linux/fs/nilfs2/page.c
<<
>>
Prefs
   1/*
   2 * page.c - buffer/page management specific to NILFS
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  19 *
  20 * Written by Ryusuke Konishi <ryusuke@osrg.net>,
  21 *            Seiji Kihara <kihara@osrg.net>.
  22 */
  23
  24#include <linux/pagemap.h>
  25#include <linux/writeback.h>
  26#include <linux/swap.h>
  27#include <linux/bitops.h>
  28#include <linux/page-flags.h>
  29#include <linux/list.h>
  30#include <linux/highmem.h>
  31#include <linux/pagevec.h>
  32#include <linux/gfp.h>
  33#include "nilfs.h"
  34#include "page.h"
  35#include "mdt.h"
  36
  37
  38#define NILFS_BUFFER_INHERENT_BITS  \
  39        ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
  40         (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Allocated) | \
  41         (1UL << BH_NILFS_Checked))
  42
  43static struct buffer_head *
  44__nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
  45                       int blkbits, unsigned long b_state)
  46
  47{
  48        unsigned long first_block;
  49        struct buffer_head *bh;
  50
  51        if (!page_has_buffers(page))
  52                create_empty_buffers(page, 1 << blkbits, b_state);
  53
  54        first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
  55        bh = nilfs_page_get_nth_block(page, block - first_block);
  56
  57        touch_buffer(bh);
  58        wait_on_buffer(bh);
  59        return bh;
  60}
  61
  62/*
  63 * Since the page cache of B-tree node pages or data page cache of pseudo
  64 * inodes does not have a valid mapping->host pointer, calling
  65 * mark_buffer_dirty() for their buffers causes a NULL pointer dereference;
  66 * it calls __mark_inode_dirty(NULL) through __set_page_dirty().
  67 * To avoid this problem, the old style mark_buffer_dirty() is used instead.
  68 */
  69void nilfs_mark_buffer_dirty(struct buffer_head *bh)
  70{
  71        if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
  72                __set_page_dirty_nobuffers(bh->b_page);
  73}
  74
  75struct buffer_head *nilfs_grab_buffer(struct inode *inode,
  76                                      struct address_space *mapping,
  77                                      unsigned long blkoff,
  78                                      unsigned long b_state)
  79{
  80        int blkbits = inode->i_blkbits;
  81        pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
  82        struct page *page;
  83        struct buffer_head *bh;
  84
  85        page = grab_cache_page(mapping, index);
  86        if (unlikely(!page))
  87                return NULL;
  88
  89        bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
  90        if (unlikely(!bh)) {
  91                unlock_page(page);
  92                page_cache_release(page);
  93                return NULL;
  94        }
  95        return bh;
  96}
  97
  98/**
  99 * nilfs_forget_buffer - discard dirty state
 100 * @inode: owner inode of the buffer
 101 * @bh: buffer head of the buffer to be discarded
 102 */
 103void nilfs_forget_buffer(struct buffer_head *bh)
 104{
 105        struct page *page = bh->b_page;
 106
 107        lock_buffer(bh);
 108        clear_buffer_nilfs_volatile(bh);
 109        clear_buffer_nilfs_checked(bh);
 110        clear_buffer_nilfs_redirected(bh);
 111        clear_buffer_dirty(bh);
 112        if (nilfs_page_buffers_clean(page))
 113                __nilfs_clear_page_dirty(page);
 114
 115        clear_buffer_uptodate(bh);
 116        clear_buffer_mapped(bh);
 117        bh->b_blocknr = -1;
 118        ClearPageUptodate(page);
 119        ClearPageMappedToDisk(page);
 120        unlock_buffer(bh);
 121        brelse(bh);
 122}
 123
 124/**
 125 * nilfs_copy_buffer -- copy buffer data and flags
 126 * @dbh: destination buffer
 127 * @sbh: source buffer
 128 */
 129void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
 130{
 131        void *kaddr0, *kaddr1;
 132        unsigned long bits;
 133        struct page *spage = sbh->b_page, *dpage = dbh->b_page;
 134        struct buffer_head *bh;
 135
 136        kaddr0 = kmap_atomic(spage, KM_USER0);
 137        kaddr1 = kmap_atomic(dpage, KM_USER1);
 138        memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
 139        kunmap_atomic(kaddr1, KM_USER1);
 140        kunmap_atomic(kaddr0, KM_USER0);
 141
 142        dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
 143        dbh->b_blocknr = sbh->b_blocknr;
 144        dbh->b_bdev = sbh->b_bdev;
 145
 146        bh = dbh;
 147        bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
 148        while ((bh = bh->b_this_page) != dbh) {
 149                lock_buffer(bh);
 150                bits &= bh->b_state;
 151                unlock_buffer(bh);
 152        }
 153        if (bits & (1UL << BH_Uptodate))
 154                SetPageUptodate(dpage);
 155        else
 156                ClearPageUptodate(dpage);
 157        if (bits & (1UL << BH_Mapped))
 158                SetPageMappedToDisk(dpage);
 159        else
 160                ClearPageMappedToDisk(dpage);
 161}
 162
 163/**
 164 * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
 165 * @page: page to be checked
 166 *
 167 * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
 168 * Otherwise, it returns non-zero value.
 169 */
 170int nilfs_page_buffers_clean(struct page *page)
 171{
 172        struct buffer_head *bh, *head;
 173
 174        bh = head = page_buffers(page);
 175        do {
 176                if (buffer_dirty(bh))
 177                        return 0;
 178                bh = bh->b_this_page;
 179        } while (bh != head);
 180        return 1;
 181}
 182
 183void nilfs_page_bug(struct page *page)
 184{
 185        struct address_space *m;
 186        unsigned long ino = 0;
 187
 188        if (unlikely(!page)) {
 189                printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
 190                return;
 191        }
 192
 193        m = page->mapping;
 194        if (m) {
 195                struct inode *inode = NILFS_AS_I(m);
 196                if (inode != NULL)
 197                        ino = inode->i_ino;
 198        }
 199        printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
 200               "mapping=%p ino=%lu\n",
 201               page, atomic_read(&page->_count),
 202               (unsigned long long)page->index, page->flags, m, ino);
 203
 204        if (page_has_buffers(page)) {
 205                struct buffer_head *bh, *head;
 206                int i = 0;
 207
 208                bh = head = page_buffers(page);
 209                do {
 210                        printk(KERN_CRIT
 211                               " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
 212                               i++, bh, atomic_read(&bh->b_count),
 213                               (unsigned long long)bh->b_blocknr, bh->b_state);
 214                        bh = bh->b_this_page;
 215                } while (bh != head);
 216        }
 217}
 218
 219/**
 220 * nilfs_alloc_private_page - allocate a private page with buffer heads
 221 *
 222 * Return Value: On success, a pointer to the allocated page is returned.
 223 * On error, NULL is returned.
 224 */
 225struct page *nilfs_alloc_private_page(struct block_device *bdev, int size,
 226                                      unsigned long state)
 227{
 228        struct buffer_head *bh, *head, *tail;
 229        struct page *page;
 230
 231        page = alloc_page(GFP_NOFS); /* page_count of the returned page is 1 */
 232        if (unlikely(!page))
 233                return NULL;
 234
 235        lock_page(page);
 236        head = alloc_page_buffers(page, size, 0);
 237        if (unlikely(!head)) {
 238                unlock_page(page);
 239                __free_page(page);
 240                return NULL;
 241        }
 242
 243        bh = head;
 244        do {
 245                bh->b_state = (1UL << BH_NILFS_Allocated) | state;
 246                tail = bh;
 247                bh->b_bdev = bdev;
 248                bh = bh->b_this_page;
 249        } while (bh);
 250
 251        tail->b_this_page = head;
 252        attach_page_buffers(page, head);
 253
 254        return page;
 255}
 256
 257void nilfs_free_private_page(struct page *page)
 258{
 259        BUG_ON(!PageLocked(page));
 260        BUG_ON(page->mapping);
 261
 262        if (page_has_buffers(page) && !try_to_free_buffers(page))
 263                NILFS_PAGE_BUG(page, "failed to free page");
 264
 265        unlock_page(page);
 266        __free_page(page);
 267}
 268
 269/**
 270 * nilfs_copy_page -- copy the page with buffers
 271 * @dst: destination page
 272 * @src: source page
 273 * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
 274 *
 275 * This function is for both data pages and btnode pages.  The dirty flag
 276 * should be treated by caller.  The page must not be under i/o.
 277 * Both src and dst page must be locked
 278 */
 279static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
 280{
 281        struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
 282        unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
 283
 284        BUG_ON(PageWriteback(dst));
 285
 286        sbh = sbufs = page_buffers(src);
 287        if (!page_has_buffers(dst))
 288                create_empty_buffers(dst, sbh->b_size, 0);
 289
 290        if (copy_dirty)
 291                mask |= (1UL << BH_Dirty);
 292
 293        dbh = dbufs = page_buffers(dst);
 294        do {
 295                lock_buffer(sbh);
 296                lock_buffer(dbh);
 297                dbh->b_state = sbh->b_state & mask;
 298                dbh->b_blocknr = sbh->b_blocknr;
 299                dbh->b_bdev = sbh->b_bdev;
 300                sbh = sbh->b_this_page;
 301                dbh = dbh->b_this_page;
 302        } while (dbh != dbufs);
 303
 304        copy_highpage(dst, src);
 305
 306        if (PageUptodate(src) && !PageUptodate(dst))
 307                SetPageUptodate(dst);
 308        else if (!PageUptodate(src) && PageUptodate(dst))
 309                ClearPageUptodate(dst);
 310        if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
 311                SetPageMappedToDisk(dst);
 312        else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
 313                ClearPageMappedToDisk(dst);
 314
 315        do {
 316                unlock_buffer(sbh);
 317                unlock_buffer(dbh);
 318                sbh = sbh->b_this_page;
 319                dbh = dbh->b_this_page;
 320        } while (dbh != dbufs);
 321}
 322
 323int nilfs_copy_dirty_pages(struct address_space *dmap,
 324                           struct address_space *smap)
 325{
 326        struct pagevec pvec;
 327        unsigned int i;
 328        pgoff_t index = 0;
 329        int err = 0;
 330
 331        pagevec_init(&pvec, 0);
 332repeat:
 333        if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
 334                                PAGEVEC_SIZE))
 335                return 0;
 336
 337        for (i = 0; i < pagevec_count(&pvec); i++) {
 338                struct page *page = pvec.pages[i], *dpage;
 339
 340                lock_page(page);
 341                if (unlikely(!PageDirty(page)))
 342                        NILFS_PAGE_BUG(page, "inconsistent dirty state");
 343
 344                dpage = grab_cache_page(dmap, page->index);
 345                if (unlikely(!dpage)) {
 346                        /* No empty page is added to the page cache */
 347                        err = -ENOMEM;
 348                        unlock_page(page);
 349                        break;
 350                }
 351                if (unlikely(!page_has_buffers(page)))
 352                        NILFS_PAGE_BUG(page,
 353                                       "found empty page in dat page cache");
 354
 355                nilfs_copy_page(dpage, page, 1);
 356                __set_page_dirty_nobuffers(dpage);
 357
 358                unlock_page(dpage);
 359                page_cache_release(dpage);
 360                unlock_page(page);
 361        }
 362        pagevec_release(&pvec);
 363        cond_resched();
 364
 365        if (likely(!err))
 366                goto repeat;
 367        return err;
 368}
 369
 370/**
 371 * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
 372 * @dmap: destination page cache
 373 * @smap: source page cache
 374 *
 375 * No pages must no be added to the cache during this process.
 376 * This must be ensured by the caller.
 377 */
 378void nilfs_copy_back_pages(struct address_space *dmap,
 379                           struct address_space *smap)
 380{
 381        struct pagevec pvec;
 382        unsigned int i, n;
 383        pgoff_t index = 0;
 384        int err;
 385
 386        pagevec_init(&pvec, 0);
 387repeat:
 388        n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
 389        if (!n)
 390                return;
 391        index = pvec.pages[n - 1]->index + 1;
 392
 393        for (i = 0; i < pagevec_count(&pvec); i++) {
 394                struct page *page = pvec.pages[i], *dpage;
 395                pgoff_t offset = page->index;
 396
 397                lock_page(page);
 398                dpage = find_lock_page(dmap, offset);
 399                if (dpage) {
 400                        /* override existing page on the destination cache */
 401                        WARN_ON(PageDirty(dpage));
 402                        nilfs_copy_page(dpage, page, 0);
 403                        unlock_page(dpage);
 404                        page_cache_release(dpage);
 405                } else {
 406                        struct page *page2;
 407
 408                        /* move the page to the destination cache */
 409                        spin_lock_irq(&smap->tree_lock);
 410                        page2 = radix_tree_delete(&smap->page_tree, offset);
 411                        WARN_ON(page2 != page);
 412
 413                        smap->nrpages--;
 414                        spin_unlock_irq(&smap->tree_lock);
 415
 416                        spin_lock_irq(&dmap->tree_lock);
 417                        err = radix_tree_insert(&dmap->page_tree, offset, page);
 418                        if (unlikely(err < 0)) {
 419                                WARN_ON(err == -EEXIST);
 420                                page->mapping = NULL;
 421                                page_cache_release(page); /* for cache */
 422                        } else {
 423                                page->mapping = dmap;
 424                                dmap->nrpages++;
 425                                if (PageDirty(page))
 426                                        radix_tree_tag_set(&dmap->page_tree,
 427                                                           offset,
 428                                                           PAGECACHE_TAG_DIRTY);
 429                        }
 430                        spin_unlock_irq(&dmap->tree_lock);
 431                }
 432                unlock_page(page);
 433        }
 434        pagevec_release(&pvec);
 435        cond_resched();
 436
 437        goto repeat;
 438}
 439
 440void nilfs_clear_dirty_pages(struct address_space *mapping)
 441{
 442        struct pagevec pvec;
 443        unsigned int i;
 444        pgoff_t index = 0;
 445
 446        pagevec_init(&pvec, 0);
 447
 448        while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
 449                                  PAGEVEC_SIZE)) {
 450                for (i = 0; i < pagevec_count(&pvec); i++) {
 451                        struct page *page = pvec.pages[i];
 452                        struct buffer_head *bh, *head;
 453
 454                        lock_page(page);
 455                        ClearPageUptodate(page);
 456                        ClearPageMappedToDisk(page);
 457                        bh = head = page_buffers(page);
 458                        do {
 459                                lock_buffer(bh);
 460                                clear_buffer_dirty(bh);
 461                                clear_buffer_nilfs_volatile(bh);
 462                                clear_buffer_nilfs_checked(bh);
 463                                clear_buffer_nilfs_redirected(bh);
 464                                clear_buffer_uptodate(bh);
 465                                clear_buffer_mapped(bh);
 466                                unlock_buffer(bh);
 467                                bh = bh->b_this_page;
 468                        } while (bh != head);
 469
 470                        __nilfs_clear_page_dirty(page);
 471                        unlock_page(page);
 472                }
 473                pagevec_release(&pvec);
 474                cond_resched();
 475        }
 476}
 477
 478unsigned nilfs_page_count_clean_buffers(struct page *page,
 479                                        unsigned from, unsigned to)
 480{
 481        unsigned block_start, block_end;
 482        struct buffer_head *bh, *head;
 483        unsigned nc = 0;
 484
 485        for (bh = head = page_buffers(page), block_start = 0;
 486             bh != head || !block_start;
 487             block_start = block_end, bh = bh->b_this_page) {
 488                block_end = block_start + bh->b_size;
 489                if (block_end > from && block_start < to && !buffer_dirty(bh))
 490                        nc++;
 491        }
 492        return nc;
 493}
 494
 495void nilfs_mapping_init(struct address_space *mapping,
 496                        struct backing_dev_info *bdi,
 497                        const struct address_space_operations *aops)
 498{
 499        mapping->host = NULL;
 500        mapping->flags = 0;
 501        mapping_set_gfp_mask(mapping, GFP_NOFS);
 502        mapping->assoc_mapping = NULL;
 503        mapping->backing_dev_info = bdi;
 504        mapping->a_ops = aops;
 505}
 506
 507/*
 508 * NILFS2 needs clear_page_dirty() in the following two cases:
 509 *
 510 * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
 511 *    page dirty flags when it copies back pages from the shadow cache
 512 *    (gcdat->{i_mapping,i_btnode_cache}) to its original cache
 513 *    (dat->{i_mapping,i_btnode_cache}).
 514 *
 515 * 2) Some B-tree operations like insertion or deletion may dispose buffers
 516 *    in dirty state, and this needs to cancel the dirty state of their pages.
 517 */
 518int __nilfs_clear_page_dirty(struct page *page)
 519{
 520        struct address_space *mapping = page->mapping;
 521
 522        if (mapping) {
 523                spin_lock_irq(&mapping->tree_lock);
 524                if (test_bit(PG_dirty, &page->flags)) {
 525                        radix_tree_tag_clear(&mapping->page_tree,
 526                                             page_index(page),
 527                                             PAGECACHE_TAG_DIRTY);
 528                        spin_unlock_irq(&mapping->tree_lock);
 529                        return clear_page_dirty_for_io(page);
 530                }
 531                spin_unlock_irq(&mapping->tree_lock);
 532                return 0;
 533        }
 534        return TestClearPageDirty(page);
 535}
 536
 537/**
 538 * nilfs_find_uncommitted_extent - find extent of uncommitted data
 539 * @inode: inode
 540 * @start_blk: start block offset (in)
 541 * @blkoff: start offset of the found extent (out)
 542 *
 543 * This function searches an extent of buffers marked "delayed" which
 544 * starts from a block offset equal to or larger than @start_blk.  If
 545 * such an extent was found, this will store the start offset in
 546 * @blkoff and return its length in blocks.  Otherwise, zero is
 547 * returned.
 548 */
 549unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
 550                                            sector_t start_blk,
 551                                            sector_t *blkoff)
 552{
 553        unsigned int i;
 554        pgoff_t index;
 555        unsigned int nblocks_in_page;
 556        unsigned long length = 0;
 557        sector_t b;
 558        struct pagevec pvec;
 559        struct page *page;
 560
 561        if (inode->i_mapping->nrpages == 0)
 562                return 0;
 563
 564        index = start_blk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
 565        nblocks_in_page = 1U << (PAGE_CACHE_SHIFT - inode->i_blkbits);
 566
 567        pagevec_init(&pvec, 0);
 568
 569repeat:
 570        pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE,
 571                                        pvec.pages);
 572        if (pvec.nr == 0)
 573                return length;
 574
 575        if (length > 0 && pvec.pages[0]->index > index)
 576                goto out;
 577
 578        b = pvec.pages[0]->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
 579        i = 0;
 580        do {
 581                page = pvec.pages[i];
 582
 583                lock_page(page);
 584                if (page_has_buffers(page)) {
 585                        struct buffer_head *bh, *head;
 586
 587                        bh = head = page_buffers(page);
 588                        do {
 589                                if (b < start_blk)
 590                                        continue;
 591                                if (buffer_delay(bh)) {
 592                                        if (length == 0)
 593                                                *blkoff = b;
 594                                        length++;
 595                                } else if (length > 0) {
 596                                        goto out_locked;
 597                                }
 598                        } while (++b, bh = bh->b_this_page, bh != head);
 599                } else {
 600                        if (length > 0)
 601                                goto out_locked;
 602
 603                        b += nblocks_in_page;
 604                }
 605                unlock_page(page);
 606
 607        } while (++i < pagevec_count(&pvec));
 608
 609        index = page->index + 1;
 610        pagevec_release(&pvec);
 611        cond_resched();
 612        goto repeat;
 613
 614out_locked:
 615        unlock_page(page);
 616out:
 617        pagevec_release(&pvec);
 618        return length;
 619}
 620