linux/fs/splice.c
<<
>>
Prefs
   1/*
   2 * "splice": joining two ropes together by interweaving their strands.
   3 *
   4 * This is the "extended pipe" functionality, where a pipe is used as
   5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
   6 * buffer that you can use to transfer data from one end to the other.
   7 *
   8 * The traditional unix read/write is extended with a "splice()" operation
   9 * that transfers data buffers to or from a pipe buffer.
  10 *
  11 * Named by Larry McVoy, original implementation from Linus, extended by
  12 * Jens to support splicing to files, network, direct splicing, etc and
  13 * fixing lots of bugs.
  14 *
  15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
  16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
  17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
  18 *
  19 */
  20#include <linux/fs.h>
  21#include <linux/file.h>
  22#include <linux/pagemap.h>
  23#include <linux/splice.h>
  24#include <linux/memcontrol.h>
  25#include <linux/mm_inline.h>
  26#include <linux/swap.h>
  27#include <linux/writeback.h>
  28#include <linux/buffer_head.h>
  29#include <linux/module.h>
  30#include <linux/syscalls.h>
  31#include <linux/uio.h>
  32#include <linux/security.h>
  33#include <linux/gfp.h>
  34
  35/*
  36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
  37 * a vm helper function, it's already simplified quite a bit by the
  38 * addition of remove_mapping(). If success is returned, the caller may
  39 * attempt to reuse this page for another destination.
  40 */
  41static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
  42                                     struct pipe_buffer *buf)
  43{
  44        struct page *page = buf->page;
  45        struct address_space *mapping;
  46
  47        lock_page(page);
  48
  49        mapping = page_mapping(page);
  50        if (mapping) {
  51                WARN_ON(!PageUptodate(page));
  52
  53                /*
  54                 * At least for ext2 with nobh option, we need to wait on
  55                 * writeback completing on this page, since we'll remove it
  56                 * from the pagecache.  Otherwise truncate wont wait on the
  57                 * page, allowing the disk blocks to be reused by someone else
  58                 * before we actually wrote our data to them. fs corruption
  59                 * ensues.
  60                 */
  61                wait_on_page_writeback(page);
  62
  63                if (page_has_private(page) &&
  64                    !try_to_release_page(page, GFP_KERNEL))
  65                        goto out_unlock;
  66
  67                /*
  68                 * If we succeeded in removing the mapping, set LRU flag
  69                 * and return good.
  70                 */
  71                if (remove_mapping(mapping, page)) {
  72                        buf->flags |= PIPE_BUF_FLAG_LRU;
  73                        return 0;
  74                }
  75        }
  76
  77        /*
  78         * Raced with truncate or failed to remove page from current
  79         * address space, unlock and return failure.
  80         */
  81out_unlock:
  82        unlock_page(page);
  83        return 1;
  84}
  85
  86static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
  87                                        struct pipe_buffer *buf)
  88{
  89        page_cache_release(buf->page);
  90        buf->flags &= ~PIPE_BUF_FLAG_LRU;
  91}
  92
  93/*
  94 * Check whether the contents of buf is OK to access. Since the content
  95 * is a page cache page, IO may be in flight.
  96 */
  97static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
  98                                       struct pipe_buffer *buf)
  99{
 100        struct page *page = buf->page;
 101        int err;
 102
 103        if (!PageUptodate(page)) {
 104                lock_page(page);
 105
 106                /*
 107                 * Page got truncated/unhashed. This will cause a 0-byte
 108                 * splice, if this is the first page.
 109                 */
 110                if (!page->mapping) {
 111                        err = -ENODATA;
 112                        goto error;
 113                }
 114
 115                /*
 116                 * Uh oh, read-error from disk.
 117                 */
 118                if (!PageUptodate(page)) {
 119                        err = -EIO;
 120                        goto error;
 121                }
 122
 123                /*
 124                 * Page is ok afterall, we are done.
 125                 */
 126                unlock_page(page);
 127        }
 128
 129        return 0;
 130error:
 131        unlock_page(page);
 132        return err;
 133}
 134
 135static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
 136        .can_merge = 0,
 137        .map = generic_pipe_buf_map,
 138        .unmap = generic_pipe_buf_unmap,
 139        .confirm = page_cache_pipe_buf_confirm,
 140        .release = page_cache_pipe_buf_release,
 141        .steal = page_cache_pipe_buf_steal,
 142        .get = generic_pipe_buf_get,
 143};
 144
 145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
 146                                    struct pipe_buffer *buf)
 147{
 148        if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
 149                return 1;
 150
 151        buf->flags |= PIPE_BUF_FLAG_LRU;
 152        return generic_pipe_buf_steal(pipe, buf);
 153}
 154
 155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
 156        .can_merge = 0,
 157        .map = generic_pipe_buf_map,
 158        .unmap = generic_pipe_buf_unmap,
 159        .confirm = generic_pipe_buf_confirm,
 160        .release = page_cache_pipe_buf_release,
 161        .steal = user_page_pipe_buf_steal,
 162        .get = generic_pipe_buf_get,
 163};
 164
 165/**
 166 * splice_to_pipe - fill passed data into a pipe
 167 * @pipe:       pipe to fill
 168 * @spd:        data to fill
 169 *
 170 * Description:
 171 *    @spd contains a map of pages and len/offset tuples, along with
 172 *    the struct pipe_buf_operations associated with these pages. This
 173 *    function will link that data to the pipe.
 174 *
 175 */
 176ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
 177                       struct splice_pipe_desc *spd)
 178{
 179        unsigned int spd_pages = spd->nr_pages;
 180        int ret, do_wakeup, page_nr;
 181
 182        ret = 0;
 183        do_wakeup = 0;
 184        page_nr = 0;
 185
 186        pipe_lock(pipe);
 187
 188        for (;;) {
 189                if (!pipe->readers) {
 190                        send_sig(SIGPIPE, current, 0);
 191                        if (!ret)
 192                                ret = -EPIPE;
 193                        break;
 194                }
 195
 196                if (pipe->nrbufs < pipe->buffers) {
 197                        int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
 198                        struct pipe_buffer *buf = pipe->bufs + newbuf;
 199
 200                        buf->page = spd->pages[page_nr];
 201                        buf->offset = spd->partial[page_nr].offset;
 202                        buf->len = spd->partial[page_nr].len;
 203                        buf->private = spd->partial[page_nr].private;
 204                        buf->ops = spd->ops;
 205                        if (spd->flags & SPLICE_F_GIFT)
 206                                buf->flags |= PIPE_BUF_FLAG_GIFT;
 207
 208                        pipe->nrbufs++;
 209                        page_nr++;
 210                        ret += buf->len;
 211
 212                        if (pipe->inode)
 213                                do_wakeup = 1;
 214
 215                        if (!--spd->nr_pages)
 216                                break;
 217                        if (pipe->nrbufs < pipe->buffers)
 218                                continue;
 219
 220                        break;
 221                }
 222
 223                if (spd->flags & SPLICE_F_NONBLOCK) {
 224                        if (!ret)
 225                                ret = -EAGAIN;
 226                        break;
 227                }
 228
 229                if (signal_pending(current)) {
 230                        if (!ret)
 231                                ret = -ERESTARTSYS;
 232                        break;
 233                }
 234
 235                if (do_wakeup) {
 236                        smp_mb();
 237                        if (waitqueue_active(&pipe->wait))
 238                                wake_up_interruptible_sync(&pipe->wait);
 239                        kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 240                        do_wakeup = 0;
 241                }
 242
 243                pipe->waiting_writers++;
 244                pipe_wait(pipe);
 245                pipe->waiting_writers--;
 246        }
 247
 248        pipe_unlock(pipe);
 249
 250        if (do_wakeup) {
 251                smp_mb();
 252                if (waitqueue_active(&pipe->wait))
 253                        wake_up_interruptible(&pipe->wait);
 254                kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
 255        }
 256
 257        while (page_nr < spd_pages)
 258                spd->spd_release(spd, page_nr++);
 259
 260        return ret;
 261}
 262
 263static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
 264{
 265        page_cache_release(spd->pages[i]);
 266}
 267
 268/*
 269 * Check if we need to grow the arrays holding pages and partial page
 270 * descriptions.
 271 */
 272int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
 273{
 274        if (pipe->buffers <= PIPE_DEF_BUFFERS)
 275                return 0;
 276
 277        spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
 278        spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
 279
 280        if (spd->pages && spd->partial)
 281                return 0;
 282
 283        kfree(spd->pages);
 284        kfree(spd->partial);
 285        return -ENOMEM;
 286}
 287
 288void splice_shrink_spd(struct pipe_inode_info *pipe,
 289                       struct splice_pipe_desc *spd)
 290{
 291        if (pipe->buffers <= PIPE_DEF_BUFFERS)
 292                return;
 293
 294        kfree(spd->pages);
 295        kfree(spd->partial);
 296}
 297
 298static int
 299__generic_file_splice_read(struct file *in, loff_t *ppos,
 300                           struct pipe_inode_info *pipe, size_t len,
 301                           unsigned int flags)
 302{
 303        struct address_space *mapping = in->f_mapping;
 304        unsigned int loff, nr_pages, req_pages;
 305        struct page *pages[PIPE_DEF_BUFFERS];
 306        struct partial_page partial[PIPE_DEF_BUFFERS];
 307        struct page *page;
 308        pgoff_t index, end_index;
 309        loff_t isize;
 310        int error, page_nr;
 311        struct splice_pipe_desc spd = {
 312                .pages = pages,
 313                .partial = partial,
 314                .flags = flags,
 315                .ops = &page_cache_pipe_buf_ops,
 316                .spd_release = spd_release_page,
 317        };
 318
 319        if (splice_grow_spd(pipe, &spd))
 320                return -ENOMEM;
 321
 322        index = *ppos >> PAGE_CACHE_SHIFT;
 323        loff = *ppos & ~PAGE_CACHE_MASK;
 324        req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 325        nr_pages = min(req_pages, pipe->buffers);
 326
 327        /*
 328         * Lookup the (hopefully) full range of pages we need.
 329         */
 330        spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
 331        index += spd.nr_pages;
 332
 333        /*
 334         * If find_get_pages_contig() returned fewer pages than we needed,
 335         * readahead/allocate the rest and fill in the holes.
 336         */
 337        if (spd.nr_pages < nr_pages)
 338                page_cache_sync_readahead(mapping, &in->f_ra, in,
 339                                index, req_pages - spd.nr_pages);
 340
 341        error = 0;
 342        while (spd.nr_pages < nr_pages) {
 343                /*
 344                 * Page could be there, find_get_pages_contig() breaks on
 345                 * the first hole.
 346                 */
 347                page = find_get_page(mapping, index);
 348                if (!page) {
 349                        /*
 350                         * page didn't exist, allocate one.
 351                         */
 352                        page = page_cache_alloc_cold(mapping);
 353                        if (!page)
 354                                break;
 355
 356                        error = add_to_page_cache_lru(page, mapping, index,
 357                                                GFP_KERNEL);
 358                        if (unlikely(error)) {
 359                                page_cache_release(page);
 360                                if (error == -EEXIST)
 361                                        continue;
 362                                break;
 363                        }
 364                        /*
 365                         * add_to_page_cache() locks the page, unlock it
 366                         * to avoid convoluting the logic below even more.
 367                         */
 368                        unlock_page(page);
 369                }
 370
 371                spd.pages[spd.nr_pages++] = page;
 372                index++;
 373        }
 374
 375        /*
 376         * Now loop over the map and see if we need to start IO on any
 377         * pages, fill in the partial map, etc.
 378         */
 379        index = *ppos >> PAGE_CACHE_SHIFT;
 380        nr_pages = spd.nr_pages;
 381        spd.nr_pages = 0;
 382        for (page_nr = 0; page_nr < nr_pages; page_nr++) {
 383                unsigned int this_len;
 384
 385                if (!len)
 386                        break;
 387
 388                /*
 389                 * this_len is the max we'll use from this page
 390                 */
 391                this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
 392                page = spd.pages[page_nr];
 393
 394                if (PageReadahead(page))
 395                        page_cache_async_readahead(mapping, &in->f_ra, in,
 396                                        page, index, req_pages - page_nr);
 397
 398                /*
 399                 * If the page isn't uptodate, we may need to start io on it
 400                 */
 401                if (!PageUptodate(page)) {
 402                        lock_page(page);
 403
 404                        /*
 405                         * Page was truncated, or invalidated by the
 406                         * filesystem.  Redo the find/create, but this time the
 407                         * page is kept locked, so there's no chance of another
 408                         * race with truncate/invalidate.
 409                         */
 410                        if (!page->mapping) {
 411                                unlock_page(page);
 412                                page = find_or_create_page(mapping, index,
 413                                                mapping_gfp_mask(mapping));
 414
 415                                if (!page) {
 416                                        error = -ENOMEM;
 417                                        break;
 418                                }
 419                                page_cache_release(spd.pages[page_nr]);
 420                                spd.pages[page_nr] = page;
 421                        }
 422                        /*
 423                         * page was already under io and is now done, great
 424                         */
 425                        if (PageUptodate(page)) {
 426                                unlock_page(page);
 427                                goto fill_it;
 428                        }
 429
 430                        /*
 431                         * need to read in the page
 432                         */
 433                        error = mapping->a_ops->readpage(in, page);
 434                        if (unlikely(error)) {
 435                                /*
 436                                 * We really should re-lookup the page here,
 437                                 * but it complicates things a lot. Instead
 438                                 * lets just do what we already stored, and
 439                                 * we'll get it the next time we are called.
 440                                 */
 441                                if (error == AOP_TRUNCATED_PAGE)
 442                                        error = 0;
 443
 444                                break;
 445                        }
 446                }
 447fill_it:
 448                /*
 449                 * i_size must be checked after PageUptodate.
 450                 */
 451                isize = i_size_read(mapping->host);
 452                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
 453                if (unlikely(!isize || index > end_index))
 454                        break;
 455
 456                /*
 457                 * if this is the last page, see if we need to shrink
 458                 * the length and stop
 459                 */
 460                if (end_index == index) {
 461                        unsigned int plen;
 462
 463                        /*
 464                         * max good bytes in this page
 465                         */
 466                        plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
 467                        if (plen <= loff)
 468                                break;
 469
 470                        /*
 471                         * force quit after adding this page
 472                         */
 473                        this_len = min(this_len, plen - loff);
 474                        len = this_len;
 475                }
 476
 477                spd.partial[page_nr].offset = loff;
 478                spd.partial[page_nr].len = this_len;
 479                len -= this_len;
 480                loff = 0;
 481                spd.nr_pages++;
 482                index++;
 483        }
 484
 485        /*
 486         * Release any pages at the end, if we quit early. 'page_nr' is how far
 487         * we got, 'nr_pages' is how many pages are in the map.
 488         */
 489        while (page_nr < nr_pages)
 490                page_cache_release(spd.pages[page_nr++]);
 491        in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
 492
 493        if (spd.nr_pages)
 494                error = splice_to_pipe(pipe, &spd);
 495
 496        splice_shrink_spd(pipe, &spd);
 497        return error;
 498}
 499
 500/**
 501 * generic_file_splice_read - splice data from file to a pipe
 502 * @in:         file to splice from
 503 * @ppos:       position in @in
 504 * @pipe:       pipe to splice to
 505 * @len:        number of bytes to splice
 506 * @flags:      splice modifier flags
 507 *
 508 * Description:
 509 *    Will read pages from given file and fill them into a pipe. Can be
 510 *    used as long as the address_space operations for the source implements
 511 *    a readpage() hook.
 512 *
 513 */
 514ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
 515                                 struct pipe_inode_info *pipe, size_t len,
 516                                 unsigned int flags)
 517{
 518        loff_t isize, left;
 519        int ret;
 520
 521        isize = i_size_read(in->f_mapping->host);
 522        if (unlikely(*ppos >= isize))
 523                return 0;
 524
 525        left = isize - *ppos;
 526        if (unlikely(left < len))
 527                len = left;
 528
 529        ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
 530        if (ret > 0) {
 531                *ppos += ret;
 532                file_accessed(in);
 533        }
 534
 535        return ret;
 536}
 537EXPORT_SYMBOL(generic_file_splice_read);
 538
 539static const struct pipe_buf_operations default_pipe_buf_ops = {
 540        .can_merge = 0,
 541        .map = generic_pipe_buf_map,
 542        .unmap = generic_pipe_buf_unmap,
 543        .confirm = generic_pipe_buf_confirm,
 544        .release = generic_pipe_buf_release,
 545        .steal = generic_pipe_buf_steal,
 546        .get = generic_pipe_buf_get,
 547};
 548
 549static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
 550                            unsigned long vlen, loff_t offset)
 551{
 552        mm_segment_t old_fs;
 553        loff_t pos = offset;
 554        ssize_t res;
 555
 556        old_fs = get_fs();
 557        set_fs(get_ds());
 558        /* The cast to a user pointer is valid due to the set_fs() */
 559        res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
 560        set_fs(old_fs);
 561
 562        return res;
 563}
 564
 565static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
 566                            loff_t pos)
 567{
 568        mm_segment_t old_fs;
 569        ssize_t res;
 570
 571        old_fs = get_fs();
 572        set_fs(get_ds());
 573        /* The cast to a user pointer is valid due to the set_fs() */
 574        res = vfs_write(file, (const char __user *)buf, count, &pos);
 575        set_fs(old_fs);
 576
 577        return res;
 578}
 579
 580ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
 581                                 struct pipe_inode_info *pipe, size_t len,
 582                                 unsigned int flags)
 583{
 584        unsigned int nr_pages;
 585        unsigned int nr_freed;
 586        size_t offset;
 587        struct page *pages[PIPE_DEF_BUFFERS];
 588        struct partial_page partial[PIPE_DEF_BUFFERS];
 589        struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
 590        ssize_t res;
 591        size_t this_len;
 592        int error;
 593        int i;
 594        struct splice_pipe_desc spd = {
 595                .pages = pages,
 596                .partial = partial,
 597                .flags = flags,
 598                .ops = &default_pipe_buf_ops,
 599                .spd_release = spd_release_page,
 600        };
 601
 602        if (splice_grow_spd(pipe, &spd))
 603                return -ENOMEM;
 604
 605        res = -ENOMEM;
 606        vec = __vec;
 607        if (pipe->buffers > PIPE_DEF_BUFFERS) {
 608                vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
 609                if (!vec)
 610                        goto shrink_ret;
 611        }
 612
 613        offset = *ppos & ~PAGE_CACHE_MASK;
 614        nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 615
 616        for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
 617                struct page *page;
 618
 619                page = alloc_page(GFP_USER);
 620                error = -ENOMEM;
 621                if (!page)
 622                        goto err;
 623
 624                this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
 625                vec[i].iov_base = (void __user *) page_address(page);
 626                vec[i].iov_len = this_len;
 627                spd.pages[i] = page;
 628                spd.nr_pages++;
 629                len -= this_len;
 630                offset = 0;
 631        }
 632
 633        res = kernel_readv(in, vec, spd.nr_pages, *ppos);
 634        if (res < 0) {
 635                error = res;
 636                goto err;
 637        }
 638
 639        error = 0;
 640        if (!res)
 641                goto err;
 642
 643        nr_freed = 0;
 644        for (i = 0; i < spd.nr_pages; i++) {
 645                this_len = min_t(size_t, vec[i].iov_len, res);
 646                spd.partial[i].offset = 0;
 647                spd.partial[i].len = this_len;
 648                if (!this_len) {
 649                        __free_page(spd.pages[i]);
 650                        spd.pages[i] = NULL;
 651                        nr_freed++;
 652                }
 653                res -= this_len;
 654        }
 655        spd.nr_pages -= nr_freed;
 656
 657        res = splice_to_pipe(pipe, &spd);
 658        if (res > 0)
 659                *ppos += res;
 660
 661shrink_ret:
 662        if (vec != __vec)
 663                kfree(vec);
 664        splice_shrink_spd(pipe, &spd);
 665        return res;
 666
 667err:
 668        for (i = 0; i < spd.nr_pages; i++)
 669                __free_page(spd.pages[i]);
 670
 671        res = error;
 672        goto shrink_ret;
 673}
 674EXPORT_SYMBOL(default_file_splice_read);
 675
 676/*
 677 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
 678 * using sendpage(). Return the number of bytes sent.
 679 */
 680static int pipe_to_sendpage(struct pipe_inode_info *pipe,
 681                            struct pipe_buffer *buf, struct splice_desc *sd)
 682{
 683        struct file *file = sd->u.file;
 684        loff_t pos = sd->pos;
 685        int more;
 686
 687        if (!likely(file->f_op && file->f_op->sendpage))
 688                return -EINVAL;
 689
 690        more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
 691        return file->f_op->sendpage(file, buf->page, buf->offset,
 692                                    sd->len, &pos, more);
 693}
 694
 695/*
 696 * This is a little more tricky than the file -> pipe splicing. There are
 697 * basically three cases:
 698 *
 699 *      - Destination page already exists in the address space and there
 700 *        are users of it. For that case we have no other option that
 701 *        copying the data. Tough luck.
 702 *      - Destination page already exists in the address space, but there
 703 *        are no users of it. Make sure it's uptodate, then drop it. Fall
 704 *        through to last case.
 705 *      - Destination page does not exist, we can add the pipe page to
 706 *        the page cache and avoid the copy.
 707 *
 708 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
 709 * sd->flags), we attempt to migrate pages from the pipe to the output
 710 * file address space page cache. This is possible if no one else has
 711 * the pipe page referenced outside of the pipe and page cache. If
 712 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
 713 * a new page in the output file page cache and fill/dirty that.
 714 */
 715int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
 716                 struct splice_desc *sd)
 717{
 718        struct file *file = sd->u.file;
 719        struct address_space *mapping = file->f_mapping;
 720        unsigned int offset, this_len;
 721        struct page *page;
 722        void *fsdata;
 723        int ret;
 724
 725        offset = sd->pos & ~PAGE_CACHE_MASK;
 726
 727        this_len = sd->len;
 728        if (this_len + offset > PAGE_CACHE_SIZE)
 729                this_len = PAGE_CACHE_SIZE - offset;
 730
 731        ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
 732                                AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
 733        if (unlikely(ret))
 734                goto out;
 735
 736        if (buf->page != page) {
 737                /*
 738                 * Careful, ->map() uses KM_USER0!
 739                 */
 740                char *src = buf->ops->map(pipe, buf, 1);
 741                char *dst = kmap_atomic(page, KM_USER1);
 742
 743                memcpy(dst + offset, src + buf->offset, this_len);
 744                flush_dcache_page(page);
 745                kunmap_atomic(dst, KM_USER1);
 746                buf->ops->unmap(pipe, buf, src);
 747        }
 748        ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
 749                                page, fsdata);
 750out:
 751        return ret;
 752}
 753EXPORT_SYMBOL(pipe_to_file);
 754
 755static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
 756{
 757        smp_mb();
 758        if (waitqueue_active(&pipe->wait))
 759                wake_up_interruptible(&pipe->wait);
 760        kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
 761}
 762
 763/**
 764 * splice_from_pipe_feed - feed available data from a pipe to a file
 765 * @pipe:       pipe to splice from
 766 * @sd:         information to @actor
 767 * @actor:      handler that splices the data
 768 *
 769 * Description:
 770 *    This function loops over the pipe and calls @actor to do the
 771 *    actual moving of a single struct pipe_buffer to the desired
 772 *    destination.  It returns when there's no more buffers left in
 773 *    the pipe or if the requested number of bytes (@sd->total_len)
 774 *    have been copied.  It returns a positive number (one) if the
 775 *    pipe needs to be filled with more data, zero if the required
 776 *    number of bytes have been copied and -errno on error.
 777 *
 778 *    This, together with splice_from_pipe_{begin,end,next}, may be
 779 *    used to implement the functionality of __splice_from_pipe() when
 780 *    locking is required around copying the pipe buffers to the
 781 *    destination.
 782 */
 783int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
 784                          splice_actor *actor)
 785{
 786        int ret;
 787
 788        while (pipe->nrbufs) {
 789                struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
 790                const struct pipe_buf_operations *ops = buf->ops;
 791
 792                sd->len = buf->len;
 793                if (sd->len > sd->total_len)
 794                        sd->len = sd->total_len;
 795
 796                ret = buf->ops->confirm(pipe, buf);
 797                if (unlikely(ret)) {
 798                        if (ret == -ENODATA)
 799                                ret = 0;
 800                        return ret;
 801                }
 802
 803                ret = actor(pipe, buf, sd);
 804                if (ret <= 0)
 805                        return ret;
 806
 807                buf->offset += ret;
 808                buf->len -= ret;
 809
 810                sd->num_spliced += ret;
 811                sd->len -= ret;
 812                sd->pos += ret;
 813                sd->total_len -= ret;
 814
 815                if (!buf->len) {
 816                        buf->ops = NULL;
 817                        ops->release(pipe, buf);
 818                        pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
 819                        pipe->nrbufs--;
 820                        if (pipe->inode)
 821                                sd->need_wakeup = true;
 822                }
 823
 824                if (!sd->total_len)
 825                        return 0;
 826        }
 827
 828        return 1;
 829}
 830EXPORT_SYMBOL(splice_from_pipe_feed);
 831
 832/**
 833 * splice_from_pipe_next - wait for some data to splice from
 834 * @pipe:       pipe to splice from
 835 * @sd:         information about the splice operation
 836 *
 837 * Description:
 838 *    This function will wait for some data and return a positive
 839 *    value (one) if pipe buffers are available.  It will return zero
 840 *    or -errno if no more data needs to be spliced.
 841 */
 842int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
 843{
 844        while (!pipe->nrbufs) {
 845                if (!pipe->writers)
 846                        return 0;
 847
 848                if (!pipe->waiting_writers && sd->num_spliced)
 849                        return 0;
 850
 851                if (sd->flags & SPLICE_F_NONBLOCK)
 852                        return -EAGAIN;
 853
 854                if (signal_pending(current))
 855                        return -ERESTARTSYS;
 856
 857                if (sd->need_wakeup) {
 858                        wakeup_pipe_writers(pipe);
 859                        sd->need_wakeup = false;
 860                }
 861
 862                pipe_wait(pipe);
 863        }
 864
 865        return 1;
 866}
 867EXPORT_SYMBOL(splice_from_pipe_next);
 868
 869/**
 870 * splice_from_pipe_begin - start splicing from pipe
 871 * @sd:         information about the splice operation
 872 *
 873 * Description:
 874 *    This function should be called before a loop containing
 875 *    splice_from_pipe_next() and splice_from_pipe_feed() to
 876 *    initialize the necessary fields of @sd.
 877 */
 878void splice_from_pipe_begin(struct splice_desc *sd)
 879{
 880        sd->num_spliced = 0;
 881        sd->need_wakeup = false;
 882}
 883EXPORT_SYMBOL(splice_from_pipe_begin);
 884
 885/**
 886 * splice_from_pipe_end - finish splicing from pipe
 887 * @pipe:       pipe to splice from
 888 * @sd:         information about the splice operation
 889 *
 890 * Description:
 891 *    This function will wake up pipe writers if necessary.  It should
 892 *    be called after a loop containing splice_from_pipe_next() and
 893 *    splice_from_pipe_feed().
 894 */
 895void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
 896{
 897        if (sd->need_wakeup)
 898                wakeup_pipe_writers(pipe);
 899}
 900EXPORT_SYMBOL(splice_from_pipe_end);
 901
 902/**
 903 * __splice_from_pipe - splice data from a pipe to given actor
 904 * @pipe:       pipe to splice from
 905 * @sd:         information to @actor
 906 * @actor:      handler that splices the data
 907 *
 908 * Description:
 909 *    This function does little more than loop over the pipe and call
 910 *    @actor to do the actual moving of a single struct pipe_buffer to
 911 *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
 912 *    pipe_to_user.
 913 *
 914 */
 915ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
 916                           splice_actor *actor)
 917{
 918        int ret;
 919
 920        splice_from_pipe_begin(sd);
 921        do {
 922                ret = splice_from_pipe_next(pipe, sd);
 923                if (ret > 0)
 924                        ret = splice_from_pipe_feed(pipe, sd, actor);
 925        } while (ret > 0);
 926        splice_from_pipe_end(pipe, sd);
 927
 928        return sd->num_spliced ? sd->num_spliced : ret;
 929}
 930EXPORT_SYMBOL(__splice_from_pipe);
 931
 932/**
 933 * splice_from_pipe - splice data from a pipe to a file
 934 * @pipe:       pipe to splice from
 935 * @out:        file to splice to
 936 * @ppos:       position in @out
 937 * @len:        how many bytes to splice
 938 * @flags:      splice modifier flags
 939 * @actor:      handler that splices the data
 940 *
 941 * Description:
 942 *    See __splice_from_pipe. This function locks the pipe inode,
 943 *    otherwise it's identical to __splice_from_pipe().
 944 *
 945 */
 946ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
 947                         loff_t *ppos, size_t len, unsigned int flags,
 948                         splice_actor *actor)
 949{
 950        ssize_t ret;
 951        struct splice_desc sd = {
 952                .total_len = len,
 953                .flags = flags,
 954                .pos = *ppos,
 955                .u.file = out,
 956        };
 957
 958        pipe_lock(pipe);
 959        ret = __splice_from_pipe(pipe, &sd, actor);
 960        pipe_unlock(pipe);
 961
 962        return ret;
 963}
 964
 965/**
 966 * generic_file_splice_write - splice data from a pipe to a file
 967 * @pipe:       pipe info
 968 * @out:        file to write to
 969 * @ppos:       position in @out
 970 * @len:        number of bytes to splice
 971 * @flags:      splice modifier flags
 972 *
 973 * Description:
 974 *    Will either move or copy pages (determined by @flags options) from
 975 *    the given pipe inode to the given file.
 976 *
 977 */
 978ssize_t
 979generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
 980                          loff_t *ppos, size_t len, unsigned int flags)
 981{
 982        struct address_space *mapping = out->f_mapping;
 983        struct inode *inode = mapping->host;
 984        struct splice_desc sd = {
 985                .total_len = len,
 986                .flags = flags,
 987                .pos = *ppos,
 988                .u.file = out,
 989        };
 990        ssize_t ret;
 991
 992        pipe_lock(pipe);
 993
 994        splice_from_pipe_begin(&sd);
 995        do {
 996                ret = splice_from_pipe_next(pipe, &sd);
 997                if (ret <= 0)
 998                        break;
 999
1000                mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1001                ret = file_remove_suid(out);
1002                if (!ret) {
1003                        file_update_time(out);
1004                        ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1005                }
1006                mutex_unlock(&inode->i_mutex);
1007        } while (ret > 0);
1008        splice_from_pipe_end(pipe, &sd);
1009
1010        pipe_unlock(pipe);
1011
1012        if (sd.num_spliced)
1013                ret = sd.num_spliced;
1014
1015        if (ret > 0) {
1016                unsigned long nr_pages;
1017                int err;
1018
1019                nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1020
1021                err = generic_write_sync(out, *ppos, ret);
1022                if (err)
1023                        ret = err;
1024                else
1025                        *ppos += ret;
1026                balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1027        }
1028
1029        return ret;
1030}
1031
1032EXPORT_SYMBOL(generic_file_splice_write);
1033
1034static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1035                          struct splice_desc *sd)
1036{
1037        int ret;
1038        void *data;
1039
1040        data = buf->ops->map(pipe, buf, 0);
1041        ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1042        buf->ops->unmap(pipe, buf, data);
1043
1044        return ret;
1045}
1046
1047static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1048                                         struct file *out, loff_t *ppos,
1049                                         size_t len, unsigned int flags)
1050{
1051        ssize_t ret;
1052
1053        ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1054        if (ret > 0)
1055                *ppos += ret;
1056
1057        return ret;
1058}
1059
1060/**
1061 * generic_splice_sendpage - splice data from a pipe to a socket
1062 * @pipe:       pipe to splice from
1063 * @out:        socket to write to
1064 * @ppos:       position in @out
1065 * @len:        number of bytes to splice
1066 * @flags:      splice modifier flags
1067 *
1068 * Description:
1069 *    Will send @len bytes from the pipe to a network socket. No data copying
1070 *    is involved.
1071 *
1072 */
1073ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1074                                loff_t *ppos, size_t len, unsigned int flags)
1075{
1076        return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1077}
1078
1079EXPORT_SYMBOL(generic_splice_sendpage);
1080
1081/*
1082 * Attempt to initiate a splice from pipe to file.
1083 */
1084static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1085                           loff_t *ppos, size_t len, unsigned int flags)
1086{
1087        ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1088                                loff_t *, size_t, unsigned int);
1089        int ret;
1090
1091        if (unlikely(!(out->f_mode & FMODE_WRITE)))
1092                return -EBADF;
1093
1094        if (unlikely(out->f_flags & O_APPEND))
1095                return -EINVAL;
1096
1097        ret = rw_verify_area(WRITE, out, ppos, len);
1098        if (unlikely(ret < 0))
1099                return ret;
1100
1101        if (out->f_op && out->f_op->splice_write)
1102                splice_write = out->f_op->splice_write;
1103        else
1104                splice_write = default_file_splice_write;
1105
1106        return splice_write(pipe, out, ppos, len, flags);
1107}
1108
1109/*
1110 * Attempt to initiate a splice from a file to a pipe.
1111 */
1112static long do_splice_to(struct file *in, loff_t *ppos,
1113                         struct pipe_inode_info *pipe, size_t len,
1114                         unsigned int flags)
1115{
1116        ssize_t (*splice_read)(struct file *, loff_t *,
1117                               struct pipe_inode_info *, size_t, unsigned int);
1118        int ret;
1119
1120        if (unlikely(!(in->f_mode & FMODE_READ)))
1121                return -EBADF;
1122
1123        ret = rw_verify_area(READ, in, ppos, len);
1124        if (unlikely(ret < 0))
1125                return ret;
1126
1127        if (in->f_op && in->f_op->splice_read)
1128                splice_read = in->f_op->splice_read;
1129        else
1130                splice_read = default_file_splice_read;
1131
1132        return splice_read(in, ppos, pipe, len, flags);
1133}
1134
1135/**
1136 * splice_direct_to_actor - splices data directly between two non-pipes
1137 * @in:         file to splice from
1138 * @sd:         actor information on where to splice to
1139 * @actor:      handles the data splicing
1140 *
1141 * Description:
1142 *    This is a special case helper to splice directly between two
1143 *    points, without requiring an explicit pipe. Internally an allocated
1144 *    pipe is cached in the process, and reused during the lifetime of
1145 *    that process.
1146 *
1147 */
1148ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1149                               splice_direct_actor *actor)
1150{
1151        struct pipe_inode_info *pipe;
1152        long ret, bytes;
1153        umode_t i_mode;
1154        size_t len;
1155        int i, flags;
1156
1157        /*
1158         * We require the input being a regular file, as we don't want to
1159         * randomly drop data for eg socket -> socket splicing. Use the
1160         * piped splicing for that!
1161         */
1162        i_mode = in->f_path.dentry->d_inode->i_mode;
1163        if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1164                return -EINVAL;
1165
1166        /*
1167         * neither in nor out is a pipe, setup an internal pipe attached to
1168         * 'out' and transfer the wanted data from 'in' to 'out' through that
1169         */
1170        pipe = current->splice_pipe;
1171        if (unlikely(!pipe)) {
1172                pipe = alloc_pipe_info(NULL);
1173                if (!pipe)
1174                        return -ENOMEM;
1175
1176                /*
1177                 * We don't have an immediate reader, but we'll read the stuff
1178                 * out of the pipe right after the splice_to_pipe(). So set
1179                 * PIPE_READERS appropriately.
1180                 */
1181                pipe->readers = 1;
1182
1183                current->splice_pipe = pipe;
1184        }
1185
1186        /*
1187         * Do the splice.
1188         */
1189        ret = 0;
1190        bytes = 0;
1191        len = sd->total_len;
1192        flags = sd->flags;
1193
1194        /*
1195         * Don't block on output, we have to drain the direct pipe.
1196         */
1197        sd->flags &= ~SPLICE_F_NONBLOCK;
1198
1199        while (len) {
1200                size_t read_len;
1201                loff_t pos = sd->pos, prev_pos = pos;
1202
1203                ret = do_splice_to(in, &pos, pipe, len, flags);
1204                if (unlikely(ret <= 0))
1205                        goto out_release;
1206
1207                read_len = ret;
1208                sd->total_len = read_len;
1209
1210                /*
1211                 * NOTE: nonblocking mode only applies to the input. We
1212                 * must not do the output in nonblocking mode as then we
1213                 * could get stuck data in the internal pipe:
1214                 */
1215                ret = actor(pipe, sd);
1216                if (unlikely(ret <= 0)) {
1217                        sd->pos = prev_pos;
1218                        goto out_release;
1219                }
1220
1221                bytes += ret;
1222                len -= ret;
1223                sd->pos = pos;
1224
1225                if (ret < read_len) {
1226                        sd->pos = prev_pos + ret;
1227                        goto out_release;
1228                }
1229        }
1230
1231done:
1232        pipe->nrbufs = pipe->curbuf = 0;
1233        file_accessed(in);
1234        return bytes;
1235
1236out_release:
1237        /*
1238         * If we did an incomplete transfer we must release
1239         * the pipe buffers in question:
1240         */
1241        for (i = 0; i < pipe->buffers; i++) {
1242                struct pipe_buffer *buf = pipe->bufs + i;
1243
1244                if (buf->ops) {
1245                        buf->ops->release(pipe, buf);
1246                        buf->ops = NULL;
1247                }
1248        }
1249
1250        if (!bytes)
1251                bytes = ret;
1252
1253        goto done;
1254}
1255EXPORT_SYMBOL(splice_direct_to_actor);
1256
1257static int direct_splice_actor(struct pipe_inode_info *pipe,
1258                               struct splice_desc *sd)
1259{
1260        struct file *file = sd->u.file;
1261
1262        return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1263                              sd->flags);
1264}
1265
1266/**
1267 * do_splice_direct - splices data directly between two files
1268 * @in:         file to splice from
1269 * @ppos:       input file offset
1270 * @out:        file to splice to
1271 * @len:        number of bytes to splice
1272 * @flags:      splice modifier flags
1273 *
1274 * Description:
1275 *    For use by do_sendfile(). splice can easily emulate sendfile, but
1276 *    doing it in the application would incur an extra system call
1277 *    (splice in + splice out, as compared to just sendfile()). So this helper
1278 *    can splice directly through a process-private pipe.
1279 *
1280 */
1281long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1282                      size_t len, unsigned int flags)
1283{
1284        struct splice_desc sd = {
1285                .len            = len,
1286                .total_len      = len,
1287                .flags          = flags,
1288                .pos            = *ppos,
1289                .u.file         = out,
1290        };
1291        long ret;
1292
1293        ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1294        if (ret > 0)
1295                *ppos = sd.pos;
1296
1297        return ret;
1298}
1299
1300static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1301                               struct pipe_inode_info *opipe,
1302                               size_t len, unsigned int flags);
1303
1304/*
1305 * Determine where to splice to/from.
1306 */
1307static long do_splice(struct file *in, loff_t __user *off_in,
1308                      struct file *out, loff_t __user *off_out,
1309                      size_t len, unsigned int flags)
1310{
1311        struct pipe_inode_info *ipipe;
1312        struct pipe_inode_info *opipe;
1313        loff_t offset, *off;
1314        long ret;
1315
1316        ipipe = get_pipe_info(in);
1317        opipe = get_pipe_info(out);
1318
1319        if (ipipe && opipe) {
1320                if (off_in || off_out)
1321                        return -ESPIPE;
1322
1323                if (!(in->f_mode & FMODE_READ))
1324                        return -EBADF;
1325
1326                if (!(out->f_mode & FMODE_WRITE))
1327                        return -EBADF;
1328
1329                /* Splicing to self would be fun, but... */
1330                if (ipipe == opipe)
1331                        return -EINVAL;
1332
1333                return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1334        }
1335
1336        if (ipipe) {
1337                if (off_in)
1338                        return -ESPIPE;
1339                if (off_out) {
1340                        if (!(out->f_mode & FMODE_PWRITE))
1341                                return -EINVAL;
1342                        if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1343                                return -EFAULT;
1344                        off = &offset;
1345                } else
1346                        off = &out->f_pos;
1347
1348                ret = do_splice_from(ipipe, out, off, len, flags);
1349
1350                if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1351                        ret = -EFAULT;
1352
1353                return ret;
1354        }
1355
1356        if (opipe) {
1357                if (off_out)
1358                        return -ESPIPE;
1359                if (off_in) {
1360                        if (!(in->f_mode & FMODE_PREAD))
1361                                return -EINVAL;
1362                        if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1363                                return -EFAULT;
1364                        off = &offset;
1365                } else
1366                        off = &in->f_pos;
1367
1368                ret = do_splice_to(in, off, opipe, len, flags);
1369
1370                if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1371                        ret = -EFAULT;
1372
1373                return ret;
1374        }
1375
1376        return -EINVAL;
1377}
1378
1379/*
1380 * Map an iov into an array of pages and offset/length tupples. With the
1381 * partial_page structure, we can map several non-contiguous ranges into
1382 * our ones pages[] map instead of splitting that operation into pieces.
1383 * Could easily be exported as a generic helper for other users, in which
1384 * case one would probably want to add a 'max_nr_pages' parameter as well.
1385 */
1386static int get_iovec_page_array(const struct iovec __user *iov,
1387                                unsigned int nr_vecs, struct page **pages,
1388                                struct partial_page *partial, int aligned,
1389                                unsigned int pipe_buffers)
1390{
1391        int buffers = 0, error = 0;
1392
1393        while (nr_vecs) {
1394                unsigned long off, npages;
1395                struct iovec entry;
1396                void __user *base;
1397                size_t len;
1398                int i;
1399
1400                error = -EFAULT;
1401                if (copy_from_user(&entry, iov, sizeof(entry)))
1402                        break;
1403
1404                base = entry.iov_base;
1405                len = entry.iov_len;
1406
1407                /*
1408                 * Sanity check this iovec. 0 read succeeds.
1409                 */
1410                error = 0;
1411                if (unlikely(!len))
1412                        break;
1413                error = -EFAULT;
1414                if (!access_ok(VERIFY_READ, base, len))
1415                        break;
1416
1417                /*
1418                 * Get this base offset and number of pages, then map
1419                 * in the user pages.
1420                 */
1421                off = (unsigned long) base & ~PAGE_MASK;
1422
1423                /*
1424                 * If asked for alignment, the offset must be zero and the
1425                 * length a multiple of the PAGE_SIZE.
1426                 */
1427                error = -EINVAL;
1428                if (aligned && (off || len & ~PAGE_MASK))
1429                        break;
1430
1431                npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1432                if (npages > pipe_buffers - buffers)
1433                        npages = pipe_buffers - buffers;
1434
1435                error = get_user_pages_fast((unsigned long)base, npages,
1436                                        0, &pages[buffers]);
1437
1438                if (unlikely(error <= 0))
1439                        break;
1440
1441                /*
1442                 * Fill this contiguous range into the partial page map.
1443                 */
1444                for (i = 0; i < error; i++) {
1445                        const int plen = min_t(size_t, len, PAGE_SIZE - off);
1446
1447                        partial[buffers].offset = off;
1448                        partial[buffers].len = plen;
1449
1450                        off = 0;
1451                        len -= plen;
1452                        buffers++;
1453                }
1454
1455                /*
1456                 * We didn't complete this iov, stop here since it probably
1457                 * means we have to move some of this into a pipe to
1458                 * be able to continue.
1459                 */
1460                if (len)
1461                        break;
1462
1463                /*
1464                 * Don't continue if we mapped fewer pages than we asked for,
1465                 * or if we mapped the max number of pages that we have
1466                 * room for.
1467                 */
1468                if (error < npages || buffers == pipe_buffers)
1469                        break;
1470
1471                nr_vecs--;
1472                iov++;
1473        }
1474
1475        if (buffers)
1476                return buffers;
1477
1478        return error;
1479}
1480
1481static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1482                        struct splice_desc *sd)
1483{
1484        char *src;
1485        int ret;
1486
1487        /*
1488         * See if we can use the atomic maps, by prefaulting in the
1489         * pages and doing an atomic copy
1490         */
1491        if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1492                src = buf->ops->map(pipe, buf, 1);
1493                ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1494                                                        sd->len);
1495                buf->ops->unmap(pipe, buf, src);
1496                if (!ret) {
1497                        ret = sd->len;
1498                        goto out;
1499                }
1500        }
1501
1502        /*
1503         * No dice, use slow non-atomic map and copy
1504         */
1505        src = buf->ops->map(pipe, buf, 0);
1506
1507        ret = sd->len;
1508        if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1509                ret = -EFAULT;
1510
1511        buf->ops->unmap(pipe, buf, src);
1512out:
1513        if (ret > 0)
1514                sd->u.userptr += ret;
1515        return ret;
1516}
1517
1518/*
1519 * For lack of a better implementation, implement vmsplice() to userspace
1520 * as a simple copy of the pipes pages to the user iov.
1521 */
1522static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1523                             unsigned long nr_segs, unsigned int flags)
1524{
1525        struct pipe_inode_info *pipe;
1526        struct splice_desc sd;
1527        ssize_t size;
1528        int error;
1529        long ret;
1530
1531        pipe = get_pipe_info(file);
1532        if (!pipe)
1533                return -EBADF;
1534
1535        pipe_lock(pipe);
1536
1537        error = ret = 0;
1538        while (nr_segs) {
1539                void __user *base;
1540                size_t len;
1541
1542                /*
1543                 * Get user address base and length for this iovec.
1544                 */
1545                error = get_user(base, &iov->iov_base);
1546                if (unlikely(error))
1547                        break;
1548                error = get_user(len, &iov->iov_len);
1549                if (unlikely(error))
1550                        break;
1551
1552                /*
1553                 * Sanity check this iovec. 0 read succeeds.
1554                 */
1555                if (unlikely(!len))
1556                        break;
1557                if (unlikely(!base)) {
1558                        error = -EFAULT;
1559                        break;
1560                }
1561
1562                if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1563                        error = -EFAULT;
1564                        break;
1565                }
1566
1567                sd.len = 0;
1568                sd.total_len = len;
1569                sd.flags = flags;
1570                sd.u.userptr = base;
1571                sd.pos = 0;
1572
1573                size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1574                if (size < 0) {
1575                        if (!ret)
1576                                ret = size;
1577
1578                        break;
1579                }
1580
1581                ret += size;
1582
1583                if (size < len)
1584                        break;
1585
1586                nr_segs--;
1587                iov++;
1588        }
1589
1590        pipe_unlock(pipe);
1591
1592        if (!ret)
1593                ret = error;
1594
1595        return ret;
1596}
1597
1598/*
1599 * vmsplice splices a user address range into a pipe. It can be thought of
1600 * as splice-from-memory, where the regular splice is splice-from-file (or
1601 * to file). In both cases the output is a pipe, naturally.
1602 */
1603static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1604                             unsigned long nr_segs, unsigned int flags)
1605{
1606        struct pipe_inode_info *pipe;
1607        struct page *pages[PIPE_DEF_BUFFERS];
1608        struct partial_page partial[PIPE_DEF_BUFFERS];
1609        struct splice_pipe_desc spd = {
1610                .pages = pages,
1611                .partial = partial,
1612                .flags = flags,
1613                .ops = &user_page_pipe_buf_ops,
1614                .spd_release = spd_release_page,
1615        };
1616        long ret;
1617
1618        pipe = get_pipe_info(file);
1619        if (!pipe)
1620                return -EBADF;
1621
1622        if (splice_grow_spd(pipe, &spd))
1623                return -ENOMEM;
1624
1625        spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1626                                            spd.partial, flags & SPLICE_F_GIFT,
1627                                            pipe->buffers);
1628        if (spd.nr_pages <= 0)
1629                ret = spd.nr_pages;
1630        else
1631                ret = splice_to_pipe(pipe, &spd);
1632
1633        splice_shrink_spd(pipe, &spd);
1634        return ret;
1635}
1636
1637/*
1638 * Note that vmsplice only really supports true splicing _from_ user memory
1639 * to a pipe, not the other way around. Splicing from user memory is a simple
1640 * operation that can be supported without any funky alignment restrictions
1641 * or nasty vm tricks. We simply map in the user memory and fill them into
1642 * a pipe. The reverse isn't quite as easy, though. There are two possible
1643 * solutions for that:
1644 *
1645 *      - memcpy() the data internally, at which point we might as well just
1646 *        do a regular read() on the buffer anyway.
1647 *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1648 *        has restriction limitations on both ends of the pipe).
1649 *
1650 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1651 *
1652 */
1653SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1654                unsigned long, nr_segs, unsigned int, flags)
1655{
1656        struct file *file;
1657        long error;
1658        int fput;
1659
1660        if (unlikely(nr_segs > UIO_MAXIOV))
1661                return -EINVAL;
1662        else if (unlikely(!nr_segs))
1663                return 0;
1664
1665        error = -EBADF;
1666        file = fget_light(fd, &fput);
1667        if (file) {
1668                if (file->f_mode & FMODE_WRITE)
1669                        error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1670                else if (file->f_mode & FMODE_READ)
1671                        error = vmsplice_to_user(file, iov, nr_segs, flags);
1672
1673                fput_light(file, fput);
1674        }
1675
1676        return error;
1677}
1678
1679SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1680                int, fd_out, loff_t __user *, off_out,
1681                size_t, len, unsigned int, flags)
1682{
1683        long error;
1684        struct file *in, *out;
1685        int fput_in, fput_out;
1686
1687        if (unlikely(!len))
1688                return 0;
1689
1690        error = -EBADF;
1691        in = fget_light(fd_in, &fput_in);
1692        if (in) {
1693                if (in->f_mode & FMODE_READ) {
1694                        out = fget_light(fd_out, &fput_out);
1695                        if (out) {
1696                                if (out->f_mode & FMODE_WRITE)
1697                                        error = do_splice(in, off_in,
1698                                                          out, off_out,
1699                                                          len, flags);
1700                                fput_light(out, fput_out);
1701                        }
1702                }
1703
1704                fput_light(in, fput_in);
1705        }
1706
1707        return error;
1708}
1709
1710/*
1711 * Make sure there's data to read. Wait for input if we can, otherwise
1712 * return an appropriate error.
1713 */
1714static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1715{
1716        int ret;
1717
1718        /*
1719         * Check ->nrbufs without the inode lock first. This function
1720         * is speculative anyways, so missing one is ok.
1721         */
1722        if (pipe->nrbufs)
1723                return 0;
1724
1725        ret = 0;
1726        pipe_lock(pipe);
1727
1728        while (!pipe->nrbufs) {
1729                if (signal_pending(current)) {
1730                        ret = -ERESTARTSYS;
1731                        break;
1732                }
1733                if (!pipe->writers)
1734                        break;
1735                if (!pipe->waiting_writers) {
1736                        if (flags & SPLICE_F_NONBLOCK) {
1737                                ret = -EAGAIN;
1738                                break;
1739                        }
1740                }
1741                pipe_wait(pipe);
1742        }
1743
1744        pipe_unlock(pipe);
1745        return ret;
1746}
1747
1748/*
1749 * Make sure there's writeable room. Wait for room if we can, otherwise
1750 * return an appropriate error.
1751 */
1752static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1753{
1754        int ret;
1755
1756        /*
1757         * Check ->nrbufs without the inode lock first. This function
1758         * is speculative anyways, so missing one is ok.
1759         */
1760        if (pipe->nrbufs < pipe->buffers)
1761                return 0;
1762
1763        ret = 0;
1764        pipe_lock(pipe);
1765
1766        while (pipe->nrbufs >= pipe->buffers) {
1767                if (!pipe->readers) {
1768                        send_sig(SIGPIPE, current, 0);
1769                        ret = -EPIPE;
1770                        break;
1771                }
1772                if (flags & SPLICE_F_NONBLOCK) {
1773                        ret = -EAGAIN;
1774                        break;
1775                }
1776                if (signal_pending(current)) {
1777                        ret = -ERESTARTSYS;
1778                        break;
1779                }
1780                pipe->waiting_writers++;
1781                pipe_wait(pipe);
1782                pipe->waiting_writers--;
1783        }
1784
1785        pipe_unlock(pipe);
1786        return ret;
1787}
1788
1789/*
1790 * Splice contents of ipipe to opipe.
1791 */
1792static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1793                               struct pipe_inode_info *opipe,
1794                               size_t len, unsigned int flags)
1795{
1796        struct pipe_buffer *ibuf, *obuf;
1797        int ret = 0, nbuf;
1798        bool input_wakeup = false;
1799
1800
1801retry:
1802        ret = ipipe_prep(ipipe, flags);
1803        if (ret)
1804                return ret;
1805
1806        ret = opipe_prep(opipe, flags);
1807        if (ret)
1808                return ret;
1809
1810        /*
1811         * Potential ABBA deadlock, work around it by ordering lock
1812         * grabbing by pipe info address. Otherwise two different processes
1813         * could deadlock (one doing tee from A -> B, the other from B -> A).
1814         */
1815        pipe_double_lock(ipipe, opipe);
1816
1817        do {
1818                if (!opipe->readers) {
1819                        send_sig(SIGPIPE, current, 0);
1820                        if (!ret)
1821                                ret = -EPIPE;
1822                        break;
1823                }
1824
1825                if (!ipipe->nrbufs && !ipipe->writers)
1826                        break;
1827
1828                /*
1829                 * Cannot make any progress, because either the input
1830                 * pipe is empty or the output pipe is full.
1831                 */
1832                if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1833                        /* Already processed some buffers, break */
1834                        if (ret)
1835                                break;
1836
1837                        if (flags & SPLICE_F_NONBLOCK) {
1838                                ret = -EAGAIN;
1839                                break;
1840                        }
1841
1842                        /*
1843                         * We raced with another reader/writer and haven't
1844                         * managed to process any buffers.  A zero return
1845                         * value means EOF, so retry instead.
1846                         */
1847                        pipe_unlock(ipipe);
1848                        pipe_unlock(opipe);
1849                        goto retry;
1850                }
1851
1852                ibuf = ipipe->bufs + ipipe->curbuf;
1853                nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1854                obuf = opipe->bufs + nbuf;
1855
1856                if (len >= ibuf->len) {
1857                        /*
1858                         * Simply move the whole buffer from ipipe to opipe
1859                         */
1860                        *obuf = *ibuf;
1861                        ibuf->ops = NULL;
1862                        opipe->nrbufs++;
1863                        ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1864                        ipipe->nrbufs--;
1865                        input_wakeup = true;
1866                } else {
1867                        /*
1868                         * Get a reference to this pipe buffer,
1869                         * so we can copy the contents over.
1870                         */
1871                        ibuf->ops->get(ipipe, ibuf);
1872                        *obuf = *ibuf;
1873
1874                        /*
1875                         * Don't inherit the gift flag, we need to
1876                         * prevent multiple steals of this page.
1877                         */
1878                        obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1879
1880                        obuf->len = len;
1881                        opipe->nrbufs++;
1882                        ibuf->offset += obuf->len;
1883                        ibuf->len -= obuf->len;
1884                }
1885                ret += obuf->len;
1886                len -= obuf->len;
1887        } while (len);
1888
1889        pipe_unlock(ipipe);
1890        pipe_unlock(opipe);
1891
1892        /*
1893         * If we put data in the output pipe, wakeup any potential readers.
1894         */
1895        if (ret > 0) {
1896                smp_mb();
1897                if (waitqueue_active(&opipe->wait))
1898                        wake_up_interruptible(&opipe->wait);
1899                kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1900        }
1901        if (input_wakeup)
1902                wakeup_pipe_writers(ipipe);
1903
1904        return ret;
1905}
1906
1907/*
1908 * Link contents of ipipe to opipe.
1909 */
1910static int link_pipe(struct pipe_inode_info *ipipe,
1911                     struct pipe_inode_info *opipe,
1912                     size_t len, unsigned int flags)
1913{
1914        struct pipe_buffer *ibuf, *obuf;
1915        int ret = 0, i = 0, nbuf;
1916
1917        /*
1918         * Potential ABBA deadlock, work around it by ordering lock
1919         * grabbing by pipe info address. Otherwise two different processes
1920         * could deadlock (one doing tee from A -> B, the other from B -> A).
1921         */
1922        pipe_double_lock(ipipe, opipe);
1923
1924        do {
1925                if (!opipe->readers) {
1926                        send_sig(SIGPIPE, current, 0);
1927                        if (!ret)
1928                                ret = -EPIPE;
1929                        break;
1930                }
1931
1932                /*
1933                 * If we have iterated all input buffers or ran out of
1934                 * output room, break.
1935                 */
1936                if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1937                        break;
1938
1939                ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1940                nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1941
1942                /*
1943                 * Get a reference to this pipe buffer,
1944                 * so we can copy the contents over.
1945                 */
1946                ibuf->ops->get(ipipe, ibuf);
1947
1948                obuf = opipe->bufs + nbuf;
1949                *obuf = *ibuf;
1950
1951                /*
1952                 * Don't inherit the gift flag, we need to
1953                 * prevent multiple steals of this page.
1954                 */
1955                obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1956
1957                if (obuf->len > len)
1958                        obuf->len = len;
1959
1960                opipe->nrbufs++;
1961                ret += obuf->len;
1962                len -= obuf->len;
1963                i++;
1964        } while (len);
1965
1966        /*
1967         * return EAGAIN if we have the potential of some data in the
1968         * future, otherwise just return 0
1969         */
1970        if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1971                ret = -EAGAIN;
1972
1973        pipe_unlock(ipipe);
1974        pipe_unlock(opipe);
1975
1976        /*
1977         * If we put data in the output pipe, wakeup any potential readers.
1978         */
1979        if (ret > 0) {
1980                smp_mb();
1981                if (waitqueue_active(&opipe->wait))
1982                        wake_up_interruptible(&opipe->wait);
1983                kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1984        }
1985
1986        return ret;
1987}
1988
1989/*
1990 * This is a tee(1) implementation that works on pipes. It doesn't copy
1991 * any data, it simply references the 'in' pages on the 'out' pipe.
1992 * The 'flags' used are the SPLICE_F_* variants, currently the only
1993 * applicable one is SPLICE_F_NONBLOCK.
1994 */
1995static long do_tee(struct file *in, struct file *out, size_t len,
1996                   unsigned int flags)
1997{
1998        struct pipe_inode_info *ipipe = get_pipe_info(in);
1999        struct pipe_inode_info *opipe = get_pipe_info(out);
2000        int ret = -EINVAL;
2001
2002        /*
2003         * Duplicate the contents of ipipe to opipe without actually
2004         * copying the data.
2005         */
2006        if (ipipe && opipe && ipipe != opipe) {
2007                /*
2008                 * Keep going, unless we encounter an error. The ipipe/opipe
2009                 * ordering doesn't really matter.
2010                 */
2011                ret = ipipe_prep(ipipe, flags);
2012                if (!ret) {
2013                        ret = opipe_prep(opipe, flags);
2014                        if (!ret)
2015                                ret = link_pipe(ipipe, opipe, len, flags);
2016                }
2017        }
2018
2019        return ret;
2020}
2021
2022SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2023{
2024        struct file *in;
2025        int error, fput_in;
2026
2027        if (unlikely(!len))
2028                return 0;
2029
2030        error = -EBADF;
2031        in = fget_light(fdin, &fput_in);
2032        if (in) {
2033                if (in->f_mode & FMODE_READ) {
2034                        int fput_out;
2035                        struct file *out = fget_light(fdout, &fput_out);
2036
2037                        if (out) {
2038                                if (out->f_mode & FMODE_WRITE)
2039                                        error = do_tee(in, out, len, flags);
2040                                fput_light(out, fput_out);
2041                        }
2042                }
2043                fput_light(in, fput_in);
2044        }
2045
2046        return error;
2047}
2048