linux/fs/ocfs2/aops.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
  31
  32#define MLOG_MASK_PREFIX ML_FILE_IO
  33#include <cluster/masklog.h>
  34
  35#include "ocfs2.h"
  36
  37#include "alloc.h"
  38#include "aops.h"
  39#include "dlmglue.h"
  40#include "extent_map.h"
  41#include "file.h"
  42#include "inode.h"
  43#include "journal.h"
  44#include "suballoc.h"
  45#include "super.h"
  46#include "symlink.h"
  47#include "refcounttree.h"
  48
  49#include "buffer_head_io.h"
  50
  51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  52                                   struct buffer_head *bh_result, int create)
  53{
  54        int err = -EIO;
  55        int status;
  56        struct ocfs2_dinode *fe = NULL;
  57        struct buffer_head *bh = NULL;
  58        struct buffer_head *buffer_cache_bh = NULL;
  59        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  60        void *kaddr;
  61
  62        mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
  63                   (unsigned long long)iblock, bh_result, create);
  64
  65        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  66
  67        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  68                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  69                     (unsigned long long)iblock);
  70                goto bail;
  71        }
  72
  73        status = ocfs2_read_inode_block(inode, &bh);
  74        if (status < 0) {
  75                mlog_errno(status);
  76                goto bail;
  77        }
  78        fe = (struct ocfs2_dinode *) bh->b_data;
  79
  80        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  81                                                    le32_to_cpu(fe->i_clusters))) {
  82                mlog(ML_ERROR, "block offset is outside the allocated size: "
  83                     "%llu\n", (unsigned long long)iblock);
  84                goto bail;
  85        }
  86
  87        /* We don't use the page cache to create symlink data, so if
  88         * need be, copy it over from the buffer cache. */
  89        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  90                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  91                            iblock;
  92                buffer_cache_bh = sb_getblk(osb->sb, blkno);
  93                if (!buffer_cache_bh) {
  94                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
  95                        goto bail;
  96                }
  97
  98                /* we haven't locked out transactions, so a commit
  99                 * could've happened. Since we've got a reference on
 100                 * the bh, even if it commits while we're doing the
 101                 * copy, the data is still good. */
 102                if (buffer_jbd(buffer_cache_bh)
 103                    && ocfs2_inode_is_new(inode)) {
 104                        kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
 105                        if (!kaddr) {
 106                                mlog(ML_ERROR, "couldn't kmap!\n");
 107                                goto bail;
 108                        }
 109                        memcpy(kaddr + (bh_result->b_size * iblock),
 110                               buffer_cache_bh->b_data,
 111                               bh_result->b_size);
 112                        kunmap_atomic(kaddr, KM_USER0);
 113                        set_buffer_uptodate(bh_result);
 114                }
 115                brelse(buffer_cache_bh);
 116        }
 117
 118        map_bh(bh_result, inode->i_sb,
 119               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 120
 121        err = 0;
 122
 123bail:
 124        brelse(bh);
 125
 126        mlog_exit(err);
 127        return err;
 128}
 129
 130int ocfs2_get_block(struct inode *inode, sector_t iblock,
 131                    struct buffer_head *bh_result, int create)
 132{
 133        int err = 0;
 134        unsigned int ext_flags;
 135        u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 136        u64 p_blkno, count, past_eof;
 137        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 138
 139        mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
 140                   (unsigned long long)iblock, bh_result, create);
 141
 142        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 143                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 144                     inode, inode->i_ino);
 145
 146        if (S_ISLNK(inode->i_mode)) {
 147                /* this always does I/O for some reason. */
 148                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 149                goto bail;
 150        }
 151
 152        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 153                                          &ext_flags);
 154        if (err) {
 155                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 156                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 157                     (unsigned long long)p_blkno);
 158                goto bail;
 159        }
 160
 161        if (max_blocks < count)
 162                count = max_blocks;
 163
 164        /*
 165         * ocfs2 never allocates in this function - the only time we
 166         * need to use BH_New is when we're extending i_size on a file
 167         * system which doesn't support holes, in which case BH_New
 168         * allows __block_write_begin() to zero.
 169         *
 170         * If we see this on a sparse file system, then a truncate has
 171         * raced us and removed the cluster. In this case, we clear
 172         * the buffers dirty and uptodate bits and let the buffer code
 173         * ignore it as a hole.
 174         */
 175        if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 176                clear_buffer_dirty(bh_result);
 177                clear_buffer_uptodate(bh_result);
 178                goto bail;
 179        }
 180
 181        /* Treat the unwritten extent as a hole for zeroing purposes. */
 182        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 183                map_bh(bh_result, inode->i_sb, p_blkno);
 184
 185        bh_result->b_size = count << inode->i_blkbits;
 186
 187        if (!ocfs2_sparse_alloc(osb)) {
 188                if (p_blkno == 0) {
 189                        err = -EIO;
 190                        mlog(ML_ERROR,
 191                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 192                             (unsigned long long)iblock,
 193                             (unsigned long long)p_blkno,
 194                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
 195                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 196                        dump_stack();
 197                        goto bail;
 198                }
 199        }
 200
 201        past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 202        mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
 203             (unsigned long long)past_eof);
 204        if (create && (iblock >= past_eof))
 205                set_buffer_new(bh_result);
 206
 207bail:
 208        if (err < 0)
 209                err = -EIO;
 210
 211        mlog_exit(err);
 212        return err;
 213}
 214
 215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 216                           struct buffer_head *di_bh)
 217{
 218        void *kaddr;
 219        loff_t size;
 220        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 221
 222        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 223                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
 224                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
 225                return -EROFS;
 226        }
 227
 228        size = i_size_read(inode);
 229
 230        if (size > PAGE_CACHE_SIZE ||
 231            size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 232                ocfs2_error(inode->i_sb,
 233                            "Inode %llu has with inline data has bad size: %Lu",
 234                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 235                            (unsigned long long)size);
 236                return -EROFS;
 237        }
 238
 239        kaddr = kmap_atomic(page, KM_USER0);
 240        if (size)
 241                memcpy(kaddr, di->id2.i_data.id_data, size);
 242        /* Clear the remaining part of the page */
 243        memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
 244        flush_dcache_page(page);
 245        kunmap_atomic(kaddr, KM_USER0);
 246
 247        SetPageUptodate(page);
 248
 249        return 0;
 250}
 251
 252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 253{
 254        int ret;
 255        struct buffer_head *di_bh = NULL;
 256
 257        BUG_ON(!PageLocked(page));
 258        BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 259
 260        ret = ocfs2_read_inode_block(inode, &di_bh);
 261        if (ret) {
 262                mlog_errno(ret);
 263                goto out;
 264        }
 265
 266        ret = ocfs2_read_inline_data(inode, page, di_bh);
 267out:
 268        unlock_page(page);
 269
 270        brelse(di_bh);
 271        return ret;
 272}
 273
 274static int ocfs2_readpage(struct file *file, struct page *page)
 275{
 276        struct inode *inode = page->mapping->host;
 277        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 278        loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
 279        int ret, unlock = 1;
 280
 281        mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
 282
 283        ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 284        if (ret != 0) {
 285                if (ret == AOP_TRUNCATED_PAGE)
 286                        unlock = 0;
 287                mlog_errno(ret);
 288                goto out;
 289        }
 290
 291        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 292                ret = AOP_TRUNCATED_PAGE;
 293                goto out_inode_unlock;
 294        }
 295
 296        /*
 297         * i_size might have just been updated as we grabed the meta lock.  We
 298         * might now be discovering a truncate that hit on another node.
 299         * block_read_full_page->get_block freaks out if it is asked to read
 300         * beyond the end of a file, so we check here.  Callers
 301         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 302         * and notice that the page they just read isn't needed.
 303         *
 304         * XXX sys_readahead() seems to get that wrong?
 305         */
 306        if (start >= i_size_read(inode)) {
 307                zero_user(page, 0, PAGE_SIZE);
 308                SetPageUptodate(page);
 309                ret = 0;
 310                goto out_alloc;
 311        }
 312
 313        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 314                ret = ocfs2_readpage_inline(inode, page);
 315        else
 316                ret = block_read_full_page(page, ocfs2_get_block);
 317        unlock = 0;
 318
 319out_alloc:
 320        up_read(&OCFS2_I(inode)->ip_alloc_sem);
 321out_inode_unlock:
 322        ocfs2_inode_unlock(inode, 0);
 323out:
 324        if (unlock)
 325                unlock_page(page);
 326        mlog_exit(ret);
 327        return ret;
 328}
 329
 330/*
 331 * This is used only for read-ahead. Failures or difficult to handle
 332 * situations are safe to ignore.
 333 *
 334 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 335 * are quite large (243 extents on 4k blocks), so most inodes don't
 336 * grow out to a tree. If need be, detecting boundary extents could
 337 * trivially be added in a future version of ocfs2_get_block().
 338 */
 339static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 340                           struct list_head *pages, unsigned nr_pages)
 341{
 342        int ret, err = -EIO;
 343        struct inode *inode = mapping->host;
 344        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 345        loff_t start;
 346        struct page *last;
 347
 348        /*
 349         * Use the nonblocking flag for the dlm code to avoid page
 350         * lock inversion, but don't bother with retrying.
 351         */
 352        ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 353        if (ret)
 354                return err;
 355
 356        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 357                ocfs2_inode_unlock(inode, 0);
 358                return err;
 359        }
 360
 361        /*
 362         * Don't bother with inline-data. There isn't anything
 363         * to read-ahead in that case anyway...
 364         */
 365        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 366                goto out_unlock;
 367
 368        /*
 369         * Check whether a remote node truncated this file - we just
 370         * drop out in that case as it's not worth handling here.
 371         */
 372        last = list_entry(pages->prev, struct page, lru);
 373        start = (loff_t)last->index << PAGE_CACHE_SHIFT;
 374        if (start >= i_size_read(inode))
 375                goto out_unlock;
 376
 377        err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 378
 379out_unlock:
 380        up_read(&oi->ip_alloc_sem);
 381        ocfs2_inode_unlock(inode, 0);
 382
 383        return err;
 384}
 385
 386/* Note: Because we don't support holes, our allocation has
 387 * already happened (allocation writes zeros to the file data)
 388 * so we don't have to worry about ordered writes in
 389 * ocfs2_writepage.
 390 *
 391 * ->writepage is called during the process of invalidating the page cache
 392 * during blocked lock processing.  It can't block on any cluster locks
 393 * to during block mapping.  It's relying on the fact that the block
 394 * mapping can't have disappeared under the dirty pages that it is
 395 * being asked to write back.
 396 */
 397static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 398{
 399        int ret;
 400
 401        mlog_entry("(0x%p)\n", page);
 402
 403        ret = block_write_full_page(page, ocfs2_get_block, wbc);
 404
 405        mlog_exit(ret);
 406
 407        return ret;
 408}
 409
 410/* Taken from ext3. We don't necessarily need the full blown
 411 * functionality yet, but IMHO it's better to cut and paste the whole
 412 * thing so we can avoid introducing our own bugs (and easily pick up
 413 * their fixes when they happen) --Mark */
 414int walk_page_buffers(  handle_t *handle,
 415                        struct buffer_head *head,
 416                        unsigned from,
 417                        unsigned to,
 418                        int *partial,
 419                        int (*fn)(      handle_t *handle,
 420                                        struct buffer_head *bh))
 421{
 422        struct buffer_head *bh;
 423        unsigned block_start, block_end;
 424        unsigned blocksize = head->b_size;
 425        int err, ret = 0;
 426        struct buffer_head *next;
 427
 428        for (   bh = head, block_start = 0;
 429                ret == 0 && (bh != head || !block_start);
 430                block_start = block_end, bh = next)
 431        {
 432                next = bh->b_this_page;
 433                block_end = block_start + blocksize;
 434                if (block_end <= from || block_start >= to) {
 435                        if (partial && !buffer_uptodate(bh))
 436                                *partial = 1;
 437                        continue;
 438                }
 439                err = (*fn)(handle, bh);
 440                if (!ret)
 441                        ret = err;
 442        }
 443        return ret;
 444}
 445
 446static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 447{
 448        sector_t status;
 449        u64 p_blkno = 0;
 450        int err = 0;
 451        struct inode *inode = mapping->host;
 452
 453        mlog_entry("(block = %llu)\n", (unsigned long long)block);
 454
 455        /* We don't need to lock journal system files, since they aren't
 456         * accessed concurrently from multiple nodes.
 457         */
 458        if (!INODE_JOURNAL(inode)) {
 459                err = ocfs2_inode_lock(inode, NULL, 0);
 460                if (err) {
 461                        if (err != -ENOENT)
 462                                mlog_errno(err);
 463                        goto bail;
 464                }
 465                down_read(&OCFS2_I(inode)->ip_alloc_sem);
 466        }
 467
 468        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 469                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 470                                                  NULL);
 471
 472        if (!INODE_JOURNAL(inode)) {
 473                up_read(&OCFS2_I(inode)->ip_alloc_sem);
 474                ocfs2_inode_unlock(inode, 0);
 475        }
 476
 477        if (err) {
 478                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 479                     (unsigned long long)block);
 480                mlog_errno(err);
 481                goto bail;
 482        }
 483
 484bail:
 485        status = err ? 0 : p_blkno;
 486
 487        mlog_exit((int)status);
 488
 489        return status;
 490}
 491
 492/*
 493 * TODO: Make this into a generic get_blocks function.
 494 *
 495 * From do_direct_io in direct-io.c:
 496 *  "So what we do is to permit the ->get_blocks function to populate
 497 *   bh.b_size with the size of IO which is permitted at this offset and
 498 *   this i_blkbits."
 499 *
 500 * This function is called directly from get_more_blocks in direct-io.c.
 501 *
 502 * called like this: dio->get_blocks(dio->inode, fs_startblk,
 503 *                                      fs_count, map_bh, dio->rw == WRITE);
 504 *
 505 * Note that we never bother to allocate blocks here, and thus ignore the
 506 * create argument.
 507 */
 508static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
 509                                     struct buffer_head *bh_result, int create)
 510{
 511        int ret;
 512        u64 p_blkno, inode_blocks, contig_blocks;
 513        unsigned int ext_flags;
 514        unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 515        unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
 516
 517        /* This function won't even be called if the request isn't all
 518         * nicely aligned and of the right size, so there's no need
 519         * for us to check any of that. */
 520
 521        inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 522
 523        /* This figures out the size of the next contiguous block, and
 524         * our logical offset */
 525        ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
 526                                          &contig_blocks, &ext_flags);
 527        if (ret) {
 528                mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
 529                     (unsigned long long)iblock);
 530                ret = -EIO;
 531                goto bail;
 532        }
 533
 534        /* We should already CoW the refcounted extent in case of create. */
 535        BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
 536
 537        /*
 538         * get_more_blocks() expects us to describe a hole by clearing
 539         * the mapped bit on bh_result().
 540         *
 541         * Consider an unwritten extent as a hole.
 542         */
 543        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 544                map_bh(bh_result, inode->i_sb, p_blkno);
 545        else
 546                clear_buffer_mapped(bh_result);
 547
 548        /* make sure we don't map more than max_blocks blocks here as
 549           that's all the kernel will handle at this point. */
 550        if (max_blocks < contig_blocks)
 551                contig_blocks = max_blocks;
 552        bh_result->b_size = contig_blocks << blocksize_bits;
 553bail:
 554        return ret;
 555}
 556
 557/*
 558 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
 559 * particularly interested in the aio/dio case.  Like the core uses
 560 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
 561 * truncation on another.
 562 */
 563static void ocfs2_dio_end_io(struct kiocb *iocb,
 564                             loff_t offset,
 565                             ssize_t bytes,
 566                             void *private,
 567                             int ret,
 568                             bool is_async)
 569{
 570        struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
 571        int level;
 572
 573        /* this io's submitter should not have unlocked this before we could */
 574        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
 575
 576        if (ocfs2_iocb_is_sem_locked(iocb)) {
 577                up_read(&inode->i_alloc_sem);
 578                ocfs2_iocb_clear_sem_locked(iocb);
 579        }
 580
 581        ocfs2_iocb_clear_rw_locked(iocb);
 582
 583        level = ocfs2_iocb_rw_locked_level(iocb);
 584        ocfs2_rw_unlock(inode, level);
 585
 586        if (is_async)
 587                aio_complete(iocb, ret, 0);
 588}
 589
 590/*
 591 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
 592 * from ext3.  PageChecked() bits have been removed as OCFS2 does not
 593 * do journalled data.
 594 */
 595static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
 596{
 597        journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 598
 599        jbd2_journal_invalidatepage(journal, page, offset);
 600}
 601
 602static int ocfs2_releasepage(struct page *page, gfp_t wait)
 603{
 604        journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
 605
 606        if (!page_has_buffers(page))
 607                return 0;
 608        return jbd2_journal_try_to_free_buffers(journal, page, wait);
 609}
 610
 611static ssize_t ocfs2_direct_IO(int rw,
 612                               struct kiocb *iocb,
 613                               const struct iovec *iov,
 614                               loff_t offset,
 615                               unsigned long nr_segs)
 616{
 617        struct file *file = iocb->ki_filp;
 618        struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
 619        int ret;
 620
 621        mlog_entry_void();
 622
 623        /*
 624         * Fallback to buffered I/O if we see an inode without
 625         * extents.
 626         */
 627        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 628                return 0;
 629
 630        /* Fallback to buffered I/O if we are appending. */
 631        if (i_size_read(inode) <= offset)
 632                return 0;
 633
 634        ret = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
 635                                   iov, offset, nr_segs,
 636                                   ocfs2_direct_IO_get_blocks,
 637                                   ocfs2_dio_end_io, NULL, 0);
 638
 639        mlog_exit(ret);
 640        return ret;
 641}
 642
 643static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 644                                            u32 cpos,
 645                                            unsigned int *start,
 646                                            unsigned int *end)
 647{
 648        unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
 649
 650        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
 651                unsigned int cpp;
 652
 653                cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
 654
 655                cluster_start = cpos % cpp;
 656                cluster_start = cluster_start << osb->s_clustersize_bits;
 657
 658                cluster_end = cluster_start + osb->s_clustersize;
 659        }
 660
 661        BUG_ON(cluster_start > PAGE_SIZE);
 662        BUG_ON(cluster_end > PAGE_SIZE);
 663
 664        if (start)
 665                *start = cluster_start;
 666        if (end)
 667                *end = cluster_end;
 668}
 669
 670/*
 671 * 'from' and 'to' are the region in the page to avoid zeroing.
 672 *
 673 * If pagesize > clustersize, this function will avoid zeroing outside
 674 * of the cluster boundary.
 675 *
 676 * from == to == 0 is code for "zero the entire cluster region"
 677 */
 678static void ocfs2_clear_page_regions(struct page *page,
 679                                     struct ocfs2_super *osb, u32 cpos,
 680                                     unsigned from, unsigned to)
 681{
 682        void *kaddr;
 683        unsigned int cluster_start, cluster_end;
 684
 685        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 686
 687        kaddr = kmap_atomic(page, KM_USER0);
 688
 689        if (from || to) {
 690                if (from > cluster_start)
 691                        memset(kaddr + cluster_start, 0, from - cluster_start);
 692                if (to < cluster_end)
 693                        memset(kaddr + to, 0, cluster_end - to);
 694        } else {
 695                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 696        }
 697
 698        kunmap_atomic(kaddr, KM_USER0);
 699}
 700
 701/*
 702 * Nonsparse file systems fully allocate before we get to the write
 703 * code. This prevents ocfs2_write() from tagging the write as an
 704 * allocating one, which means ocfs2_map_page_blocks() might try to
 705 * read-in the blocks at the tail of our file. Avoid reading them by
 706 * testing i_size against each block offset.
 707 */
 708static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 709                                 unsigned int block_start)
 710{
 711        u64 offset = page_offset(page) + block_start;
 712
 713        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 714                return 1;
 715
 716        if (i_size_read(inode) > offset)
 717                return 1;
 718
 719        return 0;
 720}
 721
 722/*
 723 * Some of this taken from __block_write_begin(). We already have our
 724 * mapping by now though, and the entire write will be allocating or
 725 * it won't, so not much need to use BH_New.
 726 *
 727 * This will also skip zeroing, which is handled externally.
 728 */
 729int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 730                          struct inode *inode, unsigned int from,
 731                          unsigned int to, int new)
 732{
 733        int ret = 0;
 734        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 735        unsigned int block_end, block_start;
 736        unsigned int bsize = 1 << inode->i_blkbits;
 737
 738        if (!page_has_buffers(page))
 739                create_empty_buffers(page, bsize, 0);
 740
 741        head = page_buffers(page);
 742        for (bh = head, block_start = 0; bh != head || !block_start;
 743             bh = bh->b_this_page, block_start += bsize) {
 744                block_end = block_start + bsize;
 745
 746                clear_buffer_new(bh);
 747
 748                /*
 749                 * Ignore blocks outside of our i/o range -
 750                 * they may belong to unallocated clusters.
 751                 */
 752                if (block_start >= to || block_end <= from) {
 753                        if (PageUptodate(page))
 754                                set_buffer_uptodate(bh);
 755                        continue;
 756                }
 757
 758                /*
 759                 * For an allocating write with cluster size >= page
 760                 * size, we always write the entire page.
 761                 */
 762                if (new)
 763                        set_buffer_new(bh);
 764
 765                if (!buffer_mapped(bh)) {
 766                        map_bh(bh, inode->i_sb, *p_blkno);
 767                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
 768                }
 769
 770                if (PageUptodate(page)) {
 771                        if (!buffer_uptodate(bh))
 772                                set_buffer_uptodate(bh);
 773                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 774                           !buffer_new(bh) &&
 775                           ocfs2_should_read_blk(inode, page, block_start) &&
 776                           (block_start < from || block_end > to)) {
 777                        ll_rw_block(READ, 1, &bh);
 778                        *wait_bh++=bh;
 779                }
 780
 781                *p_blkno = *p_blkno + 1;
 782        }
 783
 784        /*
 785         * If we issued read requests - let them complete.
 786         */
 787        while(wait_bh > wait) {
 788                wait_on_buffer(*--wait_bh);
 789                if (!buffer_uptodate(*wait_bh))
 790                        ret = -EIO;
 791        }
 792
 793        if (ret == 0 || !new)
 794                return ret;
 795
 796        /*
 797         * If we get -EIO above, zero out any newly allocated blocks
 798         * to avoid exposing stale data.
 799         */
 800        bh = head;
 801        block_start = 0;
 802        do {
 803                block_end = block_start + bsize;
 804                if (block_end <= from)
 805                        goto next_bh;
 806                if (block_start >= to)
 807                        break;
 808
 809                zero_user(page, block_start, bh->b_size);
 810                set_buffer_uptodate(bh);
 811                mark_buffer_dirty(bh);
 812
 813next_bh:
 814                block_start = block_end;
 815                bh = bh->b_this_page;
 816        } while (bh != head);
 817
 818        return ret;
 819}
 820
 821#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 822#define OCFS2_MAX_CTXT_PAGES    1
 823#else
 824#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
 825#endif
 826
 827#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 828
 829/*
 830 * Describe the state of a single cluster to be written to.
 831 */
 832struct ocfs2_write_cluster_desc {
 833        u32             c_cpos;
 834        u32             c_phys;
 835        /*
 836         * Give this a unique field because c_phys eventually gets
 837         * filled.
 838         */
 839        unsigned        c_new;
 840        unsigned        c_unwritten;
 841        unsigned        c_needs_zero;
 842};
 843
 844struct ocfs2_write_ctxt {
 845        /* Logical cluster position / len of write */
 846        u32                             w_cpos;
 847        u32                             w_clen;
 848
 849        /* First cluster allocated in a nonsparse extend */
 850        u32                             w_first_new_cpos;
 851
 852        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 853
 854        /*
 855         * This is true if page_size > cluster_size.
 856         *
 857         * It triggers a set of special cases during write which might
 858         * have to deal with allocating writes to partial pages.
 859         */
 860        unsigned int                    w_large_pages;
 861
 862        /*
 863         * Pages involved in this write.
 864         *
 865         * w_target_page is the page being written to by the user.
 866         *
 867         * w_pages is an array of pages which always contains
 868         * w_target_page, and in the case of an allocating write with
 869         * page_size < cluster size, it will contain zero'd and mapped
 870         * pages adjacent to w_target_page which need to be written
 871         * out in so that future reads from that region will get
 872         * zero's.
 873         */
 874        unsigned int                    w_num_pages;
 875        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
 876        struct page                     *w_target_page;
 877
 878        /*
 879         * ocfs2_write_end() uses this to know what the real range to
 880         * write in the target should be.
 881         */
 882        unsigned int                    w_target_from;
 883        unsigned int                    w_target_to;
 884
 885        /*
 886         * We could use journal_current_handle() but this is cleaner,
 887         * IMHO -Mark
 888         */
 889        handle_t                        *w_handle;
 890
 891        struct buffer_head              *w_di_bh;
 892
 893        struct ocfs2_cached_dealloc_ctxt w_dealloc;
 894};
 895
 896void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 897{
 898        int i;
 899
 900        for(i = 0; i < num_pages; i++) {
 901                if (pages[i]) {
 902                        unlock_page(pages[i]);
 903                        mark_page_accessed(pages[i]);
 904                        page_cache_release(pages[i]);
 905                }
 906        }
 907}
 908
 909static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
 910{
 911        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 912
 913        brelse(wc->w_di_bh);
 914        kfree(wc);
 915}
 916
 917static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 918                                  struct ocfs2_super *osb, loff_t pos,
 919                                  unsigned len, struct buffer_head *di_bh)
 920{
 921        u32 cend;
 922        struct ocfs2_write_ctxt *wc;
 923
 924        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 925        if (!wc)
 926                return -ENOMEM;
 927
 928        wc->w_cpos = pos >> osb->s_clustersize_bits;
 929        wc->w_first_new_cpos = UINT_MAX;
 930        cend = (pos + len - 1) >> osb->s_clustersize_bits;
 931        wc->w_clen = cend - wc->w_cpos + 1;
 932        get_bh(di_bh);
 933        wc->w_di_bh = di_bh;
 934
 935        if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
 936                wc->w_large_pages = 1;
 937        else
 938                wc->w_large_pages = 0;
 939
 940        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 941
 942        *wcp = wc;
 943
 944        return 0;
 945}
 946
 947/*
 948 * If a page has any new buffers, zero them out here, and mark them uptodate
 949 * and dirty so they'll be written out (in order to prevent uninitialised
 950 * block data from leaking). And clear the new bit.
 951 */
 952static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 953{
 954        unsigned int block_start, block_end;
 955        struct buffer_head *head, *bh;
 956
 957        BUG_ON(!PageLocked(page));
 958        if (!page_has_buffers(page))
 959                return;
 960
 961        bh = head = page_buffers(page);
 962        block_start = 0;
 963        do {
 964                block_end = block_start + bh->b_size;
 965
 966                if (buffer_new(bh)) {
 967                        if (block_end > from && block_start < to) {
 968                                if (!PageUptodate(page)) {
 969                                        unsigned start, end;
 970
 971                                        start = max(from, block_start);
 972                                        end = min(to, block_end);
 973
 974                                        zero_user_segment(page, start, end);
 975                                        set_buffer_uptodate(bh);
 976                                }
 977
 978                                clear_buffer_new(bh);
 979                                mark_buffer_dirty(bh);
 980                        }
 981                }
 982
 983                block_start = block_end;
 984                bh = bh->b_this_page;
 985        } while (bh != head);
 986}
 987
 988/*
 989 * Only called when we have a failure during allocating write to write
 990 * zero's to the newly allocated region.
 991 */
 992static void ocfs2_write_failure(struct inode *inode,
 993                                struct ocfs2_write_ctxt *wc,
 994                                loff_t user_pos, unsigned user_len)
 995{
 996        int i;
 997        unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
 998                to = user_pos + user_len;
 999        struct page *tmppage;
1000
1001        ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1002
1003        for(i = 0; i < wc->w_num_pages; i++) {
1004                tmppage = wc->w_pages[i];
1005
1006                if (page_has_buffers(tmppage)) {
1007                        if (ocfs2_should_order_data(inode))
1008                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
1009
1010                        block_commit_write(tmppage, from, to);
1011                }
1012        }
1013}
1014
1015static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1016                                        struct ocfs2_write_ctxt *wc,
1017                                        struct page *page, u32 cpos,
1018                                        loff_t user_pos, unsigned user_len,
1019                                        int new)
1020{
1021        int ret;
1022        unsigned int map_from = 0, map_to = 0;
1023        unsigned int cluster_start, cluster_end;
1024        unsigned int user_data_from = 0, user_data_to = 0;
1025
1026        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1027                                        &cluster_start, &cluster_end);
1028
1029        if (page == wc->w_target_page) {
1030                map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1031                map_to = map_from + user_len;
1032
1033                if (new)
1034                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1035                                                    cluster_start, cluster_end,
1036                                                    new);
1037                else
1038                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1039                                                    map_from, map_to, new);
1040                if (ret) {
1041                        mlog_errno(ret);
1042                        goto out;
1043                }
1044
1045                user_data_from = map_from;
1046                user_data_to = map_to;
1047                if (new) {
1048                        map_from = cluster_start;
1049                        map_to = cluster_end;
1050                }
1051        } else {
1052                /*
1053                 * If we haven't allocated the new page yet, we
1054                 * shouldn't be writing it out without copying user
1055                 * data. This is likely a math error from the caller.
1056                 */
1057                BUG_ON(!new);
1058
1059                map_from = cluster_start;
1060                map_to = cluster_end;
1061
1062                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1063                                            cluster_start, cluster_end, new);
1064                if (ret) {
1065                        mlog_errno(ret);
1066                        goto out;
1067                }
1068        }
1069
1070        /*
1071         * Parts of newly allocated pages need to be zero'd.
1072         *
1073         * Above, we have also rewritten 'to' and 'from' - as far as
1074         * the rest of the function is concerned, the entire cluster
1075         * range inside of a page needs to be written.
1076         *
1077         * We can skip this if the page is up to date - it's already
1078         * been zero'd from being read in as a hole.
1079         */
1080        if (new && !PageUptodate(page))
1081                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1082                                         cpos, user_data_from, user_data_to);
1083
1084        flush_dcache_page(page);
1085
1086out:
1087        return ret;
1088}
1089
1090/*
1091 * This function will only grab one clusters worth of pages.
1092 */
1093static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1094                                      struct ocfs2_write_ctxt *wc,
1095                                      u32 cpos, loff_t user_pos,
1096                                      unsigned user_len, int new,
1097                                      struct page *mmap_page)
1098{
1099        int ret = 0, i;
1100        unsigned long start, target_index, end_index, index;
1101        struct inode *inode = mapping->host;
1102        loff_t last_byte;
1103
1104        target_index = user_pos >> PAGE_CACHE_SHIFT;
1105
1106        /*
1107         * Figure out how many pages we'll be manipulating here. For
1108         * non allocating write, we just change the one
1109         * page. Otherwise, we'll need a whole clusters worth.  If we're
1110         * writing past i_size, we only need enough pages to cover the
1111         * last page of the write.
1112         */
1113        if (new) {
1114                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1115                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1116                /*
1117                 * We need the index *past* the last page we could possibly
1118                 * touch.  This is the page past the end of the write or
1119                 * i_size, whichever is greater.
1120                 */
1121                last_byte = max(user_pos + user_len, i_size_read(inode));
1122                BUG_ON(last_byte < 1);
1123                end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1124                if ((start + wc->w_num_pages) > end_index)
1125                        wc->w_num_pages = end_index - start;
1126        } else {
1127                wc->w_num_pages = 1;
1128                start = target_index;
1129        }
1130
1131        for(i = 0; i < wc->w_num_pages; i++) {
1132                index = start + i;
1133
1134                if (index == target_index && mmap_page) {
1135                        /*
1136                         * ocfs2_pagemkwrite() is a little different
1137                         * and wants us to directly use the page
1138                         * passed in.
1139                         */
1140                        lock_page(mmap_page);
1141
1142                        if (mmap_page->mapping != mapping) {
1143                                unlock_page(mmap_page);
1144                                /*
1145                                 * Sanity check - the locking in
1146                                 * ocfs2_pagemkwrite() should ensure
1147                                 * that this code doesn't trigger.
1148                                 */
1149                                ret = -EINVAL;
1150                                mlog_errno(ret);
1151                                goto out;
1152                        }
1153
1154                        page_cache_get(mmap_page);
1155                        wc->w_pages[i] = mmap_page;
1156                } else {
1157                        wc->w_pages[i] = find_or_create_page(mapping, index,
1158                                                             GFP_NOFS);
1159                        if (!wc->w_pages[i]) {
1160                                ret = -ENOMEM;
1161                                mlog_errno(ret);
1162                                goto out;
1163                        }
1164                }
1165
1166                if (index == target_index)
1167                        wc->w_target_page = wc->w_pages[i];
1168        }
1169out:
1170        return ret;
1171}
1172
1173/*
1174 * Prepare a single cluster for write one cluster into the file.
1175 */
1176static int ocfs2_write_cluster(struct address_space *mapping,
1177                               u32 phys, unsigned int unwritten,
1178                               unsigned int should_zero,
1179                               struct ocfs2_alloc_context *data_ac,
1180                               struct ocfs2_alloc_context *meta_ac,
1181                               struct ocfs2_write_ctxt *wc, u32 cpos,
1182                               loff_t user_pos, unsigned user_len)
1183{
1184        int ret, i, new;
1185        u64 v_blkno, p_blkno;
1186        struct inode *inode = mapping->host;
1187        struct ocfs2_extent_tree et;
1188
1189        new = phys == 0 ? 1 : 0;
1190        if (new) {
1191                u32 tmp_pos;
1192
1193                /*
1194                 * This is safe to call with the page locks - it won't take
1195                 * any additional semaphores or cluster locks.
1196                 */
1197                tmp_pos = cpos;
1198                ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1199                                           &tmp_pos, 1, 0, wc->w_di_bh,
1200                                           wc->w_handle, data_ac,
1201                                           meta_ac, NULL);
1202                /*
1203                 * This shouldn't happen because we must have already
1204                 * calculated the correct meta data allocation required. The
1205                 * internal tree allocation code should know how to increase
1206                 * transaction credits itself.
1207                 *
1208                 * If need be, we could handle -EAGAIN for a
1209                 * RESTART_TRANS here.
1210                 */
1211                mlog_bug_on_msg(ret == -EAGAIN,
1212                                "Inode %llu: EAGAIN return during allocation.\n",
1213                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1214                if (ret < 0) {
1215                        mlog_errno(ret);
1216                        goto out;
1217                }
1218        } else if (unwritten) {
1219                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1220                                              wc->w_di_bh);
1221                ret = ocfs2_mark_extent_written(inode, &et,
1222                                                wc->w_handle, cpos, 1, phys,
1223                                                meta_ac, &wc->w_dealloc);
1224                if (ret < 0) {
1225                        mlog_errno(ret);
1226                        goto out;
1227                }
1228        }
1229
1230        if (should_zero)
1231                v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1232        else
1233                v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1234
1235        /*
1236         * The only reason this should fail is due to an inability to
1237         * find the extent added.
1238         */
1239        ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1240                                          NULL);
1241        if (ret < 0) {
1242                ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1243                            "at logical block %llu",
1244                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
1245                            (unsigned long long)v_blkno);
1246                goto out;
1247        }
1248
1249        BUG_ON(p_blkno == 0);
1250
1251        for(i = 0; i < wc->w_num_pages; i++) {
1252                int tmpret;
1253
1254                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1255                                                      wc->w_pages[i], cpos,
1256                                                      user_pos, user_len,
1257                                                      should_zero);
1258                if (tmpret) {
1259                        mlog_errno(tmpret);
1260                        if (ret == 0)
1261                                ret = tmpret;
1262                }
1263        }
1264
1265        /*
1266         * We only have cleanup to do in case of allocating write.
1267         */
1268        if (ret && new)
1269                ocfs2_write_failure(inode, wc, user_pos, user_len);
1270
1271out:
1272
1273        return ret;
1274}
1275
1276static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1277                                       struct ocfs2_alloc_context *data_ac,
1278                                       struct ocfs2_alloc_context *meta_ac,
1279                                       struct ocfs2_write_ctxt *wc,
1280                                       loff_t pos, unsigned len)
1281{
1282        int ret, i;
1283        loff_t cluster_off;
1284        unsigned int local_len = len;
1285        struct ocfs2_write_cluster_desc *desc;
1286        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1287
1288        for (i = 0; i < wc->w_clen; i++) {
1289                desc = &wc->w_desc[i];
1290
1291                /*
1292                 * We have to make sure that the total write passed in
1293                 * doesn't extend past a single cluster.
1294                 */
1295                local_len = len;
1296                cluster_off = pos & (osb->s_clustersize - 1);
1297                if ((cluster_off + local_len) > osb->s_clustersize)
1298                        local_len = osb->s_clustersize - cluster_off;
1299
1300                ret = ocfs2_write_cluster(mapping, desc->c_phys,
1301                                          desc->c_unwritten,
1302                                          desc->c_needs_zero,
1303                                          data_ac, meta_ac,
1304                                          wc, desc->c_cpos, pos, local_len);
1305                if (ret) {
1306                        mlog_errno(ret);
1307                        goto out;
1308                }
1309
1310                len -= local_len;
1311                pos += local_len;
1312        }
1313
1314        ret = 0;
1315out:
1316        return ret;
1317}
1318
1319/*
1320 * ocfs2_write_end() wants to know which parts of the target page it
1321 * should complete the write on. It's easiest to compute them ahead of
1322 * time when a more complete view of the write is available.
1323 */
1324static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1325                                        struct ocfs2_write_ctxt *wc,
1326                                        loff_t pos, unsigned len, int alloc)
1327{
1328        struct ocfs2_write_cluster_desc *desc;
1329
1330        wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1331        wc->w_target_to = wc->w_target_from + len;
1332
1333        if (alloc == 0)
1334                return;
1335
1336        /*
1337         * Allocating write - we may have different boundaries based
1338         * on page size and cluster size.
1339         *
1340         * NOTE: We can no longer compute one value from the other as
1341         * the actual write length and user provided length may be
1342         * different.
1343         */
1344
1345        if (wc->w_large_pages) {
1346                /*
1347                 * We only care about the 1st and last cluster within
1348                 * our range and whether they should be zero'd or not. Either
1349                 * value may be extended out to the start/end of a
1350                 * newly allocated cluster.
1351                 */
1352                desc = &wc->w_desc[0];
1353                if (desc->c_needs_zero)
1354                        ocfs2_figure_cluster_boundaries(osb,
1355                                                        desc->c_cpos,
1356                                                        &wc->w_target_from,
1357                                                        NULL);
1358
1359                desc = &wc->w_desc[wc->w_clen - 1];
1360                if (desc->c_needs_zero)
1361                        ocfs2_figure_cluster_boundaries(osb,
1362                                                        desc->c_cpos,
1363                                                        NULL,
1364                                                        &wc->w_target_to);
1365        } else {
1366                wc->w_target_from = 0;
1367                wc->w_target_to = PAGE_CACHE_SIZE;
1368        }
1369}
1370
1371/*
1372 * Populate each single-cluster write descriptor in the write context
1373 * with information about the i/o to be done.
1374 *
1375 * Returns the number of clusters that will have to be allocated, as
1376 * well as a worst case estimate of the number of extent records that
1377 * would have to be created during a write to an unwritten region.
1378 */
1379static int ocfs2_populate_write_desc(struct inode *inode,
1380                                     struct ocfs2_write_ctxt *wc,
1381                                     unsigned int *clusters_to_alloc,
1382                                     unsigned int *extents_to_split)
1383{
1384        int ret;
1385        struct ocfs2_write_cluster_desc *desc;
1386        unsigned int num_clusters = 0;
1387        unsigned int ext_flags = 0;
1388        u32 phys = 0;
1389        int i;
1390
1391        *clusters_to_alloc = 0;
1392        *extents_to_split = 0;
1393
1394        for (i = 0; i < wc->w_clen; i++) {
1395                desc = &wc->w_desc[i];
1396                desc->c_cpos = wc->w_cpos + i;
1397
1398                if (num_clusters == 0) {
1399                        /*
1400                         * Need to look up the next extent record.
1401                         */
1402                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1403                                                 &num_clusters, &ext_flags);
1404                        if (ret) {
1405                                mlog_errno(ret);
1406                                goto out;
1407                        }
1408
1409                        /* We should already CoW the refcountd extent. */
1410                        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1411
1412                        /*
1413                         * Assume worst case - that we're writing in
1414                         * the middle of the extent.
1415                         *
1416                         * We can assume that the write proceeds from
1417                         * left to right, in which case the extent
1418                         * insert code is smart enough to coalesce the
1419                         * next splits into the previous records created.
1420                         */
1421                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1422                                *extents_to_split = *extents_to_split + 2;
1423                } else if (phys) {
1424                        /*
1425                         * Only increment phys if it doesn't describe
1426                         * a hole.
1427                         */
1428                        phys++;
1429                }
1430
1431                /*
1432                 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1433                 * file that got extended.  w_first_new_cpos tells us
1434                 * where the newly allocated clusters are so we can
1435                 * zero them.
1436                 */
1437                if (desc->c_cpos >= wc->w_first_new_cpos) {
1438                        BUG_ON(phys == 0);
1439                        desc->c_needs_zero = 1;
1440                }
1441
1442                desc->c_phys = phys;
1443                if (phys == 0) {
1444                        desc->c_new = 1;
1445                        desc->c_needs_zero = 1;
1446                        *clusters_to_alloc = *clusters_to_alloc + 1;
1447                }
1448
1449                if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1450                        desc->c_unwritten = 1;
1451                        desc->c_needs_zero = 1;
1452                }
1453
1454                num_clusters--;
1455        }
1456
1457        ret = 0;
1458out:
1459        return ret;
1460}
1461
1462static int ocfs2_write_begin_inline(struct address_space *mapping,
1463                                    struct inode *inode,
1464                                    struct ocfs2_write_ctxt *wc)
1465{
1466        int ret;
1467        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1468        struct page *page;
1469        handle_t *handle;
1470        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1471
1472        page = find_or_create_page(mapping, 0, GFP_NOFS);
1473        if (!page) {
1474                ret = -ENOMEM;
1475                mlog_errno(ret);
1476                goto out;
1477        }
1478        /*
1479         * If we don't set w_num_pages then this page won't get unlocked
1480         * and freed on cleanup of the write context.
1481         */
1482        wc->w_pages[0] = wc->w_target_page = page;
1483        wc->w_num_pages = 1;
1484
1485        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1486        if (IS_ERR(handle)) {
1487                ret = PTR_ERR(handle);
1488                mlog_errno(ret);
1489                goto out;
1490        }
1491
1492        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1493                                      OCFS2_JOURNAL_ACCESS_WRITE);
1494        if (ret) {
1495                ocfs2_commit_trans(osb, handle);
1496
1497                mlog_errno(ret);
1498                goto out;
1499        }
1500
1501        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1502                ocfs2_set_inode_data_inline(inode, di);
1503
1504        if (!PageUptodate(page)) {
1505                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1506                if (ret) {
1507                        ocfs2_commit_trans(osb, handle);
1508
1509                        goto out;
1510                }
1511        }
1512
1513        wc->w_handle = handle;
1514out:
1515        return ret;
1516}
1517
1518int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1519{
1520        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1521
1522        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1523                return 1;
1524        return 0;
1525}
1526
1527static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1528                                          struct inode *inode, loff_t pos,
1529                                          unsigned len, struct page *mmap_page,
1530                                          struct ocfs2_write_ctxt *wc)
1531{
1532        int ret, written = 0;
1533        loff_t end = pos + len;
1534        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1535        struct ocfs2_dinode *di = NULL;
1536
1537        mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1538             (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1539             oi->ip_dyn_features);
1540
1541        /*
1542         * Handle inodes which already have inline data 1st.
1543         */
1544        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1545                if (mmap_page == NULL &&
1546                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1547                        goto do_inline_write;
1548
1549                /*
1550                 * The write won't fit - we have to give this inode an
1551                 * inline extent list now.
1552                 */
1553                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1554                if (ret)
1555                        mlog_errno(ret);
1556                goto out;
1557        }
1558
1559        /*
1560         * Check whether the inode can accept inline data.
1561         */
1562        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1563                return 0;
1564
1565        /*
1566         * Check whether the write can fit.
1567         */
1568        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1569        if (mmap_page ||
1570            end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1571                return 0;
1572
1573do_inline_write:
1574        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1575        if (ret) {
1576                mlog_errno(ret);
1577                goto out;
1578        }
1579
1580        /*
1581         * This signals to the caller that the data can be written
1582         * inline.
1583         */
1584        written = 1;
1585out:
1586        return written ? written : ret;
1587}
1588
1589/*
1590 * This function only does anything for file systems which can't
1591 * handle sparse files.
1592 *
1593 * What we want to do here is fill in any hole between the current end
1594 * of allocation and the end of our write. That way the rest of the
1595 * write path can treat it as an non-allocating write, which has no
1596 * special case code for sparse/nonsparse files.
1597 */
1598static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1599                                        struct buffer_head *di_bh,
1600                                        loff_t pos, unsigned len,
1601                                        struct ocfs2_write_ctxt *wc)
1602{
1603        int ret;
1604        loff_t newsize = pos + len;
1605
1606        BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1607
1608        if (newsize <= i_size_read(inode))
1609                return 0;
1610
1611        ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1612        if (ret)
1613                mlog_errno(ret);
1614
1615        wc->w_first_new_cpos =
1616                ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1617
1618        return ret;
1619}
1620
1621static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1622                           loff_t pos)
1623{
1624        int ret = 0;
1625
1626        BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1627        if (pos > i_size_read(inode))
1628                ret = ocfs2_zero_extend(inode, di_bh, pos);
1629
1630        return ret;
1631}
1632
1633/*
1634 * Try to flush truncate logs if we can free enough clusters from it.
1635 * As for return value, "< 0" means error, "0" no space and "1" means
1636 * we have freed enough spaces and let the caller try to allocate again.
1637 */
1638static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1639                                          unsigned int needed)
1640{
1641        tid_t target;
1642        int ret = 0;
1643        unsigned int truncated_clusters;
1644
1645        mutex_lock(&osb->osb_tl_inode->i_mutex);
1646        truncated_clusters = osb->truncated_clusters;
1647        mutex_unlock(&osb->osb_tl_inode->i_mutex);
1648
1649        /*
1650         * Check whether we can succeed in allocating if we free
1651         * the truncate log.
1652         */
1653        if (truncated_clusters < needed)
1654                goto out;
1655
1656        ret = ocfs2_flush_truncate_log(osb);
1657        if (ret) {
1658                mlog_errno(ret);
1659                goto out;
1660        }
1661
1662        if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1663                jbd2_log_wait_commit(osb->journal->j_journal, target);
1664                ret = 1;
1665        }
1666out:
1667        return ret;
1668}
1669
1670int ocfs2_write_begin_nolock(struct file *filp,
1671                             struct address_space *mapping,
1672                             loff_t pos, unsigned len, unsigned flags,
1673                             struct page **pagep, void **fsdata,
1674                             struct buffer_head *di_bh, struct page *mmap_page)
1675{
1676        int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1677        unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1678        struct ocfs2_write_ctxt *wc;
1679        struct inode *inode = mapping->host;
1680        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1681        struct ocfs2_dinode *di;
1682        struct ocfs2_alloc_context *data_ac = NULL;
1683        struct ocfs2_alloc_context *meta_ac = NULL;
1684        handle_t *handle;
1685        struct ocfs2_extent_tree et;
1686        int try_free = 1, ret1;
1687
1688try_again:
1689        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1690        if (ret) {
1691                mlog_errno(ret);
1692                return ret;
1693        }
1694
1695        if (ocfs2_supports_inline_data(osb)) {
1696                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1697                                                     mmap_page, wc);
1698                if (ret == 1) {
1699                        ret = 0;
1700                        goto success;
1701                }
1702                if (ret < 0) {
1703                        mlog_errno(ret);
1704                        goto out;
1705                }
1706        }
1707
1708        if (ocfs2_sparse_alloc(osb))
1709                ret = ocfs2_zero_tail(inode, di_bh, pos);
1710        else
1711                ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1712                                                   wc);
1713        if (ret) {
1714                mlog_errno(ret);
1715                goto out;
1716        }
1717
1718        ret = ocfs2_check_range_for_refcount(inode, pos, len);
1719        if (ret < 0) {
1720                mlog_errno(ret);
1721                goto out;
1722        } else if (ret == 1) {
1723                clusters_need = wc->w_clen;
1724                ret = ocfs2_refcount_cow(inode, filp, di_bh,
1725                                         wc->w_cpos, wc->w_clen, UINT_MAX);
1726                if (ret) {
1727                        mlog_errno(ret);
1728                        goto out;
1729                }
1730        }
1731
1732        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1733                                        &extents_to_split);
1734        if (ret) {
1735                mlog_errno(ret);
1736                goto out;
1737        }
1738        clusters_need += clusters_to_alloc;
1739
1740        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1741
1742        /*
1743         * We set w_target_from, w_target_to here so that
1744         * ocfs2_write_end() knows which range in the target page to
1745         * write out. An allocation requires that we write the entire
1746         * cluster range.
1747         */
1748        if (clusters_to_alloc || extents_to_split) {
1749                /*
1750                 * XXX: We are stretching the limits of
1751                 * ocfs2_lock_allocators(). It greatly over-estimates
1752                 * the work to be done.
1753                 */
1754                mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1755                     " clusters_to_add = %u, extents_to_split = %u\n",
1756                     (unsigned long long)OCFS2_I(inode)->ip_blkno,
1757                     (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1758                     clusters_to_alloc, extents_to_split);
1759
1760                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1761                                              wc->w_di_bh);
1762                ret = ocfs2_lock_allocators(inode, &et,
1763                                            clusters_to_alloc, extents_to_split,
1764                                            &data_ac, &meta_ac);
1765                if (ret) {
1766                        mlog_errno(ret);
1767                        goto out;
1768                }
1769
1770                if (data_ac)
1771                        data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1772
1773                credits = ocfs2_calc_extend_credits(inode->i_sb,
1774                                                    &di->id2.i_list,
1775                                                    clusters_to_alloc);
1776
1777        }
1778
1779        /*
1780         * We have to zero sparse allocated clusters, unwritten extent clusters,
1781         * and non-sparse clusters we just extended.  For non-sparse writes,
1782         * we know zeros will only be needed in the first and/or last cluster.
1783         */
1784        if (clusters_to_alloc || extents_to_split ||
1785            (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1786                            wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1787                cluster_of_pages = 1;
1788        else
1789                cluster_of_pages = 0;
1790
1791        ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1792
1793        handle = ocfs2_start_trans(osb, credits);
1794        if (IS_ERR(handle)) {
1795                ret = PTR_ERR(handle);
1796                mlog_errno(ret);
1797                goto out;
1798        }
1799
1800        wc->w_handle = handle;
1801
1802        if (clusters_to_alloc) {
1803                ret = dquot_alloc_space_nodirty(inode,
1804                        ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1805                if (ret)
1806                        goto out_commit;
1807        }
1808        /*
1809         * We don't want this to fail in ocfs2_write_end(), so do it
1810         * here.
1811         */
1812        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1813                                      OCFS2_JOURNAL_ACCESS_WRITE);
1814        if (ret) {
1815                mlog_errno(ret);
1816                goto out_quota;
1817        }
1818
1819        /*
1820         * Fill our page array first. That way we've grabbed enough so
1821         * that we can zero and flush if we error after adding the
1822         * extent.
1823         */
1824        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1825                                         cluster_of_pages, mmap_page);
1826        if (ret) {
1827                mlog_errno(ret);
1828                goto out_quota;
1829        }
1830
1831        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1832                                          len);
1833        if (ret) {
1834                mlog_errno(ret);
1835                goto out_quota;
1836        }
1837
1838        if (data_ac)
1839                ocfs2_free_alloc_context(data_ac);
1840        if (meta_ac)
1841                ocfs2_free_alloc_context(meta_ac);
1842
1843success:
1844        *pagep = wc->w_target_page;
1845        *fsdata = wc;
1846        return 0;
1847out_quota:
1848        if (clusters_to_alloc)
1849                dquot_free_space(inode,
1850                          ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1851out_commit:
1852        ocfs2_commit_trans(osb, handle);
1853
1854out:
1855        ocfs2_free_write_ctxt(wc);
1856
1857        if (data_ac)
1858                ocfs2_free_alloc_context(data_ac);
1859        if (meta_ac)
1860                ocfs2_free_alloc_context(meta_ac);
1861
1862        if (ret == -ENOSPC && try_free) {
1863                /*
1864                 * Try to free some truncate log so that we can have enough
1865                 * clusters to allocate.
1866                 */
1867                try_free = 0;
1868
1869                ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1870                if (ret1 == 1)
1871                        goto try_again;
1872
1873                if (ret1 < 0)
1874                        mlog_errno(ret1);
1875        }
1876
1877        return ret;
1878}
1879
1880static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1881                             loff_t pos, unsigned len, unsigned flags,
1882                             struct page **pagep, void **fsdata)
1883{
1884        int ret;
1885        struct buffer_head *di_bh = NULL;
1886        struct inode *inode = mapping->host;
1887
1888        ret = ocfs2_inode_lock(inode, &di_bh, 1);
1889        if (ret) {
1890                mlog_errno(ret);
1891                return ret;
1892        }
1893
1894        /*
1895         * Take alloc sem here to prevent concurrent lookups. That way
1896         * the mapping, zeroing and tree manipulation within
1897         * ocfs2_write() will be safe against ->readpage(). This
1898         * should also serve to lock out allocation from a shared
1899         * writeable region.
1900         */
1901        down_write(&OCFS2_I(inode)->ip_alloc_sem);
1902
1903        ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1904                                       fsdata, di_bh, NULL);
1905        if (ret) {
1906                mlog_errno(ret);
1907                goto out_fail;
1908        }
1909
1910        brelse(di_bh);
1911
1912        return 0;
1913
1914out_fail:
1915        up_write(&OCFS2_I(inode)->ip_alloc_sem);
1916
1917        brelse(di_bh);
1918        ocfs2_inode_unlock(inode, 1);
1919
1920        return ret;
1921}
1922
1923static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1924                                   unsigned len, unsigned *copied,
1925                                   struct ocfs2_dinode *di,
1926                                   struct ocfs2_write_ctxt *wc)
1927{
1928        void *kaddr;
1929
1930        if (unlikely(*copied < len)) {
1931                if (!PageUptodate(wc->w_target_page)) {
1932                        *copied = 0;
1933                        return;
1934                }
1935        }
1936
1937        kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1938        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1939        kunmap_atomic(kaddr, KM_USER0);
1940
1941        mlog(0, "Data written to inode at offset %llu. "
1942             "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1943             (unsigned long long)pos, *copied,
1944             le16_to_cpu(di->id2.i_data.id_count),
1945             le16_to_cpu(di->i_dyn_features));
1946}
1947
1948int ocfs2_write_end_nolock(struct address_space *mapping,
1949                           loff_t pos, unsigned len, unsigned copied,
1950                           struct page *page, void *fsdata)
1951{
1952        int i;
1953        unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1954        struct inode *inode = mapping->host;
1955        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1956        struct ocfs2_write_ctxt *wc = fsdata;
1957        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1958        handle_t *handle = wc->w_handle;
1959        struct page *tmppage;
1960
1961        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1962                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1963                goto out_write_size;
1964        }
1965
1966        if (unlikely(copied < len)) {
1967                if (!PageUptodate(wc->w_target_page))
1968                        copied = 0;
1969
1970                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1971                                       start+len);
1972        }
1973        flush_dcache_page(wc->w_target_page);
1974
1975        for(i = 0; i < wc->w_num_pages; i++) {
1976                tmppage = wc->w_pages[i];
1977
1978                if (tmppage == wc->w_target_page) {
1979                        from = wc->w_target_from;
1980                        to = wc->w_target_to;
1981
1982                        BUG_ON(from > PAGE_CACHE_SIZE ||
1983                               to > PAGE_CACHE_SIZE ||
1984                               to < from);
1985                } else {
1986                        /*
1987                         * Pages adjacent to the target (if any) imply
1988                         * a hole-filling write in which case we want
1989                         * to flush their entire range.
1990                         */
1991                        from = 0;
1992                        to = PAGE_CACHE_SIZE;
1993                }
1994
1995                if (page_has_buffers(tmppage)) {
1996                        if (ocfs2_should_order_data(inode))
1997                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
1998                        block_commit_write(tmppage, from, to);
1999                }
2000        }
2001
2002out_write_size:
2003        pos += copied;
2004        if (pos > inode->i_size) {
2005                i_size_write(inode, pos);
2006                mark_inode_dirty(inode);
2007        }
2008        inode->i_blocks = ocfs2_inode_sector_count(inode);
2009        di->i_size = cpu_to_le64((u64)i_size_read(inode));
2010        inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2011        di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2012        di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2013        ocfs2_journal_dirty(handle, wc->w_di_bh);
2014
2015        ocfs2_commit_trans(osb, handle);
2016
2017        ocfs2_run_deallocs(osb, &wc->w_dealloc);
2018
2019        ocfs2_free_write_ctxt(wc);
2020
2021        return copied;
2022}
2023
2024static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2025                           loff_t pos, unsigned len, unsigned copied,
2026                           struct page *page, void *fsdata)
2027{
2028        int ret;
2029        struct inode *inode = mapping->host;
2030
2031        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2032
2033        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2034        ocfs2_inode_unlock(inode, 1);
2035
2036        return ret;
2037}
2038
2039const struct address_space_operations ocfs2_aops = {
2040        .readpage               = ocfs2_readpage,
2041        .readpages              = ocfs2_readpages,
2042        .writepage              = ocfs2_writepage,
2043        .write_begin            = ocfs2_write_begin,
2044        .write_end              = ocfs2_write_end,
2045        .bmap                   = ocfs2_bmap,
2046        .sync_page              = block_sync_page,
2047        .direct_IO              = ocfs2_direct_IO,
2048        .invalidatepage         = ocfs2_invalidatepage,
2049        .releasepage            = ocfs2_releasepage,
2050        .migratepage            = buffer_migrate_page,
2051        .is_partially_uptodate  = block_is_partially_uptodate,
2052        .error_remove_page      = generic_error_remove_page,
2053};
2054