linux/fs/ubifs/journal.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements UBIFS journal.
  25 *
  26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
  27 * length and position, while a bud logical eraseblock is any LEB in the main
  28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
  29 * contains only references to buds and some other stuff like commit
  30 * start node. The idea is that when we commit the journal, we do
  31 * not copy the data, the buds just become indexed. Since after the commit the
  32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
  33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
  34 * become leafs in the future.
  35 *
  36 * The journal is multi-headed because we want to write data to the journal as
  37 * optimally as possible. It is nice to have nodes belonging to the same inode
  38 * in one LEB, so we may write data owned by different inodes to different
  39 * journal heads, although at present only one data head is used.
  40 *
  41 * For recovery reasons, the base head contains all inode nodes, all directory
  42 * entry nodes and all truncate nodes. This means that the other heads contain
  43 * only data nodes.
  44 *
  45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
  46 * time of commit, the bud is retained to continue to be used in the journal,
  47 * even though the "front" of the LEB is now indexed. In that case, the log
  48 * reference contains the offset where the bud starts for the purposes of the
  49 * journal.
  50 *
  51 * The journal size has to be limited, because the larger is the journal, the
  52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
  53 * takes (indexing in the TNC).
  54 *
  55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
  56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
  57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
  58 * all the nodes.
  59 */
  60
  61#include "ubifs.h"
  62
  63/**
  64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
  65 * @ino: the inode to zero out
  66 */
  67static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
  68{
  69        memset(ino->padding1, 0, 4);
  70        memset(ino->padding2, 0, 26);
  71}
  72
  73/**
  74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
  75 *                         entry node.
  76 * @dent: the directory entry to zero out
  77 */
  78static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
  79{
  80        dent->padding1 = 0;
  81        memset(dent->padding2, 0, 4);
  82}
  83
  84/**
  85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
  86 * @data: the data node to zero out
  87 */
  88static inline void zero_data_node_unused(struct ubifs_data_node *data)
  89{
  90        memset(data->padding, 0, 2);
  91}
  92
  93/**
  94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
  95 *                         node.
  96 * @trun: the truncation node to zero out
  97 */
  98static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
  99{
 100        memset(trun->padding, 0, 12);
 101}
 102
 103/**
 104 * reserve_space - reserve space in the journal.
 105 * @c: UBIFS file-system description object
 106 * @jhead: journal head number
 107 * @len: node length
 108 *
 109 * This function reserves space in journal head @head. If the reservation
 110 * succeeded, the journal head stays locked and later has to be unlocked using
 111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
 112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
 113 * other negative error codes in case of other failures.
 114 */
 115static int reserve_space(struct ubifs_info *c, int jhead, int len)
 116{
 117        int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
 118        struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 119
 120        /*
 121         * Typically, the base head has smaller nodes written to it, so it is
 122         * better to try to allocate space at the ends of eraseblocks. This is
 123         * what the squeeze parameter does.
 124         */
 125        ubifs_assert(!c->ro_media && !c->ro_mount);
 126        squeeze = (jhead == BASEHD);
 127again:
 128        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 129
 130        if (c->ro_error) {
 131                err = -EROFS;
 132                goto out_unlock;
 133        }
 134
 135        avail = c->leb_size - wbuf->offs - wbuf->used;
 136        if (wbuf->lnum != -1 && avail >= len)
 137                return 0;
 138
 139        /*
 140         * Write buffer wasn't seek'ed or there is no enough space - look for an
 141         * LEB with some empty space.
 142         */
 143        lnum = ubifs_find_free_space(c, len, &offs, squeeze);
 144        if (lnum >= 0) {
 145                /* Found an LEB, add it to the journal head */
 146                err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
 147                if (err)
 148                        goto out_return;
 149                /* A new bud was successfully allocated and added to the log */
 150                goto out;
 151        }
 152
 153        err = lnum;
 154        if (err != -ENOSPC)
 155                goto out_unlock;
 156
 157        /*
 158         * No free space, we have to run garbage collector to make
 159         * some. But the write-buffer mutex has to be unlocked because
 160         * GC also takes it.
 161         */
 162        dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
 163        mutex_unlock(&wbuf->io_mutex);
 164
 165        lnum = ubifs_garbage_collect(c, 0);
 166        if (lnum < 0) {
 167                err = lnum;
 168                if (err != -ENOSPC)
 169                        return err;
 170
 171                /*
 172                 * GC could not make a free LEB. But someone else may
 173                 * have allocated new bud for this journal head,
 174                 * because we dropped @wbuf->io_mutex, so try once
 175                 * again.
 176                 */
 177                dbg_jnl("GC couldn't make a free LEB for jhead %s",
 178                        dbg_jhead(jhead));
 179                if (retries++ < 2) {
 180                        dbg_jnl("retry (%d)", retries);
 181                        goto again;
 182                }
 183
 184                dbg_jnl("return -ENOSPC");
 185                return err;
 186        }
 187
 188        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 189        dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
 190        avail = c->leb_size - wbuf->offs - wbuf->used;
 191
 192        if (wbuf->lnum != -1 && avail >= len) {
 193                /*
 194                 * Someone else has switched the journal head and we have
 195                 * enough space now. This happens when more than one process is
 196                 * trying to write to the same journal head at the same time.
 197                 */
 198                dbg_jnl("return LEB %d back, already have LEB %d:%d",
 199                        lnum, wbuf->lnum, wbuf->offs + wbuf->used);
 200                err = ubifs_return_leb(c, lnum);
 201                if (err)
 202                        goto out_unlock;
 203                return 0;
 204        }
 205
 206        err = ubifs_add_bud_to_log(c, jhead, lnum, 0);
 207        if (err)
 208                goto out_return;
 209        offs = 0;
 210
 211out:
 212        err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype);
 213        if (err)
 214                goto out_unlock;
 215
 216        return 0;
 217
 218out_unlock:
 219        mutex_unlock(&wbuf->io_mutex);
 220        return err;
 221
 222out_return:
 223        /* An error occurred and the LEB has to be returned to lprops */
 224        ubifs_assert(err < 0);
 225        err1 = ubifs_return_leb(c, lnum);
 226        if (err1 && err == -EAGAIN)
 227                /*
 228                 * Return original error code only if it is not %-EAGAIN,
 229                 * which is not really an error. Otherwise, return the error
 230                 * code of 'ubifs_return_leb()'.
 231                 */
 232                err = err1;
 233        mutex_unlock(&wbuf->io_mutex);
 234        return err;
 235}
 236
 237/**
 238 * write_node - write node to a journal head.
 239 * @c: UBIFS file-system description object
 240 * @jhead: journal head
 241 * @node: node to write
 242 * @len: node length
 243 * @lnum: LEB number written is returned here
 244 * @offs: offset written is returned here
 245 *
 246 * This function writes a node to reserved space of journal head @jhead.
 247 * Returns zero in case of success and a negative error code in case of
 248 * failure.
 249 */
 250static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
 251                      int *lnum, int *offs)
 252{
 253        struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 254
 255        ubifs_assert(jhead != GCHD);
 256
 257        *lnum = c->jheads[jhead].wbuf.lnum;
 258        *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
 259
 260        dbg_jnl("jhead %s, LEB %d:%d, len %d",
 261                dbg_jhead(jhead), *lnum, *offs, len);
 262        ubifs_prepare_node(c, node, len, 0);
 263
 264        return ubifs_wbuf_write_nolock(wbuf, node, len);
 265}
 266
 267/**
 268 * write_head - write data to a journal head.
 269 * @c: UBIFS file-system description object
 270 * @jhead: journal head
 271 * @buf: buffer to write
 272 * @len: length to write
 273 * @lnum: LEB number written is returned here
 274 * @offs: offset written is returned here
 275 * @sync: non-zero if the write-buffer has to by synchronized
 276 *
 277 * This function is the same as 'write_node()' but it does not assume the
 278 * buffer it is writing is a node, so it does not prepare it (which means
 279 * initializing common header and calculating CRC).
 280 */
 281static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
 282                      int *lnum, int *offs, int sync)
 283{
 284        int err;
 285        struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 286
 287        ubifs_assert(jhead != GCHD);
 288
 289        *lnum = c->jheads[jhead].wbuf.lnum;
 290        *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
 291        dbg_jnl("jhead %s, LEB %d:%d, len %d",
 292                dbg_jhead(jhead), *lnum, *offs, len);
 293
 294        err = ubifs_wbuf_write_nolock(wbuf, buf, len);
 295        if (err)
 296                return err;
 297        if (sync)
 298                err = ubifs_wbuf_sync_nolock(wbuf);
 299        return err;
 300}
 301
 302/**
 303 * make_reservation - reserve journal space.
 304 * @c: UBIFS file-system description object
 305 * @jhead: journal head
 306 * @len: how many bytes to reserve
 307 *
 308 * This function makes space reservation in journal head @jhead. The function
 309 * takes the commit lock and locks the journal head, and the caller has to
 310 * unlock the head and finish the reservation with 'finish_reservation()'.
 311 * Returns zero in case of success and a negative error code in case of
 312 * failure.
 313 *
 314 * Note, the journal head may be unlocked as soon as the data is written, while
 315 * the commit lock has to be released after the data has been added to the
 316 * TNC.
 317 */
 318static int make_reservation(struct ubifs_info *c, int jhead, int len)
 319{
 320        int err, cmt_retries = 0, nospc_retries = 0;
 321
 322again:
 323        down_read(&c->commit_sem);
 324        err = reserve_space(c, jhead, len);
 325        if (!err)
 326                return 0;
 327        up_read(&c->commit_sem);
 328
 329        if (err == -ENOSPC) {
 330                /*
 331                 * GC could not make any progress. We should try to commit
 332                 * once because it could make some dirty space and GC would
 333                 * make progress, so make the error -EAGAIN so that the below
 334                 * will commit and re-try.
 335                 */
 336                if (nospc_retries++ < 2) {
 337                        dbg_jnl("no space, retry");
 338                        err = -EAGAIN;
 339                }
 340
 341                /*
 342                 * This means that the budgeting is incorrect. We always have
 343                 * to be able to write to the media, because all operations are
 344                 * budgeted. Deletions are not budgeted, though, but we reserve
 345                 * an extra LEB for them.
 346                 */
 347        }
 348
 349        if (err != -EAGAIN)
 350                goto out;
 351
 352        /*
 353         * -EAGAIN means that the journal is full or too large, or the above
 354         * code wants to do one commit. Do this and re-try.
 355         */
 356        if (cmt_retries > 128) {
 357                /*
 358                 * This should not happen unless the journal size limitations
 359                 * are too tough.
 360                 */
 361                ubifs_err("stuck in space allocation");
 362                err = -ENOSPC;
 363                goto out;
 364        } else if (cmt_retries > 32)
 365                ubifs_warn("too many space allocation re-tries (%d)",
 366                           cmt_retries);
 367
 368        dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
 369                cmt_retries);
 370        cmt_retries += 1;
 371
 372        err = ubifs_run_commit(c);
 373        if (err)
 374                return err;
 375        goto again;
 376
 377out:
 378        ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
 379                  len, jhead, err);
 380        if (err == -ENOSPC) {
 381                /* This are some budgeting problems, print useful information */
 382                down_write(&c->commit_sem);
 383                spin_lock(&c->space_lock);
 384                dbg_dump_stack();
 385                dbg_dump_budg(c);
 386                spin_unlock(&c->space_lock);
 387                dbg_dump_lprops(c);
 388                cmt_retries = dbg_check_lprops(c);
 389                up_write(&c->commit_sem);
 390        }
 391        return err;
 392}
 393
 394/**
 395 * release_head - release a journal head.
 396 * @c: UBIFS file-system description object
 397 * @jhead: journal head
 398 *
 399 * This function releases journal head @jhead which was locked by
 400 * the 'make_reservation()' function. It has to be called after each successful
 401 * 'make_reservation()' invocation.
 402 */
 403static inline void release_head(struct ubifs_info *c, int jhead)
 404{
 405        mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
 406}
 407
 408/**
 409 * finish_reservation - finish a reservation.
 410 * @c: UBIFS file-system description object
 411 *
 412 * This function finishes journal space reservation. It must be called after
 413 * 'make_reservation()'.
 414 */
 415static void finish_reservation(struct ubifs_info *c)
 416{
 417        up_read(&c->commit_sem);
 418}
 419
 420/**
 421 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
 422 * @mode: inode mode
 423 */
 424static int get_dent_type(int mode)
 425{
 426        switch (mode & S_IFMT) {
 427        case S_IFREG:
 428                return UBIFS_ITYPE_REG;
 429        case S_IFDIR:
 430                return UBIFS_ITYPE_DIR;
 431        case S_IFLNK:
 432                return UBIFS_ITYPE_LNK;
 433        case S_IFBLK:
 434                return UBIFS_ITYPE_BLK;
 435        case S_IFCHR:
 436                return UBIFS_ITYPE_CHR;
 437        case S_IFIFO:
 438                return UBIFS_ITYPE_FIFO;
 439        case S_IFSOCK:
 440                return UBIFS_ITYPE_SOCK;
 441        default:
 442                BUG();
 443        }
 444        return 0;
 445}
 446
 447/**
 448 * pack_inode - pack an inode node.
 449 * @c: UBIFS file-system description object
 450 * @ino: buffer in which to pack inode node
 451 * @inode: inode to pack
 452 * @last: indicates the last node of the group
 453 */
 454static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
 455                       const struct inode *inode, int last)
 456{
 457        int data_len = 0, last_reference = !inode->i_nlink;
 458        struct ubifs_inode *ui = ubifs_inode(inode);
 459
 460        ino->ch.node_type = UBIFS_INO_NODE;
 461        ino_key_init_flash(c, &ino->key, inode->i_ino);
 462        ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
 463        ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
 464        ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
 465        ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
 466        ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
 467        ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
 468        ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
 469        ino->uid   = cpu_to_le32(inode->i_uid);
 470        ino->gid   = cpu_to_le32(inode->i_gid);
 471        ino->mode  = cpu_to_le32(inode->i_mode);
 472        ino->flags = cpu_to_le32(ui->flags);
 473        ino->size  = cpu_to_le64(ui->ui_size);
 474        ino->nlink = cpu_to_le32(inode->i_nlink);
 475        ino->compr_type  = cpu_to_le16(ui->compr_type);
 476        ino->data_len    = cpu_to_le32(ui->data_len);
 477        ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
 478        ino->xattr_size  = cpu_to_le32(ui->xattr_size);
 479        ino->xattr_names = cpu_to_le32(ui->xattr_names);
 480        zero_ino_node_unused(ino);
 481
 482        /*
 483         * Drop the attached data if this is a deletion inode, the data is not
 484         * needed anymore.
 485         */
 486        if (!last_reference) {
 487                memcpy(ino->data, ui->data, ui->data_len);
 488                data_len = ui->data_len;
 489        }
 490
 491        ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
 492}
 493
 494/**
 495 * mark_inode_clean - mark UBIFS inode as clean.
 496 * @c: UBIFS file-system description object
 497 * @ui: UBIFS inode to mark as clean
 498 *
 499 * This helper function marks UBIFS inode @ui as clean by cleaning the
 500 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
 501 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
 502 * just do nothing.
 503 */
 504static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
 505{
 506        if (ui->dirty)
 507                ubifs_release_dirty_inode_budget(c, ui);
 508        ui->dirty = 0;
 509}
 510
 511/**
 512 * ubifs_jnl_update - update inode.
 513 * @c: UBIFS file-system description object
 514 * @dir: parent inode or host inode in case of extended attributes
 515 * @nm: directory entry name
 516 * @inode: inode to update
 517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
 518 * @xent: non-zero if the directory entry is an extended attribute entry
 519 *
 520 * This function updates an inode by writing a directory entry (or extended
 521 * attribute entry), the inode itself, and the parent directory inode (or the
 522 * host inode) to the journal.
 523 *
 524 * The function writes the host inode @dir last, which is important in case of
 525 * extended attributes. Indeed, then we guarantee that if the host inode gets
 526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
 527 * the extended attribute inode gets flushed too. And this is exactly what the
 528 * user expects - synchronizing the host inode synchronizes its extended
 529 * attributes. Similarly, this guarantees that if @dir is synchronized, its
 530 * directory entry corresponding to @nm gets synchronized too.
 531 *
 532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
 533 * function synchronizes the write-buffer.
 534 *
 535 * This function marks the @dir and @inode inodes as clean and returns zero on
 536 * success. In case of failure, a negative error code is returned.
 537 */
 538int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
 539                     const struct qstr *nm, const struct inode *inode,
 540                     int deletion, int xent)
 541{
 542        int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
 543        int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
 544        int last_reference = !!(deletion && inode->i_nlink == 0);
 545        struct ubifs_inode *ui = ubifs_inode(inode);
 546        struct ubifs_inode *dir_ui = ubifs_inode(dir);
 547        struct ubifs_dent_node *dent;
 548        struct ubifs_ino_node *ino;
 549        union ubifs_key dent_key, ino_key;
 550
 551        dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
 552                inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
 553        ubifs_assert(dir_ui->data_len == 0);
 554        ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
 555
 556        dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
 557        ilen = UBIFS_INO_NODE_SZ;
 558
 559        /*
 560         * If the last reference to the inode is being deleted, then there is
 561         * no need to attach and write inode data, it is being deleted anyway.
 562         * And if the inode is being deleted, no need to synchronize
 563         * write-buffer even if the inode is synchronous.
 564         */
 565        if (!last_reference) {
 566                ilen += ui->data_len;
 567                sync |= IS_SYNC(inode);
 568        }
 569
 570        aligned_dlen = ALIGN(dlen, 8);
 571        aligned_ilen = ALIGN(ilen, 8);
 572        len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
 573        dent = kmalloc(len, GFP_NOFS);
 574        if (!dent)
 575                return -ENOMEM;
 576
 577        /* Make reservation before allocating sequence numbers */
 578        err = make_reservation(c, BASEHD, len);
 579        if (err)
 580                goto out_free;
 581
 582        if (!xent) {
 583                dent->ch.node_type = UBIFS_DENT_NODE;
 584                dent_key_init(c, &dent_key, dir->i_ino, nm);
 585        } else {
 586                dent->ch.node_type = UBIFS_XENT_NODE;
 587                xent_key_init(c, &dent_key, dir->i_ino, nm);
 588        }
 589
 590        key_write(c, &dent_key, dent->key);
 591        dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
 592        dent->type = get_dent_type(inode->i_mode);
 593        dent->nlen = cpu_to_le16(nm->len);
 594        memcpy(dent->name, nm->name, nm->len);
 595        dent->name[nm->len] = '\0';
 596        zero_dent_node_unused(dent);
 597        ubifs_prep_grp_node(c, dent, dlen, 0);
 598
 599        ino = (void *)dent + aligned_dlen;
 600        pack_inode(c, ino, inode, 0);
 601        ino = (void *)ino + aligned_ilen;
 602        pack_inode(c, ino, dir, 1);
 603
 604        if (last_reference) {
 605                err = ubifs_add_orphan(c, inode->i_ino);
 606                if (err) {
 607                        release_head(c, BASEHD);
 608                        goto out_finish;
 609                }
 610                ui->del_cmtno = c->cmt_no;
 611        }
 612
 613        err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
 614        if (err)
 615                goto out_release;
 616        if (!sync) {
 617                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
 618
 619                ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
 620                ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
 621        }
 622        release_head(c, BASEHD);
 623        kfree(dent);
 624
 625        if (deletion) {
 626                err = ubifs_tnc_remove_nm(c, &dent_key, nm);
 627                if (err)
 628                        goto out_ro;
 629                err = ubifs_add_dirt(c, lnum, dlen);
 630        } else
 631                err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
 632        if (err)
 633                goto out_ro;
 634
 635        /*
 636         * Note, we do not remove the inode from TNC even if the last reference
 637         * to it has just been deleted, because the inode may still be opened.
 638         * Instead, the inode has been added to orphan lists and the orphan
 639         * subsystem will take further care about it.
 640         */
 641        ino_key_init(c, &ino_key, inode->i_ino);
 642        ino_offs = dent_offs + aligned_dlen;
 643        err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
 644        if (err)
 645                goto out_ro;
 646
 647        ino_key_init(c, &ino_key, dir->i_ino);
 648        ino_offs += aligned_ilen;
 649        err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
 650        if (err)
 651                goto out_ro;
 652
 653        finish_reservation(c);
 654        spin_lock(&ui->ui_lock);
 655        ui->synced_i_size = ui->ui_size;
 656        spin_unlock(&ui->ui_lock);
 657        mark_inode_clean(c, ui);
 658        mark_inode_clean(c, dir_ui);
 659        return 0;
 660
 661out_finish:
 662        finish_reservation(c);
 663out_free:
 664        kfree(dent);
 665        return err;
 666
 667out_release:
 668        release_head(c, BASEHD);
 669out_ro:
 670        ubifs_ro_mode(c, err);
 671        if (last_reference)
 672                ubifs_delete_orphan(c, inode->i_ino);
 673        finish_reservation(c);
 674        return err;
 675}
 676
 677/**
 678 * ubifs_jnl_write_data - write a data node to the journal.
 679 * @c: UBIFS file-system description object
 680 * @inode: inode the data node belongs to
 681 * @key: node key
 682 * @buf: buffer to write
 683 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
 684 *
 685 * This function writes a data node to the journal. Returns %0 if the data node
 686 * was successfully written, and a negative error code in case of failure.
 687 */
 688int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
 689                         const union ubifs_key *key, const void *buf, int len)
 690{
 691        struct ubifs_data_node *data;
 692        int err, lnum, offs, compr_type, out_len;
 693        int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR;
 694        struct ubifs_inode *ui = ubifs_inode(inode);
 695
 696        dbg_jnl("ino %lu, blk %u, len %d, key %s",
 697                (unsigned long)key_inum(c, key), key_block(c, key), len,
 698                DBGKEY(key));
 699        ubifs_assert(len <= UBIFS_BLOCK_SIZE);
 700
 701        data = kmalloc(dlen, GFP_NOFS);
 702        if (!data)
 703                return -ENOMEM;
 704
 705        data->ch.node_type = UBIFS_DATA_NODE;
 706        key_write(c, key, &data->key);
 707        data->size = cpu_to_le32(len);
 708        zero_data_node_unused(data);
 709
 710        if (!(ui->flags & UBIFS_COMPR_FL))
 711                /* Compression is disabled for this inode */
 712                compr_type = UBIFS_COMPR_NONE;
 713        else
 714                compr_type = ui->compr_type;
 715
 716        out_len = dlen - UBIFS_DATA_NODE_SZ;
 717        ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
 718        ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
 719
 720        dlen = UBIFS_DATA_NODE_SZ + out_len;
 721        data->compr_type = cpu_to_le16(compr_type);
 722
 723        /* Make reservation before allocating sequence numbers */
 724        err = make_reservation(c, DATAHD, dlen);
 725        if (err)
 726                goto out_free;
 727
 728        err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
 729        if (err)
 730                goto out_release;
 731        ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
 732        release_head(c, DATAHD);
 733
 734        err = ubifs_tnc_add(c, key, lnum, offs, dlen);
 735        if (err)
 736                goto out_ro;
 737
 738        finish_reservation(c);
 739        kfree(data);
 740        return 0;
 741
 742out_release:
 743        release_head(c, DATAHD);
 744out_ro:
 745        ubifs_ro_mode(c, err);
 746        finish_reservation(c);
 747out_free:
 748        kfree(data);
 749        return err;
 750}
 751
 752/**
 753 * ubifs_jnl_write_inode - flush inode to the journal.
 754 * @c: UBIFS file-system description object
 755 * @inode: inode to flush
 756 *
 757 * This function writes inode @inode to the journal. If the inode is
 758 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
 759 * success and a negative error code in case of failure.
 760 */
 761int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
 762{
 763        int err, lnum, offs;
 764        struct ubifs_ino_node *ino;
 765        struct ubifs_inode *ui = ubifs_inode(inode);
 766        int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
 767
 768        dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
 769
 770        /*
 771         * If the inode is being deleted, do not write the attached data. No
 772         * need to synchronize the write-buffer either.
 773         */
 774        if (!last_reference) {
 775                len += ui->data_len;
 776                sync = IS_SYNC(inode);
 777        }
 778        ino = kmalloc(len, GFP_NOFS);
 779        if (!ino)
 780                return -ENOMEM;
 781
 782        /* Make reservation before allocating sequence numbers */
 783        err = make_reservation(c, BASEHD, len);
 784        if (err)
 785                goto out_free;
 786
 787        pack_inode(c, ino, inode, 1);
 788        err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
 789        if (err)
 790                goto out_release;
 791        if (!sync)
 792                ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
 793                                          inode->i_ino);
 794        release_head(c, BASEHD);
 795
 796        if (last_reference) {
 797                err = ubifs_tnc_remove_ino(c, inode->i_ino);
 798                if (err)
 799                        goto out_ro;
 800                ubifs_delete_orphan(c, inode->i_ino);
 801                err = ubifs_add_dirt(c, lnum, len);
 802        } else {
 803                union ubifs_key key;
 804
 805                ino_key_init(c, &key, inode->i_ino);
 806                err = ubifs_tnc_add(c, &key, lnum, offs, len);
 807        }
 808        if (err)
 809                goto out_ro;
 810
 811        finish_reservation(c);
 812        spin_lock(&ui->ui_lock);
 813        ui->synced_i_size = ui->ui_size;
 814        spin_unlock(&ui->ui_lock);
 815        kfree(ino);
 816        return 0;
 817
 818out_release:
 819        release_head(c, BASEHD);
 820out_ro:
 821        ubifs_ro_mode(c, err);
 822        finish_reservation(c);
 823out_free:
 824        kfree(ino);
 825        return err;
 826}
 827
 828/**
 829 * ubifs_jnl_delete_inode - delete an inode.
 830 * @c: UBIFS file-system description object
 831 * @inode: inode to delete
 832 *
 833 * This function deletes inode @inode which includes removing it from orphans,
 834 * deleting it from TNC and, in some cases, writing a deletion inode to the
 835 * journal.
 836 *
 837 * When regular file inodes are unlinked or a directory inode is removed, the
 838 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
 839 * direntry to the media, and adds the inode to orphans. After this, when the
 840 * last reference to this inode has been dropped, this function is called. In
 841 * general, it has to write one more deletion inode to the media, because if
 842 * a commit happened between 'ubifs_jnl_update()' and
 843 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
 844 * anymore, and in fact it might not be on the flash anymore, because it might
 845 * have been garbage-collected already. And for optimization reasons UBIFS does
 846 * not read the orphan area if it has been unmounted cleanly, so it would have
 847 * no indication in the journal that there is a deleted inode which has to be
 848 * removed from TNC.
 849 *
 850 * However, if there was no commit between 'ubifs_jnl_update()' and
 851 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
 852 * inode to the media for the second time. And this is quite a typical case.
 853 *
 854 * This function returns zero in case of success and a negative error code in
 855 * case of failure.
 856 */
 857int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
 858{
 859        int err;
 860        struct ubifs_inode *ui = ubifs_inode(inode);
 861
 862        ubifs_assert(inode->i_nlink == 0);
 863
 864        if (ui->del_cmtno != c->cmt_no)
 865                /* A commit happened for sure */
 866                return ubifs_jnl_write_inode(c, inode);
 867
 868        down_read(&c->commit_sem);
 869        /*
 870         * Check commit number again, because the first test has been done
 871         * without @c->commit_sem, so a commit might have happened.
 872         */
 873        if (ui->del_cmtno != c->cmt_no) {
 874                up_read(&c->commit_sem);
 875                return ubifs_jnl_write_inode(c, inode);
 876        }
 877
 878        err = ubifs_tnc_remove_ino(c, inode->i_ino);
 879        if (err)
 880                ubifs_ro_mode(c, err);
 881        else
 882                ubifs_delete_orphan(c, inode->i_ino);
 883        up_read(&c->commit_sem);
 884        return err;
 885}
 886
 887/**
 888 * ubifs_jnl_rename - rename a directory entry.
 889 * @c: UBIFS file-system description object
 890 * @old_dir: parent inode of directory entry to rename
 891 * @old_dentry: directory entry to rename
 892 * @new_dir: parent inode of directory entry to rename
 893 * @new_dentry: new directory entry (or directory entry to replace)
 894 * @sync: non-zero if the write-buffer has to be synchronized
 895 *
 896 * This function implements the re-name operation which may involve writing up
 897 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
 898 * and returns zero on success. In case of failure, a negative error code is
 899 * returned.
 900 */
 901int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
 902                     const struct dentry *old_dentry,
 903                     const struct inode *new_dir,
 904                     const struct dentry *new_dentry, int sync)
 905{
 906        void *p;
 907        union ubifs_key key;
 908        struct ubifs_dent_node *dent, *dent2;
 909        int err, dlen1, dlen2, ilen, lnum, offs, len;
 910        const struct inode *old_inode = old_dentry->d_inode;
 911        const struct inode *new_inode = new_dentry->d_inode;
 912        int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
 913        int last_reference = !!(new_inode && new_inode->i_nlink == 0);
 914        int move = (old_dir != new_dir);
 915        struct ubifs_inode *uninitialized_var(new_ui);
 916
 917        dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
 918                old_dentry->d_name.len, old_dentry->d_name.name,
 919                old_dir->i_ino, new_dentry->d_name.len,
 920                new_dentry->d_name.name, new_dir->i_ino);
 921        ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
 922        ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
 923        ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
 924        ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
 925
 926        dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
 927        dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
 928        if (new_inode) {
 929                new_ui = ubifs_inode(new_inode);
 930                ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
 931                ilen = UBIFS_INO_NODE_SZ;
 932                if (!last_reference)
 933                        ilen += new_ui->data_len;
 934        } else
 935                ilen = 0;
 936
 937        aligned_dlen1 = ALIGN(dlen1, 8);
 938        aligned_dlen2 = ALIGN(dlen2, 8);
 939        len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
 940        if (old_dir != new_dir)
 941                len += plen;
 942        dent = kmalloc(len, GFP_NOFS);
 943        if (!dent)
 944                return -ENOMEM;
 945
 946        /* Make reservation before allocating sequence numbers */
 947        err = make_reservation(c, BASEHD, len);
 948        if (err)
 949                goto out_free;
 950
 951        /* Make new dent */
 952        dent->ch.node_type = UBIFS_DENT_NODE;
 953        dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
 954        dent->inum = cpu_to_le64(old_inode->i_ino);
 955        dent->type = get_dent_type(old_inode->i_mode);
 956        dent->nlen = cpu_to_le16(new_dentry->d_name.len);
 957        memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
 958        dent->name[new_dentry->d_name.len] = '\0';
 959        zero_dent_node_unused(dent);
 960        ubifs_prep_grp_node(c, dent, dlen1, 0);
 961
 962        /* Make deletion dent */
 963        dent2 = (void *)dent + aligned_dlen1;
 964        dent2->ch.node_type = UBIFS_DENT_NODE;
 965        dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
 966                            &old_dentry->d_name);
 967        dent2->inum = 0;
 968        dent2->type = DT_UNKNOWN;
 969        dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
 970        memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
 971        dent2->name[old_dentry->d_name.len] = '\0';
 972        zero_dent_node_unused(dent2);
 973        ubifs_prep_grp_node(c, dent2, dlen2, 0);
 974
 975        p = (void *)dent2 + aligned_dlen2;
 976        if (new_inode) {
 977                pack_inode(c, p, new_inode, 0);
 978                p += ALIGN(ilen, 8);
 979        }
 980
 981        if (!move)
 982                pack_inode(c, p, old_dir, 1);
 983        else {
 984                pack_inode(c, p, old_dir, 0);
 985                p += ALIGN(plen, 8);
 986                pack_inode(c, p, new_dir, 1);
 987        }
 988
 989        if (last_reference) {
 990                err = ubifs_add_orphan(c, new_inode->i_ino);
 991                if (err) {
 992                        release_head(c, BASEHD);
 993                        goto out_finish;
 994                }
 995                new_ui->del_cmtno = c->cmt_no;
 996        }
 997
 998        err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
 999        if (err)
1000                goto out_release;
1001        if (!sync) {
1002                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1003
1004                ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1005                ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1006                if (new_inode)
1007                        ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1008                                                  new_inode->i_ino);
1009        }
1010        release_head(c, BASEHD);
1011
1012        dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1013        err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1014        if (err)
1015                goto out_ro;
1016
1017        err = ubifs_add_dirt(c, lnum, dlen2);
1018        if (err)
1019                goto out_ro;
1020
1021        dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1022        err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1023        if (err)
1024                goto out_ro;
1025
1026        offs += aligned_dlen1 + aligned_dlen2;
1027        if (new_inode) {
1028                ino_key_init(c, &key, new_inode->i_ino);
1029                err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1030                if (err)
1031                        goto out_ro;
1032                offs += ALIGN(ilen, 8);
1033        }
1034
1035        ino_key_init(c, &key, old_dir->i_ino);
1036        err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1037        if (err)
1038                goto out_ro;
1039
1040        if (old_dir != new_dir) {
1041                offs += ALIGN(plen, 8);
1042                ino_key_init(c, &key, new_dir->i_ino);
1043                err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1044                if (err)
1045                        goto out_ro;
1046        }
1047
1048        finish_reservation(c);
1049        if (new_inode) {
1050                mark_inode_clean(c, new_ui);
1051                spin_lock(&new_ui->ui_lock);
1052                new_ui->synced_i_size = new_ui->ui_size;
1053                spin_unlock(&new_ui->ui_lock);
1054        }
1055        mark_inode_clean(c, ubifs_inode(old_dir));
1056        if (move)
1057                mark_inode_clean(c, ubifs_inode(new_dir));
1058        kfree(dent);
1059        return 0;
1060
1061out_release:
1062        release_head(c, BASEHD);
1063out_ro:
1064        ubifs_ro_mode(c, err);
1065        if (last_reference)
1066                ubifs_delete_orphan(c, new_inode->i_ino);
1067out_finish:
1068        finish_reservation(c);
1069out_free:
1070        kfree(dent);
1071        return err;
1072}
1073
1074/**
1075 * recomp_data_node - re-compress a truncated data node.
1076 * @dn: data node to re-compress
1077 * @new_len: new length
1078 *
1079 * This function is used when an inode is truncated and the last data node of
1080 * the inode has to be re-compressed and re-written.
1081 */
1082static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
1083{
1084        void *buf;
1085        int err, len, compr_type, out_len;
1086
1087        out_len = le32_to_cpu(dn->size);
1088        buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1089        if (!buf)
1090                return -ENOMEM;
1091
1092        len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1093        compr_type = le16_to_cpu(dn->compr_type);
1094        err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
1095        if (err)
1096                goto out;
1097
1098        ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
1099        ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1100        dn->compr_type = cpu_to_le16(compr_type);
1101        dn->size = cpu_to_le32(*new_len);
1102        *new_len = UBIFS_DATA_NODE_SZ + out_len;
1103out:
1104        kfree(buf);
1105        return err;
1106}
1107
1108/**
1109 * ubifs_jnl_truncate - update the journal for a truncation.
1110 * @c: UBIFS file-system description object
1111 * @inode: inode to truncate
1112 * @old_size: old size
1113 * @new_size: new size
1114 *
1115 * When the size of a file decreases due to truncation, a truncation node is
1116 * written, the journal tree is updated, and the last data block is re-written
1117 * if it has been affected. The inode is also updated in order to synchronize
1118 * the new inode size.
1119 *
1120 * This function marks the inode as clean and returns zero on success. In case
1121 * of failure, a negative error code is returned.
1122 */
1123int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1124                       loff_t old_size, loff_t new_size)
1125{
1126        union ubifs_key key, to_key;
1127        struct ubifs_ino_node *ino;
1128        struct ubifs_trun_node *trun;
1129        struct ubifs_data_node *uninitialized_var(dn);
1130        int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1131        struct ubifs_inode *ui = ubifs_inode(inode);
1132        ino_t inum = inode->i_ino;
1133        unsigned int blk;
1134
1135        dbg_jnl("ino %lu, size %lld -> %lld",
1136                (unsigned long)inum, old_size, new_size);
1137        ubifs_assert(!ui->data_len);
1138        ubifs_assert(S_ISREG(inode->i_mode));
1139        ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1140
1141        sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1142             UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1143        ino = kmalloc(sz, GFP_NOFS);
1144        if (!ino)
1145                return -ENOMEM;
1146
1147        trun = (void *)ino + UBIFS_INO_NODE_SZ;
1148        trun->ch.node_type = UBIFS_TRUN_NODE;
1149        trun->inum = cpu_to_le32(inum);
1150        trun->old_size = cpu_to_le64(old_size);
1151        trun->new_size = cpu_to_le64(new_size);
1152        zero_trun_node_unused(trun);
1153
1154        dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1155        if (dlen) {
1156                /* Get last data block so it can be truncated */
1157                dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1158                blk = new_size >> UBIFS_BLOCK_SHIFT;
1159                data_key_init(c, &key, inum, blk);
1160                dbg_jnl("last block key %s", DBGKEY(&key));
1161                err = ubifs_tnc_lookup(c, &key, dn);
1162                if (err == -ENOENT)
1163                        dlen = 0; /* Not found (so it is a hole) */
1164                else if (err)
1165                        goto out_free;
1166                else {
1167                        if (le32_to_cpu(dn->size) <= dlen)
1168                                dlen = 0; /* Nothing to do */
1169                        else {
1170                                int compr_type = le16_to_cpu(dn->compr_type);
1171
1172                                if (compr_type != UBIFS_COMPR_NONE) {
1173                                        err = recomp_data_node(dn, &dlen);
1174                                        if (err)
1175                                                goto out_free;
1176                                } else {
1177                                        dn->size = cpu_to_le32(dlen);
1178                                        dlen += UBIFS_DATA_NODE_SZ;
1179                                }
1180                                zero_data_node_unused(dn);
1181                        }
1182                }
1183        }
1184
1185        /* Must make reservation before allocating sequence numbers */
1186        len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1187        if (dlen)
1188                len += dlen;
1189        err = make_reservation(c, BASEHD, len);
1190        if (err)
1191                goto out_free;
1192
1193        pack_inode(c, ino, inode, 0);
1194        ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1195        if (dlen)
1196                ubifs_prep_grp_node(c, dn, dlen, 1);
1197
1198        err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1199        if (err)
1200                goto out_release;
1201        if (!sync)
1202                ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1203        release_head(c, BASEHD);
1204
1205        if (dlen) {
1206                sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1207                err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1208                if (err)
1209                        goto out_ro;
1210        }
1211
1212        ino_key_init(c, &key, inum);
1213        err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1214        if (err)
1215                goto out_ro;
1216
1217        err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1218        if (err)
1219                goto out_ro;
1220
1221        bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1222        blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1223        data_key_init(c, &key, inum, blk);
1224
1225        bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1226        blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1227        data_key_init(c, &to_key, inum, blk);
1228
1229        err = ubifs_tnc_remove_range(c, &key, &to_key);
1230        if (err)
1231                goto out_ro;
1232
1233        finish_reservation(c);
1234        spin_lock(&ui->ui_lock);
1235        ui->synced_i_size = ui->ui_size;
1236        spin_unlock(&ui->ui_lock);
1237        mark_inode_clean(c, ui);
1238        kfree(ino);
1239        return 0;
1240
1241out_release:
1242        release_head(c, BASEHD);
1243out_ro:
1244        ubifs_ro_mode(c, err);
1245        finish_reservation(c);
1246out_free:
1247        kfree(ino);
1248        return err;
1249}
1250
1251#ifdef CONFIG_UBIFS_FS_XATTR
1252
1253/**
1254 * ubifs_jnl_delete_xattr - delete an extended attribute.
1255 * @c: UBIFS file-system description object
1256 * @host: host inode
1257 * @inode: extended attribute inode
1258 * @nm: extended attribute entry name
1259 *
1260 * This function delete an extended attribute which is very similar to
1261 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1262 * updates the target inode. Returns zero in case of success and a negative
1263 * error code in case of failure.
1264 */
1265int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1266                           const struct inode *inode, const struct qstr *nm)
1267{
1268        int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1269        struct ubifs_dent_node *xent;
1270        struct ubifs_ino_node *ino;
1271        union ubifs_key xent_key, key1, key2;
1272        int sync = IS_DIRSYNC(host);
1273        struct ubifs_inode *host_ui = ubifs_inode(host);
1274
1275        dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1276                host->i_ino, inode->i_ino, nm->name,
1277                ubifs_inode(inode)->data_len);
1278        ubifs_assert(inode->i_nlink == 0);
1279        ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1280
1281        /*
1282         * Since we are deleting the inode, we do not bother to attach any data
1283         * to it and assume its length is %UBIFS_INO_NODE_SZ.
1284         */
1285        xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1286        aligned_xlen = ALIGN(xlen, 8);
1287        hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1288        len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1289
1290        xent = kmalloc(len, GFP_NOFS);
1291        if (!xent)
1292                return -ENOMEM;
1293
1294        /* Make reservation before allocating sequence numbers */
1295        err = make_reservation(c, BASEHD, len);
1296        if (err) {
1297                kfree(xent);
1298                return err;
1299        }
1300
1301        xent->ch.node_type = UBIFS_XENT_NODE;
1302        xent_key_init(c, &xent_key, host->i_ino, nm);
1303        key_write(c, &xent_key, xent->key);
1304        xent->inum = 0;
1305        xent->type = get_dent_type(inode->i_mode);
1306        xent->nlen = cpu_to_le16(nm->len);
1307        memcpy(xent->name, nm->name, nm->len);
1308        xent->name[nm->len] = '\0';
1309        zero_dent_node_unused(xent);
1310        ubifs_prep_grp_node(c, xent, xlen, 0);
1311
1312        ino = (void *)xent + aligned_xlen;
1313        pack_inode(c, ino, inode, 0);
1314        ino = (void *)ino + UBIFS_INO_NODE_SZ;
1315        pack_inode(c, ino, host, 1);
1316
1317        err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1318        if (!sync && !err)
1319                ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1320        release_head(c, BASEHD);
1321        kfree(xent);
1322        if (err)
1323                goto out_ro;
1324
1325        /* Remove the extended attribute entry from TNC */
1326        err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1327        if (err)
1328                goto out_ro;
1329        err = ubifs_add_dirt(c, lnum, xlen);
1330        if (err)
1331                goto out_ro;
1332
1333        /*
1334         * Remove all nodes belonging to the extended attribute inode from TNC.
1335         * Well, there actually must be only one node - the inode itself.
1336         */
1337        lowest_ino_key(c, &key1, inode->i_ino);
1338        highest_ino_key(c, &key2, inode->i_ino);
1339        err = ubifs_tnc_remove_range(c, &key1, &key2);
1340        if (err)
1341                goto out_ro;
1342        err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1343        if (err)
1344                goto out_ro;
1345
1346        /* And update TNC with the new host inode position */
1347        ino_key_init(c, &key1, host->i_ino);
1348        err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1349        if (err)
1350                goto out_ro;
1351
1352        finish_reservation(c);
1353        spin_lock(&host_ui->ui_lock);
1354        host_ui->synced_i_size = host_ui->ui_size;
1355        spin_unlock(&host_ui->ui_lock);
1356        mark_inode_clean(c, host_ui);
1357        return 0;
1358
1359out_ro:
1360        ubifs_ro_mode(c, err);
1361        finish_reservation(c);
1362        return err;
1363}
1364
1365/**
1366 * ubifs_jnl_change_xattr - change an extended attribute.
1367 * @c: UBIFS file-system description object
1368 * @inode: extended attribute inode
1369 * @host: host inode
1370 *
1371 * This function writes the updated version of an extended attribute inode and
1372 * the host inode to the journal (to the base head). The host inode is written
1373 * after the extended attribute inode in order to guarantee that the extended
1374 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1375 * consequently, the write-buffer is synchronized. This function returns zero
1376 * in case of success and a negative error code in case of failure.
1377 */
1378int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1379                           const struct inode *host)
1380{
1381        int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1382        struct ubifs_inode *host_ui = ubifs_inode(host);
1383        struct ubifs_ino_node *ino;
1384        union ubifs_key key;
1385        int sync = IS_DIRSYNC(host);
1386
1387        dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1388        ubifs_assert(host->i_nlink > 0);
1389        ubifs_assert(inode->i_nlink > 0);
1390        ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1391
1392        len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1393        len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1394        aligned_len1 = ALIGN(len1, 8);
1395        aligned_len = aligned_len1 + ALIGN(len2, 8);
1396
1397        ino = kmalloc(aligned_len, GFP_NOFS);
1398        if (!ino)
1399                return -ENOMEM;
1400
1401        /* Make reservation before allocating sequence numbers */
1402        err = make_reservation(c, BASEHD, aligned_len);
1403        if (err)
1404                goto out_free;
1405
1406        pack_inode(c, ino, host, 0);
1407        pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1408
1409        err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1410        if (!sync && !err) {
1411                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1412
1413                ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1414                ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1415        }
1416        release_head(c, BASEHD);
1417        if (err)
1418                goto out_ro;
1419
1420        ino_key_init(c, &key, host->i_ino);
1421        err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1422        if (err)
1423                goto out_ro;
1424
1425        ino_key_init(c, &key, inode->i_ino);
1426        err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1427        if (err)
1428                goto out_ro;
1429
1430        finish_reservation(c);
1431        spin_lock(&host_ui->ui_lock);
1432        host_ui->synced_i_size = host_ui->ui_size;
1433        spin_unlock(&host_ui->ui_lock);
1434        mark_inode_clean(c, host_ui);
1435        kfree(ino);
1436        return 0;
1437
1438out_ro:
1439        ubifs_ro_mode(c, err);
1440        finish_reservation(c);
1441out_free:
1442        kfree(ino);
1443        return err;
1444}
1445
1446#endif /* CONFIG_UBIFS_FS_XATTR */
1447