linux/fs/super.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/super.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  super.c contains code to handle: - mount structures
   7 *                                   - super-block tables
   8 *                                   - filesystem drivers list
   9 *                                   - mount system call
  10 *                                   - umount system call
  11 *                                   - ustat system call
  12 *
  13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
  14 *
  15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
  16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
  17 *  Added options to /proc/mounts:
  18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
  19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
  20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/slab.h>
  25#include <linux/acct.h>
  26#include <linux/blkdev.h>
  27#include <linux/mount.h>
  28#include <linux/security.h>
  29#include <linux/writeback.h>            /* for the emergency remount stuff */
  30#include <linux/idr.h>
  31#include <linux/mutex.h>
  32#include <linux/backing-dev.h>
  33#include <linux/rculist_bl.h>
  34#include "internal.h"
  35
  36
  37LIST_HEAD(super_blocks);
  38DEFINE_SPINLOCK(sb_lock);
  39
  40/**
  41 *      alloc_super     -       create new superblock
  42 *      @type:  filesystem type superblock should belong to
  43 *
  44 *      Allocates and initializes a new &struct super_block.  alloc_super()
  45 *      returns a pointer new superblock or %NULL if allocation had failed.
  46 */
  47static struct super_block *alloc_super(struct file_system_type *type)
  48{
  49        struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
  50        static const struct super_operations default_op;
  51
  52        if (s) {
  53                if (security_sb_alloc(s)) {
  54                        kfree(s);
  55                        s = NULL;
  56                        goto out;
  57                }
  58#ifdef CONFIG_SMP
  59                s->s_files = alloc_percpu(struct list_head);
  60                if (!s->s_files) {
  61                        security_sb_free(s);
  62                        kfree(s);
  63                        s = NULL;
  64                        goto out;
  65                } else {
  66                        int i;
  67
  68                        for_each_possible_cpu(i)
  69                                INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
  70                }
  71#else
  72                INIT_LIST_HEAD(&s->s_files);
  73#endif
  74                INIT_LIST_HEAD(&s->s_instances);
  75                INIT_HLIST_BL_HEAD(&s->s_anon);
  76                INIT_LIST_HEAD(&s->s_inodes);
  77                INIT_LIST_HEAD(&s->s_dentry_lru);
  78                init_rwsem(&s->s_umount);
  79                mutex_init(&s->s_lock);
  80                lockdep_set_class(&s->s_umount, &type->s_umount_key);
  81                /*
  82                 * The locking rules for s_lock are up to the
  83                 * filesystem. For example ext3fs has different
  84                 * lock ordering than usbfs:
  85                 */
  86                lockdep_set_class(&s->s_lock, &type->s_lock_key);
  87                /*
  88                 * sget() can have s_umount recursion.
  89                 *
  90                 * When it cannot find a suitable sb, it allocates a new
  91                 * one (this one), and tries again to find a suitable old
  92                 * one.
  93                 *
  94                 * In case that succeeds, it will acquire the s_umount
  95                 * lock of the old one. Since these are clearly distrinct
  96                 * locks, and this object isn't exposed yet, there's no
  97                 * risk of deadlocks.
  98                 *
  99                 * Annotate this by putting this lock in a different
 100                 * subclass.
 101                 */
 102                down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
 103                s->s_count = 1;
 104                atomic_set(&s->s_active, 1);
 105                mutex_init(&s->s_vfs_rename_mutex);
 106                lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
 107                mutex_init(&s->s_dquot.dqio_mutex);
 108                mutex_init(&s->s_dquot.dqonoff_mutex);
 109                init_rwsem(&s->s_dquot.dqptr_sem);
 110                init_waitqueue_head(&s->s_wait_unfrozen);
 111                s->s_maxbytes = MAX_NON_LFS;
 112                s->s_op = &default_op;
 113                s->s_time_gran = 1000000000;
 114        }
 115out:
 116        return s;
 117}
 118
 119/**
 120 *      destroy_super   -       frees a superblock
 121 *      @s: superblock to free
 122 *
 123 *      Frees a superblock.
 124 */
 125static inline void destroy_super(struct super_block *s)
 126{
 127#ifdef CONFIG_SMP
 128        free_percpu(s->s_files);
 129#endif
 130        security_sb_free(s);
 131        kfree(s->s_subtype);
 132        kfree(s->s_options);
 133        kfree(s);
 134}
 135
 136/* Superblock refcounting  */
 137
 138/*
 139 * Drop a superblock's refcount.  The caller must hold sb_lock.
 140 */
 141void __put_super(struct super_block *sb)
 142{
 143        if (!--sb->s_count) {
 144                list_del_init(&sb->s_list);
 145                destroy_super(sb);
 146        }
 147}
 148
 149/**
 150 *      put_super       -       drop a temporary reference to superblock
 151 *      @sb: superblock in question
 152 *
 153 *      Drops a temporary reference, frees superblock if there's no
 154 *      references left.
 155 */
 156void put_super(struct super_block *sb)
 157{
 158        spin_lock(&sb_lock);
 159        __put_super(sb);
 160        spin_unlock(&sb_lock);
 161}
 162
 163
 164/**
 165 *      deactivate_locked_super -       drop an active reference to superblock
 166 *      @s: superblock to deactivate
 167 *
 168 *      Drops an active reference to superblock, converting it into a temprory
 169 *      one if there is no other active references left.  In that case we
 170 *      tell fs driver to shut it down and drop the temporary reference we
 171 *      had just acquired.
 172 *
 173 *      Caller holds exclusive lock on superblock; that lock is released.
 174 */
 175void deactivate_locked_super(struct super_block *s)
 176{
 177        struct file_system_type *fs = s->s_type;
 178        if (atomic_dec_and_test(&s->s_active)) {
 179                fs->kill_sb(s);
 180                /*
 181                 * We need to call rcu_barrier so all the delayed rcu free
 182                 * inodes are flushed before we release the fs module.
 183                 */
 184                rcu_barrier();
 185                put_filesystem(fs);
 186                put_super(s);
 187        } else {
 188                up_write(&s->s_umount);
 189        }
 190}
 191
 192EXPORT_SYMBOL(deactivate_locked_super);
 193
 194/**
 195 *      deactivate_super        -       drop an active reference to superblock
 196 *      @s: superblock to deactivate
 197 *
 198 *      Variant of deactivate_locked_super(), except that superblock is *not*
 199 *      locked by caller.  If we are going to drop the final active reference,
 200 *      lock will be acquired prior to that.
 201 */
 202void deactivate_super(struct super_block *s)
 203{
 204        if (!atomic_add_unless(&s->s_active, -1, 1)) {
 205                down_write(&s->s_umount);
 206                deactivate_locked_super(s);
 207        }
 208}
 209
 210EXPORT_SYMBOL(deactivate_super);
 211
 212/**
 213 *      grab_super - acquire an active reference
 214 *      @s: reference we are trying to make active
 215 *
 216 *      Tries to acquire an active reference.  grab_super() is used when we
 217 *      had just found a superblock in super_blocks or fs_type->fs_supers
 218 *      and want to turn it into a full-blown active reference.  grab_super()
 219 *      is called with sb_lock held and drops it.  Returns 1 in case of
 220 *      success, 0 if we had failed (superblock contents was already dead or
 221 *      dying when grab_super() had been called).
 222 */
 223static int grab_super(struct super_block *s) __releases(sb_lock)
 224{
 225        if (atomic_inc_not_zero(&s->s_active)) {
 226                spin_unlock(&sb_lock);
 227                return 1;
 228        }
 229        /* it's going away */
 230        s->s_count++;
 231        spin_unlock(&sb_lock);
 232        /* wait for it to die */
 233        down_write(&s->s_umount);
 234        up_write(&s->s_umount);
 235        put_super(s);
 236        return 0;
 237}
 238
 239/*
 240 * Superblock locking.  We really ought to get rid of these two.
 241 */
 242void lock_super(struct super_block * sb)
 243{
 244        get_fs_excl();
 245        mutex_lock(&sb->s_lock);
 246}
 247
 248void unlock_super(struct super_block * sb)
 249{
 250        put_fs_excl();
 251        mutex_unlock(&sb->s_lock);
 252}
 253
 254EXPORT_SYMBOL(lock_super);
 255EXPORT_SYMBOL(unlock_super);
 256
 257/**
 258 *      generic_shutdown_super  -       common helper for ->kill_sb()
 259 *      @sb: superblock to kill
 260 *
 261 *      generic_shutdown_super() does all fs-independent work on superblock
 262 *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
 263 *      that need destruction out of superblock, call generic_shutdown_super()
 264 *      and release aforementioned objects.  Note: dentries and inodes _are_
 265 *      taken care of and do not need specific handling.
 266 *
 267 *      Upon calling this function, the filesystem may no longer alter or
 268 *      rearrange the set of dentries belonging to this super_block, nor may it
 269 *      change the attachments of dentries to inodes.
 270 */
 271void generic_shutdown_super(struct super_block *sb)
 272{
 273        const struct super_operations *sop = sb->s_op;
 274
 275
 276        if (sb->s_root) {
 277                shrink_dcache_for_umount(sb);
 278                sync_filesystem(sb);
 279                get_fs_excl();
 280                sb->s_flags &= ~MS_ACTIVE;
 281
 282                fsnotify_unmount_inodes(&sb->s_inodes);
 283
 284                evict_inodes(sb);
 285
 286                if (sop->put_super)
 287                        sop->put_super(sb);
 288
 289                if (!list_empty(&sb->s_inodes)) {
 290                        printk("VFS: Busy inodes after unmount of %s. "
 291                           "Self-destruct in 5 seconds.  Have a nice day...\n",
 292                           sb->s_id);
 293                }
 294                put_fs_excl();
 295        }
 296        spin_lock(&sb_lock);
 297        /* should be initialized for __put_super_and_need_restart() */
 298        list_del_init(&sb->s_instances);
 299        spin_unlock(&sb_lock);
 300        up_write(&sb->s_umount);
 301}
 302
 303EXPORT_SYMBOL(generic_shutdown_super);
 304
 305/**
 306 *      sget    -       find or create a superblock
 307 *      @type:  filesystem type superblock should belong to
 308 *      @test:  comparison callback
 309 *      @set:   setup callback
 310 *      @data:  argument to each of them
 311 */
 312struct super_block *sget(struct file_system_type *type,
 313                        int (*test)(struct super_block *,void *),
 314                        int (*set)(struct super_block *,void *),
 315                        void *data)
 316{
 317        struct super_block *s = NULL;
 318        struct super_block *old;
 319        int err;
 320
 321retry:
 322        spin_lock(&sb_lock);
 323        if (test) {
 324                list_for_each_entry(old, &type->fs_supers, s_instances) {
 325                        if (!test(old, data))
 326                                continue;
 327                        if (!grab_super(old))
 328                                goto retry;
 329                        if (s) {
 330                                up_write(&s->s_umount);
 331                                destroy_super(s);
 332                                s = NULL;
 333                        }
 334                        down_write(&old->s_umount);
 335                        if (unlikely(!(old->s_flags & MS_BORN))) {
 336                                deactivate_locked_super(old);
 337                                goto retry;
 338                        }
 339                        return old;
 340                }
 341        }
 342        if (!s) {
 343                spin_unlock(&sb_lock);
 344                s = alloc_super(type);
 345                if (!s)
 346                        return ERR_PTR(-ENOMEM);
 347                goto retry;
 348        }
 349                
 350        err = set(s, data);
 351        if (err) {
 352                spin_unlock(&sb_lock);
 353                up_write(&s->s_umount);
 354                destroy_super(s);
 355                return ERR_PTR(err);
 356        }
 357        s->s_type = type;
 358        strlcpy(s->s_id, type->name, sizeof(s->s_id));
 359        list_add_tail(&s->s_list, &super_blocks);
 360        list_add(&s->s_instances, &type->fs_supers);
 361        spin_unlock(&sb_lock);
 362        get_filesystem(type);
 363        return s;
 364}
 365
 366EXPORT_SYMBOL(sget);
 367
 368void drop_super(struct super_block *sb)
 369{
 370        up_read(&sb->s_umount);
 371        put_super(sb);
 372}
 373
 374EXPORT_SYMBOL(drop_super);
 375
 376/**
 377 * sync_supers - helper for periodic superblock writeback
 378 *
 379 * Call the write_super method if present on all dirty superblocks in
 380 * the system.  This is for the periodic writeback used by most older
 381 * filesystems.  For data integrity superblock writeback use
 382 * sync_filesystems() instead.
 383 *
 384 * Note: check the dirty flag before waiting, so we don't
 385 * hold up the sync while mounting a device. (The newly
 386 * mounted device won't need syncing.)
 387 */
 388void sync_supers(void)
 389{
 390        struct super_block *sb, *p = NULL;
 391
 392        spin_lock(&sb_lock);
 393        list_for_each_entry(sb, &super_blocks, s_list) {
 394                if (list_empty(&sb->s_instances))
 395                        continue;
 396                if (sb->s_op->write_super && sb->s_dirt) {
 397                        sb->s_count++;
 398                        spin_unlock(&sb_lock);
 399
 400                        down_read(&sb->s_umount);
 401                        if (sb->s_root && sb->s_dirt)
 402                                sb->s_op->write_super(sb);
 403                        up_read(&sb->s_umount);
 404
 405                        spin_lock(&sb_lock);
 406                        if (p)
 407                                __put_super(p);
 408                        p = sb;
 409                }
 410        }
 411        if (p)
 412                __put_super(p);
 413        spin_unlock(&sb_lock);
 414}
 415
 416/**
 417 *      iterate_supers - call function for all active superblocks
 418 *      @f: function to call
 419 *      @arg: argument to pass to it
 420 *
 421 *      Scans the superblock list and calls given function, passing it
 422 *      locked superblock and given argument.
 423 */
 424void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
 425{
 426        struct super_block *sb, *p = NULL;
 427
 428        spin_lock(&sb_lock);
 429        list_for_each_entry(sb, &super_blocks, s_list) {
 430                if (list_empty(&sb->s_instances))
 431                        continue;
 432                sb->s_count++;
 433                spin_unlock(&sb_lock);
 434
 435                down_read(&sb->s_umount);
 436                if (sb->s_root)
 437                        f(sb, arg);
 438                up_read(&sb->s_umount);
 439
 440                spin_lock(&sb_lock);
 441                if (p)
 442                        __put_super(p);
 443                p = sb;
 444        }
 445        if (p)
 446                __put_super(p);
 447        spin_unlock(&sb_lock);
 448}
 449
 450/**
 451 *      get_super - get the superblock of a device
 452 *      @bdev: device to get the superblock for
 453 *      
 454 *      Scans the superblock list and finds the superblock of the file system
 455 *      mounted on the device given. %NULL is returned if no match is found.
 456 */
 457
 458struct super_block *get_super(struct block_device *bdev)
 459{
 460        struct super_block *sb;
 461
 462        if (!bdev)
 463                return NULL;
 464
 465        spin_lock(&sb_lock);
 466rescan:
 467        list_for_each_entry(sb, &super_blocks, s_list) {
 468                if (list_empty(&sb->s_instances))
 469                        continue;
 470                if (sb->s_bdev == bdev) {
 471                        sb->s_count++;
 472                        spin_unlock(&sb_lock);
 473                        down_read(&sb->s_umount);
 474                        /* still alive? */
 475                        if (sb->s_root)
 476                                return sb;
 477                        up_read(&sb->s_umount);
 478                        /* nope, got unmounted */
 479                        spin_lock(&sb_lock);
 480                        __put_super(sb);
 481                        goto rescan;
 482                }
 483        }
 484        spin_unlock(&sb_lock);
 485        return NULL;
 486}
 487
 488EXPORT_SYMBOL(get_super);
 489
 490/**
 491 * get_active_super - get an active reference to the superblock of a device
 492 * @bdev: device to get the superblock for
 493 *
 494 * Scans the superblock list and finds the superblock of the file system
 495 * mounted on the device given.  Returns the superblock with an active
 496 * reference or %NULL if none was found.
 497 */
 498struct super_block *get_active_super(struct block_device *bdev)
 499{
 500        struct super_block *sb;
 501
 502        if (!bdev)
 503                return NULL;
 504
 505restart:
 506        spin_lock(&sb_lock);
 507        list_for_each_entry(sb, &super_blocks, s_list) {
 508                if (list_empty(&sb->s_instances))
 509                        continue;
 510                if (sb->s_bdev == bdev) {
 511                        if (grab_super(sb)) /* drops sb_lock */
 512                                return sb;
 513                        else
 514                                goto restart;
 515                }
 516        }
 517        spin_unlock(&sb_lock);
 518        return NULL;
 519}
 520 
 521struct super_block *user_get_super(dev_t dev)
 522{
 523        struct super_block *sb;
 524
 525        spin_lock(&sb_lock);
 526rescan:
 527        list_for_each_entry(sb, &super_blocks, s_list) {
 528                if (list_empty(&sb->s_instances))
 529                        continue;
 530                if (sb->s_dev ==  dev) {
 531                        sb->s_count++;
 532                        spin_unlock(&sb_lock);
 533                        down_read(&sb->s_umount);
 534                        /* still alive? */
 535                        if (sb->s_root)
 536                                return sb;
 537                        up_read(&sb->s_umount);
 538                        /* nope, got unmounted */
 539                        spin_lock(&sb_lock);
 540                        __put_super(sb);
 541                        goto rescan;
 542                }
 543        }
 544        spin_unlock(&sb_lock);
 545        return NULL;
 546}
 547
 548/**
 549 *      do_remount_sb - asks filesystem to change mount options.
 550 *      @sb:    superblock in question
 551 *      @flags: numeric part of options
 552 *      @data:  the rest of options
 553 *      @force: whether or not to force the change
 554 *
 555 *      Alters the mount options of a mounted file system.
 556 */
 557int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
 558{
 559        int retval;
 560        int remount_ro;
 561
 562        if (sb->s_frozen != SB_UNFROZEN)
 563                return -EBUSY;
 564
 565#ifdef CONFIG_BLOCK
 566        if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
 567                return -EACCES;
 568#endif
 569
 570        if (flags & MS_RDONLY)
 571                acct_auto_close(sb);
 572        shrink_dcache_sb(sb);
 573        sync_filesystem(sb);
 574
 575        remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
 576
 577        /* If we are remounting RDONLY and current sb is read/write,
 578           make sure there are no rw files opened */
 579        if (remount_ro) {
 580                if (force)
 581                        mark_files_ro(sb);
 582                else if (!fs_may_remount_ro(sb))
 583                        return -EBUSY;
 584        }
 585
 586        if (sb->s_op->remount_fs) {
 587                retval = sb->s_op->remount_fs(sb, &flags, data);
 588                if (retval)
 589                        return retval;
 590        }
 591        sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
 592
 593        /*
 594         * Some filesystems modify their metadata via some other path than the
 595         * bdev buffer cache (eg. use a private mapping, or directories in
 596         * pagecache, etc). Also file data modifications go via their own
 597         * mappings. So If we try to mount readonly then copy the filesystem
 598         * from bdev, we could get stale data, so invalidate it to give a best
 599         * effort at coherency.
 600         */
 601        if (remount_ro && sb->s_bdev)
 602                invalidate_bdev(sb->s_bdev);
 603        return 0;
 604}
 605
 606static void do_emergency_remount(struct work_struct *work)
 607{
 608        struct super_block *sb, *p = NULL;
 609
 610        spin_lock(&sb_lock);
 611        list_for_each_entry(sb, &super_blocks, s_list) {
 612                if (list_empty(&sb->s_instances))
 613                        continue;
 614                sb->s_count++;
 615                spin_unlock(&sb_lock);
 616                down_write(&sb->s_umount);
 617                if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
 618                        /*
 619                         * What lock protects sb->s_flags??
 620                         */
 621                        do_remount_sb(sb, MS_RDONLY, NULL, 1);
 622                }
 623                up_write(&sb->s_umount);
 624                spin_lock(&sb_lock);
 625                if (p)
 626                        __put_super(p);
 627                p = sb;
 628        }
 629        if (p)
 630                __put_super(p);
 631        spin_unlock(&sb_lock);
 632        kfree(work);
 633        printk("Emergency Remount complete\n");
 634}
 635
 636void emergency_remount(void)
 637{
 638        struct work_struct *work;
 639
 640        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 641        if (work) {
 642                INIT_WORK(work, do_emergency_remount);
 643                schedule_work(work);
 644        }
 645}
 646
 647/*
 648 * Unnamed block devices are dummy devices used by virtual
 649 * filesystems which don't use real block-devices.  -- jrs
 650 */
 651
 652static DEFINE_IDA(unnamed_dev_ida);
 653static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
 654static int unnamed_dev_start = 0; /* don't bother trying below it */
 655
 656int set_anon_super(struct super_block *s, void *data)
 657{
 658        int dev;
 659        int error;
 660
 661 retry:
 662        if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
 663                return -ENOMEM;
 664        spin_lock(&unnamed_dev_lock);
 665        error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
 666        if (!error)
 667                unnamed_dev_start = dev + 1;
 668        spin_unlock(&unnamed_dev_lock);
 669        if (error == -EAGAIN)
 670                /* We raced and lost with another CPU. */
 671                goto retry;
 672        else if (error)
 673                return -EAGAIN;
 674
 675        if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
 676                spin_lock(&unnamed_dev_lock);
 677                ida_remove(&unnamed_dev_ida, dev);
 678                if (unnamed_dev_start > dev)
 679                        unnamed_dev_start = dev;
 680                spin_unlock(&unnamed_dev_lock);
 681                return -EMFILE;
 682        }
 683        s->s_dev = MKDEV(0, dev & MINORMASK);
 684        s->s_bdi = &noop_backing_dev_info;
 685        return 0;
 686}
 687
 688EXPORT_SYMBOL(set_anon_super);
 689
 690void kill_anon_super(struct super_block *sb)
 691{
 692        int slot = MINOR(sb->s_dev);
 693
 694        generic_shutdown_super(sb);
 695        spin_lock(&unnamed_dev_lock);
 696        ida_remove(&unnamed_dev_ida, slot);
 697        if (slot < unnamed_dev_start)
 698                unnamed_dev_start = slot;
 699        spin_unlock(&unnamed_dev_lock);
 700}
 701
 702EXPORT_SYMBOL(kill_anon_super);
 703
 704void kill_litter_super(struct super_block *sb)
 705{
 706        if (sb->s_root)
 707                d_genocide(sb->s_root);
 708        kill_anon_super(sb);
 709}
 710
 711EXPORT_SYMBOL(kill_litter_super);
 712
 713static int ns_test_super(struct super_block *sb, void *data)
 714{
 715        return sb->s_fs_info == data;
 716}
 717
 718static int ns_set_super(struct super_block *sb, void *data)
 719{
 720        sb->s_fs_info = data;
 721        return set_anon_super(sb, NULL);
 722}
 723
 724struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
 725        void *data, int (*fill_super)(struct super_block *, void *, int))
 726{
 727        struct super_block *sb;
 728
 729        sb = sget(fs_type, ns_test_super, ns_set_super, data);
 730        if (IS_ERR(sb))
 731                return ERR_CAST(sb);
 732
 733        if (!sb->s_root) {
 734                int err;
 735                sb->s_flags = flags;
 736                err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
 737                if (err) {
 738                        deactivate_locked_super(sb);
 739                        return ERR_PTR(err);
 740                }
 741
 742                sb->s_flags |= MS_ACTIVE;
 743        }
 744
 745        return dget(sb->s_root);
 746}
 747
 748EXPORT_SYMBOL(mount_ns);
 749
 750#ifdef CONFIG_BLOCK
 751static int set_bdev_super(struct super_block *s, void *data)
 752{
 753        s->s_bdev = data;
 754        s->s_dev = s->s_bdev->bd_dev;
 755
 756        /*
 757         * We set the bdi here to the queue backing, file systems can
 758         * overwrite this in ->fill_super()
 759         */
 760        s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
 761        return 0;
 762}
 763
 764static int test_bdev_super(struct super_block *s, void *data)
 765{
 766        return (void *)s->s_bdev == data;
 767}
 768
 769struct dentry *mount_bdev(struct file_system_type *fs_type,
 770        int flags, const char *dev_name, void *data,
 771        int (*fill_super)(struct super_block *, void *, int))
 772{
 773        struct block_device *bdev;
 774        struct super_block *s;
 775        fmode_t mode = FMODE_READ | FMODE_EXCL;
 776        int error = 0;
 777
 778        if (!(flags & MS_RDONLY))
 779                mode |= FMODE_WRITE;
 780
 781        bdev = blkdev_get_by_path(dev_name, mode, fs_type);
 782        if (IS_ERR(bdev))
 783                return ERR_CAST(bdev);
 784
 785        /*
 786         * once the super is inserted into the list by sget, s_umount
 787         * will protect the lockfs code from trying to start a snapshot
 788         * while we are mounting
 789         */
 790        mutex_lock(&bdev->bd_fsfreeze_mutex);
 791        if (bdev->bd_fsfreeze_count > 0) {
 792                mutex_unlock(&bdev->bd_fsfreeze_mutex);
 793                error = -EBUSY;
 794                goto error_bdev;
 795        }
 796        s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
 797        mutex_unlock(&bdev->bd_fsfreeze_mutex);
 798        if (IS_ERR(s))
 799                goto error_s;
 800
 801        if (s->s_root) {
 802                if ((flags ^ s->s_flags) & MS_RDONLY) {
 803                        deactivate_locked_super(s);
 804                        error = -EBUSY;
 805                        goto error_bdev;
 806                }
 807
 808                /*
 809                 * s_umount nests inside bd_mutex during
 810                 * __invalidate_device().  blkdev_put() acquires
 811                 * bd_mutex and can't be called under s_umount.  Drop
 812                 * s_umount temporarily.  This is safe as we're
 813                 * holding an active reference.
 814                 */
 815                up_write(&s->s_umount);
 816                blkdev_put(bdev, mode);
 817                down_write(&s->s_umount);
 818        } else {
 819                char b[BDEVNAME_SIZE];
 820
 821                s->s_flags = flags;
 822                s->s_mode = mode;
 823                strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
 824                sb_set_blocksize(s, block_size(bdev));
 825                error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
 826                if (error) {
 827                        deactivate_locked_super(s);
 828                        goto error;
 829                }
 830
 831                s->s_flags |= MS_ACTIVE;
 832                bdev->bd_super = s;
 833        }
 834
 835        return dget(s->s_root);
 836
 837error_s:
 838        error = PTR_ERR(s);
 839error_bdev:
 840        blkdev_put(bdev, mode);
 841error:
 842        return ERR_PTR(error);
 843}
 844EXPORT_SYMBOL(mount_bdev);
 845
 846int get_sb_bdev(struct file_system_type *fs_type,
 847        int flags, const char *dev_name, void *data,
 848        int (*fill_super)(struct super_block *, void *, int),
 849        struct vfsmount *mnt)
 850{
 851        struct dentry *root;
 852
 853        root = mount_bdev(fs_type, flags, dev_name, data, fill_super);
 854        if (IS_ERR(root))
 855                return PTR_ERR(root);
 856        mnt->mnt_root = root;
 857        mnt->mnt_sb = root->d_sb;
 858        return 0;
 859}
 860
 861EXPORT_SYMBOL(get_sb_bdev);
 862
 863void kill_block_super(struct super_block *sb)
 864{
 865        struct block_device *bdev = sb->s_bdev;
 866        fmode_t mode = sb->s_mode;
 867
 868        bdev->bd_super = NULL;
 869        generic_shutdown_super(sb);
 870        sync_blockdev(bdev);
 871        WARN_ON_ONCE(!(mode & FMODE_EXCL));
 872        blkdev_put(bdev, mode | FMODE_EXCL);
 873}
 874
 875EXPORT_SYMBOL(kill_block_super);
 876#endif
 877
 878struct dentry *mount_nodev(struct file_system_type *fs_type,
 879        int flags, void *data,
 880        int (*fill_super)(struct super_block *, void *, int))
 881{
 882        int error;
 883        struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
 884
 885        if (IS_ERR(s))
 886                return ERR_CAST(s);
 887
 888        s->s_flags = flags;
 889
 890        error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
 891        if (error) {
 892                deactivate_locked_super(s);
 893                return ERR_PTR(error);
 894        }
 895        s->s_flags |= MS_ACTIVE;
 896        return dget(s->s_root);
 897}
 898EXPORT_SYMBOL(mount_nodev);
 899
 900int get_sb_nodev(struct file_system_type *fs_type,
 901        int flags, void *data,
 902        int (*fill_super)(struct super_block *, void *, int),
 903        struct vfsmount *mnt)
 904{
 905        struct dentry *root;
 906
 907        root = mount_nodev(fs_type, flags, data, fill_super);
 908        if (IS_ERR(root))
 909                return PTR_ERR(root);
 910        mnt->mnt_root = root;
 911        mnt->mnt_sb = root->d_sb;
 912        return 0;
 913}
 914EXPORT_SYMBOL(get_sb_nodev);
 915
 916static int compare_single(struct super_block *s, void *p)
 917{
 918        return 1;
 919}
 920
 921struct dentry *mount_single(struct file_system_type *fs_type,
 922        int flags, void *data,
 923        int (*fill_super)(struct super_block *, void *, int))
 924{
 925        struct super_block *s;
 926        int error;
 927
 928        s = sget(fs_type, compare_single, set_anon_super, NULL);
 929        if (IS_ERR(s))
 930                return ERR_CAST(s);
 931        if (!s->s_root) {
 932                s->s_flags = flags;
 933                error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
 934                if (error) {
 935                        deactivate_locked_super(s);
 936                        return ERR_PTR(error);
 937                }
 938                s->s_flags |= MS_ACTIVE;
 939        } else {
 940                do_remount_sb(s, flags, data, 0);
 941        }
 942        return dget(s->s_root);
 943}
 944EXPORT_SYMBOL(mount_single);
 945
 946int get_sb_single(struct file_system_type *fs_type,
 947        int flags, void *data,
 948        int (*fill_super)(struct super_block *, void *, int),
 949        struct vfsmount *mnt)
 950{
 951        struct dentry *root;
 952        root = mount_single(fs_type, flags, data, fill_super);
 953        if (IS_ERR(root))
 954                return PTR_ERR(root);
 955        mnt->mnt_root = root;
 956        mnt->mnt_sb = root->d_sb;
 957        return 0;
 958}
 959
 960EXPORT_SYMBOL(get_sb_single);
 961
 962struct vfsmount *
 963vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
 964{
 965        struct vfsmount *mnt;
 966        struct dentry *root;
 967        char *secdata = NULL;
 968        int error;
 969
 970        if (!type)
 971                return ERR_PTR(-ENODEV);
 972
 973        error = -ENOMEM;
 974        mnt = alloc_vfsmnt(name);
 975        if (!mnt)
 976                goto out;
 977
 978        if (flags & MS_KERNMOUNT)
 979                mnt->mnt_flags = MNT_INTERNAL;
 980
 981        if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
 982                secdata = alloc_secdata();
 983                if (!secdata)
 984                        goto out_mnt;
 985
 986                error = security_sb_copy_data(data, secdata);
 987                if (error)
 988                        goto out_free_secdata;
 989        }
 990
 991        if (type->mount) {
 992                root = type->mount(type, flags, name, data);
 993                if (IS_ERR(root)) {
 994                        error = PTR_ERR(root);
 995                        goto out_free_secdata;
 996                }
 997                mnt->mnt_root = root;
 998                mnt->mnt_sb = root->d_sb;
 999        } else {
1000                error = type->get_sb(type, flags, name, data, mnt);
1001                if (error < 0)
1002                        goto out_free_secdata;
1003        }
1004        BUG_ON(!mnt->mnt_sb);
1005        WARN_ON(!mnt->mnt_sb->s_bdi);
1006        mnt->mnt_sb->s_flags |= MS_BORN;
1007
1008        error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
1009        if (error)
1010                goto out_sb;
1011
1012        /*
1013         * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1014         * but s_maxbytes was an unsigned long long for many releases. Throw
1015         * this warning for a little while to try and catch filesystems that
1016         * violate this rule. This warning should be either removed or
1017         * converted to a BUG() in 2.6.34.
1018         */
1019        WARN((mnt->mnt_sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1020                "negative value (%lld)\n", type->name, mnt->mnt_sb->s_maxbytes);
1021
1022        mnt->mnt_mountpoint = mnt->mnt_root;
1023        mnt->mnt_parent = mnt;
1024        up_write(&mnt->mnt_sb->s_umount);
1025        free_secdata(secdata);
1026        return mnt;
1027out_sb:
1028        dput(mnt->mnt_root);
1029        deactivate_locked_super(mnt->mnt_sb);
1030out_free_secdata:
1031        free_secdata(secdata);
1032out_mnt:
1033        free_vfsmnt(mnt);
1034out:
1035        return ERR_PTR(error);
1036}
1037
1038EXPORT_SYMBOL_GPL(vfs_kern_mount);
1039
1040/**
1041 * freeze_super - lock the filesystem and force it into a consistent state
1042 * @sb: the super to lock
1043 *
1044 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1045 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1046 * -EBUSY.
1047 */
1048int freeze_super(struct super_block *sb)
1049{
1050        int ret;
1051
1052        atomic_inc(&sb->s_active);
1053        down_write(&sb->s_umount);
1054        if (sb->s_frozen) {
1055                deactivate_locked_super(sb);
1056                return -EBUSY;
1057        }
1058
1059        if (sb->s_flags & MS_RDONLY) {
1060                sb->s_frozen = SB_FREEZE_TRANS;
1061                smp_wmb();
1062                up_write(&sb->s_umount);
1063                return 0;
1064        }
1065
1066        sb->s_frozen = SB_FREEZE_WRITE;
1067        smp_wmb();
1068
1069        sync_filesystem(sb);
1070
1071        sb->s_frozen = SB_FREEZE_TRANS;
1072        smp_wmb();
1073
1074        sync_blockdev(sb->s_bdev);
1075        if (sb->s_op->freeze_fs) {
1076                ret = sb->s_op->freeze_fs(sb);
1077                if (ret) {
1078                        printk(KERN_ERR
1079                                "VFS:Filesystem freeze failed\n");
1080                        sb->s_frozen = SB_UNFROZEN;
1081                        deactivate_locked_super(sb);
1082                        return ret;
1083                }
1084        }
1085        up_write(&sb->s_umount);
1086        return 0;
1087}
1088EXPORT_SYMBOL(freeze_super);
1089
1090/**
1091 * thaw_super -- unlock filesystem
1092 * @sb: the super to thaw
1093 *
1094 * Unlocks the filesystem and marks it writeable again after freeze_super().
1095 */
1096int thaw_super(struct super_block *sb)
1097{
1098        int error;
1099
1100        down_write(&sb->s_umount);
1101        if (sb->s_frozen == SB_UNFROZEN) {
1102                up_write(&sb->s_umount);
1103                return -EINVAL;
1104        }
1105
1106        if (sb->s_flags & MS_RDONLY)
1107                goto out;
1108
1109        if (sb->s_op->unfreeze_fs) {
1110                error = sb->s_op->unfreeze_fs(sb);
1111                if (error) {
1112                        printk(KERN_ERR
1113                                "VFS:Filesystem thaw failed\n");
1114                        sb->s_frozen = SB_FREEZE_TRANS;
1115                        up_write(&sb->s_umount);
1116                        return error;
1117                }
1118        }
1119
1120out:
1121        sb->s_frozen = SB_UNFROZEN;
1122        smp_wmb();
1123        wake_up(&sb->s_wait_unfrozen);
1124        deactivate_locked_super(sb);
1125
1126        return 0;
1127}
1128EXPORT_SYMBOL(thaw_super);
1129
1130static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1131{
1132        int err;
1133        const char *subtype = strchr(fstype, '.');
1134        if (subtype) {
1135                subtype++;
1136                err = -EINVAL;
1137                if (!subtype[0])
1138                        goto err;
1139        } else
1140                subtype = "";
1141
1142        mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1143        err = -ENOMEM;
1144        if (!mnt->mnt_sb->s_subtype)
1145                goto err;
1146        return mnt;
1147
1148 err:
1149        mntput(mnt);
1150        return ERR_PTR(err);
1151}
1152
1153struct vfsmount *
1154do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1155{
1156        struct file_system_type *type = get_fs_type(fstype);
1157        struct vfsmount *mnt;
1158        if (!type)
1159                return ERR_PTR(-ENODEV);
1160        mnt = vfs_kern_mount(type, flags, name, data);
1161        if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1162            !mnt->mnt_sb->s_subtype)
1163                mnt = fs_set_subtype(mnt, fstype);
1164        put_filesystem(type);
1165        return mnt;
1166}
1167EXPORT_SYMBOL_GPL(do_kern_mount);
1168
1169struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1170{
1171        return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1172}
1173
1174EXPORT_SYMBOL_GPL(kern_mount_data);
1175