linux/fs/ubifs/lpt_commit.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements commit-related functionality of the LEB properties
  25 * subsystem.
  26 */
  27
  28#include <linux/crc16.h>
  29#include <linux/slab.h>
  30#include "ubifs.h"
  31
  32/**
  33 * first_dirty_cnode - find first dirty cnode.
  34 * @c: UBIFS file-system description object
  35 * @nnode: nnode at which to start
  36 *
  37 * This function returns the first dirty cnode or %NULL if there is not one.
  38 */
  39static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
  40{
  41        ubifs_assert(nnode);
  42        while (1) {
  43                int i, cont = 0;
  44
  45                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
  46                        struct ubifs_cnode *cnode;
  47
  48                        cnode = nnode->nbranch[i].cnode;
  49                        if (cnode &&
  50                            test_bit(DIRTY_CNODE, &cnode->flags)) {
  51                                if (cnode->level == 0)
  52                                        return cnode;
  53                                nnode = (struct ubifs_nnode *)cnode;
  54                                cont = 1;
  55                                break;
  56                        }
  57                }
  58                if (!cont)
  59                        return (struct ubifs_cnode *)nnode;
  60        }
  61}
  62
  63/**
  64 * next_dirty_cnode - find next dirty cnode.
  65 * @cnode: cnode from which to begin searching
  66 *
  67 * This function returns the next dirty cnode or %NULL if there is not one.
  68 */
  69static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
  70{
  71        struct ubifs_nnode *nnode;
  72        int i;
  73
  74        ubifs_assert(cnode);
  75        nnode = cnode->parent;
  76        if (!nnode)
  77                return NULL;
  78        for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
  79                cnode = nnode->nbranch[i].cnode;
  80                if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
  81                        if (cnode->level == 0)
  82                                return cnode; /* cnode is a pnode */
  83                        /* cnode is a nnode */
  84                        return first_dirty_cnode((struct ubifs_nnode *)cnode);
  85                }
  86        }
  87        return (struct ubifs_cnode *)nnode;
  88}
  89
  90/**
  91 * get_cnodes_to_commit - create list of dirty cnodes to commit.
  92 * @c: UBIFS file-system description object
  93 *
  94 * This function returns the number of cnodes to commit.
  95 */
  96static int get_cnodes_to_commit(struct ubifs_info *c)
  97{
  98        struct ubifs_cnode *cnode, *cnext;
  99        int cnt = 0;
 100
 101        if (!c->nroot)
 102                return 0;
 103
 104        if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
 105                return 0;
 106
 107        c->lpt_cnext = first_dirty_cnode(c->nroot);
 108        cnode = c->lpt_cnext;
 109        if (!cnode)
 110                return 0;
 111        cnt += 1;
 112        while (1) {
 113                ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags));
 114                __set_bit(COW_ZNODE, &cnode->flags);
 115                cnext = next_dirty_cnode(cnode);
 116                if (!cnext) {
 117                        cnode->cnext = c->lpt_cnext;
 118                        break;
 119                }
 120                cnode->cnext = cnext;
 121                cnode = cnext;
 122                cnt += 1;
 123        }
 124        dbg_cmt("committing %d cnodes", cnt);
 125        dbg_lp("committing %d cnodes", cnt);
 126        ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
 127        return cnt;
 128}
 129
 130/**
 131 * upd_ltab - update LPT LEB properties.
 132 * @c: UBIFS file-system description object
 133 * @lnum: LEB number
 134 * @free: amount of free space
 135 * @dirty: amount of dirty space to add
 136 */
 137static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
 138{
 139        dbg_lp("LEB %d free %d dirty %d to %d +%d",
 140               lnum, c->ltab[lnum - c->lpt_first].free,
 141               c->ltab[lnum - c->lpt_first].dirty, free, dirty);
 142        ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
 143        c->ltab[lnum - c->lpt_first].free = free;
 144        c->ltab[lnum - c->lpt_first].dirty += dirty;
 145}
 146
 147/**
 148 * alloc_lpt_leb - allocate an LPT LEB that is empty.
 149 * @c: UBIFS file-system description object
 150 * @lnum: LEB number is passed and returned here
 151 *
 152 * This function finds the next empty LEB in the ltab starting from @lnum. If a
 153 * an empty LEB is found it is returned in @lnum and the function returns %0.
 154 * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
 155 * never to run out of space.
 156 */
 157static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
 158{
 159        int i, n;
 160
 161        n = *lnum - c->lpt_first + 1;
 162        for (i = n; i < c->lpt_lebs; i++) {
 163                if (c->ltab[i].tgc || c->ltab[i].cmt)
 164                        continue;
 165                if (c->ltab[i].free == c->leb_size) {
 166                        c->ltab[i].cmt = 1;
 167                        *lnum = i + c->lpt_first;
 168                        return 0;
 169                }
 170        }
 171
 172        for (i = 0; i < n; i++) {
 173                if (c->ltab[i].tgc || c->ltab[i].cmt)
 174                        continue;
 175                if (c->ltab[i].free == c->leb_size) {
 176                        c->ltab[i].cmt = 1;
 177                        *lnum = i + c->lpt_first;
 178                        return 0;
 179                }
 180        }
 181        return -ENOSPC;
 182}
 183
 184/**
 185 * layout_cnodes - layout cnodes for commit.
 186 * @c: UBIFS file-system description object
 187 *
 188 * This function returns %0 on success and a negative error code on failure.
 189 */
 190static int layout_cnodes(struct ubifs_info *c)
 191{
 192        int lnum, offs, len, alen, done_lsave, done_ltab, err;
 193        struct ubifs_cnode *cnode;
 194
 195        err = dbg_chk_lpt_sz(c, 0, 0);
 196        if (err)
 197                return err;
 198        cnode = c->lpt_cnext;
 199        if (!cnode)
 200                return 0;
 201        lnum = c->nhead_lnum;
 202        offs = c->nhead_offs;
 203        /* Try to place lsave and ltab nicely */
 204        done_lsave = !c->big_lpt;
 205        done_ltab = 0;
 206        if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
 207                done_lsave = 1;
 208                c->lsave_lnum = lnum;
 209                c->lsave_offs = offs;
 210                offs += c->lsave_sz;
 211                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 212        }
 213
 214        if (offs + c->ltab_sz <= c->leb_size) {
 215                done_ltab = 1;
 216                c->ltab_lnum = lnum;
 217                c->ltab_offs = offs;
 218                offs += c->ltab_sz;
 219                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 220        }
 221
 222        do {
 223                if (cnode->level) {
 224                        len = c->nnode_sz;
 225                        c->dirty_nn_cnt -= 1;
 226                } else {
 227                        len = c->pnode_sz;
 228                        c->dirty_pn_cnt -= 1;
 229                }
 230                while (offs + len > c->leb_size) {
 231                        alen = ALIGN(offs, c->min_io_size);
 232                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 233                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 234                        err = alloc_lpt_leb(c, &lnum);
 235                        if (err)
 236                                goto no_space;
 237                        offs = 0;
 238                        ubifs_assert(lnum >= c->lpt_first &&
 239                                     lnum <= c->lpt_last);
 240                        /* Try to place lsave and ltab nicely */
 241                        if (!done_lsave) {
 242                                done_lsave = 1;
 243                                c->lsave_lnum = lnum;
 244                                c->lsave_offs = offs;
 245                                offs += c->lsave_sz;
 246                                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 247                                continue;
 248                        }
 249                        if (!done_ltab) {
 250                                done_ltab = 1;
 251                                c->ltab_lnum = lnum;
 252                                c->ltab_offs = offs;
 253                                offs += c->ltab_sz;
 254                                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 255                                continue;
 256                        }
 257                        break;
 258                }
 259                if (cnode->parent) {
 260                        cnode->parent->nbranch[cnode->iip].lnum = lnum;
 261                        cnode->parent->nbranch[cnode->iip].offs = offs;
 262                } else {
 263                        c->lpt_lnum = lnum;
 264                        c->lpt_offs = offs;
 265                }
 266                offs += len;
 267                dbg_chk_lpt_sz(c, 1, len);
 268                cnode = cnode->cnext;
 269        } while (cnode && cnode != c->lpt_cnext);
 270
 271        /* Make sure to place LPT's save table */
 272        if (!done_lsave) {
 273                if (offs + c->lsave_sz > c->leb_size) {
 274                        alen = ALIGN(offs, c->min_io_size);
 275                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 276                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 277                        err = alloc_lpt_leb(c, &lnum);
 278                        if (err)
 279                                goto no_space;
 280                        offs = 0;
 281                        ubifs_assert(lnum >= c->lpt_first &&
 282                                     lnum <= c->lpt_last);
 283                }
 284                done_lsave = 1;
 285                c->lsave_lnum = lnum;
 286                c->lsave_offs = offs;
 287                offs += c->lsave_sz;
 288                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 289        }
 290
 291        /* Make sure to place LPT's own lprops table */
 292        if (!done_ltab) {
 293                if (offs + c->ltab_sz > c->leb_size) {
 294                        alen = ALIGN(offs, c->min_io_size);
 295                        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 296                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 297                        err = alloc_lpt_leb(c, &lnum);
 298                        if (err)
 299                                goto no_space;
 300                        offs = 0;
 301                        ubifs_assert(lnum >= c->lpt_first &&
 302                                     lnum <= c->lpt_last);
 303                }
 304                done_ltab = 1;
 305                c->ltab_lnum = lnum;
 306                c->ltab_offs = offs;
 307                offs += c->ltab_sz;
 308                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 309        }
 310
 311        alen = ALIGN(offs, c->min_io_size);
 312        upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
 313        dbg_chk_lpt_sz(c, 4, alen - offs);
 314        err = dbg_chk_lpt_sz(c, 3, alen);
 315        if (err)
 316                return err;
 317        return 0;
 318
 319no_space:
 320        ubifs_err("LPT out of space");
 321        dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
 322                "done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
 323        dbg_dump_lpt_info(c);
 324        dbg_dump_lpt_lebs(c);
 325        dump_stack();
 326        return err;
 327}
 328
 329/**
 330 * realloc_lpt_leb - allocate an LPT LEB that is empty.
 331 * @c: UBIFS file-system description object
 332 * @lnum: LEB number is passed and returned here
 333 *
 334 * This function duplicates exactly the results of the function alloc_lpt_leb.
 335 * It is used during end commit to reallocate the same LEB numbers that were
 336 * allocated by alloc_lpt_leb during start commit.
 337 *
 338 * This function finds the next LEB that was allocated by the alloc_lpt_leb
 339 * function starting from @lnum. If a LEB is found it is returned in @lnum and
 340 * the function returns %0. Otherwise the function returns -ENOSPC.
 341 * Note however, that LPT is designed never to run out of space.
 342 */
 343static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
 344{
 345        int i, n;
 346
 347        n = *lnum - c->lpt_first + 1;
 348        for (i = n; i < c->lpt_lebs; i++)
 349                if (c->ltab[i].cmt) {
 350                        c->ltab[i].cmt = 0;
 351                        *lnum = i + c->lpt_first;
 352                        return 0;
 353                }
 354
 355        for (i = 0; i < n; i++)
 356                if (c->ltab[i].cmt) {
 357                        c->ltab[i].cmt = 0;
 358                        *lnum = i + c->lpt_first;
 359                        return 0;
 360                }
 361        return -ENOSPC;
 362}
 363
 364/**
 365 * write_cnodes - write cnodes for commit.
 366 * @c: UBIFS file-system description object
 367 *
 368 * This function returns %0 on success and a negative error code on failure.
 369 */
 370static int write_cnodes(struct ubifs_info *c)
 371{
 372        int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
 373        struct ubifs_cnode *cnode;
 374        void *buf = c->lpt_buf;
 375
 376        cnode = c->lpt_cnext;
 377        if (!cnode)
 378                return 0;
 379        lnum = c->nhead_lnum;
 380        offs = c->nhead_offs;
 381        from = offs;
 382        /* Ensure empty LEB is unmapped */
 383        if (offs == 0) {
 384                err = ubifs_leb_unmap(c, lnum);
 385                if (err)
 386                        return err;
 387        }
 388        /* Try to place lsave and ltab nicely */
 389        done_lsave = !c->big_lpt;
 390        done_ltab = 0;
 391        if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
 392                done_lsave = 1;
 393                ubifs_pack_lsave(c, buf + offs, c->lsave);
 394                offs += c->lsave_sz;
 395                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 396        }
 397
 398        if (offs + c->ltab_sz <= c->leb_size) {
 399                done_ltab = 1;
 400                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 401                offs += c->ltab_sz;
 402                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 403        }
 404
 405        /* Loop for each cnode */
 406        do {
 407                if (cnode->level)
 408                        len = c->nnode_sz;
 409                else
 410                        len = c->pnode_sz;
 411                while (offs + len > c->leb_size) {
 412                        wlen = offs - from;
 413                        if (wlen) {
 414                                alen = ALIGN(wlen, c->min_io_size);
 415                                memset(buf + offs, 0xff, alen - wlen);
 416                                err = ubifs_leb_write(c, lnum, buf + from, from,
 417                                                       alen, UBI_SHORTTERM);
 418                                if (err)
 419                                        return err;
 420                        }
 421                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 422                        err = realloc_lpt_leb(c, &lnum);
 423                        if (err)
 424                                goto no_space;
 425                        offs = from = 0;
 426                        ubifs_assert(lnum >= c->lpt_first &&
 427                                     lnum <= c->lpt_last);
 428                        err = ubifs_leb_unmap(c, lnum);
 429                        if (err)
 430                                return err;
 431                        /* Try to place lsave and ltab nicely */
 432                        if (!done_lsave) {
 433                                done_lsave = 1;
 434                                ubifs_pack_lsave(c, buf + offs, c->lsave);
 435                                offs += c->lsave_sz;
 436                                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 437                                continue;
 438                        }
 439                        if (!done_ltab) {
 440                                done_ltab = 1;
 441                                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 442                                offs += c->ltab_sz;
 443                                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 444                                continue;
 445                        }
 446                        break;
 447                }
 448                if (cnode->level)
 449                        ubifs_pack_nnode(c, buf + offs,
 450                                         (struct ubifs_nnode *)cnode);
 451                else
 452                        ubifs_pack_pnode(c, buf + offs,
 453                                         (struct ubifs_pnode *)cnode);
 454                /*
 455                 * The reason for the barriers is the same as in case of TNC.
 456                 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
 457                 * 'dirty_cow_pnode()' are the functions for which this is
 458                 * important.
 459                 */
 460                clear_bit(DIRTY_CNODE, &cnode->flags);
 461                smp_mb__before_clear_bit();
 462                clear_bit(COW_ZNODE, &cnode->flags);
 463                smp_mb__after_clear_bit();
 464                offs += len;
 465                dbg_chk_lpt_sz(c, 1, len);
 466                cnode = cnode->cnext;
 467        } while (cnode && cnode != c->lpt_cnext);
 468
 469        /* Make sure to place LPT's save table */
 470        if (!done_lsave) {
 471                if (offs + c->lsave_sz > c->leb_size) {
 472                        wlen = offs - from;
 473                        alen = ALIGN(wlen, c->min_io_size);
 474                        memset(buf + offs, 0xff, alen - wlen);
 475                        err = ubifs_leb_write(c, lnum, buf + from, from, alen,
 476                                              UBI_SHORTTERM);
 477                        if (err)
 478                                return err;
 479                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 480                        err = realloc_lpt_leb(c, &lnum);
 481                        if (err)
 482                                goto no_space;
 483                        offs = from = 0;
 484                        ubifs_assert(lnum >= c->lpt_first &&
 485                                     lnum <= c->lpt_last);
 486                        err = ubifs_leb_unmap(c, lnum);
 487                        if (err)
 488                                return err;
 489                }
 490                done_lsave = 1;
 491                ubifs_pack_lsave(c, buf + offs, c->lsave);
 492                offs += c->lsave_sz;
 493                dbg_chk_lpt_sz(c, 1, c->lsave_sz);
 494        }
 495
 496        /* Make sure to place LPT's own lprops table */
 497        if (!done_ltab) {
 498                if (offs + c->ltab_sz > c->leb_size) {
 499                        wlen = offs - from;
 500                        alen = ALIGN(wlen, c->min_io_size);
 501                        memset(buf + offs, 0xff, alen - wlen);
 502                        err = ubifs_leb_write(c, lnum, buf + from, from, alen,
 503                                              UBI_SHORTTERM);
 504                        if (err)
 505                                return err;
 506                        dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
 507                        err = realloc_lpt_leb(c, &lnum);
 508                        if (err)
 509                                goto no_space;
 510                        offs = from = 0;
 511                        ubifs_assert(lnum >= c->lpt_first &&
 512                                     lnum <= c->lpt_last);
 513                        err = ubifs_leb_unmap(c, lnum);
 514                        if (err)
 515                                return err;
 516                }
 517                done_ltab = 1;
 518                ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
 519                offs += c->ltab_sz;
 520                dbg_chk_lpt_sz(c, 1, c->ltab_sz);
 521        }
 522
 523        /* Write remaining data in buffer */
 524        wlen = offs - from;
 525        alen = ALIGN(wlen, c->min_io_size);
 526        memset(buf + offs, 0xff, alen - wlen);
 527        err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
 528        if (err)
 529                return err;
 530
 531        dbg_chk_lpt_sz(c, 4, alen - wlen);
 532        err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
 533        if (err)
 534                return err;
 535
 536        c->nhead_lnum = lnum;
 537        c->nhead_offs = ALIGN(offs, c->min_io_size);
 538
 539        dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
 540        dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
 541        dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
 542        if (c->big_lpt)
 543                dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
 544
 545        return 0;
 546
 547no_space:
 548        ubifs_err("LPT out of space mismatch");
 549        dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
 550                "%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
 551        dbg_dump_lpt_info(c);
 552        dbg_dump_lpt_lebs(c);
 553        dump_stack();
 554        return err;
 555}
 556
 557/**
 558 * next_pnode_to_dirty - find next pnode to dirty.
 559 * @c: UBIFS file-system description object
 560 * @pnode: pnode
 561 *
 562 * This function returns the next pnode to dirty or %NULL if there are no more
 563 * pnodes.  Note that pnodes that have never been written (lnum == 0) are
 564 * skipped.
 565 */
 566static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
 567                                               struct ubifs_pnode *pnode)
 568{
 569        struct ubifs_nnode *nnode;
 570        int iip;
 571
 572        /* Try to go right */
 573        nnode = pnode->parent;
 574        for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
 575                if (nnode->nbranch[iip].lnum)
 576                        return ubifs_get_pnode(c, nnode, iip);
 577        }
 578
 579        /* Go up while can't go right */
 580        do {
 581                iip = nnode->iip + 1;
 582                nnode = nnode->parent;
 583                if (!nnode)
 584                        return NULL;
 585                for (; iip < UBIFS_LPT_FANOUT; iip++) {
 586                        if (nnode->nbranch[iip].lnum)
 587                                break;
 588                }
 589       } while (iip >= UBIFS_LPT_FANOUT);
 590
 591        /* Go right */
 592        nnode = ubifs_get_nnode(c, nnode, iip);
 593        if (IS_ERR(nnode))
 594                return (void *)nnode;
 595
 596        /* Go down to level 1 */
 597        while (nnode->level > 1) {
 598                for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
 599                        if (nnode->nbranch[iip].lnum)
 600                                break;
 601                }
 602                if (iip >= UBIFS_LPT_FANOUT) {
 603                        /*
 604                         * Should not happen, but we need to keep going
 605                         * if it does.
 606                         */
 607                        iip = 0;
 608                }
 609                nnode = ubifs_get_nnode(c, nnode, iip);
 610                if (IS_ERR(nnode))
 611                        return (void *)nnode;
 612        }
 613
 614        for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
 615                if (nnode->nbranch[iip].lnum)
 616                        break;
 617        if (iip >= UBIFS_LPT_FANOUT)
 618                /* Should not happen, but we need to keep going if it does */
 619                iip = 0;
 620        return ubifs_get_pnode(c, nnode, iip);
 621}
 622
 623/**
 624 * pnode_lookup - lookup a pnode in the LPT.
 625 * @c: UBIFS file-system description object
 626 * @i: pnode number (0 to main_lebs - 1)
 627 *
 628 * This function returns a pointer to the pnode on success or a negative
 629 * error code on failure.
 630 */
 631static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
 632{
 633        int err, h, iip, shft;
 634        struct ubifs_nnode *nnode;
 635
 636        if (!c->nroot) {
 637                err = ubifs_read_nnode(c, NULL, 0);
 638                if (err)
 639                        return ERR_PTR(err);
 640        }
 641        i <<= UBIFS_LPT_FANOUT_SHIFT;
 642        nnode = c->nroot;
 643        shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
 644        for (h = 1; h < c->lpt_hght; h++) {
 645                iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
 646                shft -= UBIFS_LPT_FANOUT_SHIFT;
 647                nnode = ubifs_get_nnode(c, nnode, iip);
 648                if (IS_ERR(nnode))
 649                        return ERR_CAST(nnode);
 650        }
 651        iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
 652        return ubifs_get_pnode(c, nnode, iip);
 653}
 654
 655/**
 656 * add_pnode_dirt - add dirty space to LPT LEB properties.
 657 * @c: UBIFS file-system description object
 658 * @pnode: pnode for which to add dirt
 659 */
 660static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
 661{
 662        ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
 663                           c->pnode_sz);
 664}
 665
 666/**
 667 * do_make_pnode_dirty - mark a pnode dirty.
 668 * @c: UBIFS file-system description object
 669 * @pnode: pnode to mark dirty
 670 */
 671static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
 672{
 673        /* Assumes cnext list is empty i.e. not called during commit */
 674        if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
 675                struct ubifs_nnode *nnode;
 676
 677                c->dirty_pn_cnt += 1;
 678                add_pnode_dirt(c, pnode);
 679                /* Mark parent and ancestors dirty too */
 680                nnode = pnode->parent;
 681                while (nnode) {
 682                        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 683                                c->dirty_nn_cnt += 1;
 684                                ubifs_add_nnode_dirt(c, nnode);
 685                                nnode = nnode->parent;
 686                        } else
 687                                break;
 688                }
 689        }
 690}
 691
 692/**
 693 * make_tree_dirty - mark the entire LEB properties tree dirty.
 694 * @c: UBIFS file-system description object
 695 *
 696 * This function is used by the "small" LPT model to cause the entire LEB
 697 * properties tree to be written.  The "small" LPT model does not use LPT
 698 * garbage collection because it is more efficient to write the entire tree
 699 * (because it is small).
 700 *
 701 * This function returns %0 on success and a negative error code on failure.
 702 */
 703static int make_tree_dirty(struct ubifs_info *c)
 704{
 705        struct ubifs_pnode *pnode;
 706
 707        pnode = pnode_lookup(c, 0);
 708        if (IS_ERR(pnode))
 709                return PTR_ERR(pnode);
 710
 711        while (pnode) {
 712                do_make_pnode_dirty(c, pnode);
 713                pnode = next_pnode_to_dirty(c, pnode);
 714                if (IS_ERR(pnode))
 715                        return PTR_ERR(pnode);
 716        }
 717        return 0;
 718}
 719
 720/**
 721 * need_write_all - determine if the LPT area is running out of free space.
 722 * @c: UBIFS file-system description object
 723 *
 724 * This function returns %1 if the LPT area is running out of free space and %0
 725 * if it is not.
 726 */
 727static int need_write_all(struct ubifs_info *c)
 728{
 729        long long free = 0;
 730        int i;
 731
 732        for (i = 0; i < c->lpt_lebs; i++) {
 733                if (i + c->lpt_first == c->nhead_lnum)
 734                        free += c->leb_size - c->nhead_offs;
 735                else if (c->ltab[i].free == c->leb_size)
 736                        free += c->leb_size;
 737                else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
 738                        free += c->leb_size;
 739        }
 740        /* Less than twice the size left */
 741        if (free <= c->lpt_sz * 2)
 742                return 1;
 743        return 0;
 744}
 745
 746/**
 747 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
 748 * @c: UBIFS file-system description object
 749 *
 750 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
 751 * free space and so may be reused as soon as the next commit is completed.
 752 * This function is called during start commit to mark LPT LEBs for trivial GC.
 753 */
 754static void lpt_tgc_start(struct ubifs_info *c)
 755{
 756        int i;
 757
 758        for (i = 0; i < c->lpt_lebs; i++) {
 759                if (i + c->lpt_first == c->nhead_lnum)
 760                        continue;
 761                if (c->ltab[i].dirty > 0 &&
 762                    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
 763                        c->ltab[i].tgc = 1;
 764                        c->ltab[i].free = c->leb_size;
 765                        c->ltab[i].dirty = 0;
 766                        dbg_lp("LEB %d", i + c->lpt_first);
 767                }
 768        }
 769}
 770
 771/**
 772 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
 773 * @c: UBIFS file-system description object
 774 *
 775 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
 776 * free space and so may be reused as soon as the next commit is completed.
 777 * This function is called after the commit is completed (master node has been
 778 * written) and un-maps LPT LEBs that were marked for trivial GC.
 779 */
 780static int lpt_tgc_end(struct ubifs_info *c)
 781{
 782        int i, err;
 783
 784        for (i = 0; i < c->lpt_lebs; i++)
 785                if (c->ltab[i].tgc) {
 786                        err = ubifs_leb_unmap(c, i + c->lpt_first);
 787                        if (err)
 788                                return err;
 789                        c->ltab[i].tgc = 0;
 790                        dbg_lp("LEB %d", i + c->lpt_first);
 791                }
 792        return 0;
 793}
 794
 795/**
 796 * populate_lsave - fill the lsave array with important LEB numbers.
 797 * @c: the UBIFS file-system description object
 798 *
 799 * This function is only called for the "big" model. It records a small number
 800 * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
 801 * most important to least important): empty, freeable, freeable index, dirty
 802 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
 803 * their pnodes into memory.  That will stop us from having to scan the LPT
 804 * straight away. For the "small" model we assume that scanning the LPT is no
 805 * big deal.
 806 */
 807static void populate_lsave(struct ubifs_info *c)
 808{
 809        struct ubifs_lprops *lprops;
 810        struct ubifs_lpt_heap *heap;
 811        int i, cnt = 0;
 812
 813        ubifs_assert(c->big_lpt);
 814        if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
 815                c->lpt_drty_flgs |= LSAVE_DIRTY;
 816                ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
 817        }
 818        list_for_each_entry(lprops, &c->empty_list, list) {
 819                c->lsave[cnt++] = lprops->lnum;
 820                if (cnt >= c->lsave_cnt)
 821                        return;
 822        }
 823        list_for_each_entry(lprops, &c->freeable_list, list) {
 824                c->lsave[cnt++] = lprops->lnum;
 825                if (cnt >= c->lsave_cnt)
 826                        return;
 827        }
 828        list_for_each_entry(lprops, &c->frdi_idx_list, list) {
 829                c->lsave[cnt++] = lprops->lnum;
 830                if (cnt >= c->lsave_cnt)
 831                        return;
 832        }
 833        heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
 834        for (i = 0; i < heap->cnt; i++) {
 835                c->lsave[cnt++] = heap->arr[i]->lnum;
 836                if (cnt >= c->lsave_cnt)
 837                        return;
 838        }
 839        heap = &c->lpt_heap[LPROPS_DIRTY - 1];
 840        for (i = 0; i < heap->cnt; i++) {
 841                c->lsave[cnt++] = heap->arr[i]->lnum;
 842                if (cnt >= c->lsave_cnt)
 843                        return;
 844        }
 845        heap = &c->lpt_heap[LPROPS_FREE - 1];
 846        for (i = 0; i < heap->cnt; i++) {
 847                c->lsave[cnt++] = heap->arr[i]->lnum;
 848                if (cnt >= c->lsave_cnt)
 849                        return;
 850        }
 851        /* Fill it up completely */
 852        while (cnt < c->lsave_cnt)
 853                c->lsave[cnt++] = c->main_first;
 854}
 855
 856/**
 857 * nnode_lookup - lookup a nnode in the LPT.
 858 * @c: UBIFS file-system description object
 859 * @i: nnode number
 860 *
 861 * This function returns a pointer to the nnode on success or a negative
 862 * error code on failure.
 863 */
 864static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
 865{
 866        int err, iip;
 867        struct ubifs_nnode *nnode;
 868
 869        if (!c->nroot) {
 870                err = ubifs_read_nnode(c, NULL, 0);
 871                if (err)
 872                        return ERR_PTR(err);
 873        }
 874        nnode = c->nroot;
 875        while (1) {
 876                iip = i & (UBIFS_LPT_FANOUT - 1);
 877                i >>= UBIFS_LPT_FANOUT_SHIFT;
 878                if (!i)
 879                        break;
 880                nnode = ubifs_get_nnode(c, nnode, iip);
 881                if (IS_ERR(nnode))
 882                        return nnode;
 883        }
 884        return nnode;
 885}
 886
 887/**
 888 * make_nnode_dirty - find a nnode and, if found, make it dirty.
 889 * @c: UBIFS file-system description object
 890 * @node_num: nnode number of nnode to make dirty
 891 * @lnum: LEB number where nnode was written
 892 * @offs: offset where nnode was written
 893 *
 894 * This function is used by LPT garbage collection.  LPT garbage collection is
 895 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 896 * simply involves marking all the nodes in the LEB being garbage-collected as
 897 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 898 * to be reused.
 899 *
 900 * This function returns %0 on success and a negative error code on failure.
 901 */
 902static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
 903                            int offs)
 904{
 905        struct ubifs_nnode *nnode;
 906
 907        nnode = nnode_lookup(c, node_num);
 908        if (IS_ERR(nnode))
 909                return PTR_ERR(nnode);
 910        if (nnode->parent) {
 911                struct ubifs_nbranch *branch;
 912
 913                branch = &nnode->parent->nbranch[nnode->iip];
 914                if (branch->lnum != lnum || branch->offs != offs)
 915                        return 0; /* nnode is obsolete */
 916        } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
 917                        return 0; /* nnode is obsolete */
 918        /* Assumes cnext list is empty i.e. not called during commit */
 919        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 920                c->dirty_nn_cnt += 1;
 921                ubifs_add_nnode_dirt(c, nnode);
 922                /* Mark parent and ancestors dirty too */
 923                nnode = nnode->parent;
 924                while (nnode) {
 925                        if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
 926                                c->dirty_nn_cnt += 1;
 927                                ubifs_add_nnode_dirt(c, nnode);
 928                                nnode = nnode->parent;
 929                        } else
 930                                break;
 931                }
 932        }
 933        return 0;
 934}
 935
 936/**
 937 * make_pnode_dirty - find a pnode and, if found, make it dirty.
 938 * @c: UBIFS file-system description object
 939 * @node_num: pnode number of pnode to make dirty
 940 * @lnum: LEB number where pnode was written
 941 * @offs: offset where pnode was written
 942 *
 943 * This function is used by LPT garbage collection.  LPT garbage collection is
 944 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 945 * simply involves marking all the nodes in the LEB being garbage-collected as
 946 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 947 * to be reused.
 948 *
 949 * This function returns %0 on success and a negative error code on failure.
 950 */
 951static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
 952                            int offs)
 953{
 954        struct ubifs_pnode *pnode;
 955        struct ubifs_nbranch *branch;
 956
 957        pnode = pnode_lookup(c, node_num);
 958        if (IS_ERR(pnode))
 959                return PTR_ERR(pnode);
 960        branch = &pnode->parent->nbranch[pnode->iip];
 961        if (branch->lnum != lnum || branch->offs != offs)
 962                return 0;
 963        do_make_pnode_dirty(c, pnode);
 964        return 0;
 965}
 966
 967/**
 968 * make_ltab_dirty - make ltab node dirty.
 969 * @c: UBIFS file-system description object
 970 * @lnum: LEB number where ltab was written
 971 * @offs: offset where ltab was written
 972 *
 973 * This function is used by LPT garbage collection.  LPT garbage collection is
 974 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
 975 * simply involves marking all the nodes in the LEB being garbage-collected as
 976 * dirty.  The dirty nodes are written next commit, after which the LEB is free
 977 * to be reused.
 978 *
 979 * This function returns %0 on success and a negative error code on failure.
 980 */
 981static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
 982{
 983        if (lnum != c->ltab_lnum || offs != c->ltab_offs)
 984                return 0; /* This ltab node is obsolete */
 985        if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
 986                c->lpt_drty_flgs |= LTAB_DIRTY;
 987                ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
 988        }
 989        return 0;
 990}
 991
 992/**
 993 * make_lsave_dirty - make lsave node dirty.
 994 * @c: UBIFS file-system description object
 995 * @lnum: LEB number where lsave was written
 996 * @offs: offset where lsave was written
 997 *
 998 * This function is used by LPT garbage collection.  LPT garbage collection is
 999 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1000 * simply involves marking all the nodes in the LEB being garbage-collected as
1001 * dirty.  The dirty nodes are written next commit, after which the LEB is free
1002 * to be reused.
1003 *
1004 * This function returns %0 on success and a negative error code on failure.
1005 */
1006static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1007{
1008        if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1009                return 0; /* This lsave node is obsolete */
1010        if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1011                c->lpt_drty_flgs |= LSAVE_DIRTY;
1012                ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1013        }
1014        return 0;
1015}
1016
1017/**
1018 * make_node_dirty - make node dirty.
1019 * @c: UBIFS file-system description object
1020 * @node_type: LPT node type
1021 * @node_num: node number
1022 * @lnum: LEB number where node was written
1023 * @offs: offset where node was written
1024 *
1025 * This function is used by LPT garbage collection.  LPT garbage collection is
1026 * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1027 * simply involves marking all the nodes in the LEB being garbage-collected as
1028 * dirty.  The dirty nodes are written next commit, after which the LEB is free
1029 * to be reused.
1030 *
1031 * This function returns %0 on success and a negative error code on failure.
1032 */
1033static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1034                           int lnum, int offs)
1035{
1036        switch (node_type) {
1037        case UBIFS_LPT_NNODE:
1038                return make_nnode_dirty(c, node_num, lnum, offs);
1039        case UBIFS_LPT_PNODE:
1040                return make_pnode_dirty(c, node_num, lnum, offs);
1041        case UBIFS_LPT_LTAB:
1042                return make_ltab_dirty(c, lnum, offs);
1043        case UBIFS_LPT_LSAVE:
1044                return make_lsave_dirty(c, lnum, offs);
1045        }
1046        return -EINVAL;
1047}
1048
1049/**
1050 * get_lpt_node_len - return the length of a node based on its type.
1051 * @c: UBIFS file-system description object
1052 * @node_type: LPT node type
1053 */
1054static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1055{
1056        switch (node_type) {
1057        case UBIFS_LPT_NNODE:
1058                return c->nnode_sz;
1059        case UBIFS_LPT_PNODE:
1060                return c->pnode_sz;
1061        case UBIFS_LPT_LTAB:
1062                return c->ltab_sz;
1063        case UBIFS_LPT_LSAVE:
1064                return c->lsave_sz;
1065        }
1066        return 0;
1067}
1068
1069/**
1070 * get_pad_len - return the length of padding in a buffer.
1071 * @c: UBIFS file-system description object
1072 * @buf: buffer
1073 * @len: length of buffer
1074 */
1075static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1076{
1077        int offs, pad_len;
1078
1079        if (c->min_io_size == 1)
1080                return 0;
1081        offs = c->leb_size - len;
1082        pad_len = ALIGN(offs, c->min_io_size) - offs;
1083        return pad_len;
1084}
1085
1086/**
1087 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1088 * @c: UBIFS file-system description object
1089 * @buf: buffer
1090 * @node_num: node number is returned here
1091 */
1092static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1093                             int *node_num)
1094{
1095        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1096        int pos = 0, node_type;
1097
1098        node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1099        *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1100        return node_type;
1101}
1102
1103/**
1104 * is_a_node - determine if a buffer contains a node.
1105 * @c: UBIFS file-system description object
1106 * @buf: buffer
1107 * @len: length of buffer
1108 *
1109 * This function returns %1 if the buffer contains a node or %0 if it does not.
1110 */
1111static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1112{
1113        uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1114        int pos = 0, node_type, node_len;
1115        uint16_t crc, calc_crc;
1116
1117        if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1118                return 0;
1119        node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1120        if (node_type == UBIFS_LPT_NOT_A_NODE)
1121                return 0;
1122        node_len = get_lpt_node_len(c, node_type);
1123        if (!node_len || node_len > len)
1124                return 0;
1125        pos = 0;
1126        addr = buf;
1127        crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1128        calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1129                         node_len - UBIFS_LPT_CRC_BYTES);
1130        if (crc != calc_crc)
1131                return 0;
1132        return 1;
1133}
1134
1135/**
1136 * lpt_gc_lnum - garbage collect a LPT LEB.
1137 * @c: UBIFS file-system description object
1138 * @lnum: LEB number to garbage collect
1139 *
1140 * LPT garbage collection is used only for the "big" LPT model
1141 * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1142 * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1143 * next commit, after which the LEB is free to be reused.
1144 *
1145 * This function returns %0 on success and a negative error code on failure.
1146 */
1147static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1148{
1149        int err, len = c->leb_size, node_type, node_num, node_len, offs;
1150        void *buf = c->lpt_buf;
1151
1152        dbg_lp("LEB %d", lnum);
1153        err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1154        if (err) {
1155                ubifs_err("cannot read LEB %d, error %d", lnum, err);
1156                return err;
1157        }
1158        while (1) {
1159                if (!is_a_node(c, buf, len)) {
1160                        int pad_len;
1161
1162                        pad_len = get_pad_len(c, buf, len);
1163                        if (pad_len) {
1164                                buf += pad_len;
1165                                len -= pad_len;
1166                                continue;
1167                        }
1168                        return 0;
1169                }
1170                node_type = get_lpt_node_type(c, buf, &node_num);
1171                node_len = get_lpt_node_len(c, node_type);
1172                offs = c->leb_size - len;
1173                ubifs_assert(node_len != 0);
1174                mutex_lock(&c->lp_mutex);
1175                err = make_node_dirty(c, node_type, node_num, lnum, offs);
1176                mutex_unlock(&c->lp_mutex);
1177                if (err)
1178                        return err;
1179                buf += node_len;
1180                len -= node_len;
1181        }
1182        return 0;
1183}
1184
1185/**
1186 * lpt_gc - LPT garbage collection.
1187 * @c: UBIFS file-system description object
1188 *
1189 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1190 * Returns %0 on success and a negative error code on failure.
1191 */
1192static int lpt_gc(struct ubifs_info *c)
1193{
1194        int i, lnum = -1, dirty = 0;
1195
1196        mutex_lock(&c->lp_mutex);
1197        for (i = 0; i < c->lpt_lebs; i++) {
1198                ubifs_assert(!c->ltab[i].tgc);
1199                if (i + c->lpt_first == c->nhead_lnum ||
1200                    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1201                        continue;
1202                if (c->ltab[i].dirty > dirty) {
1203                        dirty = c->ltab[i].dirty;
1204                        lnum = i + c->lpt_first;
1205                }
1206        }
1207        mutex_unlock(&c->lp_mutex);
1208        if (lnum == -1)
1209                return -ENOSPC;
1210        return lpt_gc_lnum(c, lnum);
1211}
1212
1213/**
1214 * ubifs_lpt_start_commit - UBIFS commit starts.
1215 * @c: the UBIFS file-system description object
1216 *
1217 * This function has to be called when UBIFS starts the commit operation.
1218 * This function "freezes" all currently dirty LEB properties and does not
1219 * change them anymore. Further changes are saved and tracked separately
1220 * because they are not part of this commit. This function returns zero in case
1221 * of success and a negative error code in case of failure.
1222 */
1223int ubifs_lpt_start_commit(struct ubifs_info *c)
1224{
1225        int err, cnt;
1226
1227        dbg_lp("");
1228
1229        mutex_lock(&c->lp_mutex);
1230        err = dbg_chk_lpt_free_spc(c);
1231        if (err)
1232                goto out;
1233        err = dbg_check_ltab(c);
1234        if (err)
1235                goto out;
1236
1237        if (c->check_lpt_free) {
1238                /*
1239                 * We ensure there is enough free space in
1240                 * ubifs_lpt_post_commit() by marking nodes dirty. That
1241                 * information is lost when we unmount, so we also need
1242                 * to check free space once after mounting also.
1243                 */
1244                c->check_lpt_free = 0;
1245                while (need_write_all(c)) {
1246                        mutex_unlock(&c->lp_mutex);
1247                        err = lpt_gc(c);
1248                        if (err)
1249                                return err;
1250                        mutex_lock(&c->lp_mutex);
1251                }
1252        }
1253
1254        lpt_tgc_start(c);
1255
1256        if (!c->dirty_pn_cnt) {
1257                dbg_cmt("no cnodes to commit");
1258                err = 0;
1259                goto out;
1260        }
1261
1262        if (!c->big_lpt && need_write_all(c)) {
1263                /* If needed, write everything */
1264                err = make_tree_dirty(c);
1265                if (err)
1266                        goto out;
1267                lpt_tgc_start(c);
1268        }
1269
1270        if (c->big_lpt)
1271                populate_lsave(c);
1272
1273        cnt = get_cnodes_to_commit(c);
1274        ubifs_assert(cnt != 0);
1275
1276        err = layout_cnodes(c);
1277        if (err)
1278                goto out;
1279
1280        /* Copy the LPT's own lprops for end commit to write */
1281        memcpy(c->ltab_cmt, c->ltab,
1282               sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1283        c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1284
1285out:
1286        mutex_unlock(&c->lp_mutex);
1287        return err;
1288}
1289
1290/**
1291 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1292 * @c: UBIFS file-system description object
1293 */
1294static void free_obsolete_cnodes(struct ubifs_info *c)
1295{
1296        struct ubifs_cnode *cnode, *cnext;
1297
1298        cnext = c->lpt_cnext;
1299        if (!cnext)
1300                return;
1301        do {
1302                cnode = cnext;
1303                cnext = cnode->cnext;
1304                if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1305                        kfree(cnode);
1306                else
1307                        cnode->cnext = NULL;
1308        } while (cnext != c->lpt_cnext);
1309        c->lpt_cnext = NULL;
1310}
1311
1312/**
1313 * ubifs_lpt_end_commit - finish the commit operation.
1314 * @c: the UBIFS file-system description object
1315 *
1316 * This function has to be called when the commit operation finishes. It
1317 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1318 * the media. Returns zero in case of success and a negative error code in case
1319 * of failure.
1320 */
1321int ubifs_lpt_end_commit(struct ubifs_info *c)
1322{
1323        int err;
1324
1325        dbg_lp("");
1326
1327        if (!c->lpt_cnext)
1328                return 0;
1329
1330        err = write_cnodes(c);
1331        if (err)
1332                return err;
1333
1334        mutex_lock(&c->lp_mutex);
1335        free_obsolete_cnodes(c);
1336        mutex_unlock(&c->lp_mutex);
1337
1338        return 0;
1339}
1340
1341/**
1342 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1343 * @c: UBIFS file-system description object
1344 *
1345 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1346 * commit for the "big" LPT model.
1347 */
1348int ubifs_lpt_post_commit(struct ubifs_info *c)
1349{
1350        int err;
1351
1352        mutex_lock(&c->lp_mutex);
1353        err = lpt_tgc_end(c);
1354        if (err)
1355                goto out;
1356        if (c->big_lpt)
1357                while (need_write_all(c)) {
1358                        mutex_unlock(&c->lp_mutex);
1359                        err = lpt_gc(c);
1360                        if (err)
1361                                return err;
1362                        mutex_lock(&c->lp_mutex);
1363                }
1364out:
1365        mutex_unlock(&c->lp_mutex);
1366        return err;
1367}
1368
1369/**
1370 * first_nnode - find the first nnode in memory.
1371 * @c: UBIFS file-system description object
1372 * @hght: height of tree where nnode found is returned here
1373 *
1374 * This function returns a pointer to the nnode found or %NULL if no nnode is
1375 * found. This function is a helper to 'ubifs_lpt_free()'.
1376 */
1377static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1378{
1379        struct ubifs_nnode *nnode;
1380        int h, i, found;
1381
1382        nnode = c->nroot;
1383        *hght = 0;
1384        if (!nnode)
1385                return NULL;
1386        for (h = 1; h < c->lpt_hght; h++) {
1387                found = 0;
1388                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1389                        if (nnode->nbranch[i].nnode) {
1390                                found = 1;
1391                                nnode = nnode->nbranch[i].nnode;
1392                                *hght = h;
1393                                break;
1394                        }
1395                }
1396                if (!found)
1397                        break;
1398        }
1399        return nnode;
1400}
1401
1402/**
1403 * next_nnode - find the next nnode in memory.
1404 * @c: UBIFS file-system description object
1405 * @nnode: nnode from which to start.
1406 * @hght: height of tree where nnode is, is passed and returned here
1407 *
1408 * This function returns a pointer to the nnode found or %NULL if no nnode is
1409 * found. This function is a helper to 'ubifs_lpt_free()'.
1410 */
1411static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1412                                      struct ubifs_nnode *nnode, int *hght)
1413{
1414        struct ubifs_nnode *parent;
1415        int iip, h, i, found;
1416
1417        parent = nnode->parent;
1418        if (!parent)
1419                return NULL;
1420        if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1421                *hght -= 1;
1422                return parent;
1423        }
1424        for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1425                nnode = parent->nbranch[iip].nnode;
1426                if (nnode)
1427                        break;
1428        }
1429        if (!nnode) {
1430                *hght -= 1;
1431                return parent;
1432        }
1433        for (h = *hght + 1; h < c->lpt_hght; h++) {
1434                found = 0;
1435                for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1436                        if (nnode->nbranch[i].nnode) {
1437                                found = 1;
1438                                nnode = nnode->nbranch[i].nnode;
1439                                *hght = h;
1440                                break;
1441                        }
1442                }
1443                if (!found)
1444                        break;
1445        }
1446        return nnode;
1447}
1448
1449/**
1450 * ubifs_lpt_free - free resources owned by the LPT.
1451 * @c: UBIFS file-system description object
1452 * @wr_only: free only resources used for writing
1453 */
1454void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1455{
1456        struct ubifs_nnode *nnode;
1457        int i, hght;
1458
1459        /* Free write-only things first */
1460
1461        free_obsolete_cnodes(c); /* Leftover from a failed commit */
1462
1463        vfree(c->ltab_cmt);
1464        c->ltab_cmt = NULL;
1465        vfree(c->lpt_buf);
1466        c->lpt_buf = NULL;
1467        kfree(c->lsave);
1468        c->lsave = NULL;
1469
1470        if (wr_only)
1471                return;
1472
1473        /* Now free the rest */
1474
1475        nnode = first_nnode(c, &hght);
1476        while (nnode) {
1477                for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1478                        kfree(nnode->nbranch[i].nnode);
1479                nnode = next_nnode(c, nnode, &hght);
1480        }
1481        for (i = 0; i < LPROPS_HEAP_CNT; i++)
1482                kfree(c->lpt_heap[i].arr);
1483        kfree(c->dirty_idx.arr);
1484        kfree(c->nroot);
1485        vfree(c->ltab);
1486        kfree(c->lpt_nod_buf);
1487}
1488
1489#ifdef CONFIG_UBIFS_FS_DEBUG
1490
1491/**
1492 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1493 * @buf: buffer
1494 * @len: buffer length
1495 */
1496static int dbg_is_all_ff(uint8_t *buf, int len)
1497{
1498        int i;
1499
1500        for (i = 0; i < len; i++)
1501                if (buf[i] != 0xff)
1502                        return 0;
1503        return 1;
1504}
1505
1506/**
1507 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1508 * @c: the UBIFS file-system description object
1509 * @lnum: LEB number where nnode was written
1510 * @offs: offset where nnode was written
1511 */
1512static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1513{
1514        struct ubifs_nnode *nnode;
1515        int hght;
1516
1517        /* Entire tree is in memory so first_nnode / next_nnode are OK */
1518        nnode = first_nnode(c, &hght);
1519        for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1520                struct ubifs_nbranch *branch;
1521
1522                cond_resched();
1523                if (nnode->parent) {
1524                        branch = &nnode->parent->nbranch[nnode->iip];
1525                        if (branch->lnum != lnum || branch->offs != offs)
1526                                continue;
1527                        if (test_bit(DIRTY_CNODE, &nnode->flags))
1528                                return 1;
1529                        return 0;
1530                } else {
1531                        if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1532                                continue;
1533                        if (test_bit(DIRTY_CNODE, &nnode->flags))
1534                                return 1;
1535                        return 0;
1536                }
1537        }
1538        return 1;
1539}
1540
1541/**
1542 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1543 * @c: the UBIFS file-system description object
1544 * @lnum: LEB number where pnode was written
1545 * @offs: offset where pnode was written
1546 */
1547static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1548{
1549        int i, cnt;
1550
1551        cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1552        for (i = 0; i < cnt; i++) {
1553                struct ubifs_pnode *pnode;
1554                struct ubifs_nbranch *branch;
1555
1556                cond_resched();
1557                pnode = pnode_lookup(c, i);
1558                if (IS_ERR(pnode))
1559                        return PTR_ERR(pnode);
1560                branch = &pnode->parent->nbranch[pnode->iip];
1561                if (branch->lnum != lnum || branch->offs != offs)
1562                        continue;
1563                if (test_bit(DIRTY_CNODE, &pnode->flags))
1564                        return 1;
1565                return 0;
1566        }
1567        return 1;
1568}
1569
1570/**
1571 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1572 * @c: the UBIFS file-system description object
1573 * @lnum: LEB number where ltab node was written
1574 * @offs: offset where ltab node was written
1575 */
1576static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1577{
1578        if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1579                return 1;
1580        return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1581}
1582
1583/**
1584 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1585 * @c: the UBIFS file-system description object
1586 * @lnum: LEB number where lsave node was written
1587 * @offs: offset where lsave node was written
1588 */
1589static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1590{
1591        if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1592                return 1;
1593        return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1594}
1595
1596/**
1597 * dbg_is_node_dirty - determine if a node is dirty.
1598 * @c: the UBIFS file-system description object
1599 * @node_type: node type
1600 * @lnum: LEB number where node was written
1601 * @offs: offset where node was written
1602 */
1603static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1604                             int offs)
1605{
1606        switch (node_type) {
1607        case UBIFS_LPT_NNODE:
1608                return dbg_is_nnode_dirty(c, lnum, offs);
1609        case UBIFS_LPT_PNODE:
1610                return dbg_is_pnode_dirty(c, lnum, offs);
1611        case UBIFS_LPT_LTAB:
1612                return dbg_is_ltab_dirty(c, lnum, offs);
1613        case UBIFS_LPT_LSAVE:
1614                return dbg_is_lsave_dirty(c, lnum, offs);
1615        }
1616        return 1;
1617}
1618
1619/**
1620 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1621 * @c: the UBIFS file-system description object
1622 * @lnum: LEB number where node was written
1623 * @offs: offset where node was written
1624 *
1625 * This function returns %0 on success and a negative error code on failure.
1626 */
1627static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1628{
1629        int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1630        int ret;
1631        void *buf = c->dbg->buf;
1632
1633        if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1634                return 0;
1635
1636        dbg_lp("LEB %d", lnum);
1637        err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1638        if (err) {
1639                dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
1640                return err;
1641        }
1642        while (1) {
1643                if (!is_a_node(c, buf, len)) {
1644                        int i, pad_len;
1645
1646                        pad_len = get_pad_len(c, buf, len);
1647                        if (pad_len) {
1648                                buf += pad_len;
1649                                len -= pad_len;
1650                                dirty += pad_len;
1651                                continue;
1652                        }
1653                        if (!dbg_is_all_ff(buf, len)) {
1654                                dbg_msg("invalid empty space in LEB %d at %d",
1655                                        lnum, c->leb_size - len);
1656                                err = -EINVAL;
1657                        }
1658                        i = lnum - c->lpt_first;
1659                        if (len != c->ltab[i].free) {
1660                                dbg_msg("invalid free space in LEB %d "
1661                                        "(free %d, expected %d)",
1662                                        lnum, len, c->ltab[i].free);
1663                                err = -EINVAL;
1664                        }
1665                        if (dirty != c->ltab[i].dirty) {
1666                                dbg_msg("invalid dirty space in LEB %d "
1667                                        "(dirty %d, expected %d)",
1668                                        lnum, dirty, c->ltab[i].dirty);
1669                                err = -EINVAL;
1670                        }
1671                        return err;
1672                }
1673                node_type = get_lpt_node_type(c, buf, &node_num);
1674                node_len = get_lpt_node_len(c, node_type);
1675                ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1676                if (ret == 1)
1677                        dirty += node_len;
1678                buf += node_len;
1679                len -= node_len;
1680        }
1681}
1682
1683/**
1684 * dbg_check_ltab - check the free and dirty space in the ltab.
1685 * @c: the UBIFS file-system description object
1686 *
1687 * This function returns %0 on success and a negative error code on failure.
1688 */
1689int dbg_check_ltab(struct ubifs_info *c)
1690{
1691        int lnum, err, i, cnt;
1692
1693        if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1694                return 0;
1695
1696        /* Bring the entire tree into memory */
1697        cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1698        for (i = 0; i < cnt; i++) {
1699                struct ubifs_pnode *pnode;
1700
1701                pnode = pnode_lookup(c, i);
1702                if (IS_ERR(pnode))
1703                        return PTR_ERR(pnode);
1704                cond_resched();
1705        }
1706
1707        /* Check nodes */
1708        err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1709        if (err)
1710                return err;
1711
1712        /* Check each LEB */
1713        for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1714                err = dbg_check_ltab_lnum(c, lnum);
1715                if (err) {
1716                        dbg_err("failed at LEB %d", lnum);
1717                        return err;
1718                }
1719        }
1720
1721        dbg_lp("succeeded");
1722        return 0;
1723}
1724
1725/**
1726 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1727 * @c: the UBIFS file-system description object
1728 *
1729 * This function returns %0 on success and a negative error code on failure.
1730 */
1731int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1732{
1733        long long free = 0;
1734        int i;
1735
1736        if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1737                return 0;
1738
1739        for (i = 0; i < c->lpt_lebs; i++) {
1740                if (c->ltab[i].tgc || c->ltab[i].cmt)
1741                        continue;
1742                if (i + c->lpt_first == c->nhead_lnum)
1743                        free += c->leb_size - c->nhead_offs;
1744                else if (c->ltab[i].free == c->leb_size)
1745                        free += c->leb_size;
1746        }
1747        if (free < c->lpt_sz) {
1748                dbg_err("LPT space error: free %lld lpt_sz %lld",
1749                        free, c->lpt_sz);
1750                dbg_dump_lpt_info(c);
1751                dbg_dump_lpt_lebs(c);
1752                dump_stack();
1753                return -EINVAL;
1754        }
1755        return 0;
1756}
1757
1758/**
1759 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1760 * @c: the UBIFS file-system description object
1761 * @action: what to do
1762 * @len: length written
1763 *
1764 * This function returns %0 on success and a negative error code on failure.
1765 * The @action argument may be one of:
1766 *   o %0 - LPT debugging checking starts, initialize debugging variables;
1767 *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1768 *   o %2 - switched to a different LEB and wasted @len bytes;
1769 *   o %3 - check that we've written the right number of bytes.
1770 *   o %4 - wasted @len bytes;
1771 */
1772int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1773{
1774        struct ubifs_debug_info *d = c->dbg;
1775        long long chk_lpt_sz, lpt_sz;
1776        int err = 0;
1777
1778        if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1779                return 0;
1780
1781        switch (action) {
1782        case 0:
1783                d->chk_lpt_sz = 0;
1784                d->chk_lpt_sz2 = 0;
1785                d->chk_lpt_lebs = 0;
1786                d->chk_lpt_wastage = 0;
1787                if (c->dirty_pn_cnt > c->pnode_cnt) {
1788                        dbg_err("dirty pnodes %d exceed max %d",
1789                                c->dirty_pn_cnt, c->pnode_cnt);
1790                        err = -EINVAL;
1791                }
1792                if (c->dirty_nn_cnt > c->nnode_cnt) {
1793                        dbg_err("dirty nnodes %d exceed max %d",
1794                                c->dirty_nn_cnt, c->nnode_cnt);
1795                        err = -EINVAL;
1796                }
1797                return err;
1798        case 1:
1799                d->chk_lpt_sz += len;
1800                return 0;
1801        case 2:
1802                d->chk_lpt_sz += len;
1803                d->chk_lpt_wastage += len;
1804                d->chk_lpt_lebs += 1;
1805                return 0;
1806        case 3:
1807                chk_lpt_sz = c->leb_size;
1808                chk_lpt_sz *= d->chk_lpt_lebs;
1809                chk_lpt_sz += len - c->nhead_offs;
1810                if (d->chk_lpt_sz != chk_lpt_sz) {
1811                        dbg_err("LPT wrote %lld but space used was %lld",
1812                                d->chk_lpt_sz, chk_lpt_sz);
1813                        err = -EINVAL;
1814                }
1815                if (d->chk_lpt_sz > c->lpt_sz) {
1816                        dbg_err("LPT wrote %lld but lpt_sz is %lld",
1817                                d->chk_lpt_sz, c->lpt_sz);
1818                        err = -EINVAL;
1819                }
1820                if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1821                        dbg_err("LPT layout size %lld but wrote %lld",
1822                                d->chk_lpt_sz, d->chk_lpt_sz2);
1823                        err = -EINVAL;
1824                }
1825                if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1826                        dbg_err("LPT new nhead offs: expected %d was %d",
1827                                d->new_nhead_offs, len);
1828                        err = -EINVAL;
1829                }
1830                lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1831                lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1832                lpt_sz += c->ltab_sz;
1833                if (c->big_lpt)
1834                        lpt_sz += c->lsave_sz;
1835                if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1836                        dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1837                                d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1838                        err = -EINVAL;
1839                }
1840                if (err) {
1841                        dbg_dump_lpt_info(c);
1842                        dbg_dump_lpt_lebs(c);
1843                        dump_stack();
1844                }
1845                d->chk_lpt_sz2 = d->chk_lpt_sz;
1846                d->chk_lpt_sz = 0;
1847                d->chk_lpt_wastage = 0;
1848                d->chk_lpt_lebs = 0;
1849                d->new_nhead_offs = len;
1850                return err;
1851        case 4:
1852                d->chk_lpt_sz += len;
1853                d->chk_lpt_wastage += len;
1854                return 0;
1855        default:
1856                return -EINVAL;
1857        }
1858}
1859
1860/**
1861 * dbg_dump_lpt_leb - dump an LPT LEB.
1862 * @c: UBIFS file-system description object
1863 * @lnum: LEB number to dump
1864 *
1865 * This function dumps an LEB from LPT area. Nodes in this area are very
1866 * different to nodes in the main area (e.g., they do not have common headers,
1867 * they do not have 8-byte alignments, etc), so we have a separate function to
1868 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1869 */
1870static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1871{
1872        int err, len = c->leb_size, node_type, node_num, node_len, offs;
1873        void *buf = c->dbg->buf;
1874
1875        printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
1876               current->pid, lnum);
1877        err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1878        if (err) {
1879                ubifs_err("cannot read LEB %d, error %d", lnum, err);
1880                return;
1881        }
1882        while (1) {
1883                offs = c->leb_size - len;
1884                if (!is_a_node(c, buf, len)) {
1885                        int pad_len;
1886
1887                        pad_len = get_pad_len(c, buf, len);
1888                        if (pad_len) {
1889                                printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
1890                                       lnum, offs, pad_len);
1891                                buf += pad_len;
1892                                len -= pad_len;
1893                                continue;
1894                        }
1895                        if (len)
1896                                printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n",
1897                                       lnum, offs, len);
1898                        break;
1899                }
1900
1901                node_type = get_lpt_node_type(c, buf, &node_num);
1902                switch (node_type) {
1903                case UBIFS_LPT_PNODE:
1904                {
1905                        node_len = c->pnode_sz;
1906                        if (c->big_lpt)
1907                                printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n",
1908                                       lnum, offs, node_num);
1909                        else
1910                                printk(KERN_DEBUG "LEB %d:%d, pnode\n",
1911                                       lnum, offs);
1912                        break;
1913                }
1914                case UBIFS_LPT_NNODE:
1915                {
1916                        int i;
1917                        struct ubifs_nnode nnode;
1918
1919                        node_len = c->nnode_sz;
1920                        if (c->big_lpt)
1921                                printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ",
1922                                       lnum, offs, node_num);
1923                        else
1924                                printk(KERN_DEBUG "LEB %d:%d, nnode, ",
1925                                       lnum, offs);
1926                        err = ubifs_unpack_nnode(c, buf, &nnode);
1927                        for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1928                                printk(KERN_CONT "%d:%d", nnode.nbranch[i].lnum,
1929                                       nnode.nbranch[i].offs);
1930                                if (i != UBIFS_LPT_FANOUT - 1)
1931                                        printk(KERN_CONT ", ");
1932                        }
1933                        printk(KERN_CONT "\n");
1934                        break;
1935                }
1936                case UBIFS_LPT_LTAB:
1937                        node_len = c->ltab_sz;
1938                        printk(KERN_DEBUG "LEB %d:%d, ltab\n",
1939                               lnum, offs);
1940                        break;
1941                case UBIFS_LPT_LSAVE:
1942                        node_len = c->lsave_sz;
1943                        printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs);
1944                        break;
1945                default:
1946                        ubifs_err("LPT node type %d not recognized", node_type);
1947                        return;
1948                }
1949
1950                buf += node_len;
1951                len -= node_len;
1952        }
1953
1954        printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
1955               current->pid, lnum);
1956}
1957
1958/**
1959 * dbg_dump_lpt_lebs - dump LPT lebs.
1960 * @c: UBIFS file-system description object
1961 *
1962 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1963 * locked.
1964 */
1965void dbg_dump_lpt_lebs(const struct ubifs_info *c)
1966{
1967        int i;
1968
1969        printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n",
1970               current->pid);
1971        for (i = 0; i < c->lpt_lebs; i++)
1972                dump_lpt_leb(c, i + c->lpt_first);
1973        printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n",
1974               current->pid);
1975}
1976
1977#endif /* CONFIG_UBIFS_FS_DEBUG */
1978