EXPORT_SYMBOL_GPL(mnt_drop_write);
 419
 420static int mnt_make_readonly(struct vfsmount *mnt)
 421{
 422        int ret = 0;
 423
 424        br_write_lock(vfsmount_lock);
 425        mnt->mnt_flags |= MNT_WRITE_HOLD;
 426        /*
 427         * After storing MNT_WRITE_HOLD, we'll read the counters. This store
 428         * should be visible before we do.
 429         */
 430        smp_mb();
 431
 432        /*
 433         * With writers on hold, if this value is zero, then there are
 434         * definitely no active writers (although held writers may subsequently
 435         * increment the count, they'll have to wait, and decrement it after
 436         * seeing MNT_READONLY).
 437         *
 438         * It is OK to have counter incremented on one CPU and decremented on
 439         * another: the sum will add up correctly. The danger would be when we
 440         * sum up each counter, if we read a counter before it is incremented,
 441         * but then read another CPU's count which it has been subsequently
 442         * decremented from -- we would see more decrements than we should.
 443         * MNT_WRITE_HOLD protects against this scenario, because
 444         * mnt_want_write first increments count, then smp_mb, then spins on
 445         * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
 446         * we're counting up here.
 447         */
 448        if (mnt_get_writers(mnt) > 0)
 449                ret = -EBUSY;
 450        else
 451                mnt->mnt_flags |= MNT_READONLY;
 452        /*
 453         * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
 454         * that become unheld will see MNT_READONLY.
 455         */
 456        smp_wmb();
 457        mnt->mnt_flags &= ~MNT_WRITE_HOLD;
 458        br_write_unlock(vfsmount_lock);
 459        return ret;
 460}
 461
 462static void __mnt_unmake_readonly(struct vfsmount *mnt)
 463{
 464        br_write_lock(vfsmount_lock);
 465        mnt->mnt_flags &= ~MNT_READONLY;
 466        br_write_unlock(vfsmount_lock);
 467}
 468
 469void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
 470{
 471        mnt->mnt_sb = sb;
 472        mnt->mnt_root = dget(sb->s_root);
 473}
 474
 475EXPORT_SYMBOL(simple_set_mnt);
 476
 477void free_vfsmnt(struct vfsmount *mnt)
 478{
 479        kfree(mnt->mnt_devname);
 480        mnt_free_id(mnt);
 481#ifdef CONFIG_SMP
 482        free_percpu(mnt->mnt_pcp);
 483#endif
 484        kmem_cache_free(mnt_cache, mnt);
 485}
 486
 487/*
 488 * find the first or last mount at @dentry on vfsmount @mnt depending on
 489 * @dir. If @dir is set return the first mount else return the last mount.
 490 * vfsmount_lock must be held for read or write.
 491 */
 492struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
 493                              int dir)
 494{
 495        struct list_head *head = mount_hashtable + hash(mnt, dentry);
 496        struct list_head *tmp = head;
 497        struct vfsmount *p, *found = NULL;
 498
 499        for (;;) {
 500                tmp = dir ? tmp->next : tmp->prev;
 501                p = NULL;
 502                if (tmp == head)
 503                        break;
 504                p = list_entry(tmp, struct vfsmount, mnt_hash);
 505                if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
 506                        found = p;
 507                        break;
 508                }
 509        }
 510        return found;
 511}
 512
 513/*
 514 * lookup_mnt increments the ref count before returning
 515 * the vfsmount struct.
 516 */
 517struct vfsmount *lookup_mnt(struct path *path)
 518{
 519        struct vfsmount *child_mnt;
 520
 521        br_read_lock(vfsmount_lock);
 522        if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
 523                mntget(child_mnt);
 524        br_read_unlock(vfsmount_lock);
 525        return child_mnt;
 526}
 527
 528static inline int check_mnt(struct vfsmount *mnt)
 529{
 530        return mnt->mnt_ns == current->nsproxy->mnt_ns;
 531}
 532
 533/*
 534 * vfsmount lock must be held for write
 535 */
 536static void touch_mnt_namespace(struct mnt_namespace *ns)
 537{
 538        if (ns) {
 539                ns->event = ++event;
 540                wake_up_interruptible(&ns->poll);
 541        }
 542}
 543
 544/*
 545 * vfsmount lock must be held for write
 546 */
 547static void __touch_mnt_namespace(struct mnt_namespace *ns)
 548{
 549        if (ns && ns->event != event) {
 550                ns->event = event;
 551                wake_up_interruptible(&ns->poll);
 552        }
 553}
 554
 555/*
 556 * Clear dentry's mounted state if it has no remaining mounts.
 557 * vfsmount_lock must be held for write.
 558 */
 559static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
 560{
 561        unsigned u;
 562
 563        for (u = 0; u < HASH_SIZE; u++) {
 564                struct vfsmount *p;
 565
 566                list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
 567                        if (p->mnt_mountpoint == dentry)
 568                                return;
 569                }
 570        }
 571        spin_lock(&dentry->d_lock);
 572        dentry->d_flags &= ~DCACHE_MOUNTED;
 573        spin_unlock(&dentry->d_lock);
 574}
 575
 576/*
 577 * vfsmount lock must be held for write
 578 */
 579static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
 580{
 581        old_path->dentry = mnt->mnt_mountpoint;
 582        old_path->mnt = mnt->mnt_parent;
 583        mnt->mnt_parent = mnt;
 584        mnt->mnt_mountpoint = mnt->mnt_root;
 585        list_del_init(&mnt->mnt_child);
 586        list_del_init(&mnt->mnt_hash);
 587        dentry_reset_mounted(old_path->mnt, old_path->dentry);
 588}
 589
 590/*
 591 * vfsmount lock must be held for write
 592 */
 593void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
 594                        struct vfsmount *child_mnt)
 595{
 596        child_mnt->mnt_parent = mntget(mnt);
 597        child_mnt->mnt_mountpoint = dget(dentry);
 598        spin_lock(&dentry->d_lock);
 599        dentry->d_flags |= DCACHE_MOUNTED;
 600        spin_unlock(&dentry->d_lock);
 601}
 602
 603/*
 604 * vfsmount lock must be held for write
 605 */
 606static void attach_mnt(struct vfsmount *mnt, struct path *path)
 607{
 608        mnt_set_mountpoint(path->mnt, path->dentry, mnt);
 609        list_add_tail(&mnt->mnt_hash, mount_hashtable +
 610                        hash(path->mnt, path->dentry));
 611        list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
 612}
 613
 614static inline void __mnt_make_longterm(struct vfsmount *mnt)
 615{
 616#ifdef CONFIG_SMP
 617        atomic_inc(&mnt->mnt_longterm);
 618#endif
 619}
 620
 621/* needs vfsmount lock for write */
 622static inline void __mnt_make_shortterm(struct vfsmount *mnt)
 623{
 624#ifdef CONFIG_SMP
 625        atomic_dec(&mnt->mnt_longterm);
 626#endif
 627}
 628
 629/*
 630 * vfsmount lock must be held for write
 631 */
 632static void commit_tree(struct vfsmount *mnt)
 633{
 634        struct vfsmount *parent = mnt->mnt_parent;
 635        struct vfsmount *m;
 636        LIST_HEAD(head);
 637        struct mnt_namespace *n = parent->mnt_ns;
 638
 639        BUG_ON(parent == mnt);
 640
 641        list_add_tail(&head, &mnt->mnt_list);
 642        list_for_each_entry(m, &head, mnt_list) {
 643                m->mnt_ns = n;
 644                __mnt_make_longterm(m);
 645        }
 646
 647        list_splice(&head, n->list.prev);
 648
 649        list_add_tail(&mnt->mnt_hash, mount_hashtable +
 650                                hash(parent, mnt->mnt_mountpoint));
 651        list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
 652        touch_mnt_namespace(n);
 653}
 654
 655static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
 656{
 657        struct list_head *next = p->mnt_mounts.next;
 658        if (next == &p->mnt_mounts) {
 659                while (1) {
 660                        if (p == root)
 661                                return NULL;
 662                        next = p->mnt_child.next;
 663                        if (next != &p->mnt_parent->mnt_mounts)
 664                                break;
 665                        p = p->mnt_parent;
 666                }
 667        }
 668        return list_entry(next, struct vfsmount, mnt_child);
 669}
 670
 671static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
 672{
 673        struct list_head *prev = p->mnt_mounts.prev;
 674        while (prev != &p->mnt_mounts) {
 675                p = list_entry(prev, struct vfsmount, mnt_child);
 676                prev = p->mnt_mounts.prev;
 677        }
 678        return p;
 679}
 680
 681static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
 682                                        int flag)
 683{
 684        struct super_block *sb = old->mnt_sb;
 685        struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
 686
 687        if (mnt) {
 688                if (flag & (CL_SLAVE | CL_PRIVATE))
 689                        mnt->mnt_group_id = 0; /* not a peer of original */
 690                else
 691                        mnt->mnt_group_id = old->mnt_group_id;
 692
 693                if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
 694                        int err = mnt_alloc_group_id(mnt);
 695                        if (err)
 696                                goto out_free;
 697                }
 698
 699                mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
 700                atomic_inc(&sb->s_active);
 701                mnt->mnt_sb = sb;
 702                mnt->mnt_root = dget(root);
 703                mnt->mnt_mountpoint = mnt->mnt_root;
 704                mnt->mnt_parent = mnt;
 705
 706                if (flag & CL_SLAVE) {
 707                        list_add(&mnt->mnt_slave, &old->mnt_slave_list);
 708                        mnt->mnt_master = old;
 709                        CLEAR_MNT_SHARED(mnt);
 710                } else if (!(flag & CL_PRIVATE)) {
 711                        if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
 712                                list_add(&mnt->mnt_share, &old->mnt_share);
 713                        if (IS_MNT_SLAVE(old))
 714                                list_add(&mnt->mnt_slave, &old->mnt_slave);
 715                        mnt->mnt_master = old->mnt_master;
 716                }
 717                if (flag & CL_MAKE_SHARED)
 718                        set_mnt_shared(mnt);
 719
 720                /* stick the duplicate mount on the same expiry list
 721                 * as the original if that was on one */
 722                if (flag & CL_EXPIRE) {
 723                        if (!list_empty(&old->mnt_expire))
 724                                list_add(&mnt->mnt_expire, &old->mnt_expire);
 725                }
 726        }
 727        return mnt;
 728
 729 out_free:
 730        free_vfsmnt(mnt);
 731        return NULL;
 732}
 733
 734static inline void mntfree(struct vfsmount *mnt)
 735{
 736        struct super_block *sb = mnt->mnt_sb;
 737
 738        /*
 739         * This probably indicates that somebody messed
 740         * up a mnt_want/drop_write() pair.  If this
 741         * happens, the filesystem was probably unable
 742         * to make r/w->r/o transitions.
 743         */
 744        /*
 745         * The locking used to deal with mnt_count decrement provides barriers,
 746         * so mnt_get_writers() below is safe.
 747         */
 748        WARN_ON(mnt_get_writers(mnt));
 749        fsnotify_vfsmount_delete(mnt);
 750        dput(mnt->mnt_root);
 751        free_vfsmnt(mnt);
 752        deactivate_super(sb);
 753}
 754
 755static void mntput_no_expire(struct vfsmount *mnt)
 756{
 757put_again:
 758#ifdef CONFIG_SMP
 759        br_read_lock(vfsmount_lock);
 760        if (likely(atomic_read(&mnt->mnt_longterm))) {
 761                mnt_dec_count(mnt);
 762                br_read_unlock(vfsmount_lock);
 763                return;
 764        }
 765        br_read_unlock(vfsmount_lock);
 766
 767        br_write_lock(vfsmount_lock);
 768        mnt_dec_count(mnt);
 769        if (mnt_get_count(mnt)) {
 770                br_write_unlock(vfsmount_lock);
 771                return;
 772        }
 773#else
 774        mnt_dec_count(mnt);
 775        if (likely(mnt_get_count(mnt)))
 776                return;
 777        br_write_lock(vfsmount_lock);
 778#endif
 779        if (unlikely(mnt->mnt_pinned)) {
 780                mnt_add_count(mnt, mnt->mnt_pinned + 1);
 781                mnt->mnt_pinned = 0;
 782                br_write_unlock(vfsmount_lock);
 783                acct_auto_close_mnt(mnt);
 784                goto put_again;
 785        }
 786        br_write_unlock(vfsmount_lock);
 787        mntfree(mnt);
 788}
 789
 790void mntput(struct vfsmount *mnt)
 791{
 792        if (mnt) {
 793                /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
 794                if (unlikely(mnt->mnt_expiry_mark))
 795                        mnt->mnt_expiry_mark = 0;
 796                mntput_no_expire(mnt);
 797        }
 798}
 799EXPORT_SYMBOL(mntput);
 800
 801struct vfsmount *mntget(struct vfsmount *mnt)
 802{
 803        if (mnt)
 804                mnt_inc_count(mnt);
 805        return mnt;
 806}
 807EXPORT_SYMBOL(mntget);
 808
 809void mnt_pin(struct vfsmount *mnt)
 810{
 811        br_write_lock(vfsmount_lock);
 812        mnt->mnt_pinned++;
 813        br_write_unlock(vfsmount_lock);
 814}
 815EXPORT_SYMBOL(mnt_pin);
 816
 817void mnt_unpin(struct vfsmount *mnt)
 818{
 819        br_write_lock(vfsmount_lock);
 820        if (mnt->mnt_pinned) {
 821                mnt_inc_count(mnt);
 822                mnt->mnt_pinned--;
 823        }
 824        br_write_unlock(vfsmount_lock);
 825}
 826EXPORT_SYMBOL(mnt_unpin);
 827
 828static inline void mangle(struct seq_file *m, const char *s)
 829{
 830        seq_escape(m, s, " \t\n\\");
 831}
 832
 833/*
 834 * Simple .show_options callback for filesystems which don't want to
 835 * implement more complex mount option showing.
 836 *
 837 * See also save_mount_options().
 838 */
 839int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
 840{
 841        const char *options;
 842
 843        rcu_read_lock();
 844        options = rcu_dereference(mnt->mnt_sb->s_options);
 845
 846        if (options != NULL && options[0]) {
 847                seq_putc(m, ',');
 848                mangle(m, options);
 849        }
 850        rcu_read_unlock();
 851
 852        return 0;
 853}
 854EXPORT_SYMBOL(generic_show_options);
 855
 856/*
 857 * If filesystem uses generic_show_options(), this function should be
 858 * called from the fill_super() callback.
 859 *
 860 * The .remount_fs callback usually needs to be handled in a special
 861 * way, to make sure, that previous options are not overwritten if the
 862 * remount fails.
 863 *
 864 * Also note, that if the filesystem's .remount_fs function doesn't
 865 * reset all options to their default value, but changes only newly
 866 * given options, then the displayed options will not reflect reality
 867 * any more.
 868 */
 869void save_mount_options(struct super_block *sb, char *options)
 870{
 871        BUG_ON(sb->s_options);
 872        rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
 873}
 874EXPORT_SYMBOL(save_mount_options);
 875
 876void replace_mount_options(struct super_block *sb, char *options)
 877{
 878        char *old = sb->s_options;
 879        rcu_assign_pointer(sb->s_options, options);
 880        if (old) {
 881                synchronize_rcu();
 882                kfree(old);
 883        }
 884}
 885EXPORT_SYMBOL(replace_mount_options);
 886
 887#ifdef CONFIG_PROC_FS
 888/* iterator */
 889static void *m_start(struct seq_file *m, loff_t *pos)
 890{
 891        struct proc_mounts *p = m->private;
 892
 893        down_read(&namespace_sem);
 894        return seq_list_start(&p->ns->list, *pos);
 895}
 896
 897static void *m_next(struct seq_file *m, void *v, loff_t *pos)
 898{
 899        struct proc_mounts *p = m->private;
 900
 901        return seq_list_next(v, &p->ns->list, pos);
 902}
 903
 904static void m_stop(struct seq_file *m, void *v)
 905{
 906        up_read(&namespace_sem);
 907}
 908
 909int mnt_had_events(struct proc_mounts *p)
 910{
 911        struct mnt_namespace *ns = p->ns;
 912        int res = 0;
 913
 914        br_read_lock(vfsmount_lock);
 915        if (p->event != ns->event) {
 916                p->event = ns->event;
 917                res = 1;
 918        }
 919        br_read_unlock(vfsmount_lock);
 920
 921        return res;
 922}
 923
 924struct proc_fs_info {
 925        int flag;
 926        const char *str;
 927};
 928
 929static int show_sb_opts(struct seq_file *m, struct super_block *sb)
 930{
 931        static const struct proc_fs_info fs_info[] = {
 932                { MS_SYNCHRONOUS, ",sync" },
 933                { MS_DIRSYNC, ",dirsync" },
 934                { MS_MANDLOCK, ",mand" },
 935                { 0, NULL }
 936        };
 937        const struct proc_fs_info *fs_infop;
 938
 939        for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
 940                if (sb->s_flags & fs_infop->flag)
 941                        seq_puts(m, fs_infop->str);
 942        }
 943
 944        return security_sb_show_options(m, sb);
 945}
 946
 947static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
 948{
 949        static const struct proc_fs_info mnt_info[] = {
 950                { MNT_NOSUID, ",nosuid" },
 951                { MNT_NODEV, ",nodev" },
 952                { MNT_NOEXEC, ",noexec" },
 953                { MNT_NOATIME, ",noatime" },
 954                { MNT_NODIRATIME, ",nodiratime" },
 955                { MNT_RELATIME, ",relatime" },
 956                { 0, NULL }
 957        };
 958        const struct proc_fs_info *fs_infop;
 959
 960        for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
 961                if (mnt->mnt_flags & fs_infop->flag)
 962                        seq_puts(m, fs_infop->str);
 963        }
 964}
 965
 966static void show_type(struct seq_file *m, struct super_block *sb)
 967{
 968        mangle(m, sb->s_type->name);
 969        if (sb->s_subtype && sb->s_subtype[0]) {
 970                seq_putc(m, '.');
 971                mangle(m, sb->s_subtype);
 972        }
 973}
 974
 975static int show_vfsmnt(struct seq_file *m, void *v)
 976{
 977        struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
 978        int err = 0;
 979        struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
 980
 981        mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
 982        seq_putc(m, ' ');
 983        seq_path(m, &mnt_path, " \t\n\\");
 984        seq_putc(m, ' ');
 985        show_type(m, mnt->mnt_sb);
 986        seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
 987        err = show_sb_opts(m, mnt->mnt_sb);
 988        if (err)
 989                goto out;
 990        show_mnt_opts(m, mnt);
 991        if (mnt->mnt_sb->s_op->show_options)
 992                err = mnt->mnt_sb->s_op->show_options(m, mnt);
 993        seq_puts(m, " 0 0\n");
 994out:
 995        return err;
 996}
 997
 998const struct seq_operations mounts_op = {
 999        .start  = m_start,
1000        .next   = m_next,
1001        .stop   = m_stop,
1002        .show   = show_vfsmnt
1003};
1004
1005static int show_mountinfo(struct seq_file *m, void *v)
1006{
1007        struct proc_mounts *p = m->private;
1008        struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1009        struct super_block *sb = mnt->mnt_sb;
1010        struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1011        struct path root = p->root;
1012        int err = 0;
1013
1014        seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1015                   MAJOR(sb->s_dev), MINOR(sb->s_dev));
1016        seq_dentry(m, mnt->mnt_root, " \t\n\\");
1017        seq_putc(m, ' ');
1018        seq_path_root(m, &mnt_path, &root, " \t\n\\");
1019        if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
1020                /*
1021                 * Mountpoint is outside root, discard that one.  Ugly,
1022                 * but less so than trying to do that in iterator in a
1023                 * race-free way (due to renames).
1024                 */
1025                return SEQ_SKIP;
1026        }
1027        seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1028        show_mnt_opts(m, mnt);
1029
1030        /* Tagged fields ("foo:X" or "bar") */
1031        if (IS_MNT_SHARED(mnt))
1032                seq_printf(m, " shared:%i", mnt->mnt_group_id);
1033        if (IS_MNT_SLAVE(mnt)) {
1034                int master = mnt->mnt_master->mnt_group_id;
1035                int dom = get_dominating_id(mnt, &p->root);
1036                seq_printf(m, " master:%i", master);
1037                if (dom && dom != master)
1038                        seq_printf(m, " propagate_from:%i", dom);
1039        }
1040        if (IS_MNT_UNBINDABLE(mnt))
1041                seq_puts(m, " unbindable");
1042
1043        /* Filesystem specific data */
1044        seq_puts(m, " - ");
1045        show_type(m, sb);
1046        seq_putc(m, ' ');
1047        mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1048        seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1049        err = show_sb_opts(m, sb);
1050        if (err)
1051                goto out;
1052        if (sb->s_op->show_options)
1053                err = sb->s_op->show_options(m, mnt);
1054        seq_putc(m, '\n');
1055out:
1056        return err;
1057}
1058
1059const struct seq_operations mountinfo_op = {
1060        .start  = m_start,
1061        .next   = m_next,
1062        .stop   = m_stop,
1063        .show   = show_mountinfo,
1064};
1065
1066static int show_vfsstat(struct seq_file *m, void *v)
1067{
1068        struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1069        struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1070        int err = 0;
1071
1072        /* device */
1073        if (mnt->mnt_devname) {
1074                seq_puts(m, "device ");
1075                mangle(m, mnt->mnt_devname);
1076        } else
1077                seq_puts(m, "no device");
1078
1079        /* mount point */
1080        seq_puts(m, " mounted on ");
1081        seq_path(m, &mnt_path, " \t\n\\");
1082        seq_putc(m, ' ');
1083
1084        /* file system type */
1085        seq_puts(m, "with fstype ");
1086        show_type(m, mnt->mnt_sb);
1087
1088        /* optional statistics */
1089        if (mnt->mnt_sb->s_op->show_stats) {
1090                seq_putc(m, ' ');
1091                err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1092        }
1093
1094        seq_putc(m, '\n');
1095        return err;
1096}
1097
1098const struct seq_operations mountstats_op = {
1099        .start  = m_start,
1100        .next   = m_next,
1101        .stop   = m_stop,
1102        .show   = show_vfsstat,
1103};
1104#endif  /* CONFIG_PROC_FS */
1105
1106/**
1107 * may_umount_tree - check if a mount tree is busy
1108 * @mnt: root of mount tree
1109 *
1110 * This is called to check if a tree of mounts has any
1111 * open files, pwds, chroots or sub mounts that are
1112 * busy.
1113 */
1114int may_umount_tree(struct vfsmount *mnt)
1115{
1116        int actual_refs = 0;
1117        int minimum_refs = 0;
1118        struct vfsmount *p;
1119
1120        /* write lock needed for mnt_get_count */
1121        br_write_lock(vfsmount_lock);
1122        for (p = mnt; p; p = next_mnt(p, mnt)) {
1123                actual_refs += mnt_get_count(p);
1124                minimum_refs += 2;
1125        }
1126        br_write_unlock(vfsmount_lock);
1127
1128        if (actual_refs > minimum_refs)
1129                return 0;
1130
1131        return 1;
1132}
1133
1134EXPORT_SYMBOL(may_umount_tree);
1135
1136/**
1137 * may_umount - check if a mount point is busy
1138 * @mnt: root of mount
1139 *
1140 * This is called to check if a mount point has any
1141 * open files, pwds, chroots or sub mounts. If the
1142 * mount has sub mounts this will return busy
1143 * regardless of whether the sub mounts are busy.
1144 *
1145 * Doesn't take quota and stuff into account. IOW, in some cases it will
1146 * give false negatives. The main reason why it's here is that we need
1147 * a non-destructive way to look for easily umountable filesystems.
1148 */
1149int may_umount(struct vfsmount *mnt)
1150{
1151        int ret = 1;
1152        down_read(&namespace_sem);
1153        br_write_lock(vfsmount_lock);
1154        if (propagate_mount_busy(mnt, 2))
1155                ret = 0;
1156        br_write_unlock(vfsmount_lock);
1157        up_read(&namespace_sem);
1158        return ret;
1159}
1160
1161EXPORT_SYMBOL(may_umount);
1162
1163void release_mounts(struct list_head *head)
1164{
1165        struct vfsmount *mnt;
1166        while (!list_empty(head)) {
1167                mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1168                list_del_init(&mnt->mnt_hash);
1169                if (mnt->mnt_parent != mnt) {
1170                        struct dentry *dentry;
1171                        struct vfsmount *m;
1172
1173                        br_write_lock(vfsmount_lock);
1174                        dentry = mnt->mnt_mountpoint;
1175                        m = mnt->mnt_parent;
1176                        mnt->mnt_mountpoint = mnt->mnt_root;
1177                        mnt->mnt_parent = mnt;
1178                        m->mnt_ghosts--;
1179                        br_write_unlock(vfsmount_lock);
1180                        dput(dentry);
1181                        mntput(m);
1182                }
1183                mntput(mnt);
1184        }
1185}
1186
1187/*
1188 * vfsmount lock must be held for write
1189 * namespace_sem must be held for write
1190 */
1191void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1192{
1193        LIST_HEAD(tmp_list);
1194        struct vfsmount *p;
1195
1196        for (p = mnt; p; p = next_mnt(p, mnt))
1197                list_move(&p->mnt_hash, &tmp_list);
1198
1199        if (propagate)
1200                propagate_umount(&tmp_list);
1201
1202        list_for_each_entry(p, &tmp_list, mnt_hash) {
1203                list_del_init(&p->mnt_expire);
1204                list_del_init(&p->mnt_list);
1205                __touch_mnt_namespace(p->mnt_ns);
1206                p->mnt_ns = NULL;
1207                __mnt_make_shortterm(p);
1208                list_del_init(&p->mnt_child);
1209                if (p->mnt_parent != p) {
1210                        p->mnt_parent->mnt_ghosts++;
1211                        dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
1212                }
1213                change_mnt_propagation(p, MS_PRIVATE);
1214        }
1215        list_splice(&tmp_list, kill);
1216}
1217
1218static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1219
1220static int do_umount(struct vfsmount *mnt, int flags)
1221{
1222        struct super_block *sb = mnt->mnt_sb;
1223        int retval;
1224        LIST_HEAD(umount_list);
1225
1226        retval = security_sb_umount(mnt, flags);
1227        if (retval)
1228                return retval;
1229
1230        /*
1231         * Allow userspace to request a mountpoint be expired rather than
1232         * unmounting unconditionally. Unmount only happens if:
1233         *  (1) the mark is already set (the mark is cleared by mntput())
1234         *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1235         */
1236        if (flags & MNT_EXPIRE) {
1237                if (mnt == current->fs->root.mnt ||
1238                    flags & (MNT_FORCE | MNT_DETACH))
1239                        return -EINVAL;
1240
1241                /*
1242                 * probably don't strictly need the lock here if we examined
1243                 * all race cases, but it's a slowpath.
1244                 */
1245                br_write_lock(vfsmount_lock);
1246                if (mnt_get_count(mnt) != 2) {
1247                        br_write_unlock(vfsmount_lock);
1248                        return -EBUSY;
1249                }
1250                br_write_unlock(vfsmount_lock);
1251
1252                if (!xchg(&mnt->mnt_expiry_mark, 1))
1253                        return -EAGAIN;
1254        }
1255
1256        /*
1257         * If we may have to abort operations to get out of this
1258         * mount, and they will themselves hold resources we must
1259         * allow the fs to do things. In the Unix tradition of
1260         * 'Gee thats tricky lets do it in userspace' the umount_begin
1261         * might fail to complete on the first run through as other tasks
1262         * must return, and the like. Thats for the mount program to worry
1263         * about for the moment.
1264         */
1265
1266        if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1267                sb->s_op->umount_begin(sb);
1268        }
1269
1270        /*
1271         * No sense to grab the lock for this test, but test itself looks
1272         * somewhat bogus. Suggestions for better replacement?
1273         * Ho-hum... In principle, we might treat that as umount + switch
1274         * to rootfs. GC would eventually take care of the old vfsmount.
1275         * Actually it makes sense, especially if rootfs would contain a
1276         * /reboot - static binary that would close all descriptors and
1277         * call reboot(9). Then init(8) could umount root and exec /reboot.
1278         */
1279        if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1280                /*
1281                 * Special case for "unmounting" root ...
1282                 * we just try to remount it readonly.
1283                 */
1284                down_write(&sb->s_umount);
1285                if (!(sb->s_flags & MS_RDONLY))
1286                        retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1287                up_write(&sb->s_umount);
1288                return retval;
1289        }
1290
1291        down_write(&namespace_sem);
1292        br_write_lock(vfsmount_lock);
1293        event++;
1294
1295        if (!(flags & MNT_DETACH))
1296                shrink_submounts(mnt, &umount_list);
1297
1298        retval = -EBUSY;
1299        if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1300                if (!list_empty(&mnt->mnt_list))
1301                        umount_tree(mnt, 1, &umount_list);
1302                retval = 0;
1303        }
1304        br_write_unlock(vfsmount_lock);
1305        up_write(&namespace_sem);
1306        release_mounts(&umount_list);
1307        return retval;
1308}
1309
1310/*
1311 * Now umount can handle mount points as well as block devices.
1312 * This is important for filesystems which use unnamed block devices.
1313 *
1314 * We now support a flag for forced unmount like the other 'big iron'
1315 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1316 */
1317
1318SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1319{
1320        struct path path;
1321        int retval;
1322        int lookup_flags = 0;
1323
1324        if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1325                return -EINVAL;
1326
1327        if (!(flags & UMOUNT_NOFOLLOW))
1328                lookup_flags |= LOOKUP_FOLLOW;
1329
1330        retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1331        if (retval)
1332                goto out;
1333        retval = -EINVAL;
1334        if (path.dentry != path.mnt->mnt_root)
1335                goto dput_and_out;
1336        if (!check_mnt(path.mnt))
1337                goto dput_and_out;
1338
1339        retval = -EPERM;
1340        if (!capable(CAP_SYS_ADMIN))
1341                goto dput_and_out;
1342
1343        retval = do_umount(path.mnt, flags);
1344dput_and_out:
1345        /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1346        dput(path.dentry);
1347        mntput_no_expire(path.mnt);
1348out:
1349        return retval;
1350}
1351
1352#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1353
1354/*
1355 *      The 2.0 compatible umount. No flags.
1356 */
1357SYSCALL_DEFINE1(oldumount, char __user *, name)
1358{
1359        return sys_umount(name, 0);
1360}
1361
1362#endif
1363
1364static int mount_is_safe(struct path *path)
1365{
1366        if (capable(CAP_SYS_ADMIN))
1367                return 0;
1368        return -EPERM;
1369#ifdef notyet
1370        if (S_ISLNK(path->dentry->d_inode->i_mode))
1371                return -EPERM;
1372        if (path->dentry->d_inode->i_mode & S_ISVTX) {
1373                if (current_uid() != path->dentry->d_inode->i_uid)
1374                        return -EPERM;
1375        }
1376        if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1377                return -EPERM;
1378        return 0;
1379#endif
1380}
1381
1382struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1383                                        int flag)
1384{
1385        struct vfsmount *res, *p, *q, *r, *s;
1386        struct path path;
1387
1388        if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1389                return NULL;
1390
1391        res = q = clone_mnt(mnt, dentry, flag);
1392        if (!q)
1393                goto Enomem;
1394        q->mnt_mountpoint = mnt->mnt_mountpoint;
1395
1396        p = mnt;
1397        list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1398                if (!is_subdir(r->mnt_mountpoint, dentry))
1399                        continue;
1400
1401                for (s = r; s; s = next_mnt(s, r)) {
1402                        if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1403                                s = skip_mnt_tree(s);
1404                                continue;
1405                        }
1406                        while (p != s->mnt_parent) {
1407                                p = p->mnt_parent;
1408                                q = q->mnt_parent;
1409                        }
1410                        p = s;
1411                        path.mnt = q;
1412                        path.dentry = p->mnt_mountpoint;
1413                        q = clone_mnt(p, p->mnt_root, flag);
1414                        if (!q)
1415                                goto Enomem;
1416                        br_write_lock(vfsmount_lock);
1417                        list_add_tail(&q->mnt_list, &res->mnt_list);
1418                        attach_mnt(q, &path);
1419                        br_write_unlock(vfsmount_lock);
1420                }
1421        }
1422        return res;
1423Enomem:
1424        if (res) {
1425                LIST_HEAD(umount_list);
1426                br_write_lock(vfsmount_lock);
1427                umount_tree(res, 0, &umount_list);
1428                br_write_unlock(vfsmount_lock);
1429                release_mounts(&umount_list);
1430        }
1431        return NULL;
1432}
1433
1434struct vfsmount *collect_mounts(struct path *path)
1435{
1436        struct vfsmount *tree;
1437        down_write(&namespace_sem);
1438        tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1439        up_write(&namespace_sem);
1440        return tree;
1441}
1442
1443void drop_collected_mounts(struct vfsmount *mnt)
1444{
1445        LIST_HEAD(umount_list);
1446        down_write(&namespace_sem);
1447        br_write_lock(vfsmount_lock);
1448        umount_tree(mnt, 0, &umount_list);
1449        br_write_unlock(vfsmount_lock);
1450        up_write(&namespace_sem);
1451        release_mounts(&umount_list);
1452}
1453
1454int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1455                   struct vfsmount *root)
1456{
1457        struct vfsmount *mnt;
1458        int res = f(root, arg);
1459        if (res)
1460                return res;
1461        list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1462                res = f(mnt, arg);
1463                if (res)
1464                        return res;
1465        }
1466        return 0;
1467}
1468
1469static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1470{
1471        struct vfsmount *p;
1472
1473        for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1474                if (p->mnt_group_id && !IS_MNT_SHARED(p))
1475                        mnt_release_group_id(p);
1476        }
1477}
1478
1479static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1480{
1481        struct vfsmount *p;
1482
1483        for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1484                if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1485                        int err = mnt_alloc_group_id(p);
1486                        if (err) {
1487                                cleanup_group_ids(mnt, p);
1488                                return err;
1489                        }
1490                }
1491        }
1492
1493        return 0;
1494}
1495
1496/*
1497 *  @source_mnt : mount tree to be attached
1498 *  @nd         : place the mount tree @source_mnt is attached
1499 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1500 *                 store the parent mount and mountpoint dentry.
1501 *                 (done when source_mnt is moved)
1502 *
1503 *  NOTE: in the table below explains the semantics when a source mount
1504 *  of a given type is attached to a destination mount of a given type.
1505 * ---------------------------------------------------------------------------
1506 * |         BIND MOUNT OPERATION                                            |
1507 * |**************************************************************************
1508 * | source-->| shared        |       private  |       slave    | unbindable |
1509 * | dest     |               |                |                |            |
1510 * |   |      |               |                |                |            |
1511 * |   v      |               |                |                |            |
1512 * |**************************************************************************
1513 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1514 * |          |               |                |                |            |
1515 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1516 * ***************************************************************************
1517 * A bind operation clones the source mount and mounts the clone on the
1518 * destination mount.
1519 *
1520 * (++)  the cloned mount is propagated to all the mounts in the propagation
1521 *       tree of the destination mount and the cloned mount is added to
1522 *       the peer group of the source mount.
1523 * (+)   the cloned mount is created under the destination mount and is marked
1524 *       as shared. The cloned mount is added to the peer group of the source
1525 *       mount.
1526 * (+++) the mount is propagated to all the mounts in the propagation tree
1527 *       of the destination mount and the cloned mount is made slave
1528 *       of the same master as that of the source mount. The cloned mount
1529 *       is marked as 'shared and slave'.
1530 * (*)   the cloned mount is made a slave of the same master as that of the
1531 *       source mount.
1532 *
1533 * ---------------------------------------------------------------------------
1534 * |                    MOVE MOUNT OPERATION                                 |
1535 * |**************************************************************************
1536 * | source-->| shared        |       private  |       slave    | unbindable |
1537 * | dest     |               |                |                |            |
1538 * |   |      |               |                |                |            |
1539 * |   v      |               |                |                |            |
1540 * |**************************************************************************
1541 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1542 * |          |               |                |                |            |
1543 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1544 * ***************************************************************************
1545 *
1546 * (+)  the mount is moved to the destination. And is then propagated to
1547 *      all the mounts in the propagation tree of the destination mount.
1548 * (+*)  the mount is moved to the destination.
1549 * (+++)  the mount is moved to the destination and is then propagated to
1550 *      all the mounts belonging to the destination mount's propagation tree.
1551 *      the mount is marked as 'shared and slave'.
1552 * (*)  the mount continues to be a slave at the new location.
1553 *
1554 * if the source mount is a tree, the operations explained above is
1555 * applied to each mount in the tree.
1556 * Must be called without spinlocks held, since this function can sleep
1557 * in allocations.
1558 */
1559static int attach_recursive_mnt(struct vfsmount *source_mnt,
1560                        struct path *path, struct path *parent_path)
1561{
1562        LIST_HEAD(tree_list);
1563        struct vfsmount *dest_mnt = path->mnt;
1564        struct dentry *dest_dentry = path->dentry;
1565        struct vfsmount *child, *p;
1566        int err;
1567
1568        if (IS_MNT_SHARED(dest_mnt)) {
1569                err = invent_group_ids(source_mnt, true);
1570                if (err)
1571                        goto out;
1572        }
1573        err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1574        if (err)
1575                goto out_cleanup_ids;
1576
1577        br_write_lock(vfsmount_lock);
1578
1579        if (IS_MNT_SHARED(dest_mnt)) {
1580                for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1581                        set_mnt_shared(p);
1582        }
1583        if (parent_path) {
1584                detach_mnt(source_mnt, parent_path);
1585                attach_mnt(source_mnt, path);
1586                touch_mnt_namespace(parent_path->mnt->mnt_ns);
1587        } else {
1588                mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1589                commit_tree(source_mnt);
1590        }
1591
1592        list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1593                list_del_init(&child->mnt_hash);
1594                commit_tree(child);
1595        }
1596        br_write_unlock(vfsmount_lock);
1597
1598        return 0;
1599
1600 out_cleanup_ids:
1601        if (IS_MNT_SHARED(dest_mnt))
1602                cleanup_group_ids(source_mnt, NULL);
1603 out:
1604        return err;
1605}
1606
1607static int graft_tree(struct vfsmount *mnt, struct path *path)
1608{
1609        int err;
1610        if (mnt->mnt_sb->s_flags & MS_NOUSER)
1611                return -EINVAL;
1612
1613        if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1614              S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1615                return -ENOTDIR;
1616
1617        err = -ENOENT;
1618        mutex_lock(&path->dentry->d_inode->i_mutex);
1619        if (cant_mount(path->dentry))
1620                goto out_unlock;
1621
1622        if (!d_unlinked(path->dentry))
1623                err = attach_recursive_mnt(mnt, path, NULL);
1624out_unlock:
1625        mutex_unlock(&path->dentry->d_inode->i_mutex);
1626        return err;
1627}
1628
1629/*
1630 * Sanity check the flags to change_mnt_propagation.
1631 */
1632
1633static int flags_to_propagation_type(int flags)
1634{
1635        int type = flags & ~MS_REC;
1636
1637        /* Fail if any non-propagation flags are set */
1638        if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1639                return 0;
1640        /* Only one propagation flag should be set */
1641        if (!is_power_of_2(type))
1642                return 0;
1643        return type;
1644}
1645
1646/*
1647 * recursively change the type of the mountpoint.
1648 */
1649static int do_change_type(struct path *path, int flag)
1650{
1651        struct vfsmount *m, *mnt = path->mnt;
1652        int recurse = flag & MS_REC;
1653        int type;
1654        int err = 0;
1655
1656        if (!capable(CAP_SYS_ADMIN))
1657                return -EPERM;
1658
1659        if (path->dentry != path->mnt->mnt_root)
1660                return -EINVAL;
1661
1662        type = flags_to_propagation_type(flag);
1663        if (!type)
1664                return -EINVAL;
1665
1666        down_write(&namespace_sem);
1667        if (type == MS_SHARED) {
1668                err = invent_group_ids(mnt, recurse);
1669                if (err)
1670                        goto out_unlock;
1671        }
1672
1673        br_write_lock(vfsmount_lock);
1674        for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1675                change_mnt_propagation(m, type);
1676        br_write_unlock(vfsmount_lock);
1677
1678 out_unlock:
1679        up_write(&namespace_sem);
1680        return err;
1681}
1682
1683/*
1684 * do loopback mount.
1685 */
1686static int do_loopback(struct path *path, char *old_name,
1687                                int recurse)
1688{
1689        struct path old_path;
1690        struct vfsmount *mnt = NULL;
1691        int err = mount_is_safe(path);
1692        if (err)
1693                return err;
1694        if (!old_name || !*old_name)
1695                return -EINVAL;
1696        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1697        if (err)
1698                return err;
1699
1700        down_write(&namespace_sem);
1701        err = -EINVAL;
1702        if (IS_MNT_UNBINDABLE(old_path.mnt))
1703                goto out;
1704
1705        if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1706                goto out;
1707
1708        err = -ENOMEM;
1709        if (recurse)
1710                mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1711        else
1712                mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1713
1714        if (!mnt)
1715                goto out;
1716
1717        err = graft_tree(mnt, path);
1718        if (err) {
1719                LIST_HEAD(umount_list);
1720
1721                br_write_lock(vfsmount_lock);
1722                umount_tree(mnt, 0, &umount_list);
1723                br_write_unlock(vfsmount_lock);
1724                release_mounts(&umount_list);
1725        }
1726
1727out:
1728        up_write(&namespace_sem);
1729        path_put(&old_path);
1730        return err;
1731}
1732
1733static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1734{
1735        int error = 0;
1736        int readonly_request = 0;
1737
1738        if (ms_flags & MS_RDONLY)
1739                readonly_request = 1;
1740        if (readonly_request == __mnt_is_readonly(mnt))
1741                return 0;
1742
1743        if (readonly_request)
1744                error = mnt_make_readonly(mnt);
1745        else
1746                __mnt_unmake_readonly(mnt);
1747        return error;
1748}
1749
1750/*
1751 * change filesystem flags. dir should be a physical root of filesystem.
1752 * If you've mounted a non-root directory somewhere and want to do remount
1753 * on it - tough luck.
1754 */
1755static int do_remount(struct path *path, int flags, int mnt_flags,
1756                      void *data)
1757{
1758        int err;
1759        struct super_block *sb = path->mnt->mnt_sb;
1760
1761        if (!capable(CAP_SYS_ADMIN))
1762                return -EPERM;
1763
1764        if (!check_mnt(path->mnt))
1765                return -EINVAL;
1766
1767        if (path->dentry != path->mnt->mnt_root)
1768                return -EINVAL;
1769
1770        down_write(&sb->s_umount);
1771        if (flags & MS_BIND)
1772                err = change_mount_flags(path->mnt, flags);
1773        else
1774                err = do_remount_sb(sb, flags, data, 0);
1775        if (!err) {
1776                br_write_lock(vfsmount_lock);
1777                mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1778                path->mnt->mnt_flags = mnt_flags;
1779                br_write_unlock(vfsmount_lock);
1780        }
1781        up_write(&sb->s_umount);
1782        if (!err) {
1783                br_write_lock(vfsmount_lock);
1784                touch_mnt_namespace(path->mnt->mnt_ns);
1785                br_write_unlock(vfsmount_lock);
1786        }
1787        return err;
1788}
1789
1790static inline int tree_contains_unbindable(struct vfsmount *mnt)
1791{
1792        struct vfsmount *p;
1793        for (p = mnt; p; p = next_mnt(p, mnt)) {
1794                if (IS_MNT_UNBINDABLE(p))
1795                        return 1;
1796        }
1797        return 0;
1798}
1799
1800static int do_move_mount(struct path *path, char *old_name)
1801{
1802        struct path old_path, parent_path;
1803        struct vfsmount *p;
1804        int err = 0;
1805        if (!capable(CAP_SYS_ADMIN))
1806                return -EPERM;
1807        if (!old_name || !*old_name)
1808                return -EINVAL;
1809        err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1810        if (err)
1811                return err;
1812
1813        down_write(&namespace_sem);
1814        err = follow_down(path, true);
1815        if (err < 0)
1816                goto out;
1817
1818        err = -EINVAL;
1819        if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1820                goto out;
1821
1822        err = -ENOENT;
1823        mutex_lock(&path->dentry->d_inode->i_mutex);
1824        if (cant_mount(path->dentry))
1825                goto out1;
1826
1827        if (d_unlinked(path->dentry))
1828                goto out1;
1829
1830        err = -EINVAL;
1831        if (old_path.dentry != old_path.mnt->mnt_root)
1832                goto out1;
1833
1834        if (old_path.mnt == old_path.mnt->mnt_parent)
1835                goto out1;
1836
1837        if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1838              S_ISDIR(old_path.dentry->d_inode->i_mode))
1839                goto out1;
1840        /*
1841         * Don't move a mount residing in a shared parent.
1842         */
1843        if (old_path.mnt->mnt_parent &&
1844            IS_MNT_SHARED(old_path.mnt->mnt_parent))
1845                goto out1;
1846        /*
1847         * Don't move a mount tree containing unbindable mounts to a destination
1848         * mount which is shared.
1849         */
1850        if (IS_MNT_SHARED(path->mnt) &&
1851            tree_contains_unbindable(old_path.mnt))
1852                goto out1;
1853        err = -ELOOP;
1854        for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1855                if (p == old_path.mnt)
1856                        goto out1;
1857
1858        err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1859        if (err)
1860                goto out1;
1861
1862        /* if the mount is moved, it should no longer be expire
1863         * automatically */
1864        list_del_init(&old_path.mnt->mnt_expire);
1865out1:
1866        mutex_unlock(&path->dentry->d_inode->i_mutex);
1867out:
1868        up_write(&namespace_sem);
1869        if (!err)
1870                path_put(&parent_path);
1871        path_put(&old_path);
1872        return err;
1873}
1874
1875static int do_add_mount(struct vfsmount *, struct path *, int);
1876
1877/*
1878 * create a new mount for userspace and request it to be added into the
1879 * namespace's tree
1880 */
1881static int do_new_mount(struct path *path, char *type, int flags,
1882                        int mnt_flags, char *name, void *data)
1883{
1884        struct vfsmount *mnt;
1885        int err;
1886
1887        if (!type)
1888                return -EINVAL;
1889
1890        /* we need capabilities... */
1891        if (!capable(CAP_SYS_ADMIN))
1892                return -EPERM;
1893
1894        mnt = do_kern_mount(type, flags, name, data);
1895        if (IS_ERR(mnt))
1896                return PTR_ERR(mnt);
1897
1898        err = do_add_mount(mnt, path, mnt_flags);
1899        if (err)
1900                mntput(mnt);
1901        return err;
1902}
1903
1904int finish_automount(struct vfsmount *m, struct path *path)
1905{
1906        int err;
1907        /* The new mount record should have at least 2 refs to prevent it being
1908         * expired before we get a chance to add it
1909         */
1910        BUG_ON(mnt_get_count(m) < 2);
1911
1912        if (m->mnt_sb == path->mnt->mnt_sb &&
1913            m->mnt_root == path->dentry) {
1914                err = -ELOOP;
1915                goto fail;
1916        }
1917
1918        err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1919        if (!err)
1920                return 0;
1921fail:
1922        /* remove m from any expiration list it may be on */
1923        if (!list_empty(&m->mnt_expire)) {
1924                down_write(&namespace_sem);
1925                br_write_lock(vfsmount_lock);
1926                list_del_init(&m->mnt_expire);
1927                br_write_unlock(vfsmount_lock);
1928                up_write(&namespace_sem);
1929        }
1930        mntput(m);
1931        mntput(m);
1932        return err;
1933}
1934
1935/*
1936 * add a mount into a namespace's mount tree
1937 */
1938static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1939{
1940        int err;
1941
1942        mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1943
1944        down_write(&namespace_sem);
1945        /* Something was mounted here while we slept */
1946        err = follow_down(path, true);
1947        if (err < 0)
1948                goto unlock;
1949
1950        err = -EINVAL;
1951        if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1952                goto unlock;
1953
1954        /* Refuse the same filesystem on the same mount point */
1955        err = -EBUSY;
1956        if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1957            path->mnt->mnt_root == path->dentry)
1958                goto unlock;
1959
1960        err = -EINVAL;
1961        if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1962                goto unlock;
1963
1964        newmnt->mnt_flags = mnt_flags;
1965        err = graft_tree(newmnt, path);
1966
1967unlock:
1968        up_write(&namespace_sem);
1969        return err;
1970}
1971
1972/**
1973 * mnt_set_expiry - Put a mount on an expiration list
1974 * @mnt: The mount to list.
1975 * @expiry_list: The list to add the mount to.
1976 */
1977void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1978{
1979        down_write(&namespace_sem);
1980        br_write_lock(vfsmount_lock);
1981
1982        list_add_tail(&mnt->mnt_expire, expiry_list);
1983
1984        br_write_unlock(vfsmount_lock);
1985        up_write(&namespace_sem);
1986}
1987EXPORT_SYMBOL(mnt_set_expiry);
1988
1989/*
1990 * process a list of expirable mountpoints with the intent of discarding any
1991 * mountpoints that aren't in use and haven't been touched since last we came
1992 * here
1993 */
1994void mark_mounts_for_expiry(struct list_head *mounts)
1995{
1996        struct vfsmount *mnt, *next;
1997        LIST_HEAD(graveyard);
1998        LIST_HEAD(umounts);
1999
2000        if (list_empty(mounts))
2001                return;
2002
2003        down_write(&namespace_sem);
2004        br_write_lock(vfsmount_lock);
2005
2006        /* extract from the expiration list every vfsmount that matches the
2007         * following criteria:
2008         * - only referenced by its parent vfsmount
2009         * - still marked for expiry (marked on the last call here; marks are
2010         *   cleared by mntput())
2011         */
2012        list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2013                if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2014                        propagate_mount_busy(mnt, 1))
2015                        continue;
2016                list_move(&mnt->mnt_expire, &graveyard);
2017        }
2018        while (!list_empty(&graveyard)) {
2019                mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2020                touch_mnt_namespace(mnt->mnt_ns);
2021                umount_tree(mnt, 1, &umounts);
2022        }
2023        br_write_unlock(vfsmount_lock);
2024        up_write(&namespace_sem);
2025
2026        release_mounts(&umounts);
2027}
2028
2029EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2030
2031/*
2032 * Ripoff of 'select_parent()'
2033 *
2034 * search the list of submounts for a given mountpoint, and move any
2035 * shrinkable submounts to the 'graveyard' list.
2036 */
2037static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2038{
2039        struct vfsmount *this_parent = parent;
2040        struct list_head *next;
2041        int found = 0;
2042
2043repeat:
2044        next = this_parent->mnt_mounts.next;
2045resume:
2046        while (next != &this_parent->mnt_mounts) {
2047                struct list_head *tmp = next;
2048                struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2049
2050                next = tmp->next;
2051                if (!(mnt->mnt_flags & MNT_SHRINKABLE))
2052                        continue;
2053                /*
2054                 * Descend a level if the d_mounts list is non-empty.
2055                 */
2056                if (!list_empty(&mnt->mnt_mounts)) {
2057                        this_parent = mnt;
2058                        goto repeat;
2059                }
2060
2061                if (!propagate_mount_busy(mnt, 1)) {
2062                        list_move_tail(&mnt->mnt_expire, graveyard);
2063                        found++;
2064                }
2065        }
2066        /*
2067         * All done at this level ... ascend and resume the search
2068         */
2069        if (this_parent != parent) {
2070                next = this_parent->mnt_child.next;
2071                this_parent = this_parent->mnt_parent;
2072                goto resume;
2073        }
2074        return found;
2075}
2076
2077/*
2078 * process a list of expirable mountpoints with the intent of discarding any
2079 * submounts of a specific parent mountpoint
2080 *
2081 * vfsmount_lock must be held for write
2082 */
2083static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
2084{
2085        LIST_HEAD(graveyard);
2086        struct vfsmount *m;
2087
2088        /* extract submounts of 'mountpoint' from the expiration list */
2089        while (select_submounts(mnt, &graveyard)) {
2090                while (!list_empty(&graveyard)) {
2091                        m = list_first_entry(&graveyard, struct vfsmount,
2092                                                mnt_expire);
2093                        touch_mnt_namespace(m->mnt_ns);
2094                        umount_tree(m, 1, umounts);
2095                }
2096        }
2097}
2098
2099/*
2100 * Some copy_from_user() implementations do not return the exact number of
2101 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2102 * Note that this function differs from copy_from_user() in that it will oops
2103 * on bad values of `to', rather than returning a short copy.
2104 */
2105static long exact_copy_from_user(void *to, const void __user * from,
2106                                 unsigned long n)
2107{
2108        char *t = to;
2109        const char __user *f = from;
2110        char c;
2111
2112        if (!access_ok(VERIFY_READ, from, n))
2113                return n;
2114
2115        while (n) {
2116                if (__get_user(c, f)) {
2117                        memset(t, 0, n);
2118                        break;
2119                }
2120                *t++ = c;
2121                f++;
2122                n--;
2123        }
2124        return n;
2125}
2126
2127int copy_mount_options(const void __user * data, unsigned long *where)
2128{
2129        int i;
2130        unsigned long page;
2131        unsigned long size;
2132
2133        *where = 0;
2134        if (!data)
2135                return 0;
2136
2137        if (!(page = __get_free_page(GFP_KERNEL)))
2138                return -ENOMEM;
2139
2140        /* We only care that *some* data at the address the user
2141         * gave us is valid.  Just in case, we'll zero
2142         * the remainder of the page.
2143         */
2144        /* copy_from_user cannot cross TASK_SIZE ! */
2145        size = TASK_SIZE - (unsigned long)data;
2146        if (size > PAGE_SIZE)
2147                size = PAGE_SIZE;
2148
2149        i = size - exact_copy_from_user((void *)page, data, size);
2150        if (!i) {
2151                free_page(page);
2152                return -EFAULT;
2153        }
2154        if (i != PAGE_SIZE)
2155                memset((char *)page + i, 0, PAGE_SIZE - i);
2156        *where = page;
2157        return 0;
2158}
2159
2160int copy_mount_string(const void __user *data, char **where)
2161{
2162        char *tmp;
2163
2164        if (!data) {
2165                *where = NULL;
2166                return 0;
2167        }
2168
2169        tmp = strndup_user(data, PAGE_SIZE);
2170        if (IS_ERR(tmp))
2171                return PTR_ERR(tmp);
2172
2173        *where = tmp;
2174        return 0;
2175}
2176
2177/*
2178 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2179 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2180 *
2181 * data is a (void *) that can point to any structure up to
2182 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2183 * information (or be NULL).
2184 *
2185 * Pre-0.97 versions of mount() didn't have a flags word.
2186 * When the flags word was introduced its top half was required
2187 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2188 * Therefore, if this magic number is present, it carries no information
2189 * and must be discarded.
2190 */
2191long do_mount(char *dev_name, char *dir_name, char *type_page,
2192                  unsigned long flags, void *data_page)
2193{
2194        struct path path;
2195        int retval = 0;
2196        int mnt_flags = 0;
2197
2198        /* Discard magic */
2199        if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2200                flags &= ~MS_MGC_MSK;
2201
2202        /* Basic sanity checks */
2203
2204        if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2205                return -EINVAL;
2206
2207        if (data_page)
2208                ((char *)data_page)[PAGE_SIZE - 1] = 0;
2209
2210        /* ... and get the mountpoint */
2211        retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2212        if (retval)
2213                return retval;
2214
2215        retval = security_sb_mount(dev_name, &path,
2216                                   type_page, flags, data_page);
2217        if (retval)
2218                goto dput_out;
2219
2220        /* Default to relatime unless overriden */
2221        if (!(flags & MS_NOATIME))
2222                mnt_flags |= MNT_RELATIME;
2223
2224        /* Separate the per-mountpoint flags */
2225        if (flags & MS_NOSUID)
2226                mnt_flags |= MNT_NOSUID;
2227        if (flags & MS_NODEV)
2228                mnt_flags |= MNT_NODEV;
2229        if (flags & MS_NOEXEC)
2230                mnt_flags |= MNT_NOEXEC;
2231        if (flags & MS_NOATIME)
2232                mnt_flags |= MNT_NOATIME;
2233        if (flags & MS_NODIRATIME)
2234                mnt_flags |= MNT_NODIRATIME;
2235        if (flags & MS_STRICTATIME)
2236                mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2237        if (flags & MS_RDONLY)
2238                mnt_flags |= MNT_READONLY;
2239
2240        flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2241                   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2242                   MS_STRICTATIME);
2243
2244        if (flags & MS_REMOUNT)
2245                retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2246                                    data_page);
2247        else if (flags & MS_BIND)
2248                retval = do_loopback(&path, dev_name, flags & MS_REC);
2249        else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2250                retval = do_change_type(&path, flags);
2251        else if (flags & MS_MOVE)
2252                retval = do_move_mount(&path, dev_name);
2253        else
2254                retval = do_new_mount(&path, type_page, flags, mnt_flags,
2255                                      dev_name, data_page);
2256dput_out:
2257        path_put(&path);
2258        return retval;
2259}
2260
2261static struct mnt_namespace *alloc_mnt_ns(void)
2262{
2263        struct mnt_namespace *new_ns;
2264
2265        new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2266        if (!new_ns)
2267                return ERR_PTR(-ENOMEM);
2268        atomic_set(&new_ns->count, 1);
2269        new_ns->root = NULL;
2270        INIT_LIST_HEAD(&new_ns->list);
2271        init_waitqueue_head(&new_ns->poll);
2272        new_ns->event = 0;
2273        return new_ns;
2274}
2275
2276void mnt_make_longterm(struct vfsmount *mnt)
2277{
2278        __mnt_make_longterm(mnt);
2279}
2280
2281void mnt_make_shortterm(struct vfsmount *mnt)
2282{
2283#ifdef CONFIG_SMP
2284        if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2285                return;
2286        br_write_lock(vfsmount_lock);
2287        atomic_dec(&mnt->mnt_longterm);
2288        br_write_unlock(vfsmount_lock);
2289#endif
2290}
2291
2292/*
2293 * Allocate a new namespace structure and populate it with contents
2294 * copied from the namespace of the passed in task structure.
2295 */
2296static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2297                struct fs_struct *fs)
2298{
2299        struct mnt_namespace *new_ns;
2300        struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2301        struct vfsmount *p, *q;
2302
2303        new_ns = alloc_mnt_ns();
2304        if (IS_ERR(new_ns))
2305                return new_ns;
2306
2307        down_write(&namespace_sem);
2308        /* First pass: copy the tree topology */
2309        new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2310                                        CL_COPY_ALL | CL_EXPIRE);
2311        if (!new_ns->root) {
2312                up_write(&namespace_sem);
2313                kfree(new_ns);
2314                return ERR_PTR(-ENOMEM);
2315        }
2316        br_write_lock(vfsmount_lock);
2317        list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2318        br_write_unlock(vfsmount_lock);
2319
2320        /*
2321         * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2322         * as belonging to new namespace.  We have already acquired a private
2323         * fs_struct, so tsk->fs->lock is not needed.
2324         */
2325        p = mnt_ns->root;
2326        q = new_ns->root;
2327        while (p) {
2328                q->mnt_ns = new_ns;
2329                __mnt_make_longterm(q);
2330                if (fs) {
2331                        if (p == fs->root.mnt) {
2332                                fs->root.mnt = mntget(q);
2333                                __mnt_make_longterm(q);
2334                                mnt_make_shortterm(p);
2335                                rootmnt = p;
2336                        }
2337                        if (p == fs->pwd.mnt) {
2338                                fs->pwd.mnt = mntget(q);
2339                                __mnt_make_longterm(q);
2340                                mnt_make_shortterm(p);
2341                                pwdmnt = p;
2342                        }
2343                }
2344                p = next_mnt(p, mnt_ns->root);
2345                q = next_mnt(q, new_ns->root);
2346        }
2347        up_write(&namespace_sem);
2348
2349        if (rootmnt)
2350                mntput(rootmnt);
2351        if (pwdmnt)
2352                mntput(pwdmnt);
2353
2354        return new_ns;
2355}
2356
2357struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2358                struct fs_struct *new_fs)
2359{
2360        struct mnt_namespace *new_ns;
2361
2362        BUG_ON(!ns);
2363        get_mnt_ns(ns);
2364
2365        if (!(flags & CLONE_NEWNS))
2366                return ns;
2367
2368        new_ns = dup_mnt_ns(ns, new_fs);
2369
2370        put_mnt_ns(ns);
2371        return new_ns;
2372}
2373
2374/**
2375 * create_mnt_ns - creates a private namespace and adds a root filesystem
2376 * @mnt: pointer to the new root filesystem mountpoint
2377 */
2378struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2379{
2380        struct mnt_namespace *new_ns;
2381
2382        new_ns = alloc_mnt_ns();
2383        if (!IS_ERR(new_ns)) {
2384                mnt->mnt_ns = new_ns;
2385                __mnt_make_longterm(mnt);
2386                new_ns->root = mnt;
2387                list_add(&new_ns->list, &new_ns->root->mnt_list);
2388        }
2389        return new_ns;
2390}
2391EXPORT_SYMBOL(create_mnt_ns);
2392
2393SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2394                char __user *, type, unsigned long, flags, void __user *, data)
2395{
2396        int ret;
2397        char *kernel_type;
2398        char *kernel_dir;
2399        char *kernel_dev;
2400        unsigned long data_page;
2401
2402        ret = copy_mount_string(type, &kernel_type);
2403        if (ret < 0)
2404                goto out_type;
2405
2406        kernel_dir = getname(dir_name);
2407        if (IS_ERR(kernel_dir)) {
2408                ret = PTR_ERR(kernel_dir);
2409                goto out_dir;
2410        }
2411
2412        ret = copy_mount_string(dev_name, &kernel_dev);
2413        if (ret < 0)
2414                goto out_dev;
2415
2416        ret = copy_mount_options(data, &data_page);
2417        if (ret < 0)
2418                goto out_data;
2419
2420        ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2421                (void *) data_page);
2422
2423        free_page(data_page);
2424out_data:
2425        kfree(kernel_dev);
2426out_dev:
2427        putname(kernel_dir);
2428out_dir:
2429        kfree(kernel_type);
2430out_type:
2431        return ret;
2432}
2433
2434/*
2435 * pivot_root Semantics:
2436 * Moves the root file system of the current process to the directory put_old,
2437 * makes new_root as the new root file system of the current process, and sets
2438 * root/cwd of all processes which had them on the current root to new_root.
2439 *
2440 * Restrictions:
2441 * The new_root and put_old must be directories, and  must not be on the
2442 * same file  system as the current process root. The put_old  must  be
2443 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2444 * pointed to by put_old must yield the same directory as new_root. No other
2445 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2446 *
2447 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2448 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2449 * in this situation.
2450 *
2451 * Notes:
2452 *  - we don't move root/cwd if they are not at the root (reason: if something
2453 *    cared enough to change them, it's probably wrong to force them elsewhere)
2454 *  - it's okay to pick a root that isn't the root of a file system, e.g.
2455 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2456 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2457 *    first.
2458 */
2459SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2460                const char __user *, put_old)
2461{
2462        struct vfsmount *tmp;
2463        struct path new, old, parent_path, root_parent, root;
2464        int error;
2465
2466        if (!capable(CAP_SYS_ADMIN))
2467                return -EPERM;
2468
2469        error = user_path_dir(new_root, &new);
2470        if (error)
2471                goto out0;
2472        error = -EINVAL;
2473        if (!check_mnt(new.mnt))
2474                goto out1;
2475
2476        error = user_path_dir(put_old, &old);
2477        if (error)
2478                goto out1;
2479
2480        error = security_sb_pivotroot(&old, &new);
2481        if (error) {
2482                path_put(&old);
2483                goto out1;
2484        }
2485
2486        get_fs_root(current->fs, &root);
2487        down_write(&namespace_sem);
2488        mutex_lock(&old.dentry->d_inode->i_mutex);
2489        error = -EINVAL;
2490        if (IS_MNT_SHARED(old.mnt) ||
2491                IS_MNT_SHARED(new.mnt->mnt_parent) ||
2492                IS_MNT_SHARED(root.mnt->mnt_parent))
2493                goto out2;
2494        if (!check_mnt(root.mnt))
2495                goto out2;
2496        error = -ENOENT;
2497        if (cant_mount(old.dentry))
2498                goto out2;
2499        if (d_unlinked(new.dentry))
2500                goto out2;
2501        if (d_unlinked(old.dentry))
2502                goto out2;
2503        error = -EBUSY;
2504        if (new.mnt == root.mnt ||
2505            old.mnt == root.mnt)
2506                goto out2; /* loop, on the same file system  */
2507        error = -EINVAL;
2508        if (root.mnt->mnt_root != root.dentry)
2509                goto out2; /* not a mountpoint */
2510        if (root.mnt->mnt_parent == root.mnt)
2511                goto out2; /* not attached */
2512        if (new.mnt->mnt_root != new.dentry)
2513                goto out2; /* not a mountpoint */
2514        if (new.mnt->mnt_parent == new.mnt)
2515                goto out2; /* not attached */
2516        /* make sure we can reach put_old from new_root */
2517        tmp = old.mnt;
2518        br_write_lock(vfsmount_lock);
2519        if (tmp != new.mnt) {
2520                for (;;) {
2521                        if (tmp->mnt_parent == tmp)
2522                                goto out3; /* already mounted on put_old */
2523                        if (tmp->mnt_parent == new.mnt)
2524                                break;
2525                        tmp = tmp->mnt_parent;
2526                }
2527                if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2528                        goto out3;
2529        } else if (!is_subdir(old.dentry, new.dentry))
2530                goto out3;
2531        detach_mnt(new.mnt, &parent_path);
2532        detach_mnt(root.mnt, &root_parent);
2533        /* mount old root on put_old */
2534        attach_mnt(root.mnt, &old);
2535        /* mount new_root on / */
2536        attach_mnt(new.mnt, &root_parent);
2537        touch_mnt_namespace(current->nsproxy->mnt_ns);
2538        br_write_unlock(vfsmount_lock);
2539        chroot_fs_refs(&root, &new);
2540
2541        error = 0;
2542        path_put(&root_parent);
2543        path_put(&parent_path);
2544out2:
2545        mutex_unlock(&old.dentry->d_inode->i_mutex);
2546        up_write(&namespace_sem);
2547        path_put(&root);
2548        path_put(&old);
2549out1:
2550        path_put(&new);
2551out0:
2552        return error;
2553out3:
2554        br_write_unlock(vfsmount_lock);
2555        goto out2;
2556}
2557
2558static void __init init_mount_tree(void)
2559{
2560        struct vfsmount *mnt;
2561        struct mnt_namespace *ns;
2562        struct path root;
2563
2564        mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2565        if (IS_ERR(mnt))
2566                panic("Can't create rootfs");
2567
2568        ns = create_mnt_ns(mnt);
2569        if (IS_ERR(ns))
2570                panic("Can't allocate initial namespace");
2571
2572        init_task.nsproxy->mnt_ns = ns;
2573        get_mnt_ns(ns);
2574
2575        root.mnt = ns->root;
2576        root.dentry = ns->root->mnt_root;
2577
2578        set_fs_pwd(current->fs, &root);
2579        set_fs_root(current->fs, &root);
2580}
2581
2582void __init mnt_init(void)
2583{
2584        unsigned u;
2585        int err;
2586
2587        init_rwsem(&namespace_sem);
2588
2589        mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2590                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2591
2592        mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2593
2594        if (!mount_hashtable)
2595                panic("Failed to allocate mount hash table\n");
2596
2597        printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2598
2599        for (u = 0; u < HASH_SIZE; u++)
2600                INIT_LIST_HEAD(&mount_hashtable[u]);
2601
2602        br_lock_init(vfsmount_lock);
2603
2604        err = sysfs_init();
2605        if (err)
2606                printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2607                        __func__, err);
2608        fs_kobj = kobject_create_and_add("fs", NULL);
2609        if (!fs_kobj)
2610                printk(KERN_WARNING "%s: kobj create error\n", __func__);
2611        init_rootfs();
2612        init_mount_tree();
2613}
2614
2615void put_mnt_ns(struct mnt_namespace *ns)
2616{
2617        LIST_HEAD(umount_list);
2618
2619        if (!atomic_dec_and_test(&ns->count))
2620                return;
2621        down_write(&namespace_sem);
2622        br_write_lock(vfsmount_lock);
2623        umount_tree(ns->root, 0, &umount_list);
2624        br_write_unlock(vfsmount_lock);
2625        up_write(&namespace_sem);
2626        release_mounts(&umount_list);
2627        kfree(ns);
2628}
2629EXPORT_SYMBOL(put_mnt_ns);
2630