linux/fs/nfs/dir.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/nfs/dir.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  nfs directory handling functions
   7 *
   8 * 10 Apr 1996  Added silly rename for unlink   --okir
   9 * 28 Sep 1996  Improved directory cache --okir
  10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  11 *              Re-implemented silly rename for unlink, newly implemented
  12 *              silly rename for nfs_rename() following the suggestions
  13 *              of Olaf Kirch (okir) found in this file.
  14 *              Following Linus comments on my original hack, this version
  15 *              depends only on the dcache stuff and doesn't touch the inode
  16 *              layer (iput() and friends).
  17 *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
  18 */
  19
  20#include <linux/time.h>
  21#include <linux/errno.h>
  22#include <linux/stat.h>
  23#include <linux/fcntl.h>
  24#include <linux/string.h>
  25#include <linux/kernel.h>
  26#include <linux/slab.h>
  27#include <linux/mm.h>
  28#include <linux/sunrpc/clnt.h>
  29#include <linux/nfs_fs.h>
  30#include <linux/nfs_mount.h>
  31#include <linux/pagemap.h>
  32#include <linux/pagevec.h>
  33#include <linux/namei.h>
  34#include <linux/mount.h>
  35#include <linux/sched.h>
  36#include <linux/kmemleak.h>
  37#include <linux/xattr.h>
  38
  39#include "delegation.h"
  40#include "iostat.h"
  41#include "internal.h"
  42#include "fscache.h"
  43
  44/* #define NFS_DEBUG_VERBOSE 1 */
  45
  46static int nfs_opendir(struct inode *, struct file *);
  47static int nfs_readdir(struct file *, void *, filldir_t);
  48static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
  49static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
  50static int nfs_mkdir(struct inode *, struct dentry *, int);
  51static int nfs_rmdir(struct inode *, struct dentry *);
  52static int nfs_unlink(struct inode *, struct dentry *);
  53static int nfs_symlink(struct inode *, struct dentry *, const char *);
  54static int nfs_link(struct dentry *, struct inode *, struct dentry *);
  55static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
  56static int nfs_rename(struct inode *, struct dentry *,
  57                      struct inode *, struct dentry *);
  58static int nfs_fsync_dir(struct file *, int);
  59static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  60static void nfs_readdir_clear_array(struct page*);
  61
  62const struct file_operations nfs_dir_operations = {
  63        .llseek         = nfs_llseek_dir,
  64        .read           = generic_read_dir,
  65        .readdir        = nfs_readdir,
  66        .open           = nfs_opendir,
  67        .release        = nfs_release,
  68        .fsync          = nfs_fsync_dir,
  69};
  70
  71const struct inode_operations nfs_dir_inode_operations = {
  72        .create         = nfs_create,
  73        .lookup         = nfs_lookup,
  74        .link           = nfs_link,
  75        .unlink         = nfs_unlink,
  76        .symlink        = nfs_symlink,
  77        .mkdir          = nfs_mkdir,
  78        .rmdir          = nfs_rmdir,
  79        .mknod          = nfs_mknod,
  80        .rename         = nfs_rename,
  81        .permission     = nfs_permission,
  82        .getattr        = nfs_getattr,
  83        .setattr        = nfs_setattr,
  84};
  85
  86const struct address_space_operations nfs_dir_aops = {
  87        .freepage = nfs_readdir_clear_array,
  88};
  89
  90#ifdef CONFIG_NFS_V3
  91const struct inode_operations nfs3_dir_inode_operations = {
  92        .create         = nfs_create,
  93        .lookup         = nfs_lookup,
  94        .link           = nfs_link,
  95        .unlink         = nfs_unlink,
  96        .symlink        = nfs_symlink,
  97        .mkdir          = nfs_mkdir,
  98        .rmdir          = nfs_rmdir,
  99        .mknod          = nfs_mknod,
 100        .rename         = nfs_rename,
 101        .permission     = nfs_permission,
 102        .getattr        = nfs_getattr,
 103        .setattr        = nfs_setattr,
 104        .listxattr      = nfs3_listxattr,
 105        .getxattr       = nfs3_getxattr,
 106        .setxattr       = nfs3_setxattr,
 107        .removexattr    = nfs3_removexattr,
 108};
 109#endif  /* CONFIG_NFS_V3 */
 110
 111#ifdef CONFIG_NFS_V4
 112
 113static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
 114static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
 115const struct inode_operations nfs4_dir_inode_operations = {
 116        .create         = nfs_open_create,
 117        .lookup         = nfs_atomic_lookup,
 118        .link           = nfs_link,
 119        .unlink         = nfs_unlink,
 120        .symlink        = nfs_symlink,
 121        .mkdir          = nfs_mkdir,
 122        .rmdir          = nfs_rmdir,
 123        .mknod          = nfs_mknod,
 124        .rename         = nfs_rename,
 125        .permission     = nfs_permission,
 126        .getattr        = nfs_getattr,
 127        .setattr        = nfs_setattr,
 128        .getxattr       = generic_getxattr,
 129        .setxattr       = generic_setxattr,
 130        .listxattr      = generic_listxattr,
 131        .removexattr    = generic_removexattr,
 132};
 133
 134#endif /* CONFIG_NFS_V4 */
 135
 136/*
 137 * Open file
 138 */
 139static int
 140nfs_opendir(struct inode *inode, struct file *filp)
 141{
 142        int res;
 143
 144        dfprintk(FILE, "NFS: open dir(%s/%s)\n",
 145                        filp->f_path.dentry->d_parent->d_name.name,
 146                        filp->f_path.dentry->d_name.name);
 147
 148        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 149
 150        /* Call generic open code in order to cache credentials */
 151        res = nfs_open(inode, filp);
 152        if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
 153                /* This is a mountpoint, so d_revalidate will never
 154                 * have been called, so we need to refresh the
 155                 * inode (for close-open consistency) ourselves.
 156                 */
 157                __nfs_revalidate_inode(NFS_SERVER(inode), inode);
 158        }
 159        return res;
 160}
 161
 162struct nfs_cache_array_entry {
 163        u64 cookie;
 164        u64 ino;
 165        struct qstr string;
 166        unsigned char d_type;
 167};
 168
 169struct nfs_cache_array {
 170        unsigned int size;
 171        int eof_index;
 172        u64 last_cookie;
 173        struct nfs_cache_array_entry array[0];
 174};
 175
 176typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
 177typedef struct {
 178        struct file     *file;
 179        struct page     *page;
 180        unsigned long   page_index;
 181        u64             *dir_cookie;
 182        u64             last_cookie;
 183        loff_t          current_index;
 184        decode_dirent_t decode;
 185
 186        unsigned long   timestamp;
 187        unsigned long   gencount;
 188        unsigned int    cache_entry_index;
 189        unsigned int    plus:1;
 190        unsigned int    eof:1;
 191} nfs_readdir_descriptor_t;
 192
 193/*
 194 * The caller is responsible for calling nfs_readdir_release_array(page)
 195 */
 196static
 197struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
 198{
 199        void *ptr;
 200        if (page == NULL)
 201                return ERR_PTR(-EIO);
 202        ptr = kmap(page);
 203        if (ptr == NULL)
 204                return ERR_PTR(-ENOMEM);
 205        return ptr;
 206}
 207
 208static
 209void nfs_readdir_release_array(struct page *page)
 210{
 211        kunmap(page);
 212}
 213
 214/*
 215 * we are freeing strings created by nfs_add_to_readdir_array()
 216 */
 217static
 218void nfs_readdir_clear_array(struct page *page)
 219{
 220        struct nfs_cache_array *array;
 221        int i;
 222
 223        array = kmap_atomic(page, KM_USER0);
 224        for (i = 0; i < array->size; i++)
 225                kfree(array->array[i].string.name);
 226        kunmap_atomic(array, KM_USER0);
 227}
 228
 229/*
 230 * the caller is responsible for freeing qstr.name
 231 * when called by nfs_readdir_add_to_array, the strings will be freed in
 232 * nfs_clear_readdir_array()
 233 */
 234static
 235int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 236{
 237        string->len = len;
 238        string->name = kmemdup(name, len, GFP_KERNEL);
 239        if (string->name == NULL)
 240                return -ENOMEM;
 241        /*
 242         * Avoid a kmemleak false positive. The pointer to the name is stored
 243         * in a page cache page which kmemleak does not scan.
 244         */
 245        kmemleak_not_leak(string->name);
 246        string->hash = full_name_hash(name, len);
 247        return 0;
 248}
 249
 250static
 251int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 252{
 253        struct nfs_cache_array *array = nfs_readdir_get_array(page);
 254        struct nfs_cache_array_entry *cache_entry;
 255        int ret;
 256
 257        if (IS_ERR(array))
 258                return PTR_ERR(array);
 259
 260        cache_entry = &array->array[array->size];
 261
 262        /* Check that this entry lies within the page bounds */
 263        ret = -ENOSPC;
 264        if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 265                goto out;
 266
 267        cache_entry->cookie = entry->prev_cookie;
 268        cache_entry->ino = entry->ino;
 269        cache_entry->d_type = entry->d_type;
 270        ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 271        if (ret)
 272                goto out;
 273        array->last_cookie = entry->cookie;
 274        array->size++;
 275        if (entry->eof != 0)
 276                array->eof_index = array->size;
 277out:
 278        nfs_readdir_release_array(page);
 279        return ret;
 280}
 281
 282static
 283int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 284{
 285        loff_t diff = desc->file->f_pos - desc->current_index;
 286        unsigned int index;
 287
 288        if (diff < 0)
 289                goto out_eof;
 290        if (diff >= array->size) {
 291                if (array->eof_index >= 0)
 292                        goto out_eof;
 293                desc->current_index += array->size;
 294                return -EAGAIN;
 295        }
 296
 297        index = (unsigned int)diff;
 298        *desc->dir_cookie = array->array[index].cookie;
 299        desc->cache_entry_index = index;
 300        return 0;
 301out_eof:
 302        desc->eof = 1;
 303        return -EBADCOOKIE;
 304}
 305
 306static
 307int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 308{
 309        int i;
 310        int status = -EAGAIN;
 311
 312        for (i = 0; i < array->size; i++) {
 313                if (array->array[i].cookie == *desc->dir_cookie) {
 314                        desc->cache_entry_index = i;
 315                        return 0;
 316                }
 317        }
 318        if (array->eof_index >= 0) {
 319                status = -EBADCOOKIE;
 320                if (*desc->dir_cookie == array->last_cookie)
 321                        desc->eof = 1;
 322        }
 323        return status;
 324}
 325
 326static
 327int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 328{
 329        struct nfs_cache_array *array;
 330        int status;
 331
 332        array = nfs_readdir_get_array(desc->page);
 333        if (IS_ERR(array)) {
 334                status = PTR_ERR(array);
 335                goto out;
 336        }
 337
 338        if (*desc->dir_cookie == 0)
 339                status = nfs_readdir_search_for_pos(array, desc);
 340        else
 341                status = nfs_readdir_search_for_cookie(array, desc);
 342
 343        if (status == -EAGAIN) {
 344                desc->last_cookie = array->last_cookie;
 345                desc->page_index++;
 346        }
 347        nfs_readdir_release_array(desc->page);
 348out:
 349        return status;
 350}
 351
 352/* Fill a page with xdr information before transferring to the cache page */
 353static
 354int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 355                        struct nfs_entry *entry, struct file *file, struct inode *inode)
 356{
 357        struct rpc_cred *cred = nfs_file_cred(file);
 358        unsigned long   timestamp, gencount;
 359        int             error;
 360
 361 again:
 362        timestamp = jiffies;
 363        gencount = nfs_inc_attr_generation_counter();
 364        error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
 365                                          NFS_SERVER(inode)->dtsize, desc->plus);
 366        if (error < 0) {
 367                /* We requested READDIRPLUS, but the server doesn't grok it */
 368                if (error == -ENOTSUPP && desc->plus) {
 369                        NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 370                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 371                        desc->plus = 0;
 372                        goto again;
 373                }
 374                goto error;
 375        }
 376        desc->timestamp = timestamp;
 377        desc->gencount = gencount;
 378error:
 379        return error;
 380}
 381
 382static int xdr_decode(nfs_readdir_descriptor_t *desc,
 383                      struct nfs_entry *entry, struct xdr_stream *xdr)
 384{
 385        int error;
 386
 387        error = desc->decode(xdr, entry, desc->plus);
 388        if (error)
 389                return error;
 390        entry->fattr->time_start = desc->timestamp;
 391        entry->fattr->gencount = desc->gencount;
 392        return 0;
 393}
 394
 395static
 396int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 397{
 398        if (dentry->d_inode == NULL)
 399                goto different;
 400        if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
 401                goto different;
 402        return 1;
 403different:
 404        return 0;
 405}
 406
 407static
 408void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
 409{
 410        struct qstr filename = {
 411                .len = entry->len,
 412                .name = entry->name,
 413        };
 414        struct dentry *dentry;
 415        struct dentry *alias;
 416        struct inode *dir = parent->d_inode;
 417        struct inode *inode;
 418
 419        if (filename.name[0] == '.') {
 420                if (filename.len == 1)
 421                        return;
 422                if (filename.len == 2 && filename.name[1] == '.')
 423                        return;
 424        }
 425        filename.hash = full_name_hash(filename.name, filename.len);
 426
 427        dentry = d_lookup(parent, &filename);
 428        if (dentry != NULL) {
 429                if (nfs_same_file(dentry, entry)) {
 430                        nfs_refresh_inode(dentry->d_inode, entry->fattr);
 431                        goto out;
 432                } else {
 433                        d_drop(dentry);
 434                        dput(dentry);
 435                }
 436        }
 437
 438        dentry = d_alloc(parent, &filename);
 439        if (dentry == NULL)
 440                return;
 441
 442        inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
 443        if (IS_ERR(inode))
 444                goto out;
 445
 446        alias = d_materialise_unique(dentry, inode);
 447        if (IS_ERR(alias))
 448                goto out;
 449        else if (alias) {
 450                nfs_set_verifier(alias, nfs_save_change_attribute(dir));
 451                dput(alias);
 452        } else
 453                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 454
 455out:
 456        dput(dentry);
 457}
 458
 459/* Perform conversion from xdr to cache array */
 460static
 461int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 462                                struct page **xdr_pages, struct page *page, unsigned int buflen)
 463{
 464        struct xdr_stream stream;
 465        struct xdr_buf buf = {
 466                .pages = xdr_pages,
 467                .page_len = buflen,
 468                .buflen = buflen,
 469                .len = buflen,
 470        };
 471        struct page *scratch;
 472        struct nfs_cache_array *array;
 473        unsigned int count = 0;
 474        int status;
 475
 476        scratch = alloc_page(GFP_KERNEL);
 477        if (scratch == NULL)
 478                return -ENOMEM;
 479
 480        xdr_init_decode(&stream, &buf, NULL);
 481        xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 482
 483        do {
 484                status = xdr_decode(desc, entry, &stream);
 485                if (status != 0) {
 486                        if (status == -EAGAIN)
 487                                status = 0;
 488                        break;
 489                }
 490
 491                count++;
 492
 493                if (desc->plus != 0)
 494                        nfs_prime_dcache(desc->file->f_path.dentry, entry);
 495
 496                status = nfs_readdir_add_to_array(entry, page);
 497                if (status != 0)
 498                        break;
 499        } while (!entry->eof);
 500
 501        if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 502                array = nfs_readdir_get_array(page);
 503                if (!IS_ERR(array)) {
 504                        array->eof_index = array->size;
 505                        status = 0;
 506                        nfs_readdir_release_array(page);
 507                } else
 508                        status = PTR_ERR(array);
 509        }
 510
 511        put_page(scratch);
 512        return status;
 513}
 514
 515static
 516void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
 517{
 518        unsigned int i;
 519        for (i = 0; i < npages; i++)
 520                put_page(pages[i]);
 521}
 522
 523static
 524void nfs_readdir_free_large_page(void *ptr, struct page **pages,
 525                unsigned int npages)
 526{
 527        nfs_readdir_free_pagearray(pages, npages);
 528}
 529
 530/*
 531 * nfs_readdir_large_page will allocate pages that must be freed with a call
 532 * to nfs_readdir_free_large_page
 533 */
 534static
 535int nfs_readdir_large_page(struct page **pages, unsigned int npages)
 536{
 537        unsigned int i;
 538
 539        for (i = 0; i < npages; i++) {
 540                struct page *page = alloc_page(GFP_KERNEL);
 541                if (page == NULL)
 542                        goto out_freepages;
 543                pages[i] = page;
 544        }
 545        return 0;
 546
 547out_freepages:
 548        nfs_readdir_free_pagearray(pages, i);
 549        return -ENOMEM;
 550}
 551
 552static
 553int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 554{
 555        struct page *pages[NFS_MAX_READDIR_PAGES];
 556        void *pages_ptr = NULL;
 557        struct nfs_entry entry;
 558        struct file     *file = desc->file;
 559        struct nfs_cache_array *array;
 560        int status = -ENOMEM;
 561        unsigned int array_size = ARRAY_SIZE(pages);
 562
 563        entry.prev_cookie = 0;
 564        entry.cookie = desc->last_cookie;
 565        entry.eof = 0;
 566        entry.fh = nfs_alloc_fhandle();
 567        entry.fattr = nfs_alloc_fattr();
 568        entry.server = NFS_SERVER(inode);
 569        if (entry.fh == NULL || entry.fattr == NULL)
 570                goto out;
 571
 572        array = nfs_readdir_get_array(page);
 573        if (IS_ERR(array)) {
 574                status = PTR_ERR(array);
 575                goto out;
 576        }
 577        memset(array, 0, sizeof(struct nfs_cache_array));
 578        array->eof_index = -1;
 579
 580        status = nfs_readdir_large_page(pages, array_size);
 581        if (status < 0)
 582                goto out_release_array;
 583        do {
 584                unsigned int pglen;
 585                status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 586
 587                if (status < 0)
 588                        break;
 589                pglen = status;
 590                status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 591                if (status < 0) {
 592                        if (status == -ENOSPC)
 593                                status = 0;
 594                        break;
 595                }
 596        } while (array->eof_index < 0);
 597
 598        nfs_readdir_free_large_page(pages_ptr, pages, array_size);
 599out_release_array:
 600        nfs_readdir_release_array(page);
 601out:
 602        nfs_free_fattr(entry.fattr);
 603        nfs_free_fhandle(entry.fh);
 604        return status;
 605}
 606
 607/*
 608 * Now we cache directories properly, by converting xdr information
 609 * to an array that can be used for lookups later.  This results in
 610 * fewer cache pages, since we can store more information on each page.
 611 * We only need to convert from xdr once so future lookups are much simpler
 612 */
 613static
 614int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
 615{
 616        struct inode    *inode = desc->file->f_path.dentry->d_inode;
 617        int ret;
 618
 619        ret = nfs_readdir_xdr_to_array(desc, page, inode);
 620        if (ret < 0)
 621                goto error;
 622        SetPageUptodate(page);
 623
 624        if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 625                /* Should never happen */
 626                nfs_zap_mapping(inode, inode->i_mapping);
 627        }
 628        unlock_page(page);
 629        return 0;
 630 error:
 631        unlock_page(page);
 632        return ret;
 633}
 634
 635static
 636void cache_page_release(nfs_readdir_descriptor_t *desc)
 637{
 638        if (!desc->page->mapping)
 639                nfs_readdir_clear_array(desc->page);
 640        page_cache_release(desc->page);
 641        desc->page = NULL;
 642}
 643
 644static
 645struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 646{
 647        return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
 648                        desc->page_index, (filler_t *)nfs_readdir_filler, desc);
 649}
 650
 651/*
 652 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 653 */
 654static
 655int find_cache_page(nfs_readdir_descriptor_t *desc)
 656{
 657        int res;
 658
 659        desc->page = get_cache_page(desc);
 660        if (IS_ERR(desc->page))
 661                return PTR_ERR(desc->page);
 662
 663        res = nfs_readdir_search_array(desc);
 664        if (res != 0)
 665                cache_page_release(desc);
 666        return res;
 667}
 668
 669/* Search for desc->dir_cookie from the beginning of the page cache */
 670static inline
 671int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 672{
 673        int res;
 674
 675        if (desc->page_index == 0) {
 676                desc->current_index = 0;
 677                desc->last_cookie = 0;
 678        }
 679        do {
 680                res = find_cache_page(desc);
 681        } while (res == -EAGAIN);
 682        return res;
 683}
 684
 685/*
 686 * Once we've found the start of the dirent within a page: fill 'er up...
 687 */
 688static 
 689int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
 690                   filldir_t filldir)
 691{
 692        struct file     *file = desc->file;
 693        int i = 0;
 694        int res = 0;
 695        struct nfs_cache_array *array = NULL;
 696
 697        array = nfs_readdir_get_array(desc->page);
 698        if (IS_ERR(array)) {
 699                res = PTR_ERR(array);
 700                goto out;
 701        }
 702
 703        for (i = desc->cache_entry_index; i < array->size; i++) {
 704                struct nfs_cache_array_entry *ent;
 705
 706                ent = &array->array[i];
 707                if (filldir(dirent, ent->string.name, ent->string.len,
 708                    file->f_pos, nfs_compat_user_ino64(ent->ino),
 709                    ent->d_type) < 0) {
 710                        desc->eof = 1;
 711                        break;
 712                }
 713                file->f_pos++;
 714                if (i < (array->size-1))
 715                        *desc->dir_cookie = array->array[i+1].cookie;
 716                else
 717                        *desc->dir_cookie = array->last_cookie;
 718        }
 719        if (array->eof_index >= 0)
 720                desc->eof = 1;
 721
 722        nfs_readdir_release_array(desc->page);
 723out:
 724        cache_page_release(desc);
 725        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 726                        (unsigned long long)*desc->dir_cookie, res);
 727        return res;
 728}
 729
 730/*
 731 * If we cannot find a cookie in our cache, we suspect that this is
 732 * because it points to a deleted file, so we ask the server to return
 733 * whatever it thinks is the next entry. We then feed this to filldir.
 734 * If all goes well, we should then be able to find our way round the
 735 * cache on the next call to readdir_search_pagecache();
 736 *
 737 * NOTE: we cannot add the anonymous page to the pagecache because
 738 *       the data it contains might not be page aligned. Besides,
 739 *       we should already have a complete representation of the
 740 *       directory in the page cache by the time we get here.
 741 */
 742static inline
 743int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
 744                     filldir_t filldir)
 745{
 746        struct page     *page = NULL;
 747        int             status;
 748        struct inode *inode = desc->file->f_path.dentry->d_inode;
 749
 750        dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 751                        (unsigned long long)*desc->dir_cookie);
 752
 753        page = alloc_page(GFP_HIGHUSER);
 754        if (!page) {
 755                status = -ENOMEM;
 756                goto out;
 757        }
 758
 759        desc->page_index = 0;
 760        desc->last_cookie = *desc->dir_cookie;
 761        desc->page = page;
 762
 763        status = nfs_readdir_xdr_to_array(desc, page, inode);
 764        if (status < 0)
 765                goto out_release;
 766
 767        status = nfs_do_filldir(desc, dirent, filldir);
 768
 769 out:
 770        dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 771                        __func__, status);
 772        return status;
 773 out_release:
 774        cache_page_release(desc);
 775        goto out;
 776}
 777
 778/* The file offset position represents the dirent entry number.  A
 779   last cookie cache takes care of the common case of reading the
 780   whole directory.
 781 */
 782static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
 783{
 784        struct dentry   *dentry = filp->f_path.dentry;
 785        struct inode    *inode = dentry->d_inode;
 786        nfs_readdir_descriptor_t my_desc,
 787                        *desc = &my_desc;
 788        int res;
 789
 790        dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
 791                        dentry->d_parent->d_name.name, dentry->d_name.name,
 792                        (long long)filp->f_pos);
 793        nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 794
 795        /*
 796         * filp->f_pos points to the dirent entry number.
 797         * *desc->dir_cookie has the cookie for the next entry. We have
 798         * to either find the entry with the appropriate number or
 799         * revalidate the cookie.
 800         */
 801        memset(desc, 0, sizeof(*desc));
 802
 803        desc->file = filp;
 804        desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
 805        desc->decode = NFS_PROTO(inode)->decode_dirent;
 806        desc->plus = NFS_USE_READDIRPLUS(inode);
 807
 808        nfs_block_sillyrename(dentry);
 809        res = nfs_revalidate_mapping(inode, filp->f_mapping);
 810        if (res < 0)
 811                goto out;
 812
 813        do {
 814                res = readdir_search_pagecache(desc);
 815
 816                if (res == -EBADCOOKIE) {
 817                        res = 0;
 818                        /* This means either end of directory */
 819                        if (*desc->dir_cookie && desc->eof == 0) {
 820                                /* Or that the server has 'lost' a cookie */
 821                                res = uncached_readdir(desc, dirent, filldir);
 822                                if (res == 0)
 823                                        continue;
 824                        }
 825                        break;
 826                }
 827                if (res == -ETOOSMALL && desc->plus) {
 828                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 829                        nfs_zap_caches(inode);
 830                        desc->page_index = 0;
 831                        desc->plus = 0;
 832                        desc->eof = 0;
 833                        continue;
 834                }
 835                if (res < 0)
 836                        break;
 837
 838                res = nfs_do_filldir(desc, dirent, filldir);
 839                if (res < 0)
 840                        break;
 841        } while (!desc->eof);
 842out:
 843        nfs_unblock_sillyrename(dentry);
 844        if (res > 0)
 845                res = 0;
 846        dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
 847                        dentry->d_parent->d_name.name, dentry->d_name.name,
 848                        res);
 849        return res;
 850}
 851
 852static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
 853{
 854        struct dentry *dentry = filp->f_path.dentry;
 855        struct inode *inode = dentry->d_inode;
 856
 857        dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
 858                        dentry->d_parent->d_name.name,
 859                        dentry->d_name.name,
 860                        offset, origin);
 861
 862        mutex_lock(&inode->i_mutex);
 863        switch (origin) {
 864                case 1:
 865                        offset += filp->f_pos;
 866                case 0:
 867                        if (offset >= 0)
 868                                break;
 869                default:
 870                        offset = -EINVAL;
 871                        goto out;
 872        }
 873        if (offset != filp->f_pos) {
 874                filp->f_pos = offset;
 875                nfs_file_open_context(filp)->dir_cookie = 0;
 876        }
 877out:
 878        mutex_unlock(&inode->i_mutex);
 879        return offset;
 880}
 881
 882/*
 883 * All directory operations under NFS are synchronous, so fsync()
 884 * is a dummy operation.
 885 */
 886static int nfs_fsync_dir(struct file *filp, int datasync)
 887{
 888        struct dentry *dentry = filp->f_path.dentry;
 889
 890        dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
 891                        dentry->d_parent->d_name.name, dentry->d_name.name,
 892                        datasync);
 893
 894        nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
 895        return 0;
 896}
 897
 898/**
 899 * nfs_force_lookup_revalidate - Mark the directory as having changed
 900 * @dir - pointer to directory inode
 901 *
 902 * This forces the revalidation code in nfs_lookup_revalidate() to do a
 903 * full lookup on all child dentries of 'dir' whenever a change occurs
 904 * on the server that might have invalidated our dcache.
 905 *
 906 * The caller should be holding dir->i_lock
 907 */
 908void nfs_force_lookup_revalidate(struct inode *dir)
 909{
 910        NFS_I(dir)->cache_change_attribute++;
 911}
 912
 913/*
 914 * A check for whether or not the parent directory has changed.
 915 * In the case it has, we assume that the dentries are untrustworthy
 916 * and may need to be looked up again.
 917 */
 918static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
 919{
 920        if (IS_ROOT(dentry))
 921                return 1;
 922        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
 923                return 0;
 924        if (!nfs_verify_change_attribute(dir, dentry->d_time))
 925                return 0;
 926        /* Revalidate nfsi->cache_change_attribute before we declare a match */
 927        if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
 928                return 0;
 929        if (!nfs_verify_change_attribute(dir, dentry->d_time))
 930                return 0;
 931        return 1;
 932}
 933
 934/*
 935 * Return the intent data that applies to this particular path component
 936 *
 937 * Note that the current set of intents only apply to the very last
 938 * component of the path.
 939 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
 940 */
 941static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
 942                                                unsigned int mask)
 943{
 944        if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
 945                return 0;
 946        return nd->flags & mask;
 947}
 948
 949/*
 950 * Use intent information to check whether or not we're going to do
 951 * an O_EXCL create using this path component.
 952 */
 953static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
 954{
 955        if (NFS_PROTO(dir)->version == 2)
 956                return 0;
 957        return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
 958}
 959
 960/*
 961 * Inode and filehandle revalidation for lookups.
 962 *
 963 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
 964 * or if the intent information indicates that we're about to open this
 965 * particular file and the "nocto" mount flag is not set.
 966 *
 967 */
 968static inline
 969int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
 970{
 971        struct nfs_server *server = NFS_SERVER(inode);
 972
 973        if (IS_AUTOMOUNT(inode))
 974                return 0;
 975        if (nd != NULL) {
 976                /* VFS wants an on-the-wire revalidation */
 977                if (nd->flags & LOOKUP_REVAL)
 978                        goto out_force;
 979                /* This is an open(2) */
 980                if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
 981                                !(server->flags & NFS_MOUNT_NOCTO) &&
 982                                (S_ISREG(inode->i_mode) ||
 983                                 S_ISDIR(inode->i_mode)))
 984                        goto out_force;
 985                return 0;
 986        }
 987        return nfs_revalidate_inode(server, inode);
 988out_force:
 989        return __nfs_revalidate_inode(server, inode);
 990}
 991
 992/*
 993 * We judge how long we want to trust negative
 994 * dentries by looking at the parent inode mtime.
 995 *
 996 * If parent mtime has changed, we revalidate, else we wait for a
 997 * period corresponding to the parent's attribute cache timeout value.
 998 */
 999static inline
1000int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1001                       struct nameidata *nd)
1002{
1003        /* Don't revalidate a negative dentry if we're creating a new file */
1004        if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1005                return 0;
1006        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1007                return 1;
1008        return !nfs_check_verifier(dir, dentry);
1009}
1010
1011/*
1012 * This is called every time the dcache has a lookup hit,
1013 * and we should check whether we can really trust that
1014 * lookup.
1015 *
1016 * NOTE! The hit can be a negative hit too, don't assume
1017 * we have an inode!
1018 *
1019 * If the parent directory is seen to have changed, we throw out the
1020 * cached dentry and do a new lookup.
1021 */
1022static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1023{
1024        struct inode *dir;
1025        struct inode *inode;
1026        struct dentry *parent;
1027        struct nfs_fh *fhandle = NULL;
1028        struct nfs_fattr *fattr = NULL;
1029        int error;
1030
1031        if (nd->flags & LOOKUP_RCU)
1032                return -ECHILD;
1033
1034        parent = dget_parent(dentry);
1035        dir = parent->d_inode;
1036        nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1037        inode = dentry->d_inode;
1038
1039        if (!inode) {
1040                if (nfs_neg_need_reval(dir, dentry, nd))
1041                        goto out_bad;
1042                goto out_valid;
1043        }
1044
1045        if (is_bad_inode(inode)) {
1046                dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1047                                __func__, dentry->d_parent->d_name.name,
1048                                dentry->d_name.name);
1049                goto out_bad;
1050        }
1051
1052        if (nfs_have_delegation(inode, FMODE_READ))
1053                goto out_set_verifier;
1054
1055        /* Force a full look up iff the parent directory has changed */
1056        if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1057                if (nfs_lookup_verify_inode(inode, nd))
1058                        goto out_zap_parent;
1059                goto out_valid;
1060        }
1061
1062        if (NFS_STALE(inode))
1063                goto out_bad;
1064
1065        error = -ENOMEM;
1066        fhandle = nfs_alloc_fhandle();
1067        fattr = nfs_alloc_fattr();
1068        if (fhandle == NULL || fattr == NULL)
1069                goto out_error;
1070
1071        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1072        if (error)
1073                goto out_bad;
1074        if (nfs_compare_fh(NFS_FH(inode), fhandle))
1075                goto out_bad;
1076        if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1077                goto out_bad;
1078
1079        nfs_free_fattr(fattr);
1080        nfs_free_fhandle(fhandle);
1081out_set_verifier:
1082        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1083 out_valid:
1084        dput(parent);
1085        dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1086                        __func__, dentry->d_parent->d_name.name,
1087                        dentry->d_name.name);
1088        return 1;
1089out_zap_parent:
1090        nfs_zap_caches(dir);
1091 out_bad:
1092        nfs_mark_for_revalidate(dir);
1093        if (inode && S_ISDIR(inode->i_mode)) {
1094                /* Purge readdir caches. */
1095                nfs_zap_caches(inode);
1096                /* If we have submounts, don't unhash ! */
1097                if (have_submounts(dentry))
1098                        goto out_valid;
1099                if (dentry->d_flags & DCACHE_DISCONNECTED)
1100                        goto out_valid;
1101                shrink_dcache_parent(dentry);
1102        }
1103        d_drop(dentry);
1104        nfs_free_fattr(fattr);
1105        nfs_free_fhandle(fhandle);
1106        dput(parent);
1107        dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1108                        __func__, dentry->d_parent->d_name.name,
1109                        dentry->d_name.name);
1110        return 0;
1111out_error:
1112        nfs_free_fattr(fattr);
1113        nfs_free_fhandle(fhandle);
1114        dput(parent);
1115        dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1116                        __func__, dentry->d_parent->d_name.name,
1117                        dentry->d_name.name, error);
1118        return error;
1119}
1120
1121/*
1122 * This is called from dput() when d_count is going to 0.
1123 */
1124static int nfs_dentry_delete(const struct dentry *dentry)
1125{
1126        dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1127                dentry->d_parent->d_name.name, dentry->d_name.name,
1128                dentry->d_flags);
1129
1130        /* Unhash any dentry with a stale inode */
1131        if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1132                return 1;
1133
1134        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1135                /* Unhash it, so that ->d_iput() would be called */
1136                return 1;
1137        }
1138        if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1139                /* Unhash it, so that ancestors of killed async unlink
1140                 * files will be cleaned up during umount */
1141                return 1;
1142        }
1143        return 0;
1144
1145}
1146
1147static void nfs_drop_nlink(struct inode *inode)
1148{
1149        spin_lock(&inode->i_lock);
1150        if (inode->i_nlink > 0)
1151                drop_nlink(inode);
1152        spin_unlock(&inode->i_lock);
1153}
1154
1155/*
1156 * Called when the dentry loses inode.
1157 * We use it to clean up silly-renamed files.
1158 */
1159static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1160{
1161        if (S_ISDIR(inode->i_mode))
1162                /* drop any readdir cache as it could easily be old */
1163                NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1164
1165        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1166                drop_nlink(inode);
1167                nfs_complete_unlink(dentry, inode);
1168        }
1169        iput(inode);
1170}
1171
1172const struct dentry_operations nfs_dentry_operations = {
1173        .d_revalidate   = nfs_lookup_revalidate,
1174        .d_delete       = nfs_dentry_delete,
1175        .d_iput         = nfs_dentry_iput,
1176        .d_automount    = nfs_d_automount,
1177};
1178
1179static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1180{
1181        struct dentry *res;
1182        struct dentry *parent;
1183        struct inode *inode = NULL;
1184        struct nfs_fh *fhandle = NULL;
1185        struct nfs_fattr *fattr = NULL;
1186        int error;
1187
1188        dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1189                dentry->d_parent->d_name.name, dentry->d_name.name);
1190        nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1191
1192        res = ERR_PTR(-ENAMETOOLONG);
1193        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1194                goto out;
1195
1196        /*
1197         * If we're doing an exclusive create, optimize away the lookup
1198         * but don't hash the dentry.
1199         */
1200        if (nfs_is_exclusive_create(dir, nd)) {
1201                d_instantiate(dentry, NULL);
1202                res = NULL;
1203                goto out;
1204        }
1205
1206        res = ERR_PTR(-ENOMEM);
1207        fhandle = nfs_alloc_fhandle();
1208        fattr = nfs_alloc_fattr();
1209        if (fhandle == NULL || fattr == NULL)
1210                goto out;
1211
1212        parent = dentry->d_parent;
1213        /* Protect against concurrent sillydeletes */
1214        nfs_block_sillyrename(parent);
1215        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1216        if (error == -ENOENT)
1217                goto no_entry;
1218        if (error < 0) {
1219                res = ERR_PTR(error);
1220                goto out_unblock_sillyrename;
1221        }
1222        inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1223        res = ERR_CAST(inode);
1224        if (IS_ERR(res))
1225                goto out_unblock_sillyrename;
1226
1227no_entry:
1228        res = d_materialise_unique(dentry, inode);
1229        if (res != NULL) {
1230                if (IS_ERR(res))
1231                        goto out_unblock_sillyrename;
1232                dentry = res;
1233        }
1234        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1235out_unblock_sillyrename:
1236        nfs_unblock_sillyrename(parent);
1237out:
1238        nfs_free_fattr(fattr);
1239        nfs_free_fhandle(fhandle);
1240        return res;
1241}
1242
1243#ifdef CONFIG_NFS_V4
1244static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1245
1246const struct dentry_operations nfs4_dentry_operations = {
1247        .d_revalidate   = nfs_open_revalidate,
1248        .d_delete       = nfs_dentry_delete,
1249        .d_iput         = nfs_dentry_iput,
1250        .d_automount    = nfs_d_automount,
1251};
1252
1253/*
1254 * Use intent information to determine whether we need to substitute
1255 * the NFSv4-style stateful OPEN for the LOOKUP call
1256 */
1257static int is_atomic_open(struct nameidata *nd)
1258{
1259        if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1260                return 0;
1261        /* NFS does not (yet) have a stateful open for directories */
1262        if (nd->flags & LOOKUP_DIRECTORY)
1263                return 0;
1264        /* Are we trying to write to a read only partition? */
1265        if (__mnt_is_readonly(nd->path.mnt) &&
1266            (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1267                return 0;
1268        return 1;
1269}
1270
1271static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1272{
1273        struct path path = {
1274                .mnt = nd->path.mnt,
1275                .dentry = dentry,
1276        };
1277        struct nfs_open_context *ctx;
1278        struct rpc_cred *cred;
1279        fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1280
1281        cred = rpc_lookup_cred();
1282        if (IS_ERR(cred))
1283                return ERR_CAST(cred);
1284        ctx = alloc_nfs_open_context(&path, cred, fmode);
1285        put_rpccred(cred);
1286        if (ctx == NULL)
1287                return ERR_PTR(-ENOMEM);
1288        return ctx;
1289}
1290
1291static int do_open(struct inode *inode, struct file *filp)
1292{
1293        nfs_fscache_set_inode_cookie(inode, filp);
1294        return 0;
1295}
1296
1297static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1298{
1299        struct file *filp;
1300        int ret = 0;
1301
1302        /* If the open_intent is for execute, we have an extra check to make */
1303        if (ctx->mode & FMODE_EXEC) {
1304                ret = nfs_may_open(ctx->path.dentry->d_inode,
1305                                ctx->cred,
1306                                nd->intent.open.flags);
1307                if (ret < 0)
1308                        goto out;
1309        }
1310        filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1311        if (IS_ERR(filp))
1312                ret = PTR_ERR(filp);
1313        else
1314                nfs_file_set_open_context(filp, ctx);
1315out:
1316        put_nfs_open_context(ctx);
1317        return ret;
1318}
1319
1320static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1321{
1322        struct nfs_open_context *ctx;
1323        struct iattr attr;
1324        struct dentry *res = NULL;
1325        struct inode *inode;
1326        int open_flags;
1327        int err;
1328
1329        dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1330                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1331
1332        /* Check that we are indeed trying to open this file */
1333        if (!is_atomic_open(nd))
1334                goto no_open;
1335
1336        if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1337                res = ERR_PTR(-ENAMETOOLONG);
1338                goto out;
1339        }
1340
1341        /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1342         * the dentry. */
1343        if (nd->flags & LOOKUP_EXCL) {
1344                d_instantiate(dentry, NULL);
1345                goto out;
1346        }
1347
1348        ctx = nameidata_to_nfs_open_context(dentry, nd);
1349        res = ERR_CAST(ctx);
1350        if (IS_ERR(ctx))
1351                goto out;
1352
1353        open_flags = nd->intent.open.flags;
1354        if (nd->flags & LOOKUP_CREATE) {
1355                attr.ia_mode = nd->intent.open.create_mode;
1356                attr.ia_valid = ATTR_MODE;
1357                attr.ia_mode &= ~current_umask();
1358        } else {
1359                open_flags &= ~(O_EXCL | O_CREAT);
1360                attr.ia_valid = 0;
1361        }
1362
1363        /* Open the file on the server */
1364        nfs_block_sillyrename(dentry->d_parent);
1365        inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1366        if (IS_ERR(inode)) {
1367                nfs_unblock_sillyrename(dentry->d_parent);
1368                put_nfs_open_context(ctx);
1369                switch (PTR_ERR(inode)) {
1370                        /* Make a negative dentry */
1371                        case -ENOENT:
1372                                d_add(dentry, NULL);
1373                                res = NULL;
1374                                goto out;
1375                        /* This turned out not to be a regular file */
1376                        case -ENOTDIR:
1377                                goto no_open;
1378                        case -ELOOP:
1379                                if (!(nd->intent.open.flags & O_NOFOLLOW))
1380                                        goto no_open;
1381                        /* case -EISDIR: */
1382                        /* case -EINVAL: */
1383                        default:
1384                                res = ERR_CAST(inode);
1385                                goto out;
1386                }
1387        }
1388        res = d_add_unique(dentry, inode);
1389        nfs_unblock_sillyrename(dentry->d_parent);
1390        if (res != NULL) {
1391                dput(ctx->path.dentry);
1392                ctx->path.dentry = dget(res);
1393                dentry = res;
1394        }
1395        err = nfs_intent_set_file(nd, ctx);
1396        if (err < 0) {
1397                if (res != NULL)
1398                        dput(res);
1399                return ERR_PTR(err);
1400        }
1401out:
1402        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1403        return res;
1404no_open:
1405        return nfs_lookup(dir, dentry, nd);
1406}
1407
1408static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1409{
1410        struct dentry *parent = NULL;
1411        struct inode *inode;
1412        struct inode *dir;
1413        struct nfs_open_context *ctx;
1414        int openflags, ret = 0;
1415
1416        if (nd->flags & LOOKUP_RCU)
1417                return -ECHILD;
1418
1419        inode = dentry->d_inode;
1420        if (!is_atomic_open(nd) || d_mountpoint(dentry))
1421                goto no_open;
1422
1423        parent = dget_parent(dentry);
1424        dir = parent->d_inode;
1425
1426        /* We can't create new files in nfs_open_revalidate(), so we
1427         * optimize away revalidation of negative dentries.
1428         */
1429        if (inode == NULL) {
1430                if (!nfs_neg_need_reval(dir, dentry, nd))
1431                        ret = 1;
1432                goto out;
1433        }
1434
1435        /* NFS only supports OPEN on regular files */
1436        if (!S_ISREG(inode->i_mode))
1437                goto no_open_dput;
1438        openflags = nd->intent.open.flags;
1439        /* We cannot do exclusive creation on a positive dentry */
1440        if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1441                goto no_open_dput;
1442        /* We can't create new files, or truncate existing ones here */
1443        openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1444
1445        ctx = nameidata_to_nfs_open_context(dentry, nd);
1446        ret = PTR_ERR(ctx);
1447        if (IS_ERR(ctx))
1448                goto out;
1449        /*
1450         * Note: we're not holding inode->i_mutex and so may be racing with
1451         * operations that change the directory. We therefore save the
1452         * change attribute *before* we do the RPC call.
1453         */
1454        inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1455        if (IS_ERR(inode)) {
1456                ret = PTR_ERR(inode);
1457                switch (ret) {
1458                case -EPERM:
1459                case -EACCES:
1460                case -EDQUOT:
1461                case -ENOSPC:
1462                case -EROFS:
1463                        goto out_put_ctx;
1464                default:
1465                        goto out_drop;
1466                }
1467        }
1468        iput(inode);
1469        if (inode != dentry->d_inode)
1470                goto out_drop;
1471
1472        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1473        ret = nfs_intent_set_file(nd, ctx);
1474        if (ret >= 0)
1475                ret = 1;
1476out:
1477        dput(parent);
1478        return ret;
1479out_drop:
1480        d_drop(dentry);
1481        ret = 0;
1482out_put_ctx:
1483        put_nfs_open_context(ctx);
1484        goto out;
1485
1486no_open_dput:
1487        dput(parent);
1488no_open:
1489        return nfs_lookup_revalidate(dentry, nd);
1490}
1491
1492static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1493                struct nameidata *nd)
1494{
1495        struct nfs_open_context *ctx = NULL;
1496        struct iattr attr;
1497        int error;
1498        int open_flags = 0;
1499
1500        dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1501                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1502
1503        attr.ia_mode = mode;
1504        attr.ia_valid = ATTR_MODE;
1505
1506        if ((nd->flags & LOOKUP_CREATE) != 0) {
1507                open_flags = nd->intent.open.flags;
1508
1509                ctx = nameidata_to_nfs_open_context(dentry, nd);
1510                error = PTR_ERR(ctx);
1511                if (IS_ERR(ctx))
1512                        goto out_err_drop;
1513        }
1514
1515        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1516        if (error != 0)
1517                goto out_put_ctx;
1518        if (ctx != NULL) {
1519                error = nfs_intent_set_file(nd, ctx);
1520                if (error < 0)
1521                        goto out_err;
1522        }
1523        return 0;
1524out_put_ctx:
1525        if (ctx != NULL)
1526                put_nfs_open_context(ctx);
1527out_err_drop:
1528        d_drop(dentry);
1529out_err:
1530        return error;
1531}
1532
1533#endif /* CONFIG_NFSV4 */
1534
1535/*
1536 * Code common to create, mkdir, and mknod.
1537 */
1538int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1539                                struct nfs_fattr *fattr)
1540{
1541        struct dentry *parent = dget_parent(dentry);
1542        struct inode *dir = parent->d_inode;
1543        struct inode *inode;
1544        int error = -EACCES;
1545
1546        d_drop(dentry);
1547
1548        /* We may have been initialized further down */
1549        if (dentry->d_inode)
1550                goto out;
1551        if (fhandle->size == 0) {
1552                error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1553                if (error)
1554                        goto out_error;
1555        }
1556        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1557        if (!(fattr->valid & NFS_ATTR_FATTR)) {
1558                struct nfs_server *server = NFS_SB(dentry->d_sb);
1559                error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1560                if (error < 0)
1561                        goto out_error;
1562        }
1563        inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1564        error = PTR_ERR(inode);
1565        if (IS_ERR(inode))
1566                goto out_error;
1567        d_add(dentry, inode);
1568out:
1569        dput(parent);
1570        return 0;
1571out_error:
1572        nfs_mark_for_revalidate(dir);
1573        dput(parent);
1574        return error;
1575}
1576
1577/*
1578 * Following a failed create operation, we drop the dentry rather
1579 * than retain a negative dentry. This avoids a problem in the event
1580 * that the operation succeeded on the server, but an error in the
1581 * reply path made it appear to have failed.
1582 */
1583static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1584                struct nameidata *nd)
1585{
1586        struct iattr attr;
1587        int error;
1588        int open_flags = 0;
1589
1590        dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1591                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1592
1593        attr.ia_mode = mode;
1594        attr.ia_valid = ATTR_MODE;
1595
1596        if ((nd->flags & LOOKUP_CREATE) != 0)
1597                open_flags = nd->intent.open.flags;
1598
1599        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL);
1600        if (error != 0)
1601                goto out_err;
1602        return 0;
1603out_err:
1604        d_drop(dentry);
1605        return error;
1606}
1607
1608/*
1609 * See comments for nfs_proc_create regarding failed operations.
1610 */
1611static int
1612nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1613{
1614        struct iattr attr;
1615        int status;
1616
1617        dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1618                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1619
1620        if (!new_valid_dev(rdev))
1621                return -EINVAL;
1622
1623        attr.ia_mode = mode;
1624        attr.ia_valid = ATTR_MODE;
1625
1626        status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1627        if (status != 0)
1628                goto out_err;
1629        return 0;
1630out_err:
1631        d_drop(dentry);
1632        return status;
1633}
1634
1635/*
1636 * See comments for nfs_proc_create regarding failed operations.
1637 */
1638static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1639{
1640        struct iattr attr;
1641        int error;
1642
1643        dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1644                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1645
1646        attr.ia_valid = ATTR_MODE;
1647        attr.ia_mode = mode | S_IFDIR;
1648
1649        error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1650        if (error != 0)
1651                goto out_err;
1652        return 0;
1653out_err:
1654        d_drop(dentry);
1655        return error;
1656}
1657
1658static void nfs_dentry_handle_enoent(struct dentry *dentry)
1659{
1660        if (dentry->d_inode != NULL && !d_unhashed(dentry))
1661                d_delete(dentry);
1662}
1663
1664static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1665{
1666        int error;
1667
1668        dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1669                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1670
1671        error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1672        /* Ensure the VFS deletes this inode */
1673        if (error == 0 && dentry->d_inode != NULL)
1674                clear_nlink(dentry->d_inode);
1675        else if (error == -ENOENT)
1676                nfs_dentry_handle_enoent(dentry);
1677
1678        return error;
1679}
1680
1681/*
1682 * Remove a file after making sure there are no pending writes,
1683 * and after checking that the file has only one user. 
1684 *
1685 * We invalidate the attribute cache and free the inode prior to the operation
1686 * to avoid possible races if the server reuses the inode.
1687 */
1688static int nfs_safe_remove(struct dentry *dentry)
1689{
1690        struct inode *dir = dentry->d_parent->d_inode;
1691        struct inode *inode = dentry->d_inode;
1692        int error = -EBUSY;
1693                
1694        dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1695                dentry->d_parent->d_name.name, dentry->d_name.name);
1696
1697        /* If the dentry was sillyrenamed, we simply call d_delete() */
1698        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1699                error = 0;
1700                goto out;
1701        }
1702
1703        if (inode != NULL) {
1704                nfs_inode_return_delegation(inode);
1705                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1706                /* The VFS may want to delete this inode */
1707                if (error == 0)
1708                        nfs_drop_nlink(inode);
1709                nfs_mark_for_revalidate(inode);
1710        } else
1711                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1712        if (error == -ENOENT)
1713                nfs_dentry_handle_enoent(dentry);
1714out:
1715        return error;
1716}
1717
1718/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1719 *  belongs to an active ".nfs..." file and we return -EBUSY.
1720 *
1721 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1722 */
1723static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1724{
1725        int error;
1726        int need_rehash = 0;
1727
1728        dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1729                dir->i_ino, dentry->d_name.name);
1730
1731        spin_lock(&dentry->d_lock);
1732        if (dentry->d_count > 1) {
1733                spin_unlock(&dentry->d_lock);
1734                /* Start asynchronous writeout of the inode */
1735                write_inode_now(dentry->d_inode, 0);
1736                error = nfs_sillyrename(dir, dentry);
1737                return error;
1738        }
1739        if (!d_unhashed(dentry)) {
1740                __d_drop(dentry);
1741                need_rehash = 1;
1742        }
1743        spin_unlock(&dentry->d_lock);
1744        error = nfs_safe_remove(dentry);
1745        if (!error || error == -ENOENT) {
1746                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1747        } else if (need_rehash)
1748                d_rehash(dentry);
1749        return error;
1750}
1751
1752/*
1753 * To create a symbolic link, most file systems instantiate a new inode,
1754 * add a page to it containing the path, then write it out to the disk
1755 * using prepare_write/commit_write.
1756 *
1757 * Unfortunately the NFS client can't create the in-core inode first
1758 * because it needs a file handle to create an in-core inode (see
1759 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1760 * symlink request has completed on the server.
1761 *
1762 * So instead we allocate a raw page, copy the symname into it, then do
1763 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1764 * now have a new file handle and can instantiate an in-core NFS inode
1765 * and move the raw page into its mapping.
1766 */
1767static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1768{
1769        struct pagevec lru_pvec;
1770        struct page *page;
1771        char *kaddr;
1772        struct iattr attr;
1773        unsigned int pathlen = strlen(symname);
1774        int error;
1775
1776        dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1777                dir->i_ino, dentry->d_name.name, symname);
1778
1779        if (pathlen > PAGE_SIZE)
1780                return -ENAMETOOLONG;
1781
1782        attr.ia_mode = S_IFLNK | S_IRWXUGO;
1783        attr.ia_valid = ATTR_MODE;
1784
1785        page = alloc_page(GFP_HIGHUSER);
1786        if (!page)
1787                return -ENOMEM;
1788
1789        kaddr = kmap_atomic(page, KM_USER0);
1790        memcpy(kaddr, symname, pathlen);
1791        if (pathlen < PAGE_SIZE)
1792                memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1793        kunmap_atomic(kaddr, KM_USER0);
1794
1795        error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1796        if (error != 0) {
1797                dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1798                        dir->i_sb->s_id, dir->i_ino,
1799                        dentry->d_name.name, symname, error);
1800                d_drop(dentry);
1801                __free_page(page);
1802                return error;
1803        }
1804
1805        /*
1806         * No big deal if we can't add this page to the page cache here.
1807         * READLINK will get the missing page from the server if needed.
1808         */
1809        pagevec_init(&lru_pvec, 0);
1810        if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1811                                                        GFP_KERNEL)) {
1812                pagevec_add(&lru_pvec, page);
1813                pagevec_lru_add_file(&lru_pvec);
1814                SetPageUptodate(page);
1815                unlock_page(page);
1816        } else
1817                __free_page(page);
1818
1819        return 0;
1820}
1821
1822static int 
1823nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1824{
1825        struct inode *inode = old_dentry->d_inode;
1826        int error;
1827
1828        dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1829                old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1830                dentry->d_parent->d_name.name, dentry->d_name.name);
1831
1832        nfs_inode_return_delegation(inode);
1833
1834        d_drop(dentry);
1835        error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1836        if (error == 0) {
1837                ihold(inode);
1838                d_add(dentry, inode);
1839        }
1840        return error;
1841}
1842
1843/*
1844 * RENAME
1845 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1846 * different file handle for the same inode after a rename (e.g. when
1847 * moving to a different directory). A fail-safe method to do so would
1848 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1849 * rename the old file using the sillyrename stuff. This way, the original
1850 * file in old_dir will go away when the last process iput()s the inode.
1851 *
1852 * FIXED.
1853 * 
1854 * It actually works quite well. One needs to have the possibility for
1855 * at least one ".nfs..." file in each directory the file ever gets
1856 * moved or linked to which happens automagically with the new
1857 * implementation that only depends on the dcache stuff instead of
1858 * using the inode layer
1859 *
1860 * Unfortunately, things are a little more complicated than indicated
1861 * above. For a cross-directory move, we want to make sure we can get
1862 * rid of the old inode after the operation.  This means there must be
1863 * no pending writes (if it's a file), and the use count must be 1.
1864 * If these conditions are met, we can drop the dentries before doing
1865 * the rename.
1866 */
1867static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1868                      struct inode *new_dir, struct dentry *new_dentry)
1869{
1870        struct inode *old_inode = old_dentry->d_inode;
1871        struct inode *new_inode = new_dentry->d_inode;
1872        struct dentry *dentry = NULL, *rehash = NULL;
1873        int error = -EBUSY;
1874
1875        dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1876                 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1877                 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1878                 new_dentry->d_count);
1879
1880        /*
1881         * For non-directories, check whether the target is busy and if so,
1882         * make a copy of the dentry and then do a silly-rename. If the
1883         * silly-rename succeeds, the copied dentry is hashed and becomes
1884         * the new target.
1885         */
1886        if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1887                /*
1888                 * To prevent any new references to the target during the
1889                 * rename, we unhash the dentry in advance.
1890                 */
1891                if (!d_unhashed(new_dentry)) {
1892                        d_drop(new_dentry);
1893                        rehash = new_dentry;
1894                }
1895
1896                if (new_dentry->d_count > 2) {
1897                        int err;
1898
1899                        /* copy the target dentry's name */
1900                        dentry = d_alloc(new_dentry->d_parent,
1901                                         &new_dentry->d_name);
1902                        if (!dentry)
1903                                goto out;
1904
1905                        /* silly-rename the existing target ... */
1906                        err = nfs_sillyrename(new_dir, new_dentry);
1907                        if (err)
1908                                goto out;
1909
1910                        new_dentry = dentry;
1911                        rehash = NULL;
1912                        new_inode = NULL;
1913                }
1914        }
1915
1916        nfs_inode_return_delegation(old_inode);
1917        if (new_inode != NULL)
1918                nfs_inode_return_delegation(new_inode);
1919
1920        error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1921                                           new_dir, &new_dentry->d_name);
1922        nfs_mark_for_revalidate(old_inode);
1923out:
1924        if (rehash)
1925                d_rehash(rehash);
1926        if (!error) {
1927                if (new_inode != NULL)
1928                        nfs_drop_nlink(new_inode);
1929                d_move(old_dentry, new_dentry);
1930                nfs_set_verifier(new_dentry,
1931                                        nfs_save_change_attribute(new_dir));
1932        } else if (error == -ENOENT)
1933                nfs_dentry_handle_enoent(old_dentry);
1934
1935        /* new dentry created? */
1936        if (dentry)
1937                dput(dentry);
1938        return error;
1939}
1940
1941static DEFINE_SPINLOCK(nfs_access_lru_lock);
1942static LIST_HEAD(nfs_access_lru_list);
1943static atomic_long_t nfs_access_nr_entries;
1944
1945static void nfs_access_free_entry(struct nfs_access_entry *entry)
1946{
1947        put_rpccred(entry->cred);
1948        kfree(entry);
1949        smp_mb__before_atomic_dec();
1950        atomic_long_dec(&nfs_access_nr_entries);
1951        smp_mb__after_atomic_dec();
1952}
1953
1954static void nfs_access_free_list(struct list_head *head)
1955{
1956        struct nfs_access_entry *cache;
1957
1958        while (!list_empty(head)) {
1959                cache = list_entry(head->next, struct nfs_access_entry, lru);
1960                list_del(&cache->lru);
1961                nfs_access_free_entry(cache);
1962        }
1963}
1964
1965int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1966{
1967        LIST_HEAD(head);
1968        struct nfs_inode *nfsi, *next;
1969        struct nfs_access_entry *cache;
1970
1971        if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1972                return (nr_to_scan == 0) ? 0 : -1;
1973
1974        spin_lock(&nfs_access_lru_lock);
1975        list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1976                struct inode *inode;
1977
1978                if (nr_to_scan-- == 0)
1979                        break;
1980                inode = &nfsi->vfs_inode;
1981                spin_lock(&inode->i_lock);
1982                if (list_empty(&nfsi->access_cache_entry_lru))
1983                        goto remove_lru_entry;
1984                cache = list_entry(nfsi->access_cache_entry_lru.next,
1985                                struct nfs_access_entry, lru);
1986                list_move(&cache->lru, &head);
1987                rb_erase(&cache->rb_node, &nfsi->access_cache);
1988                if (!list_empty(&nfsi->access_cache_entry_lru))
1989                        list_move_tail(&nfsi->access_cache_inode_lru,
1990                                        &nfs_access_lru_list);
1991                else {
1992remove_lru_entry:
1993                        list_del_init(&nfsi->access_cache_inode_lru);
1994                        smp_mb__before_clear_bit();
1995                        clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1996                        smp_mb__after_clear_bit();
1997                }
1998                spin_unlock(&inode->i_lock);
1999        }
2000        spin_unlock(&nfs_access_lru_lock);
2001        nfs_access_free_list(&head);
2002        return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2003}
2004
2005static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2006{
2007        struct rb_root *root_node = &nfsi->access_cache;
2008        struct rb_node *n;
2009        struct nfs_access_entry *entry;
2010
2011        /* Unhook entries from the cache */
2012        while ((n = rb_first(root_node)) != NULL) {
2013                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2014                rb_erase(n, root_node);
2015                list_move(&entry->lru, head);
2016        }
2017        nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2018}
2019
2020void nfs_access_zap_cache(struct inode *inode)
2021{
2022        LIST_HEAD(head);
2023
2024        if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2025                return;
2026        /* Remove from global LRU init */
2027        spin_lock(&nfs_access_lru_lock);
2028        if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2029                list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2030
2031        spin_lock(&inode->i_lock);
2032        __nfs_access_zap_cache(NFS_I(inode), &head);
2033        spin_unlock(&inode->i_lock);
2034        spin_unlock(&nfs_access_lru_lock);
2035        nfs_access_free_list(&head);
2036}
2037
2038static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2039{
2040        struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2041        struct nfs_access_entry *entry;
2042
2043        while (n != NULL) {
2044                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2045
2046                if (cred < entry->cred)
2047                        n = n->rb_left;
2048                else if (cred > entry->cred)
2049                        n = n->rb_right;
2050                else
2051                        return entry;
2052        }
2053        return NULL;
2054}
2055
2056static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2057{
2058        struct nfs_inode *nfsi = NFS_I(inode);
2059        struct nfs_access_entry *cache;
2060        int err = -ENOENT;
2061
2062        spin_lock(&inode->i_lock);
2063        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2064                goto out_zap;
2065        cache = nfs_access_search_rbtree(inode, cred);
2066        if (cache == NULL)
2067                goto out;
2068        if (!nfs_have_delegated_attributes(inode) &&
2069            !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2070                goto out_stale;
2071        res->jiffies = cache->jiffies;
2072        res->cred = cache->cred;
2073        res->mask = cache->mask;
2074        list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2075        err = 0;
2076out:
2077        spin_unlock(&inode->i_lock);
2078        return err;
2079out_stale:
2080        rb_erase(&cache->rb_node, &nfsi->access_cache);
2081        list_del(&cache->lru);
2082        spin_unlock(&inode->i_lock);
2083        nfs_access_free_entry(cache);
2084        return -ENOENT;
2085out_zap:
2086        spin_unlock(&inode->i_lock);
2087        nfs_access_zap_cache(inode);
2088        return -ENOENT;
2089}
2090
2091static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2092{
2093        struct nfs_inode *nfsi = NFS_I(inode);
2094        struct rb_root *root_node = &nfsi->access_cache;
2095        struct rb_node **p = &root_node->rb_node;
2096        struct rb_node *parent = NULL;
2097        struct nfs_access_entry *entry;
2098
2099        spin_lock(&inode->i_lock);
2100        while (*p != NULL) {
2101                parent = *p;
2102                entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2103
2104                if (set->cred < entry->cred)
2105                        p = &parent->rb_left;
2106                else if (set->cred > entry->cred)
2107                        p = &parent->rb_right;
2108                else
2109                        goto found;
2110        }
2111        rb_link_node(&set->rb_node, parent, p);
2112        rb_insert_color(&set->rb_node, root_node);
2113        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2114        spin_unlock(&inode->i_lock);
2115        return;
2116found:
2117        rb_replace_node(parent, &set->rb_node, root_node);
2118        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2119        list_del(&entry->lru);
2120        spin_unlock(&inode->i_lock);
2121        nfs_access_free_entry(entry);
2122}
2123
2124static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2125{
2126        struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2127        if (cache == NULL)
2128                return;
2129        RB_CLEAR_NODE(&cache->rb_node);
2130        cache->jiffies = set->jiffies;
2131        cache->cred = get_rpccred(set->cred);
2132        cache->mask = set->mask;
2133
2134        nfs_access_add_rbtree(inode, cache);
2135
2136        /* Update accounting */
2137        smp_mb__before_atomic_inc();
2138        atomic_long_inc(&nfs_access_nr_entries);
2139        smp_mb__after_atomic_inc();
2140
2141        /* Add inode to global LRU list */
2142        if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2143                spin_lock(&nfs_access_lru_lock);
2144                if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2145                        list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2146                                        &nfs_access_lru_list);
2147                spin_unlock(&nfs_access_lru_lock);
2148        }
2149}
2150
2151static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2152{
2153        struct nfs_access_entry cache;
2154        int status;
2155
2156        status = nfs_access_get_cached(inode, cred, &cache);
2157        if (status == 0)
2158                goto out;
2159
2160        /* Be clever: ask server to check for all possible rights */
2161        cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2162        cache.cred = cred;
2163        cache.jiffies = jiffies;
2164        status = NFS_PROTO(inode)->access(inode, &cache);
2165        if (status != 0) {
2166                if (status == -ESTALE) {
2167                        nfs_zap_caches(inode);
2168                        if (!S_ISDIR(inode->i_mode))
2169                                set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2170                }
2171                return status;
2172        }
2173        nfs_access_add_cache(inode, &cache);
2174out:
2175        if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2176                return 0;
2177        return -EACCES;
2178}
2179
2180static int nfs_open_permission_mask(int openflags)
2181{
2182        int mask = 0;
2183
2184        if (openflags & FMODE_READ)
2185                mask |= MAY_READ;
2186        if (openflags & FMODE_WRITE)
2187                mask |= MAY_WRITE;
2188        if (openflags & FMODE_EXEC)
2189                mask |= MAY_EXEC;
2190        return mask;
2191}
2192
2193int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2194{
2195        return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2196}
2197
2198int nfs_permission(struct inode *inode, int mask, unsigned int flags)
2199{
2200        struct rpc_cred *cred;
2201        int res = 0;
2202
2203        if (flags & IPERM_FLAG_RCU)
2204                return -ECHILD;
2205
2206        nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2207
2208        if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2209                goto out;
2210        /* Is this sys_access() ? */
2211        if (mask & (MAY_ACCESS | MAY_CHDIR))
2212                goto force_lookup;
2213
2214        switch (inode->i_mode & S_IFMT) {
2215                case S_IFLNK:
2216                        goto out;
2217                case S_IFREG:
2218                        /* NFSv4 has atomic_open... */
2219                        if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2220                                        && (mask & MAY_OPEN)
2221                                        && !(mask & MAY_EXEC))
2222                                goto out;
2223                        break;
2224                case S_IFDIR:
2225                        /*
2226                         * Optimize away all write operations, since the server
2227                         * will check permissions when we perform the op.
2228                         */
2229                        if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2230                                goto out;
2231        }
2232
2233force_lookup:
2234        if (!NFS_PROTO(inode)->access)
2235                goto out_notsup;
2236
2237        cred = rpc_lookup_cred();
2238        if (!IS_ERR(cred)) {
2239                res = nfs_do_access(inode, cred, mask);
2240                put_rpccred(cred);
2241        } else
2242                res = PTR_ERR(cred);
2243out:
2244        if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2245                res = -EACCES;
2246
2247        dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2248                inode->i_sb->s_id, inode->i_ino, mask, res);
2249        return res;
2250out_notsup:
2251        res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2252        if (res == 0)
2253                res = generic_permission(inode, mask, flags, NULL);
2254        goto out;
2255}
2256
2257/*
2258 * Local variables:
2259 *  version-control: t
2260 *  kept-new-versions: 5
2261 * End:
2262 */
2263