linux/fs/ubifs/lpt.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements the LEB properties tree (LPT) area. The LPT area
  25 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
  26 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
  27 * between the log and the orphan area.
  28 *
  29 * The LPT area is like a miniature self-contained file system. It is required
  30 * that it never runs out of space, is fast to access and update, and scales
  31 * logarithmically. The LEB properties tree is implemented as a wandering tree
  32 * much like the TNC, and the LPT area has its own garbage collection.
  33 *
  34 * The LPT has two slightly different forms called the "small model" and the
  35 * "big model". The small model is used when the entire LEB properties table
  36 * can be written into a single eraseblock. In that case, garbage collection
  37 * consists of just writing the whole table, which therefore makes all other
  38 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
  39 * selected for garbage collection, which consists of marking the clean nodes in
  40 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
  41 * the case of the big model, a table of LEB numbers is saved so that the entire
  42 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
  43 * mounted.
  44 */
  45
  46#include "ubifs.h"
  47#include <linux/crc16.h>
  48#include <linux/math64.h>
  49#include <linux/slab.h>
  50
  51/**
  52 * do_calc_lpt_geom - calculate sizes for the LPT area.
  53 * @c: the UBIFS file-system description object
  54 *
  55 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
  56 * properties of the flash and whether LPT is "big" (c->big_lpt).
  57 */
  58static void do_calc_lpt_geom(struct ubifs_info *c)
  59{
  60        int i, n, bits, per_leb_wastage, max_pnode_cnt;
  61        long long sz, tot_wastage;
  62
  63        n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
  64        max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
  65
  66        c->lpt_hght = 1;
  67        n = UBIFS_LPT_FANOUT;
  68        while (n < max_pnode_cnt) {
  69                c->lpt_hght += 1;
  70                n <<= UBIFS_LPT_FANOUT_SHIFT;
  71        }
  72
  73        c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
  74
  75        n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
  76        c->nnode_cnt = n;
  77        for (i = 1; i < c->lpt_hght; i++) {
  78                n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
  79                c->nnode_cnt += n;
  80        }
  81
  82        c->space_bits = fls(c->leb_size) - 3;
  83        c->lpt_lnum_bits = fls(c->lpt_lebs);
  84        c->lpt_offs_bits = fls(c->leb_size - 1);
  85        c->lpt_spc_bits = fls(c->leb_size);
  86
  87        n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
  88        c->pcnt_bits = fls(n - 1);
  89
  90        c->lnum_bits = fls(c->max_leb_cnt - 1);
  91
  92        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
  93               (c->big_lpt ? c->pcnt_bits : 0) +
  94               (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
  95        c->pnode_sz = (bits + 7) / 8;
  96
  97        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
  98               (c->big_lpt ? c->pcnt_bits : 0) +
  99               (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
 100        c->nnode_sz = (bits + 7) / 8;
 101
 102        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
 103               c->lpt_lebs * c->lpt_spc_bits * 2;
 104        c->ltab_sz = (bits + 7) / 8;
 105
 106        bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
 107               c->lnum_bits * c->lsave_cnt;
 108        c->lsave_sz = (bits + 7) / 8;
 109
 110        /* Calculate the minimum LPT size */
 111        c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
 112        c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
 113        c->lpt_sz += c->ltab_sz;
 114        if (c->big_lpt)
 115                c->lpt_sz += c->lsave_sz;
 116
 117        /* Add wastage */
 118        sz = c->lpt_sz;
 119        per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
 120        sz += per_leb_wastage;
 121        tot_wastage = per_leb_wastage;
 122        while (sz > c->leb_size) {
 123                sz += per_leb_wastage;
 124                sz -= c->leb_size;
 125                tot_wastage += per_leb_wastage;
 126        }
 127        tot_wastage += ALIGN(sz, c->min_io_size) - sz;
 128        c->lpt_sz += tot_wastage;
 129}
 130
 131/**
 132 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
 133 * @c: the UBIFS file-system description object
 134 *
 135 * This function returns %0 on success and a negative error code on failure.
 136 */
 137int ubifs_calc_lpt_geom(struct ubifs_info *c)
 138{
 139        int lebs_needed;
 140        long long sz;
 141
 142        do_calc_lpt_geom(c);
 143
 144        /* Verify that lpt_lebs is big enough */
 145        sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
 146        lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
 147        if (lebs_needed > c->lpt_lebs) {
 148                ubifs_err("too few LPT LEBs");
 149                return -EINVAL;
 150        }
 151
 152        /* Verify that ltab fits in a single LEB (since ltab is a single node */
 153        if (c->ltab_sz > c->leb_size) {
 154                ubifs_err("LPT ltab too big");
 155                return -EINVAL;
 156        }
 157
 158        c->check_lpt_free = c->big_lpt;
 159        return 0;
 160}
 161
 162/**
 163 * calc_dflt_lpt_geom - calculate default LPT geometry.
 164 * @c: the UBIFS file-system description object
 165 * @main_lebs: number of main area LEBs is passed and returned here
 166 * @big_lpt: whether the LPT area is "big" is returned here
 167 *
 168 * The size of the LPT area depends on parameters that themselves are dependent
 169 * on the size of the LPT area. This function, successively recalculates the LPT
 170 * area geometry until the parameters and resultant geometry are consistent.
 171 *
 172 * This function returns %0 on success and a negative error code on failure.
 173 */
 174static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
 175                              int *big_lpt)
 176{
 177        int i, lebs_needed;
 178        long long sz;
 179
 180        /* Start by assuming the minimum number of LPT LEBs */
 181        c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
 182        c->main_lebs = *main_lebs - c->lpt_lebs;
 183        if (c->main_lebs <= 0)
 184                return -EINVAL;
 185
 186        /* And assume we will use the small LPT model */
 187        c->big_lpt = 0;
 188
 189        /*
 190         * Calculate the geometry based on assumptions above and then see if it
 191         * makes sense
 192         */
 193        do_calc_lpt_geom(c);
 194
 195        /* Small LPT model must have lpt_sz < leb_size */
 196        if (c->lpt_sz > c->leb_size) {
 197                /* Nope, so try again using big LPT model */
 198                c->big_lpt = 1;
 199                do_calc_lpt_geom(c);
 200        }
 201
 202        /* Now check there are enough LPT LEBs */
 203        for (i = 0; i < 64 ; i++) {
 204                sz = c->lpt_sz * 4; /* Allow 4 times the size */
 205                lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
 206                if (lebs_needed > c->lpt_lebs) {
 207                        /* Not enough LPT LEBs so try again with more */
 208                        c->lpt_lebs = lebs_needed;
 209                        c->main_lebs = *main_lebs - c->lpt_lebs;
 210                        if (c->main_lebs <= 0)
 211                                return -EINVAL;
 212                        do_calc_lpt_geom(c);
 213                        continue;
 214                }
 215                if (c->ltab_sz > c->leb_size) {
 216                        ubifs_err("LPT ltab too big");
 217                        return -EINVAL;
 218                }
 219                *main_lebs = c->main_lebs;
 220                *big_lpt = c->big_lpt;
 221                return 0;
 222        }
 223        return -EINVAL;
 224}
 225
 226/**
 227 * pack_bits - pack bit fields end-to-end.
 228 * @addr: address at which to pack (passed and next address returned)
 229 * @pos: bit position at which to pack (passed and next position returned)
 230 * @val: value to pack
 231 * @nrbits: number of bits of value to pack (1-32)
 232 */
 233static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
 234{
 235        uint8_t *p = *addr;
 236        int b = *pos;
 237
 238        ubifs_assert(nrbits > 0);
 239        ubifs_assert(nrbits <= 32);
 240        ubifs_assert(*pos >= 0);
 241        ubifs_assert(*pos < 8);
 242        ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
 243        if (b) {
 244                *p |= ((uint8_t)val) << b;
 245                nrbits += b;
 246                if (nrbits > 8) {
 247                        *++p = (uint8_t)(val >>= (8 - b));
 248                        if (nrbits > 16) {
 249                                *++p = (uint8_t)(val >>= 8);
 250                                if (nrbits > 24) {
 251                                        *++p = (uint8_t)(val >>= 8);
 252                                        if (nrbits > 32)
 253                                                *++p = (uint8_t)(val >>= 8);
 254                                }
 255                        }
 256                }
 257        } else {
 258                *p = (uint8_t)val;
 259                if (nrbits > 8) {
 260                        *++p = (uint8_t)(val >>= 8);
 261                        if (nrbits > 16) {
 262                                *++p = (uint8_t)(val >>= 8);
 263                                if (nrbits > 24)
 264                                        *++p = (uint8_t)(val >>= 8);
 265                        }
 266                }
 267        }
 268        b = nrbits & 7;
 269        if (b == 0)
 270                p++;
 271        *addr = p;
 272        *pos = b;
 273}
 274
 275/**
 276 * ubifs_unpack_bits - unpack bit fields.
 277 * @addr: address at which to unpack (passed and next address returned)
 278 * @pos: bit position at which to unpack (passed and next position returned)
 279 * @nrbits: number of bits of value to unpack (1-32)
 280 *
 281 * This functions returns the value unpacked.
 282 */
 283uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
 284{
 285        const int k = 32 - nrbits;
 286        uint8_t *p = *addr;
 287        int b = *pos;
 288        uint32_t uninitialized_var(val);
 289        const int bytes = (nrbits + b + 7) >> 3;
 290
 291        ubifs_assert(nrbits > 0);
 292        ubifs_assert(nrbits <= 32);
 293        ubifs_assert(*pos >= 0);
 294        ubifs_assert(*pos < 8);
 295        if (b) {
 296                switch (bytes) {
 297                case 2:
 298                        val = p[1];
 299                        break;
 300                case 3:
 301                        val = p[1] | ((uint32_t)p[2] << 8);
 302                        break;
 303                case 4:
 304                        val = p[1] | ((uint32_t)p[2] << 8) |
 305                                     ((uint32_t)p[3] << 16);
 306                        break;
 307                case 5:
 308                        val = p[1] | ((uint32_t)p[2] << 8) |
 309                                     ((uint32_t)p[3] << 16) |
 310                                     ((uint32_t)p[4] << 24);
 311                }
 312                val <<= (8 - b);
 313                val |= *p >> b;
 314                nrbits += b;
 315        } else {
 316                switch (bytes) {
 317                case 1:
 318                        val = p[0];
 319                        break;
 320                case 2:
 321                        val = p[0] | ((uint32_t)p[1] << 8);
 322                        break;
 323                case 3:
 324                        val = p[0] | ((uint32_t)p[1] << 8) |
 325                                     ((uint32_t)p[2] << 16);
 326                        break;
 327                case 4:
 328                        val = p[0] | ((uint32_t)p[1] << 8) |
 329                                     ((uint32_t)p[2] << 16) |
 330                                     ((uint32_t)p[3] << 24);
 331                        break;
 332                }
 333        }
 334        val <<= k;
 335        val >>= k;
 336        b = nrbits & 7;
 337        p += nrbits >> 3;
 338        *addr = p;
 339        *pos = b;
 340        ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
 341        return val;
 342}
 343
 344/**
 345 * ubifs_pack_pnode - pack all the bit fields of a pnode.
 346 * @c: UBIFS file-system description object
 347 * @buf: buffer into which to pack
 348 * @pnode: pnode to pack
 349 */
 350void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
 351                      struct ubifs_pnode *pnode)
 352{
 353        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 354        int i, pos = 0;
 355        uint16_t crc;
 356
 357        pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
 358        if (c->big_lpt)
 359                pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
 360        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 361                pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
 362                          c->space_bits);
 363                pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
 364                          c->space_bits);
 365                if (pnode->lprops[i].flags & LPROPS_INDEX)
 366                        pack_bits(&addr, &pos, 1, 1);
 367                else
 368                        pack_bits(&addr, &pos, 0, 1);
 369        }
 370        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 371                    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
 372        addr = buf;
 373        pos = 0;
 374        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 375}
 376
 377/**
 378 * ubifs_pack_nnode - pack all the bit fields of a nnode.
 379 * @c: UBIFS file-system description object
 380 * @buf: buffer into which to pack
 381 * @nnode: nnode to pack
 382 */
 383void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
 384                      struct ubifs_nnode *nnode)
 385{
 386        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 387        int i, pos = 0;
 388        uint16_t crc;
 389
 390        pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
 391        if (c->big_lpt)
 392                pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
 393        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 394                int lnum = nnode->nbranch[i].lnum;
 395
 396                if (lnum == 0)
 397                        lnum = c->lpt_last + 1;
 398                pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
 399                pack_bits(&addr, &pos, nnode->nbranch[i].offs,
 400                          c->lpt_offs_bits);
 401        }
 402        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 403                    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
 404        addr = buf;
 405        pos = 0;
 406        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 407}
 408
 409/**
 410 * ubifs_pack_ltab - pack the LPT's own lprops table.
 411 * @c: UBIFS file-system description object
 412 * @buf: buffer into which to pack
 413 * @ltab: LPT's own lprops table to pack
 414 */
 415void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
 416                     struct ubifs_lpt_lprops *ltab)
 417{
 418        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 419        int i, pos = 0;
 420        uint16_t crc;
 421
 422        pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
 423        for (i = 0; i < c->lpt_lebs; i++) {
 424                pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
 425                pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
 426        }
 427        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 428                    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
 429        addr = buf;
 430        pos = 0;
 431        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 432}
 433
 434/**
 435 * ubifs_pack_lsave - pack the LPT's save table.
 436 * @c: UBIFS file-system description object
 437 * @buf: buffer into which to pack
 438 * @lsave: LPT's save table to pack
 439 */
 440void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
 441{
 442        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 443        int i, pos = 0;
 444        uint16_t crc;
 445
 446        pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
 447        for (i = 0; i < c->lsave_cnt; i++)
 448                pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
 449        crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 450                    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
 451        addr = buf;
 452        pos = 0;
 453        pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
 454}
 455
 456/**
 457 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
 458 * @c: UBIFS file-system description object
 459 * @lnum: LEB number to which to add dirty space
 460 * @dirty: amount of dirty space to add
 461 */
 462void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
 463{
 464        if (!dirty || !lnum)
 465                return;
 466        dbg_lp("LEB %d add %d to %d",
 467               lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
 468        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 469        c->ltab[lnum - c->lpt_first].dirty += dirty;
 470}
 471
 472/**
 473 * set_ltab - set LPT LEB properties.
 474 * @c: UBIFS file-system description object
 475 * @lnum: LEB number
 476 * @free: amount of free space
 477 * @dirty: amount of dirty space
 478 */
 479static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
 480{
 481        dbg_lp("LEB %d free %d dirty %d to %d %d",
 482               lnum, c->ltab[lnum - c->lpt_first].free,
 483               c->ltab[lnum - c->lpt_first].dirty, free, dirty);
 484        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 485        c->ltab[lnum - c->lpt_first].free = free;
 486        c->ltab[lnum - c->lpt_first].dirty = dirty;
 487}
 488
 489/**
 490 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
 491 * @c: UBIFS file-system description object
 492 * @nnode: nnode for which to add dirt
 493 */
 494void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
 495{
 496        struct ubifs_nnode *np = nnode->parent;
 497
 498        if (np)
 499                ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
 500                                   c->nnode_sz);
 501        else {
 502                ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
 503                if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
 504                        c->lpt_drty_flgs |= LTAB_DIRTY;
 505                        ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
 506                }
 507        }
 508}
 509
 510/**
 511 * add_pnode_dirt - add dirty space to LPT LEB properties.
 512 * @c: UBIFS file-system description object
 513 * @pnode: pnode for which to add dirt
 514 */
 515static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
 516{
 517        ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
 518                           c->pnode_sz);
 519}
 520
 521/**
 522 * calc_nnode_num - calculate nnode number.
 523 * @row: the row in the tree (root is zero)
 524 * @col: the column in the row (leftmost is zero)
 525 *
 526 * The nnode number is a number that uniquely identifies a nnode and can be used
 527 * easily to traverse the tree from the root to that nnode.
 528 *
 529 * This function calculates and returns the nnode number for the nnode at @row
 530 * and @col.
 531 */
 532static int calc_nnode_num(int row, int col)
 533{
 534        int num, bits;
 535
 536        num = 1;
 537        while (row--) {
 538                bits = (col & (UBIFS_LPT_FANOUT - 1));
 539                col >>= UBIFS_LPT_FANOUT_SHIFT;
 540                num <<= UBIFS_LPT_FANOUT_SHIFT;
 541                num |= bits;
 542        }
 543        return num;
 544}
 545
 546/**
 547 * calc_nnode_num_from_parent - calculate nnode number.
 548 * @c: UBIFS file-system description object
 549 * @parent: parent nnode
 550 * @iip: index in parent
 551 *
 552 * The nnode number is a number that uniquely identifies a nnode and can be used
 553 * easily to traverse the tree from the root to that nnode.
 554 *
 555 * This function calculates and returns the nnode number based on the parent's
 556 * nnode number and the index in parent.
 557 */
 558static int calc_nnode_num_from_parent(const struct ubifs_info *c,
 559                                      struct ubifs_nnode *parent, int iip)
 560{
 561        int num, shft;
 562
 563        if (!parent)
 564                return 1;
 565        shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
 566        num = parent->num ^ (1 << shft);
 567        num |= (UBIFS_LPT_FANOUT + iip) << shft;
 568        return num;
 569}
 570
 571/**
 572 * calc_pnode_num_from_parent - calculate pnode number.
 573 * @c: UBIFS file-system description object
 574 * @parent: parent nnode
 575 * @iip: index in parent
 576 *
 577 * The pnode number is a number that uniquely identifies a pnode and can be used
 578 * easily to traverse the tree from the root to that pnode.
 579 *
 580 * This function calculates and returns the pnode number based on the parent's
 581 * nnode number and the index in parent.
 582 */
 583static int calc_pnode_num_from_parent(const struct ubifs_info *c,
 584                                      struct ubifs_nnode *parent, int iip)
 585{
 586        int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
 587
 588        for (i = 0; i < n; i++) {
 589                num <<= UBIFS_LPT_FANOUT_SHIFT;
 590                num |= pnum & (UBIFS_LPT_FANOUT - 1);
 591                pnum >>= UBIFS_LPT_FANOUT_SHIFT;
 592        }
 593        num <<= UBIFS_LPT_FANOUT_SHIFT;
 594        num |= iip;
 595        return num;
 596}
 597
 598/**
 599 * ubifs_create_dflt_lpt - create default LPT.
 600 * @c: UBIFS file-system description object
 601 * @main_lebs: number of main area LEBs is passed and returned here
 602 * @lpt_first: LEB number of first LPT LEB
 603 * @lpt_lebs: number of LEBs for LPT is passed and returned here
 604 * @big_lpt: use big LPT model is passed and returned here
 605 *
 606 * This function returns %0 on success and a negative error code on failure.
 607 */
 608int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
 609                          int *lpt_lebs, int *big_lpt)
 610{
 611        int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
 612        int blnum, boffs, bsz, bcnt;
 613        struct ubifs_pnode *pnode = NULL;
 614        struct ubifs_nnode *nnode = NULL;
 615        void *buf = NULL, *p;
 616        struct ubifs_lpt_lprops *ltab = NULL;
 617        int *lsave = NULL;
 618
 619        err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
 620        if (err)
 621                return err;
 622        *lpt_lebs = c->lpt_lebs;
 623
 624        /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
 625        c->lpt_first = lpt_first;
 626        /* Needed by 'set_ltab()' */
 627        c->lpt_last = lpt_first + c->lpt_lebs - 1;
 628        /* Needed by 'ubifs_pack_lsave()' */
 629        c->main_first = c->leb_cnt - *main_lebs;
 630
 631        lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
 632        pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
 633        nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
 634        buf = vmalloc(c->leb_size);
 635        ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
 636        if (!pnode || !nnode || !buf || !ltab || !lsave) {
 637                err = -ENOMEM;
 638                goto out;
 639        }
 640
 641        ubifs_assert(!c->ltab);
 642        c->ltab = ltab; /* Needed by set_ltab */
 643
 644        /* Initialize LPT's own lprops */
 645        for (i = 0; i < c->lpt_lebs; i++) {
 646                ltab[i].free = c->leb_size;
 647                ltab[i].dirty = 0;
 648                ltab[i].tgc = 0;
 649                ltab[i].cmt = 0;
 650        }
 651
 652        lnum = lpt_first;
 653        p = buf;
 654        /* Number of leaf nodes (pnodes) */
 655        cnt = c->pnode_cnt;
 656
 657        /*
 658         * The first pnode contains the LEB properties for the LEBs that contain
 659         * the root inode node and the root index node of the index tree.
 660         */
 661        node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
 662        iopos = ALIGN(node_sz, c->min_io_size);
 663        pnode->lprops[0].free = c->leb_size - iopos;
 664        pnode->lprops[0].dirty = iopos - node_sz;
 665        pnode->lprops[0].flags = LPROPS_INDEX;
 666
 667        node_sz = UBIFS_INO_NODE_SZ;
 668        iopos = ALIGN(node_sz, c->min_io_size);
 669        pnode->lprops[1].free = c->leb_size - iopos;
 670        pnode->lprops[1].dirty = iopos - node_sz;
 671
 672        for (i = 2; i < UBIFS_LPT_FANOUT; i++)
 673                pnode->lprops[i].free = c->leb_size;
 674
 675        /* Add first pnode */
 676        ubifs_pack_pnode(c, p, pnode);
 677        p += c->pnode_sz;
 678        len = c->pnode_sz;
 679        pnode->num += 1;
 680
 681        /* Reset pnode values for remaining pnodes */
 682        pnode->lprops[0].free = c->leb_size;
 683        pnode->lprops[0].dirty = 0;
 684        pnode->lprops[0].flags = 0;
 685
 686        pnode->lprops[1].free = c->leb_size;
 687        pnode->lprops[1].dirty = 0;
 688
 689        /*
 690         * To calculate the internal node branches, we keep information about
 691         * the level below.
 692         */
 693        blnum = lnum; /* LEB number of level below */
 694        boffs = 0; /* Offset of level below */
 695        bcnt = cnt; /* Number of nodes in level below */
 696        bsz = c->pnode_sz; /* Size of nodes in level below */
 697
 698        /* Add all remaining pnodes */
 699        for (i = 1; i < cnt; i++) {
 700                if (len + c->pnode_sz > c->leb_size) {
 701                        alen = ALIGN(len, c->min_io_size);
 702                        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 703                        memset(p, 0xff, alen - len);
 704                        err = ubi_leb_change(c->ubi, lnum++, buf, alen,
 705                                             UBI_SHORTTERM);
 706                        if (err)
 707                                goto out;
 708                        p = buf;
 709                        len = 0;
 710                }
 711                ubifs_pack_pnode(c, p, pnode);
 712                p += c->pnode_sz;
 713                len += c->pnode_sz;
 714                /*
 715                 * pnodes are simply numbered left to right starting at zero,
 716                 * which means the pnode number can be used easily to traverse
 717                 * down the tree to the corresponding pnode.
 718                 */
 719                pnode->num += 1;
 720        }
 721
 722        row = 0;
 723        for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
 724                row += 1;
 725        /* Add all nnodes, one level at a time */
 726        while (1) {
 727                /* Number of internal nodes (nnodes) at next level */
 728                cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
 729                for (i = 0; i < cnt; i++) {
 730                        if (len + c->nnode_sz > c->leb_size) {
 731                                alen = ALIGN(len, c->min_io_size);
 732                                set_ltab(c, lnum, c->leb_size - alen,
 733                                            alen - len);
 734                                memset(p, 0xff, alen - len);
 735                                err = ubi_leb_change(c->ubi, lnum++, buf, alen,
 736                                                     UBI_SHORTTERM);
 737                                if (err)
 738                                        goto out;
 739                                p = buf;
 740                                len = 0;
 741                        }
 742                        /* Only 1 nnode at this level, so it is the root */
 743                        if (cnt == 1) {
 744                                c->lpt_lnum = lnum;
 745                                c->lpt_offs = len;
 746                        }
 747                        /* Set branches to the level below */
 748                        for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
 749                                if (bcnt) {
 750                                        if (boffs + bsz > c->leb_size) {
 751                                                blnum += 1;
 752                                                boffs = 0;
 753                                        }
 754                                        nnode->nbranch[j].lnum = blnum;
 755                                        nnode->nbranch[j].offs = boffs;
 756                                        boffs += bsz;
 757                                        bcnt--;
 758                                } else {
 759                                        nnode->nbranch[j].lnum = 0;
 760                                        nnode->nbranch[j].offs = 0;
 761                                }
 762                        }
 763                        nnode->num = calc_nnode_num(row, i);
 764                        ubifs_pack_nnode(c, p, nnode);
 765                        p += c->nnode_sz;
 766                        len += c->nnode_sz;
 767                }
 768                /* Only 1 nnode at this level, so it is the root */
 769                if (cnt == 1)
 770                        break;
 771                /* Update the information about the level below */
 772                bcnt = cnt;
 773                bsz = c->nnode_sz;
 774                row -= 1;
 775        }
 776
 777        if (*big_lpt) {
 778                /* Need to add LPT's save table */
 779                if (len + c->lsave_sz > c->leb_size) {
 780                        alen = ALIGN(len, c->min_io_size);
 781                        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 782                        memset(p, 0xff, alen - len);
 783                        err = ubi_leb_change(c->ubi, lnum++, buf, alen,
 784                                             UBI_SHORTTERM);
 785                        if (err)
 786                                goto out;
 787                        p = buf;
 788                        len = 0;
 789                }
 790
 791                c->lsave_lnum = lnum;
 792                c->lsave_offs = len;
 793
 794                for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
 795                        lsave[i] = c->main_first + i;
 796                for (; i < c->lsave_cnt; i++)
 797                        lsave[i] = c->main_first;
 798
 799                ubifs_pack_lsave(c, p, lsave);
 800                p += c->lsave_sz;
 801                len += c->lsave_sz;
 802        }
 803
 804        /* Need to add LPT's own LEB properties table */
 805        if (len + c->ltab_sz > c->leb_size) {
 806                alen = ALIGN(len, c->min_io_size);
 807                set_ltab(c, lnum, c->leb_size - alen, alen - len);
 808                memset(p, 0xff, alen - len);
 809                err = ubi_leb_change(c->ubi, lnum++, buf, alen, UBI_SHORTTERM);
 810                if (err)
 811                        goto out;
 812                p = buf;
 813                len = 0;
 814        }
 815
 816        c->ltab_lnum = lnum;
 817        c->ltab_offs = len;
 818
 819        /* Update ltab before packing it */
 820        len += c->ltab_sz;
 821        alen = ALIGN(len, c->min_io_size);
 822        set_ltab(c, lnum, c->leb_size - alen, alen - len);
 823
 824        ubifs_pack_ltab(c, p, ltab);
 825        p += c->ltab_sz;
 826
 827        /* Write remaining buffer */
 828        memset(p, 0xff, alen - len);
 829        err = ubi_leb_change(c->ubi, lnum, buf, alen, UBI_SHORTTERM);
 830        if (err)
 831                goto out;
 832
 833        c->nhead_lnum = lnum;
 834        c->nhead_offs = ALIGN(len, c->min_io_size);
 835
 836        dbg_lp("space_bits %d", c->space_bits);
 837        dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
 838        dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
 839        dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
 840        dbg_lp("pcnt_bits %d", c->pcnt_bits);
 841        dbg_lp("lnum_bits %d", c->lnum_bits);
 842        dbg_lp("pnode_sz %d", c->pnode_sz);
 843        dbg_lp("nnode_sz %d", c->nnode_sz);
 844        dbg_lp("ltab_sz %d", c->ltab_sz);
 845        dbg_lp("lsave_sz %d", c->lsave_sz);
 846        dbg_lp("lsave_cnt %d", c->lsave_cnt);
 847        dbg_lp("lpt_hght %d", c->lpt_hght);
 848        dbg_lp("big_lpt %d", c->big_lpt);
 849        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
 850        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
 851        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
 852        if (c->big_lpt)
 853                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
 854out:
 855        c->ltab = NULL;
 856        kfree(lsave);
 857        vfree(ltab);
 858        vfree(buf);
 859        kfree(nnode);
 860        kfree(pnode);
 861        return err;
 862}
 863
 864/**
 865 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
 866 * @c: UBIFS file-system description object
 867 * @pnode: pnode
 868 *
 869 * When a pnode is loaded into memory, the LEB properties it contains are added,
 870 * by this function, to the LEB category lists and heaps.
 871 */
 872static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
 873{
 874        int i;
 875
 876        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 877                int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
 878                int lnum = pnode->lprops[i].lnum;
 879
 880                if (!lnum)
 881                        return;
 882                ubifs_add_to_cat(c, &pnode->lprops[i], cat);
 883        }
 884}
 885
 886/**
 887 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
 888 * @c: UBIFS file-system description object
 889 * @old_pnode: pnode copied
 890 * @new_pnode: pnode copy
 891 *
 892 * During commit it is sometimes necessary to copy a pnode
 893 * (see dirty_cow_pnode).  When that happens, references in
 894 * category lists and heaps must be replaced.  This function does that.
 895 */
 896static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
 897                         struct ubifs_pnode *new_pnode)
 898{
 899        int i;
 900
 901        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 902                if (!new_pnode->lprops[i].lnum)
 903                        return;
 904                ubifs_replace_cat(c, &old_pnode->lprops[i],
 905                                  &new_pnode->lprops[i]);
 906        }
 907}
 908
 909/**
 910 * check_lpt_crc - check LPT node crc is correct.
 911 * @c: UBIFS file-system description object
 912 * @buf: buffer containing node
 913 * @len: length of node
 914 *
 915 * This function returns %0 on success and a negative error code on failure.
 916 */
 917static int check_lpt_crc(void *buf, int len)
 918{
 919        int pos = 0;
 920        uint8_t *addr = buf;
 921        uint16_t crc, calc_crc;
 922
 923        crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
 924        calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
 925                         len - UBIFS_LPT_CRC_BYTES);
 926        if (crc != calc_crc) {
 927                ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc,
 928                          calc_crc);
 929                dbg_dump_stack();
 930                return -EINVAL;
 931        }
 932        return 0;
 933}
 934
 935/**
 936 * check_lpt_type - check LPT node type is correct.
 937 * @c: UBIFS file-system description object
 938 * @addr: address of type bit field is passed and returned updated here
 939 * @pos: position of type bit field is passed and returned updated here
 940 * @type: expected type
 941 *
 942 * This function returns %0 on success and a negative error code on failure.
 943 */
 944static int check_lpt_type(uint8_t **addr, int *pos, int type)
 945{
 946        int node_type;
 947
 948        node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
 949        if (node_type != type) {
 950                ubifs_err("invalid type (%d) in LPT node type %d", node_type,
 951                          type);
 952                dbg_dump_stack();
 953                return -EINVAL;
 954        }
 955        return 0;
 956}
 957
 958/**
 959 * unpack_pnode - unpack a pnode.
 960 * @c: UBIFS file-system description object
 961 * @buf: buffer containing packed pnode to unpack
 962 * @pnode: pnode structure to fill
 963 *
 964 * This function returns %0 on success and a negative error code on failure.
 965 */
 966static int unpack_pnode(const struct ubifs_info *c, void *buf,
 967                        struct ubifs_pnode *pnode)
 968{
 969        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
 970        int i, pos = 0, err;
 971
 972        err = check_lpt_type(&addr, &pos, UBIFS_LPT_PNODE);
 973        if (err)
 974                return err;
 975        if (c->big_lpt)
 976                pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
 977        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
 978                struct ubifs_lprops * const lprops = &pnode->lprops[i];
 979
 980                lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
 981                lprops->free <<= 3;
 982                lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
 983                lprops->dirty <<= 3;
 984
 985                if (ubifs_unpack_bits(&addr, &pos, 1))
 986                        lprops->flags = LPROPS_INDEX;
 987                else
 988                        lprops->flags = 0;
 989                lprops->flags |= ubifs_categorize_lprops(c, lprops);
 990        }
 991        err = check_lpt_crc(buf, c->pnode_sz);
 992        return err;
 993}
 994
 995/**
 996 * ubifs_unpack_nnode - unpack a nnode.
 997 * @c: UBIFS file-system description object
 998 * @buf: buffer containing packed nnode to unpack
 999 * @nnode: nnode structure to fill
1000 *
1001 * This function returns %0 on success and a negative error code on failure.
1002 */
1003int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1004                       struct ubifs_nnode *nnode)
1005{
1006        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1007        int i, pos = 0, err;
1008
1009        err = check_lpt_type(&addr, &pos, UBIFS_LPT_NNODE);
1010        if (err)
1011                return err;
1012        if (c->big_lpt)
1013                nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1014        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1015                int lnum;
1016
1017                lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1018                       c->lpt_first;
1019                if (lnum == c->lpt_last + 1)
1020                        lnum = 0;
1021                nnode->nbranch[i].lnum = lnum;
1022                nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1023                                                     c->lpt_offs_bits);
1024        }
1025        err = check_lpt_crc(buf, c->nnode_sz);
1026        return err;
1027}
1028
1029/**
1030 * unpack_ltab - unpack the LPT's own lprops table.
1031 * @c: UBIFS file-system description object
1032 * @buf: buffer from which to unpack
1033 *
1034 * This function returns %0 on success and a negative error code on failure.
1035 */
1036static int unpack_ltab(const struct ubifs_info *c, void *buf)
1037{
1038        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1039        int i, pos = 0, err;
1040
1041        err = check_lpt_type(&addr, &pos, UBIFS_LPT_LTAB);
1042        if (err)
1043                return err;
1044        for (i = 0; i < c->lpt_lebs; i++) {
1045                int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1046                int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1047
1048                if (free < 0 || free > c->leb_size || dirty < 0 ||
1049                    dirty > c->leb_size || free + dirty > c->leb_size)
1050                        return -EINVAL;
1051
1052                c->ltab[i].free = free;
1053                c->ltab[i].dirty = dirty;
1054                c->ltab[i].tgc = 0;
1055                c->ltab[i].cmt = 0;
1056        }
1057        err = check_lpt_crc(buf, c->ltab_sz);
1058        return err;
1059}
1060
1061/**
1062 * unpack_lsave - unpack the LPT's save table.
1063 * @c: UBIFS file-system description object
1064 * @buf: buffer from which to unpack
1065 *
1066 * This function returns %0 on success and a negative error code on failure.
1067 */
1068static int unpack_lsave(const struct ubifs_info *c, void *buf)
1069{
1070        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1071        int i, pos = 0, err;
1072
1073        err = check_lpt_type(&addr, &pos, UBIFS_LPT_LSAVE);
1074        if (err)
1075                return err;
1076        for (i = 0; i < c->lsave_cnt; i++) {
1077                int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1078
1079                if (lnum < c->main_first || lnum >= c->leb_cnt)
1080                        return -EINVAL;
1081                c->lsave[i] = lnum;
1082        }
1083        err = check_lpt_crc(buf, c->lsave_sz);
1084        return err;
1085}
1086
1087/**
1088 * validate_nnode - validate a nnode.
1089 * @c: UBIFS file-system description object
1090 * @nnode: nnode to validate
1091 * @parent: parent nnode (or NULL for the root nnode)
1092 * @iip: index in parent
1093 *
1094 * This function returns %0 on success and a negative error code on failure.
1095 */
1096static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1097                          struct ubifs_nnode *parent, int iip)
1098{
1099        int i, lvl, max_offs;
1100
1101        if (c->big_lpt) {
1102                int num = calc_nnode_num_from_parent(c, parent, iip);
1103
1104                if (nnode->num != num)
1105                        return -EINVAL;
1106        }
1107        lvl = parent ? parent->level - 1 : c->lpt_hght;
1108        if (lvl < 1)
1109                return -EINVAL;
1110        if (lvl == 1)
1111                max_offs = c->leb_size - c->pnode_sz;
1112        else
1113                max_offs = c->leb_size - c->nnode_sz;
1114        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1115                int lnum = nnode->nbranch[i].lnum;
1116                int offs = nnode->nbranch[i].offs;
1117
1118                if (lnum == 0) {
1119                        if (offs != 0)
1120                                return -EINVAL;
1121                        continue;
1122                }
1123                if (lnum < c->lpt_first || lnum > c->lpt_last)
1124                        return -EINVAL;
1125                if (offs < 0 || offs > max_offs)
1126                        return -EINVAL;
1127        }
1128        return 0;
1129}
1130
1131/**
1132 * validate_pnode - validate a pnode.
1133 * @c: UBIFS file-system description object
1134 * @pnode: pnode to validate
1135 * @parent: parent nnode
1136 * @iip: index in parent
1137 *
1138 * This function returns %0 on success and a negative error code on failure.
1139 */
1140static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1141                          struct ubifs_nnode *parent, int iip)
1142{
1143        int i;
1144
1145        if (c->big_lpt) {
1146                int num = calc_pnode_num_from_parent(c, parent, iip);
1147
1148                if (pnode->num != num)
1149                        return -EINVAL;
1150        }
1151        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1152                int free = pnode->lprops[i].free;
1153                int dirty = pnode->lprops[i].dirty;
1154
1155                if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1156                    (free & 7))
1157                        return -EINVAL;
1158                if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1159                        return -EINVAL;
1160                if (dirty + free > c->leb_size)
1161                        return -EINVAL;
1162        }
1163        return 0;
1164}
1165
1166/**
1167 * set_pnode_lnum - set LEB numbers on a pnode.
1168 * @c: UBIFS file-system description object
1169 * @pnode: pnode to update
1170 *
1171 * This function calculates the LEB numbers for the LEB properties it contains
1172 * based on the pnode number.
1173 */
1174static void set_pnode_lnum(const struct ubifs_info *c,
1175                           struct ubifs_pnode *pnode)
1176{
1177        int i, lnum;
1178
1179        lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1180        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1181                if (lnum >= c->leb_cnt)
1182                        return;
1183                pnode->lprops[i].lnum = lnum++;
1184        }
1185}
1186
1187/**
1188 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1189 * @c: UBIFS file-system description object
1190 * @parent: parent nnode (or NULL for the root)
1191 * @iip: index in parent
1192 *
1193 * This function returns %0 on success and a negative error code on failure.
1194 */
1195int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1196{
1197        struct ubifs_nbranch *branch = NULL;
1198        struct ubifs_nnode *nnode = NULL;
1199        void *buf = c->lpt_nod_buf;
1200        int err, lnum, offs;
1201
1202        if (parent) {
1203                branch = &parent->nbranch[iip];
1204                lnum = branch->lnum;
1205                offs = branch->offs;
1206        } else {
1207                lnum = c->lpt_lnum;
1208                offs = c->lpt_offs;
1209        }
1210        nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1211        if (!nnode) {
1212                err = -ENOMEM;
1213                goto out;
1214        }
1215        if (lnum == 0) {
1216                /*
1217                 * This nnode was not written which just means that the LEB
1218                 * properties in the subtree below it describe empty LEBs. We
1219                 * make the nnode as though we had read it, which in fact means
1220                 * doing almost nothing.
1221                 */
1222                if (c->big_lpt)
1223                        nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1224        } else {
1225                err = ubi_read(c->ubi, lnum, buf, offs, c->nnode_sz);
1226                if (err)
1227                        goto out;
1228                err = ubifs_unpack_nnode(c, buf, nnode);
1229                if (err)
1230                        goto out;
1231        }
1232        err = validate_nnode(c, nnode, parent, iip);
1233        if (err)
1234                goto out;
1235        if (!c->big_lpt)
1236                nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1237        if (parent) {
1238                branch->nnode = nnode;
1239                nnode->level = parent->level - 1;
1240        } else {
1241                c->nroot = nnode;
1242                nnode->level = c->lpt_hght;
1243        }
1244        nnode->parent = parent;
1245        nnode->iip = iip;
1246        return 0;
1247
1248out:
1249        ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs);
1250        kfree(nnode);
1251        return err;
1252}
1253
1254/**
1255 * read_pnode - read a pnode from flash and link it to the tree in memory.
1256 * @c: UBIFS file-system description object
1257 * @parent: parent nnode
1258 * @iip: index in parent
1259 *
1260 * This function returns %0 on success and a negative error code on failure.
1261 */
1262static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1263{
1264        struct ubifs_nbranch *branch;
1265        struct ubifs_pnode *pnode = NULL;
1266        void *buf = c->lpt_nod_buf;
1267        int err, lnum, offs;
1268
1269        branch = &parent->nbranch[iip];
1270        lnum = branch->lnum;
1271        offs = branch->offs;
1272        pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1273        if (!pnode) {
1274                err = -ENOMEM;
1275                goto out;
1276        }
1277        if (lnum == 0) {
1278                /*
1279                 * This pnode was not written which just means that the LEB
1280                 * properties in it describe empty LEBs. We make the pnode as
1281                 * though we had read it.
1282                 */
1283                int i;
1284
1285                if (c->big_lpt)
1286                        pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1287                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1288                        struct ubifs_lprops * const lprops = &pnode->lprops[i];
1289
1290                        lprops->free = c->leb_size;
1291                        lprops->flags = ubifs_categorize_lprops(c, lprops);
1292                }
1293        } else {
1294                err = ubi_read(c->ubi, lnum, buf, offs, c->pnode_sz);
1295                if (err)
1296                        goto out;
1297                err = unpack_pnode(c, buf, pnode);
1298                if (err)
1299                        goto out;
1300        }
1301        err = validate_pnode(c, pnode, parent, iip);
1302        if (err)
1303                goto out;
1304        if (!c->big_lpt)
1305                pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1306        branch->pnode = pnode;
1307        pnode->parent = parent;
1308        pnode->iip = iip;
1309        set_pnode_lnum(c, pnode);
1310        c->pnodes_have += 1;
1311        return 0;
1312
1313out:
1314        ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs);
1315        dbg_dump_pnode(c, pnode, parent, iip);
1316        dbg_msg("calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1317        kfree(pnode);
1318        return err;
1319}
1320
1321/**
1322 * read_ltab - read LPT's own lprops table.
1323 * @c: UBIFS file-system description object
1324 *
1325 * This function returns %0 on success and a negative error code on failure.
1326 */
1327static int read_ltab(struct ubifs_info *c)
1328{
1329        int err;
1330        void *buf;
1331
1332        buf = vmalloc(c->ltab_sz);
1333        if (!buf)
1334                return -ENOMEM;
1335        err = ubi_read(c->ubi, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz);
1336        if (err)
1337                goto out;
1338        err = unpack_ltab(c, buf);
1339out:
1340        vfree(buf);
1341        return err;
1342}
1343
1344/**
1345 * read_lsave - read LPT's save table.
1346 * @c: UBIFS file-system description object
1347 *
1348 * This function returns %0 on success and a negative error code on failure.
1349 */
1350static int read_lsave(struct ubifs_info *c)
1351{
1352        int err, i;
1353        void *buf;
1354
1355        buf = vmalloc(c->lsave_sz);
1356        if (!buf)
1357                return -ENOMEM;
1358        err = ubi_read(c->ubi, c->lsave_lnum, buf, c->lsave_offs, c->lsave_sz);
1359        if (err)
1360                goto out;
1361        err = unpack_lsave(c, buf);
1362        if (err)
1363                goto out;
1364        for (i = 0; i < c->lsave_cnt; i++) {
1365                int lnum = c->lsave[i];
1366                struct ubifs_lprops *lprops;
1367
1368                /*
1369                 * Due to automatic resizing, the values in the lsave table
1370                 * could be beyond the volume size - just ignore them.
1371                 */
1372                if (lnum >= c->leb_cnt)
1373                        continue;
1374                lprops = ubifs_lpt_lookup(c, lnum);
1375                if (IS_ERR(lprops)) {
1376                        err = PTR_ERR(lprops);
1377                        goto out;
1378                }
1379        }
1380out:
1381        vfree(buf);
1382        return err;
1383}
1384
1385/**
1386 * ubifs_get_nnode - get a nnode.
1387 * @c: UBIFS file-system description object
1388 * @parent: parent nnode (or NULL for the root)
1389 * @iip: index in parent
1390 *
1391 * This function returns a pointer to the nnode on success or a negative error
1392 * code on failure.
1393 */
1394struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1395                                    struct ubifs_nnode *parent, int iip)
1396{
1397        struct ubifs_nbranch *branch;
1398        struct ubifs_nnode *nnode;
1399        int err;
1400
1401        branch = &parent->nbranch[iip];
1402        nnode = branch->nnode;
1403        if (nnode)
1404                return nnode;
1405        err = ubifs_read_nnode(c, parent, iip);
1406        if (err)
1407                return ERR_PTR(err);
1408        return branch->nnode;
1409}
1410
1411/**
1412 * ubifs_get_pnode - get a pnode.
1413 * @c: UBIFS file-system description object
1414 * @parent: parent nnode
1415 * @iip: index in parent
1416 *
1417 * This function returns a pointer to the pnode on success or a negative error
1418 * code on failure.
1419 */
1420struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1421                                    struct ubifs_nnode *parent, int iip)
1422{
1423        struct ubifs_nbranch *branch;
1424        struct ubifs_pnode *pnode;
1425        int err;
1426
1427        branch = &parent->nbranch[iip];
1428        pnode = branch->pnode;
1429        if (pnode)
1430                return pnode;
1431        err = read_pnode(c, parent, iip);
1432        if (err)
1433                return ERR_PTR(err);
1434        update_cats(c, branch->pnode);
1435        return branch->pnode;
1436}
1437
1438/**
1439 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1440 * @c: UBIFS file-system description object
1441 * @lnum: LEB number to lookup
1442 *
1443 * This function returns a pointer to the LEB properties on success or a
1444 * negative error code on failure.
1445 */
1446struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1447{
1448        int err, i, h, iip, shft;
1449        struct ubifs_nnode *nnode;
1450        struct ubifs_pnode *pnode;
1451
1452        if (!c->nroot) {
1453                err = ubifs_read_nnode(c, NULL, 0);
1454                if (err)
1455                        return ERR_PTR(err);
1456        }
1457        nnode = c->nroot;
1458        i = lnum - c->main_first;
1459        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1460        for (h = 1; h < c->lpt_hght; h++) {
1461                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1462                shft -= UBIFS_LPT_FANOUT_SHIFT;
1463                nnode = ubifs_get_nnode(c, nnode, iip);
1464                if (IS_ERR(nnode))
1465                        return ERR_CAST(nnode);
1466        }
1467        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1468        shft -= UBIFS_LPT_FANOUT_SHIFT;
1469        pnode = ubifs_get_pnode(c, nnode, iip);
1470        if (IS_ERR(pnode))
1471                return ERR_CAST(pnode);
1472        iip = (i & (UBIFS_LPT_FANOUT - 1));
1473        dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1474               pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1475               pnode->lprops[iip].flags);
1476        return &pnode->lprops[iip];
1477}
1478
1479/**
1480 * dirty_cow_nnode - ensure a nnode is not being committed.
1481 * @c: UBIFS file-system description object
1482 * @nnode: nnode to check
1483 *
1484 * Returns dirtied nnode on success or negative error code on failure.
1485 */
1486static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1487                                           struct ubifs_nnode *nnode)
1488{
1489        struct ubifs_nnode *n;
1490        int i;
1491
1492        if (!test_bit(COW_CNODE, &nnode->flags)) {
1493                /* nnode is not being committed */
1494                if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1495                        c->dirty_nn_cnt += 1;
1496                        ubifs_add_nnode_dirt(c, nnode);
1497                }
1498                return nnode;
1499        }
1500
1501        /* nnode is being committed, so copy it */
1502        n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1503        if (unlikely(!n))
1504                return ERR_PTR(-ENOMEM);
1505
1506        memcpy(n, nnode, sizeof(struct ubifs_nnode));
1507        n->cnext = NULL;
1508        __set_bit(DIRTY_CNODE, &n->flags);
1509        __clear_bit(COW_CNODE, &n->flags);
1510
1511        /* The children now have new parent */
1512        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1513                struct ubifs_nbranch *branch = &n->nbranch[i];
1514
1515                if (branch->cnode)
1516                        branch->cnode->parent = n;
1517        }
1518
1519        ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1520        __set_bit(OBSOLETE_CNODE, &nnode->flags);
1521
1522        c->dirty_nn_cnt += 1;
1523        ubifs_add_nnode_dirt(c, nnode);
1524        if (nnode->parent)
1525                nnode->parent->nbranch[n->iip].nnode = n;
1526        else
1527                c->nroot = n;
1528        return n;
1529}
1530
1531/**
1532 * dirty_cow_pnode - ensure a pnode is not being committed.
1533 * @c: UBIFS file-system description object
1534 * @pnode: pnode to check
1535 *
1536 * Returns dirtied pnode on success or negative error code on failure.
1537 */
1538static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1539                                           struct ubifs_pnode *pnode)
1540{
1541        struct ubifs_pnode *p;
1542
1543        if (!test_bit(COW_CNODE, &pnode->flags)) {
1544                /* pnode is not being committed */
1545                if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1546                        c->dirty_pn_cnt += 1;
1547                        add_pnode_dirt(c, pnode);
1548                }
1549                return pnode;
1550        }
1551
1552        /* pnode is being committed, so copy it */
1553        p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1554        if (unlikely(!p))
1555                return ERR_PTR(-ENOMEM);
1556
1557        memcpy(p, pnode, sizeof(struct ubifs_pnode));
1558        p->cnext = NULL;
1559        __set_bit(DIRTY_CNODE, &p->flags);
1560        __clear_bit(COW_CNODE, &p->flags);
1561        replace_cats(c, pnode, p);
1562
1563        ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1564        __set_bit(OBSOLETE_CNODE, &pnode->flags);
1565
1566        c->dirty_pn_cnt += 1;
1567        add_pnode_dirt(c, pnode);
1568        pnode->parent->nbranch[p->iip].pnode = p;
1569        return p;
1570}
1571
1572/**
1573 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1574 * @c: UBIFS file-system description object
1575 * @lnum: LEB number to lookup
1576 *
1577 * This function returns a pointer to the LEB properties on success or a
1578 * negative error code on failure.
1579 */
1580struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1581{
1582        int err, i, h, iip, shft;
1583        struct ubifs_nnode *nnode;
1584        struct ubifs_pnode *pnode;
1585
1586        if (!c->nroot) {
1587                err = ubifs_read_nnode(c, NULL, 0);
1588                if (err)
1589                        return ERR_PTR(err);
1590        }
1591        nnode = c->nroot;
1592        nnode = dirty_cow_nnode(c, nnode);
1593        if (IS_ERR(nnode))
1594                return ERR_CAST(nnode);
1595        i = lnum - c->main_first;
1596        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1597        for (h = 1; h < c->lpt_hght; h++) {
1598                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1599                shft -= UBIFS_LPT_FANOUT_SHIFT;
1600                nnode = ubifs_get_nnode(c, nnode, iip);
1601                if (IS_ERR(nnode))
1602                        return ERR_CAST(nnode);
1603                nnode = dirty_cow_nnode(c, nnode);
1604                if (IS_ERR(nnode))
1605                        return ERR_CAST(nnode);
1606        }
1607        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1608        shft -= UBIFS_LPT_FANOUT_SHIFT;
1609        pnode = ubifs_get_pnode(c, nnode, iip);
1610        if (IS_ERR(pnode))
1611                return ERR_CAST(pnode);
1612        pnode = dirty_cow_pnode(c, pnode);
1613        if (IS_ERR(pnode))
1614                return ERR_CAST(pnode);
1615        iip = (i & (UBIFS_LPT_FANOUT - 1));
1616        dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1617               pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1618               pnode->lprops[iip].flags);
1619        ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1620        return &pnode->lprops[iip];
1621}
1622
1623/**
1624 * lpt_init_rd - initialize the LPT for reading.
1625 * @c: UBIFS file-system description object
1626 *
1627 * This function returns %0 on success and a negative error code on failure.
1628 */
1629static int lpt_init_rd(struct ubifs_info *c)
1630{
1631        int err, i;
1632
1633        c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1634        if (!c->ltab)
1635                return -ENOMEM;
1636
1637        i = max_t(int, c->nnode_sz, c->pnode_sz);
1638        c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1639        if (!c->lpt_nod_buf)
1640                return -ENOMEM;
1641
1642        for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1643                c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1644                                             GFP_KERNEL);
1645                if (!c->lpt_heap[i].arr)
1646                        return -ENOMEM;
1647                c->lpt_heap[i].cnt = 0;
1648                c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1649        }
1650
1651        c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1652        if (!c->dirty_idx.arr)
1653                return -ENOMEM;
1654        c->dirty_idx.cnt = 0;
1655        c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1656
1657        err = read_ltab(c);
1658        if (err)
1659                return err;
1660
1661        dbg_lp("space_bits %d", c->space_bits);
1662        dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1663        dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1664        dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1665        dbg_lp("pcnt_bits %d", c->pcnt_bits);
1666        dbg_lp("lnum_bits %d", c->lnum_bits);
1667        dbg_lp("pnode_sz %d", c->pnode_sz);
1668        dbg_lp("nnode_sz %d", c->nnode_sz);
1669        dbg_lp("ltab_sz %d", c->ltab_sz);
1670        dbg_lp("lsave_sz %d", c->lsave_sz);
1671        dbg_lp("lsave_cnt %d", c->lsave_cnt);
1672        dbg_lp("lpt_hght %d", c->lpt_hght);
1673        dbg_lp("big_lpt %d", c->big_lpt);
1674        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1675        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1676        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1677        if (c->big_lpt)
1678                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1679
1680        return 0;
1681}
1682
1683/**
1684 * lpt_init_wr - initialize the LPT for writing.
1685 * @c: UBIFS file-system description object
1686 *
1687 * 'lpt_init_rd()' must have been called already.
1688 *
1689 * This function returns %0 on success and a negative error code on failure.
1690 */
1691static int lpt_init_wr(struct ubifs_info *c)
1692{
1693        int err, i;
1694
1695        c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1696        if (!c->ltab_cmt)
1697                return -ENOMEM;
1698
1699        c->lpt_buf = vmalloc(c->leb_size);
1700        if (!c->lpt_buf)
1701                return -ENOMEM;
1702
1703        if (c->big_lpt) {
1704                c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1705                if (!c->lsave)
1706                        return -ENOMEM;
1707                err = read_lsave(c);
1708                if (err)
1709                        return err;
1710        }
1711
1712        for (i = 0; i < c->lpt_lebs; i++)
1713                if (c->ltab[i].free == c->leb_size) {
1714                        err = ubifs_leb_unmap(c, i + c->lpt_first);
1715                        if (err)
1716                                return err;
1717                }
1718
1719        return 0;
1720}
1721
1722/**
1723 * ubifs_lpt_init - initialize the LPT.
1724 * @c: UBIFS file-system description object
1725 * @rd: whether to initialize lpt for reading
1726 * @wr: whether to initialize lpt for writing
1727 *
1728 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1729 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1730 * true.
1731 *
1732 * This function returns %0 on success and a negative error code on failure.
1733 */
1734int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1735{
1736        int err;
1737
1738        if (rd) {
1739                err = lpt_init_rd(c);
1740                if (err)
1741                        return err;
1742        }
1743
1744        if (wr) {
1745                err = lpt_init_wr(c);
1746                if (err)
1747                        return err;
1748        }
1749
1750        return 0;
1751}
1752
1753/**
1754 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1755 * @nnode: where to keep a nnode
1756 * @pnode: where to keep a pnode
1757 * @cnode: where to keep a cnode
1758 * @in_tree: is the node in the tree in memory
1759 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1760 * the tree
1761 * @ptr.pnode: ditto for pnode
1762 * @ptr.cnode: ditto for cnode
1763 */
1764struct lpt_scan_node {
1765        union {
1766                struct ubifs_nnode nnode;
1767                struct ubifs_pnode pnode;
1768                struct ubifs_cnode cnode;
1769        };
1770        int in_tree;
1771        union {
1772                struct ubifs_nnode *nnode;
1773                struct ubifs_pnode *pnode;
1774                struct ubifs_cnode *cnode;
1775        } ptr;
1776};
1777
1778/**
1779 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1780 * @c: the UBIFS file-system description object
1781 * @path: where to put the nnode
1782 * @parent: parent of the nnode
1783 * @iip: index in parent of the nnode
1784 *
1785 * This function returns a pointer to the nnode on success or a negative error
1786 * code on failure.
1787 */
1788static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1789                                          struct lpt_scan_node *path,
1790                                          struct ubifs_nnode *parent, int iip)
1791{
1792        struct ubifs_nbranch *branch;
1793        struct ubifs_nnode *nnode;
1794        void *buf = c->lpt_nod_buf;
1795        int err;
1796
1797        branch = &parent->nbranch[iip];
1798        nnode = branch->nnode;
1799        if (nnode) {
1800                path->in_tree = 1;
1801                path->ptr.nnode = nnode;
1802                return nnode;
1803        }
1804        nnode = &path->nnode;
1805        path->in_tree = 0;
1806        path->ptr.nnode = nnode;
1807        memset(nnode, 0, sizeof(struct ubifs_nnode));
1808        if (branch->lnum == 0) {
1809                /*
1810                 * This nnode was not written which just means that the LEB
1811                 * properties in the subtree below it describe empty LEBs. We
1812                 * make the nnode as though we had read it, which in fact means
1813                 * doing almost nothing.
1814                 */
1815                if (c->big_lpt)
1816                        nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1817        } else {
1818                err = ubi_read(c->ubi, branch->lnum, buf, branch->offs,
1819                               c->nnode_sz);
1820                if (err)
1821                        return ERR_PTR(err);
1822                err = ubifs_unpack_nnode(c, buf, nnode);
1823                if (err)
1824                        return ERR_PTR(err);
1825        }
1826        err = validate_nnode(c, nnode, parent, iip);
1827        if (err)
1828                return ERR_PTR(err);
1829        if (!c->big_lpt)
1830                nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1831        nnode->level = parent->level - 1;
1832        nnode->parent = parent;
1833        nnode->iip = iip;
1834        return nnode;
1835}
1836
1837/**
1838 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1839 * @c: the UBIFS file-system description object
1840 * @path: where to put the pnode
1841 * @parent: parent of the pnode
1842 * @iip: index in parent of the pnode
1843 *
1844 * This function returns a pointer to the pnode on success or a negative error
1845 * code on failure.
1846 */
1847static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1848                                          struct lpt_scan_node *path,
1849                                          struct ubifs_nnode *parent, int iip)
1850{
1851        struct ubifs_nbranch *branch;
1852        struct ubifs_pnode *pnode;
1853        void *buf = c->lpt_nod_buf;
1854        int err;
1855
1856        branch = &parent->nbranch[iip];
1857        pnode = branch->pnode;
1858        if (pnode) {
1859                path->in_tree = 1;
1860                path->ptr.pnode = pnode;
1861                return pnode;
1862        }
1863        pnode = &path->pnode;
1864        path->in_tree = 0;
1865        path->ptr.pnode = pnode;
1866        memset(pnode, 0, sizeof(struct ubifs_pnode));
1867        if (branch->lnum == 0) {
1868                /*
1869                 * This pnode was not written which just means that the LEB
1870                 * properties in it describe empty LEBs. We make the pnode as
1871                 * though we had read it.
1872                 */
1873                int i;
1874
1875                if (c->big_lpt)
1876                        pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1877                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1878                        struct ubifs_lprops * const lprops = &pnode->lprops[i];
1879
1880                        lprops->free = c->leb_size;
1881                        lprops->flags = ubifs_categorize_lprops(c, lprops);
1882                }
1883        } else {
1884                ubifs_assert(branch->lnum >= c->lpt_first &&
1885                             branch->lnum <= c->lpt_last);
1886                ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1887                err = ubi_read(c->ubi, branch->lnum, buf, branch->offs,
1888                               c->pnode_sz);
1889                if (err)
1890                        return ERR_PTR(err);
1891                err = unpack_pnode(c, buf, pnode);
1892                if (err)
1893                        return ERR_PTR(err);
1894        }
1895        err = validate_pnode(c, pnode, parent, iip);
1896        if (err)
1897                return ERR_PTR(err);
1898        if (!c->big_lpt)
1899                pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1900        pnode->parent = parent;
1901        pnode->iip = iip;
1902        set_pnode_lnum(c, pnode);
1903        return pnode;
1904}
1905
1906/**
1907 * ubifs_lpt_scan_nolock - scan the LPT.
1908 * @c: the UBIFS file-system description object
1909 * @start_lnum: LEB number from which to start scanning
1910 * @end_lnum: LEB number at which to stop scanning
1911 * @scan_cb: callback function called for each lprops
1912 * @data: data to be passed to the callback function
1913 *
1914 * This function returns %0 on success and a negative error code on failure.
1915 */
1916int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1917                          ubifs_lpt_scan_callback scan_cb, void *data)
1918{
1919        int err = 0, i, h, iip, shft;
1920        struct ubifs_nnode *nnode;
1921        struct ubifs_pnode *pnode;
1922        struct lpt_scan_node *path;
1923
1924        if (start_lnum == -1) {
1925                start_lnum = end_lnum + 1;
1926                if (start_lnum >= c->leb_cnt)
1927                        start_lnum = c->main_first;
1928        }
1929
1930        ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1931        ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1932
1933        if (!c->nroot) {
1934                err = ubifs_read_nnode(c, NULL, 0);
1935                if (err)
1936                        return err;
1937        }
1938
1939        path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1940                       GFP_NOFS);
1941        if (!path)
1942                return -ENOMEM;
1943
1944        path[0].ptr.nnode = c->nroot;
1945        path[0].in_tree = 1;
1946again:
1947        /* Descend to the pnode containing start_lnum */
1948        nnode = c->nroot;
1949        i = start_lnum - c->main_first;
1950        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1951        for (h = 1; h < c->lpt_hght; h++) {
1952                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1953                shft -= UBIFS_LPT_FANOUT_SHIFT;
1954                nnode = scan_get_nnode(c, path + h, nnode, iip);
1955                if (IS_ERR(nnode)) {
1956                        err = PTR_ERR(nnode);
1957                        goto out;
1958                }
1959        }
1960        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1961        shft -= UBIFS_LPT_FANOUT_SHIFT;
1962        pnode = scan_get_pnode(c, path + h, nnode, iip);
1963        if (IS_ERR(pnode)) {
1964                err = PTR_ERR(pnode);
1965                goto out;
1966        }
1967        iip = (i & (UBIFS_LPT_FANOUT - 1));
1968
1969        /* Loop for each lprops */
1970        while (1) {
1971                struct ubifs_lprops *lprops = &pnode->lprops[iip];
1972                int ret, lnum = lprops->lnum;
1973
1974                ret = scan_cb(c, lprops, path[h].in_tree, data);
1975                if (ret < 0) {
1976                        err = ret;
1977                        goto out;
1978                }
1979                if (ret & LPT_SCAN_ADD) {
1980                        /* Add all the nodes in path to the tree in memory */
1981                        for (h = 1; h < c->lpt_hght; h++) {
1982                                const size_t sz = sizeof(struct ubifs_nnode);
1983                                struct ubifs_nnode *parent;
1984
1985                                if (path[h].in_tree)
1986                                        continue;
1987                                nnode = kmalloc(sz, GFP_NOFS);
1988                                if (!nnode) {
1989                                        err = -ENOMEM;
1990                                        goto out;
1991                                }
1992                                memcpy(nnode, &path[h].nnode, sz);
1993                                parent = nnode->parent;
1994                                parent->nbranch[nnode->iip].nnode = nnode;
1995                                path[h].ptr.nnode = nnode;
1996                                path[h].in_tree = 1;
1997                                path[h + 1].cnode.parent = nnode;
1998                        }
1999                        if (path[h].in_tree)
2000                                ubifs_ensure_cat(c, lprops);
2001                        else {
2002                                const size_t sz = sizeof(struct ubifs_pnode);
2003                                struct ubifs_nnode *parent;
2004
2005                                pnode = kmalloc(sz, GFP_NOFS);
2006                                if (!pnode) {
2007                                        err = -ENOMEM;
2008                                        goto out;
2009                                }
2010                                memcpy(pnode, &path[h].pnode, sz);
2011                                parent = pnode->parent;
2012                                parent->nbranch[pnode->iip].pnode = pnode;
2013                                path[h].ptr.pnode = pnode;
2014                                path[h].in_tree = 1;
2015                                update_cats(c, pnode);
2016                                c->pnodes_have += 1;
2017                        }
2018                        err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2019                                                  c->nroot, 0, 0);
2020                        if (err)
2021                                goto out;
2022                        err = dbg_check_cats(c);
2023                        if (err)
2024                                goto out;
2025                }
2026                if (ret & LPT_SCAN_STOP) {
2027                        err = 0;
2028                        break;
2029                }
2030                /* Get the next lprops */
2031                if (lnum == end_lnum) {
2032                        /*
2033                         * We got to the end without finding what we were
2034                         * looking for
2035                         */
2036                        err = -ENOSPC;
2037                        goto out;
2038                }
2039                if (lnum + 1 >= c->leb_cnt) {
2040                        /* Wrap-around to the beginning */
2041                        start_lnum = c->main_first;
2042                        goto again;
2043                }
2044                if (iip + 1 < UBIFS_LPT_FANOUT) {
2045                        /* Next lprops is in the same pnode */
2046                        iip += 1;
2047                        continue;
2048                }
2049                /* We need to get the next pnode. Go up until we can go right */
2050                iip = pnode->iip;
2051                while (1) {
2052                        h -= 1;
2053                        ubifs_assert(h >= 0);
2054                        nnode = path[h].ptr.nnode;
2055                        if (iip + 1 < UBIFS_LPT_FANOUT)
2056                                break;
2057                        iip = nnode->iip;
2058                }
2059                /* Go right */
2060                iip += 1;
2061                /* Descend to the pnode */
2062                h += 1;
2063                for (; h < c->lpt_hght; h++) {
2064                        nnode = scan_get_nnode(c, path + h, nnode, iip);
2065                        if (IS_ERR(nnode)) {
2066                                err = PTR_ERR(nnode);
2067                                goto out;
2068                        }
2069                        iip = 0;
2070                }
2071                pnode = scan_get_pnode(c, path + h, nnode, iip);
2072                if (IS_ERR(pnode)) {
2073                        err = PTR_ERR(pnode);
2074                        goto out;
2075                }
2076                iip = 0;
2077        }
2078out:
2079        kfree(path);
2080        return err;
2081}
2082
2083#ifdef CONFIG_UBIFS_FS_DEBUG
2084
2085/**
2086 * dbg_chk_pnode - check a pnode.
2087 * @c: the UBIFS file-system description object
2088 * @pnode: pnode to check
2089 * @col: pnode column
2090 *
2091 * This function returns %0 on success and a negative error code on failure.
2092 */
2093static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2094                         int col)
2095{
2096        int i;
2097
2098        if (pnode->num != col) {
2099                dbg_err("pnode num %d expected %d parent num %d iip %d",
2100                        pnode->num, col, pnode->parent->num, pnode->iip);
2101                return -EINVAL;
2102        }
2103        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2104                struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2105                int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2106                           c->main_first;
2107                int found, cat = lprops->flags & LPROPS_CAT_MASK;
2108                struct ubifs_lpt_heap *heap;
2109                struct list_head *list = NULL;
2110
2111                if (lnum >= c->leb_cnt)
2112                        continue;
2113                if (lprops->lnum != lnum) {
2114                        dbg_err("bad LEB number %d expected %d",
2115                                lprops->lnum, lnum);
2116                        return -EINVAL;
2117                }
2118                if (lprops->flags & LPROPS_TAKEN) {
2119                        if (cat != LPROPS_UNCAT) {
2120                                dbg_err("LEB %d taken but not uncat %d",
2121                                        lprops->lnum, cat);
2122                                return -EINVAL;
2123                        }
2124                        continue;
2125                }
2126                if (lprops->flags & LPROPS_INDEX) {
2127                        switch (cat) {
2128                        case LPROPS_UNCAT:
2129                        case LPROPS_DIRTY_IDX:
2130                        case LPROPS_FRDI_IDX:
2131                                break;
2132                        default:
2133                                dbg_err("LEB %d index but cat %d",
2134                                        lprops->lnum, cat);
2135                                return -EINVAL;
2136                        }
2137                } else {
2138                        switch (cat) {
2139                        case LPROPS_UNCAT:
2140                        case LPROPS_DIRTY:
2141                        case LPROPS_FREE:
2142                        case LPROPS_EMPTY:
2143                        case LPROPS_FREEABLE:
2144                                break;
2145                        default:
2146                                dbg_err("LEB %d not index but cat %d",
2147                                        lprops->lnum, cat);
2148                                return -EINVAL;
2149                        }
2150                }
2151                switch (cat) {
2152                case LPROPS_UNCAT:
2153                        list = &c->uncat_list;
2154                        break;
2155                case LPROPS_EMPTY:
2156                        list = &c->empty_list;
2157                        break;
2158                case LPROPS_FREEABLE:
2159                        list = &c->freeable_list;
2160                        break;
2161                case LPROPS_FRDI_IDX:
2162                        list = &c->frdi_idx_list;
2163                        break;
2164                }
2165                found = 0;
2166                switch (cat) {
2167                case LPROPS_DIRTY:
2168                case LPROPS_DIRTY_IDX:
2169                case LPROPS_FREE:
2170                        heap = &c->lpt_heap[cat - 1];
2171                        if (lprops->hpos < heap->cnt &&
2172                            heap->arr[lprops->hpos] == lprops)
2173                                found = 1;
2174                        break;
2175                case LPROPS_UNCAT:
2176                case LPROPS_EMPTY:
2177                case LPROPS_FREEABLE:
2178                case LPROPS_FRDI_IDX:
2179                        list_for_each_entry(lp, list, list)
2180                                if (lprops == lp) {
2181                                        found = 1;
2182                                        break;
2183                                }
2184                        break;
2185                }
2186                if (!found) {
2187                        dbg_err("LEB %d cat %d not found in cat heap/list",
2188                                lprops->lnum, cat);
2189                        return -EINVAL;
2190                }
2191                switch (cat) {
2192                case LPROPS_EMPTY:
2193                        if (lprops->free != c->leb_size) {
2194                                dbg_err("LEB %d cat %d free %d dirty %d",
2195                                        lprops->lnum, cat, lprops->free,
2196                                        lprops->dirty);
2197                                return -EINVAL;
2198                        }
2199                case LPROPS_FREEABLE:
2200                case LPROPS_FRDI_IDX:
2201                        if (lprops->free + lprops->dirty != c->leb_size) {
2202                                dbg_err("LEB %d cat %d free %d dirty %d",
2203                                        lprops->lnum, cat, lprops->free,
2204                                        lprops->dirty);
2205                                return -EINVAL;
2206                        }
2207                }
2208        }
2209        return 0;
2210}
2211
2212/**
2213 * dbg_check_lpt_nodes - check nnodes and pnodes.
2214 * @c: the UBIFS file-system description object
2215 * @cnode: next cnode (nnode or pnode) to check
2216 * @row: row of cnode (root is zero)
2217 * @col: column of cnode (leftmost is zero)
2218 *
2219 * This function returns %0 on success and a negative error code on failure.
2220 */
2221int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2222                        int row, int col)
2223{
2224        struct ubifs_nnode *nnode, *nn;
2225        struct ubifs_cnode *cn;
2226        int num, iip = 0, err;
2227
2228        if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
2229                return 0;
2230
2231        while (cnode) {
2232                ubifs_assert(row >= 0);
2233                nnode = cnode->parent;
2234                if (cnode->level) {
2235                        /* cnode is a nnode */
2236                        num = calc_nnode_num(row, col);
2237                        if (cnode->num != num) {
2238                                dbg_err("nnode num %d expected %d "
2239                                        "parent num %d iip %d", cnode->num, num,
2240                                        (nnode ? nnode->num : 0), cnode->iip);
2241                                return -EINVAL;
2242                        }
2243                        nn = (struct ubifs_nnode *)cnode;
2244                        while (iip < UBIFS_LPT_FANOUT) {
2245                                cn = nn->nbranch[iip].cnode;
2246                                if (cn) {
2247                                        /* Go down */
2248                                        row += 1;
2249                                        col <<= UBIFS_LPT_FANOUT_SHIFT;
2250                                        col += iip;
2251                                        iip = 0;
2252                                        cnode = cn;
2253                                        break;
2254                                }
2255                                /* Go right */
2256                                iip += 1;
2257                        }
2258                        if (iip < UBIFS_LPT_FANOUT)
2259                                continue;
2260                } else {
2261                        struct ubifs_pnode *pnode;
2262
2263                        /* cnode is a pnode */
2264                        pnode = (struct ubifs_pnode *)cnode;
2265                        err = dbg_chk_pnode(c, pnode, col);
2266                        if (err)
2267                                return err;
2268                }
2269                /* Go up and to the right */
2270                row -= 1;
2271                col >>= UBIFS_LPT_FANOUT_SHIFT;
2272                iip = cnode->iip + 1;
2273                cnode = (struct ubifs_cnode *)nnode;
2274        }
2275        return 0;
2276}
2277
2278#endif /* CONFIG_UBIFS_FS_DEBUG */
2279