linux/fs/ubifs/super.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (Битюцкий Артём)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements UBIFS initialization and VFS superblock operations. Some
  25 * initialization stuff which is rather large and complex is placed at
  26 * corresponding subsystems, but most of it is here.
  27 */
  28
  29#include <linux/init.h>
  30#include <linux/slab.h>
  31#include <linux/module.h>
  32#include <linux/ctype.h>
  33#include <linux/kthread.h>
  34#include <linux/parser.h>
  35#include <linux/seq_file.h>
  36#include <linux/mount.h>
  37#include <linux/math64.h>
  38#include <linux/writeback.h>
  39#include "ubifs.h"
  40
  41/*
  42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
  43 * allocating too much.
  44 */
  45#define UBIFS_KMALLOC_OK (128*1024)
  46
  47/* Slab cache for UBIFS inodes */
  48struct kmem_cache *ubifs_inode_slab;
  49
  50/* UBIFS TNC shrinker description */
  51static struct shrinker ubifs_shrinker_info = {
  52        .shrink = ubifs_shrinker,
  53        .seeks = DEFAULT_SEEKS,
  54};
  55
  56/**
  57 * validate_inode - validate inode.
  58 * @c: UBIFS file-system description object
  59 * @inode: the inode to validate
  60 *
  61 * This is a helper function for 'ubifs_iget()' which validates various fields
  62 * of a newly built inode to make sure they contain sane values and prevent
  63 * possible vulnerabilities. Returns zero if the inode is all right and
  64 * a non-zero error code if not.
  65 */
  66static int validate_inode(struct ubifs_info *c, const struct inode *inode)
  67{
  68        int err;
  69        const struct ubifs_inode *ui = ubifs_inode(inode);
  70
  71        if (inode->i_size > c->max_inode_sz) {
  72                ubifs_err("inode is too large (%lld)",
  73                          (long long)inode->i_size);
  74                return 1;
  75        }
  76
  77        if (ui->compr_type < 0 || ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
  78                ubifs_err("unknown compression type %d", ui->compr_type);
  79                return 2;
  80        }
  81
  82        if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
  83                return 3;
  84
  85        if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
  86                return 4;
  87
  88        if (ui->xattr && (inode->i_mode & S_IFMT) != S_IFREG)
  89                return 5;
  90
  91        if (!ubifs_compr_present(ui->compr_type)) {
  92                ubifs_warn("inode %lu uses '%s' compression, but it was not "
  93                           "compiled in", inode->i_ino,
  94                           ubifs_compr_name(ui->compr_type));
  95        }
  96
  97        err = dbg_check_dir_size(c, inode);
  98        return err;
  99}
 100
 101struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
 102{
 103        int err;
 104        union ubifs_key key;
 105        struct ubifs_ino_node *ino;
 106        struct ubifs_info *c = sb->s_fs_info;
 107        struct inode *inode;
 108        struct ubifs_inode *ui;
 109
 110        dbg_gen("inode %lu", inum);
 111
 112        inode = iget_locked(sb, inum);
 113        if (!inode)
 114                return ERR_PTR(-ENOMEM);
 115        if (!(inode->i_state & I_NEW))
 116                return inode;
 117        ui = ubifs_inode(inode);
 118
 119        ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
 120        if (!ino) {
 121                err = -ENOMEM;
 122                goto out;
 123        }
 124
 125        ino_key_init(c, &key, inode->i_ino);
 126
 127        err = ubifs_tnc_lookup(c, &key, ino);
 128        if (err)
 129                goto out_ino;
 130
 131        inode->i_flags |= (S_NOCMTIME | S_NOATIME);
 132        inode->i_nlink = le32_to_cpu(ino->nlink);
 133        inode->i_uid   = le32_to_cpu(ino->uid);
 134        inode->i_gid   = le32_to_cpu(ino->gid);
 135        inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
 136        inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
 137        inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
 138        inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
 139        inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
 140        inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
 141        inode->i_mode = le32_to_cpu(ino->mode);
 142        inode->i_size = le64_to_cpu(ino->size);
 143
 144        ui->data_len    = le32_to_cpu(ino->data_len);
 145        ui->flags       = le32_to_cpu(ino->flags);
 146        ui->compr_type  = le16_to_cpu(ino->compr_type);
 147        ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
 148        ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
 149        ui->xattr_size  = le32_to_cpu(ino->xattr_size);
 150        ui->xattr_names = le32_to_cpu(ino->xattr_names);
 151        ui->synced_i_size = ui->ui_size = inode->i_size;
 152
 153        ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
 154
 155        err = validate_inode(c, inode);
 156        if (err)
 157                goto out_invalid;
 158
 159        /* Disable read-ahead */
 160        inode->i_mapping->backing_dev_info = &c->bdi;
 161
 162        switch (inode->i_mode & S_IFMT) {
 163        case S_IFREG:
 164                inode->i_mapping->a_ops = &ubifs_file_address_operations;
 165                inode->i_op = &ubifs_file_inode_operations;
 166                inode->i_fop = &ubifs_file_operations;
 167                if (ui->xattr) {
 168                        ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 169                        if (!ui->data) {
 170                                err = -ENOMEM;
 171                                goto out_ino;
 172                        }
 173                        memcpy(ui->data, ino->data, ui->data_len);
 174                        ((char *)ui->data)[ui->data_len] = '\0';
 175                } else if (ui->data_len != 0) {
 176                        err = 10;
 177                        goto out_invalid;
 178                }
 179                break;
 180        case S_IFDIR:
 181                inode->i_op  = &ubifs_dir_inode_operations;
 182                inode->i_fop = &ubifs_dir_operations;
 183                if (ui->data_len != 0) {
 184                        err = 11;
 185                        goto out_invalid;
 186                }
 187                break;
 188        case S_IFLNK:
 189                inode->i_op = &ubifs_symlink_inode_operations;
 190                if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
 191                        err = 12;
 192                        goto out_invalid;
 193                }
 194                ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
 195                if (!ui->data) {
 196                        err = -ENOMEM;
 197                        goto out_ino;
 198                }
 199                memcpy(ui->data, ino->data, ui->data_len);
 200                ((char *)ui->data)[ui->data_len] = '\0';
 201                break;
 202        case S_IFBLK:
 203        case S_IFCHR:
 204        {
 205                dev_t rdev;
 206                union ubifs_dev_desc *dev;
 207
 208                ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
 209                if (!ui->data) {
 210                        err = -ENOMEM;
 211                        goto out_ino;
 212                }
 213
 214                dev = (union ubifs_dev_desc *)ino->data;
 215                if (ui->data_len == sizeof(dev->new))
 216                        rdev = new_decode_dev(le32_to_cpu(dev->new));
 217                else if (ui->data_len == sizeof(dev->huge))
 218                        rdev = huge_decode_dev(le64_to_cpu(dev->huge));
 219                else {
 220                        err = 13;
 221                        goto out_invalid;
 222                }
 223                memcpy(ui->data, ino->data, ui->data_len);
 224                inode->i_op = &ubifs_file_inode_operations;
 225                init_special_inode(inode, inode->i_mode, rdev);
 226                break;
 227        }
 228        case S_IFSOCK:
 229        case S_IFIFO:
 230                inode->i_op = &ubifs_file_inode_operations;
 231                init_special_inode(inode, inode->i_mode, 0);
 232                if (ui->data_len != 0) {
 233                        err = 14;
 234                        goto out_invalid;
 235                }
 236                break;
 237        default:
 238                err = 15;
 239                goto out_invalid;
 240        }
 241
 242        kfree(ino);
 243        ubifs_set_inode_flags(inode);
 244        unlock_new_inode(inode);
 245        return inode;
 246
 247out_invalid:
 248        ubifs_err("inode %lu validation failed, error %d", inode->i_ino, err);
 249        dbg_dump_node(c, ino);
 250        dbg_dump_inode(c, inode);
 251        err = -EINVAL;
 252out_ino:
 253        kfree(ino);
 254out:
 255        ubifs_err("failed to read inode %lu, error %d", inode->i_ino, err);
 256        iget_failed(inode);
 257        return ERR_PTR(err);
 258}
 259
 260static struct inode *ubifs_alloc_inode(struct super_block *sb)
 261{
 262        struct ubifs_inode *ui;
 263
 264        ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
 265        if (!ui)
 266                return NULL;
 267
 268        memset((void *)ui + sizeof(struct inode), 0,
 269               sizeof(struct ubifs_inode) - sizeof(struct inode));
 270        mutex_init(&ui->ui_mutex);
 271        spin_lock_init(&ui->ui_lock);
 272        return &ui->vfs_inode;
 273};
 274
 275static void ubifs_i_callback(struct rcu_head *head)
 276{
 277        struct inode *inode = container_of(head, struct inode, i_rcu);
 278        struct ubifs_inode *ui = ubifs_inode(inode);
 279        INIT_LIST_HEAD(&inode->i_dentry);
 280        kmem_cache_free(ubifs_inode_slab, ui);
 281}
 282
 283static void ubifs_destroy_inode(struct inode *inode)
 284{
 285        struct ubifs_inode *ui = ubifs_inode(inode);
 286
 287        kfree(ui->data);
 288        call_rcu(&inode->i_rcu, ubifs_i_callback);
 289}
 290
 291/*
 292 * Note, Linux write-back code calls this without 'i_mutex'.
 293 */
 294static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
 295{
 296        int err = 0;
 297        struct ubifs_info *c = inode->i_sb->s_fs_info;
 298        struct ubifs_inode *ui = ubifs_inode(inode);
 299
 300        ubifs_assert(!ui->xattr);
 301        if (is_bad_inode(inode))
 302                return 0;
 303
 304        mutex_lock(&ui->ui_mutex);
 305        /*
 306         * Due to races between write-back forced by budgeting
 307         * (see 'sync_some_inodes()') and pdflush write-back, the inode may
 308         * have already been synchronized, do not do this again. This might
 309         * also happen if it was synchronized in an VFS operation, e.g.
 310         * 'ubifs_link()'.
 311         */
 312        if (!ui->dirty) {
 313                mutex_unlock(&ui->ui_mutex);
 314                return 0;
 315        }
 316
 317        /*
 318         * As an optimization, do not write orphan inodes to the media just
 319         * because this is not needed.
 320         */
 321        dbg_gen("inode %lu, mode %#x, nlink %u",
 322                inode->i_ino, (int)inode->i_mode, inode->i_nlink);
 323        if (inode->i_nlink) {
 324                err = ubifs_jnl_write_inode(c, inode);
 325                if (err)
 326                        ubifs_err("can't write inode %lu, error %d",
 327                                  inode->i_ino, err);
 328                else
 329                        err = dbg_check_inode_size(c, inode, ui->ui_size);
 330        }
 331
 332        ui->dirty = 0;
 333        mutex_unlock(&ui->ui_mutex);
 334        ubifs_release_dirty_inode_budget(c, ui);
 335        return err;
 336}
 337
 338static void ubifs_evict_inode(struct inode *inode)
 339{
 340        int err;
 341        struct ubifs_info *c = inode->i_sb->s_fs_info;
 342        struct ubifs_inode *ui = ubifs_inode(inode);
 343
 344        if (ui->xattr)
 345                /*
 346                 * Extended attribute inode deletions are fully handled in
 347                 * 'ubifs_removexattr()'. These inodes are special and have
 348                 * limited usage, so there is nothing to do here.
 349                 */
 350                goto out;
 351
 352        dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
 353        ubifs_assert(!atomic_read(&inode->i_count));
 354
 355        truncate_inode_pages(&inode->i_data, 0);
 356
 357        if (inode->i_nlink)
 358                goto done;
 359
 360        if (is_bad_inode(inode))
 361                goto out;
 362
 363        ui->ui_size = inode->i_size = 0;
 364        err = ubifs_jnl_delete_inode(c, inode);
 365        if (err)
 366                /*
 367                 * Worst case we have a lost orphan inode wasting space, so a
 368                 * simple error message is OK here.
 369                 */
 370                ubifs_err("can't delete inode %lu, error %d",
 371                          inode->i_ino, err);
 372
 373out:
 374        if (ui->dirty)
 375                ubifs_release_dirty_inode_budget(c, ui);
 376        else {
 377                /* We've deleted something - clean the "no space" flags */
 378                c->nospace = c->nospace_rp = 0;
 379                smp_wmb();
 380        }
 381done:
 382        end_writeback(inode);
 383}
 384
 385static void ubifs_dirty_inode(struct inode *inode)
 386{
 387        struct ubifs_inode *ui = ubifs_inode(inode);
 388
 389        ubifs_assert(mutex_is_locked(&ui->ui_mutex));
 390        if (!ui->dirty) {
 391                ui->dirty = 1;
 392                dbg_gen("inode %lu",  inode->i_ino);
 393        }
 394}
 395
 396static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
 397{
 398        struct ubifs_info *c = dentry->d_sb->s_fs_info;
 399        unsigned long long free;
 400        __le32 *uuid = (__le32 *)c->uuid;
 401
 402        free = ubifs_get_free_space(c);
 403        dbg_gen("free space %lld bytes (%lld blocks)",
 404                free, free >> UBIFS_BLOCK_SHIFT);
 405
 406        buf->f_type = UBIFS_SUPER_MAGIC;
 407        buf->f_bsize = UBIFS_BLOCK_SIZE;
 408        buf->f_blocks = c->block_cnt;
 409        buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
 410        if (free > c->report_rp_size)
 411                buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
 412        else
 413                buf->f_bavail = 0;
 414        buf->f_files = 0;
 415        buf->f_ffree = 0;
 416        buf->f_namelen = UBIFS_MAX_NLEN;
 417        buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
 418        buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
 419        ubifs_assert(buf->f_bfree <= c->block_cnt);
 420        return 0;
 421}
 422
 423static int ubifs_show_options(struct seq_file *s, struct vfsmount *mnt)
 424{
 425        struct ubifs_info *c = mnt->mnt_sb->s_fs_info;
 426
 427        if (c->mount_opts.unmount_mode == 2)
 428                seq_printf(s, ",fast_unmount");
 429        else if (c->mount_opts.unmount_mode == 1)
 430                seq_printf(s, ",norm_unmount");
 431
 432        if (c->mount_opts.bulk_read == 2)
 433                seq_printf(s, ",bulk_read");
 434        else if (c->mount_opts.bulk_read == 1)
 435                seq_printf(s, ",no_bulk_read");
 436
 437        if (c->mount_opts.chk_data_crc == 2)
 438                seq_printf(s, ",chk_data_crc");
 439        else if (c->mount_opts.chk_data_crc == 1)
 440                seq_printf(s, ",no_chk_data_crc");
 441
 442        if (c->mount_opts.override_compr) {
 443                seq_printf(s, ",compr=%s",
 444                           ubifs_compr_name(c->mount_opts.compr_type));
 445        }
 446
 447        return 0;
 448}
 449
 450static int ubifs_sync_fs(struct super_block *sb, int wait)
 451{
 452        int i, err;
 453        struct ubifs_info *c = sb->s_fs_info;
 454
 455        /*
 456         * Zero @wait is just an advisory thing to help the file system shove
 457         * lots of data into the queues, and there will be the second
 458         * '->sync_fs()' call, with non-zero @wait.
 459         */
 460        if (!wait)
 461                return 0;
 462
 463        /*
 464         * Synchronize write buffers, because 'ubifs_run_commit()' does not
 465         * do this if it waits for an already running commit.
 466         */
 467        for (i = 0; i < c->jhead_cnt; i++) {
 468                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 469                if (err)
 470                        return err;
 471        }
 472
 473        /*
 474         * Strictly speaking, it is not necessary to commit the journal here,
 475         * synchronizing write-buffers would be enough. But committing makes
 476         * UBIFS free space predictions much more accurate, so we want to let
 477         * the user be able to get more accurate results of 'statfs()' after
 478         * they synchronize the file system.
 479         */
 480        err = ubifs_run_commit(c);
 481        if (err)
 482                return err;
 483
 484        return ubi_sync(c->vi.ubi_num);
 485}
 486
 487/**
 488 * init_constants_early - initialize UBIFS constants.
 489 * @c: UBIFS file-system description object
 490 *
 491 * This function initialize UBIFS constants which do not need the superblock to
 492 * be read. It also checks that the UBI volume satisfies basic UBIFS
 493 * requirements. Returns zero in case of success and a negative error code in
 494 * case of failure.
 495 */
 496static int init_constants_early(struct ubifs_info *c)
 497{
 498        if (c->vi.corrupted) {
 499                ubifs_warn("UBI volume is corrupted - read-only mode");
 500                c->ro_media = 1;
 501        }
 502
 503        if (c->di.ro_mode) {
 504                ubifs_msg("read-only UBI device");
 505                c->ro_media = 1;
 506        }
 507
 508        if (c->vi.vol_type == UBI_STATIC_VOLUME) {
 509                ubifs_msg("static UBI volume - read-only mode");
 510                c->ro_media = 1;
 511        }
 512
 513        c->leb_cnt = c->vi.size;
 514        c->leb_size = c->vi.usable_leb_size;
 515        c->half_leb_size = c->leb_size / 2;
 516        c->min_io_size = c->di.min_io_size;
 517        c->min_io_shift = fls(c->min_io_size) - 1;
 518
 519        if (c->leb_size < UBIFS_MIN_LEB_SZ) {
 520                ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
 521                          c->leb_size, UBIFS_MIN_LEB_SZ);
 522                return -EINVAL;
 523        }
 524
 525        if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
 526                ubifs_err("too few LEBs (%d), min. is %d",
 527                          c->leb_cnt, UBIFS_MIN_LEB_CNT);
 528                return -EINVAL;
 529        }
 530
 531        if (!is_power_of_2(c->min_io_size)) {
 532                ubifs_err("bad min. I/O size %d", c->min_io_size);
 533                return -EINVAL;
 534        }
 535
 536        /*
 537         * UBIFS aligns all node to 8-byte boundary, so to make function in
 538         * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
 539         * less than 8.
 540         */
 541        if (c->min_io_size < 8) {
 542                c->min_io_size = 8;
 543                c->min_io_shift = 3;
 544        }
 545
 546        c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
 547        c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
 548
 549        /*
 550         * Initialize node length ranges which are mostly needed for node
 551         * length validation.
 552         */
 553        c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
 554        c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
 555        c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
 556        c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
 557        c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
 558        c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
 559
 560        c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
 561        c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
 562        c->ranges[UBIFS_ORPH_NODE].min_len =
 563                                UBIFS_ORPH_NODE_SZ + sizeof(__le64);
 564        c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
 565        c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
 566        c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
 567        c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
 568        c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
 569        c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
 570        c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
 571        /*
 572         * Minimum indexing node size is amended later when superblock is
 573         * read and the key length is known.
 574         */
 575        c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
 576        /*
 577         * Maximum indexing node size is amended later when superblock is
 578         * read and the fanout is known.
 579         */
 580        c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
 581
 582        /*
 583         * Initialize dead and dark LEB space watermarks. See gc.c for comments
 584         * about these values.
 585         */
 586        c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
 587        c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
 588
 589        /*
 590         * Calculate how many bytes would be wasted at the end of LEB if it was
 591         * fully filled with data nodes of maximum size. This is used in
 592         * calculations when reporting free space.
 593         */
 594        c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
 595
 596        /* Buffer size for bulk-reads */
 597        c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
 598        if (c->max_bu_buf_len > c->leb_size)
 599                c->max_bu_buf_len = c->leb_size;
 600        return 0;
 601}
 602
 603/**
 604 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
 605 * @c: UBIFS file-system description object
 606 * @lnum: LEB the write-buffer was synchronized to
 607 * @free: how many free bytes left in this LEB
 608 * @pad: how many bytes were padded
 609 *
 610 * This is a callback function which is called by the I/O unit when the
 611 * write-buffer is synchronized. We need this to correctly maintain space
 612 * accounting in bud logical eraseblocks. This function returns zero in case of
 613 * success and a negative error code in case of failure.
 614 *
 615 * This function actually belongs to the journal, but we keep it here because
 616 * we want to keep it static.
 617 */
 618static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
 619{
 620        return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
 621}
 622
 623/*
 624 * init_constants_sb - initialize UBIFS constants.
 625 * @c: UBIFS file-system description object
 626 *
 627 * This is a helper function which initializes various UBIFS constants after
 628 * the superblock has been read. It also checks various UBIFS parameters and
 629 * makes sure they are all right. Returns zero in case of success and a
 630 * negative error code in case of failure.
 631 */
 632static int init_constants_sb(struct ubifs_info *c)
 633{
 634        int tmp, err;
 635        long long tmp64;
 636
 637        c->main_bytes = (long long)c->main_lebs * c->leb_size;
 638        c->max_znode_sz = sizeof(struct ubifs_znode) +
 639                                c->fanout * sizeof(struct ubifs_zbranch);
 640
 641        tmp = ubifs_idx_node_sz(c, 1);
 642        c->ranges[UBIFS_IDX_NODE].min_len = tmp;
 643        c->min_idx_node_sz = ALIGN(tmp, 8);
 644
 645        tmp = ubifs_idx_node_sz(c, c->fanout);
 646        c->ranges[UBIFS_IDX_NODE].max_len = tmp;
 647        c->max_idx_node_sz = ALIGN(tmp, 8);
 648
 649        /* Make sure LEB size is large enough to fit full commit */
 650        tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
 651        tmp = ALIGN(tmp, c->min_io_size);
 652        if (tmp > c->leb_size) {
 653                dbg_err("too small LEB size %d, at least %d needed",
 654                        c->leb_size, tmp);
 655                return -EINVAL;
 656        }
 657
 658        /*
 659         * Make sure that the log is large enough to fit reference nodes for
 660         * all buds plus one reserved LEB.
 661         */
 662        tmp64 = c->max_bud_bytes + c->leb_size - 1;
 663        c->max_bud_cnt = div_u64(tmp64, c->leb_size);
 664        tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
 665        tmp /= c->leb_size;
 666        tmp += 1;
 667        if (c->log_lebs < tmp) {
 668                dbg_err("too small log %d LEBs, required min. %d LEBs",
 669                        c->log_lebs, tmp);
 670                return -EINVAL;
 671        }
 672
 673        /*
 674         * When budgeting we assume worst-case scenarios when the pages are not
 675         * be compressed and direntries are of the maximum size.
 676         *
 677         * Note, data, which may be stored in inodes is budgeted separately, so
 678         * it is not included into 'c->inode_budget'.
 679         */
 680        c->page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
 681        c->inode_budget = UBIFS_INO_NODE_SZ;
 682        c->dent_budget = UBIFS_MAX_DENT_NODE_SZ;
 683
 684        /*
 685         * When the amount of flash space used by buds becomes
 686         * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
 687         * The writers are unblocked when the commit is finished. To avoid
 688         * writers to be blocked UBIFS initiates background commit in advance,
 689         * when number of bud bytes becomes above the limit defined below.
 690         */
 691        c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
 692
 693        /*
 694         * Ensure minimum journal size. All the bytes in the journal heads are
 695         * considered to be used, when calculating the current journal usage.
 696         * Consequently, if the journal is too small, UBIFS will treat it as
 697         * always full.
 698         */
 699        tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
 700        if (c->bg_bud_bytes < tmp64)
 701                c->bg_bud_bytes = tmp64;
 702        if (c->max_bud_bytes < tmp64 + c->leb_size)
 703                c->max_bud_bytes = tmp64 + c->leb_size;
 704
 705        err = ubifs_calc_lpt_geom(c);
 706        if (err)
 707                return err;
 708
 709        /* Initialize effective LEB size used in budgeting calculations */
 710        c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
 711        return 0;
 712}
 713
 714/*
 715 * init_constants_master - initialize UBIFS constants.
 716 * @c: UBIFS file-system description object
 717 *
 718 * This is a helper function which initializes various UBIFS constants after
 719 * the master node has been read. It also checks various UBIFS parameters and
 720 * makes sure they are all right.
 721 */
 722static void init_constants_master(struct ubifs_info *c)
 723{
 724        long long tmp64;
 725
 726        c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
 727        c->report_rp_size = ubifs_reported_space(c, c->rp_size);
 728
 729        /*
 730         * Calculate total amount of FS blocks. This number is not used
 731         * internally because it does not make much sense for UBIFS, but it is
 732         * necessary to report something for the 'statfs()' call.
 733         *
 734         * Subtract the LEB reserved for GC, the LEB which is reserved for
 735         * deletions, minimum LEBs for the index, and assume only one journal
 736         * head is available.
 737         */
 738        tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
 739        tmp64 *= (long long)c->leb_size - c->leb_overhead;
 740        tmp64 = ubifs_reported_space(c, tmp64);
 741        c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
 742}
 743
 744/**
 745 * take_gc_lnum - reserve GC LEB.
 746 * @c: UBIFS file-system description object
 747 *
 748 * This function ensures that the LEB reserved for garbage collection is marked
 749 * as "taken" in lprops. We also have to set free space to LEB size and dirty
 750 * space to zero, because lprops may contain out-of-date information if the
 751 * file-system was un-mounted before it has been committed. This function
 752 * returns zero in case of success and a negative error code in case of
 753 * failure.
 754 */
 755static int take_gc_lnum(struct ubifs_info *c)
 756{
 757        int err;
 758
 759        if (c->gc_lnum == -1) {
 760                ubifs_err("no LEB for GC");
 761                return -EINVAL;
 762        }
 763
 764        /* And we have to tell lprops that this LEB is taken */
 765        err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
 766                                  LPROPS_TAKEN, 0, 0);
 767        return err;
 768}
 769
 770/**
 771 * alloc_wbufs - allocate write-buffers.
 772 * @c: UBIFS file-system description object
 773 *
 774 * This helper function allocates and initializes UBIFS write-buffers. Returns
 775 * zero in case of success and %-ENOMEM in case of failure.
 776 */
 777static int alloc_wbufs(struct ubifs_info *c)
 778{
 779        int i, err;
 780
 781        c->jheads = kzalloc(c->jhead_cnt * sizeof(struct ubifs_jhead),
 782                           GFP_KERNEL);
 783        if (!c->jheads)
 784                return -ENOMEM;
 785
 786        /* Initialize journal heads */
 787        for (i = 0; i < c->jhead_cnt; i++) {
 788                INIT_LIST_HEAD(&c->jheads[i].buds_list);
 789                err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
 790                if (err)
 791                        return err;
 792
 793                c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
 794                c->jheads[i].wbuf.jhead = i;
 795        }
 796
 797        c->jheads[BASEHD].wbuf.dtype = UBI_SHORTTERM;
 798        /*
 799         * Garbage Collector head likely contains long-term data and
 800         * does not need to be synchronized by timer.
 801         */
 802        c->jheads[GCHD].wbuf.dtype = UBI_LONGTERM;
 803        c->jheads[GCHD].wbuf.no_timer = 1;
 804
 805        return 0;
 806}
 807
 808/**
 809 * free_wbufs - free write-buffers.
 810 * @c: UBIFS file-system description object
 811 */
 812static void free_wbufs(struct ubifs_info *c)
 813{
 814        int i;
 815
 816        if (c->jheads) {
 817                for (i = 0; i < c->jhead_cnt; i++) {
 818                        kfree(c->jheads[i].wbuf.buf);
 819                        kfree(c->jheads[i].wbuf.inodes);
 820                }
 821                kfree(c->jheads);
 822                c->jheads = NULL;
 823        }
 824}
 825
 826/**
 827 * free_orphans - free orphans.
 828 * @c: UBIFS file-system description object
 829 */
 830static void free_orphans(struct ubifs_info *c)
 831{
 832        struct ubifs_orphan *orph;
 833
 834        while (c->orph_dnext) {
 835                orph = c->orph_dnext;
 836                c->orph_dnext = orph->dnext;
 837                list_del(&orph->list);
 838                kfree(orph);
 839        }
 840
 841        while (!list_empty(&c->orph_list)) {
 842                orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
 843                list_del(&orph->list);
 844                kfree(orph);
 845                dbg_err("orphan list not empty at unmount");
 846        }
 847
 848        vfree(c->orph_buf);
 849        c->orph_buf = NULL;
 850}
 851
 852/**
 853 * free_buds - free per-bud objects.
 854 * @c: UBIFS file-system description object
 855 */
 856static void free_buds(struct ubifs_info *c)
 857{
 858        struct rb_node *this = c->buds.rb_node;
 859        struct ubifs_bud *bud;
 860
 861        while (this) {
 862                if (this->rb_left)
 863                        this = this->rb_left;
 864                else if (this->rb_right)
 865                        this = this->rb_right;
 866                else {
 867                        bud = rb_entry(this, struct ubifs_bud, rb);
 868                        this = rb_parent(this);
 869                        if (this) {
 870                                if (this->rb_left == &bud->rb)
 871                                        this->rb_left = NULL;
 872                                else
 873                                        this->rb_right = NULL;
 874                        }
 875                        kfree(bud);
 876                }
 877        }
 878}
 879
 880/**
 881 * check_volume_empty - check if the UBI volume is empty.
 882 * @c: UBIFS file-system description object
 883 *
 884 * This function checks if the UBIFS volume is empty by looking if its LEBs are
 885 * mapped or not. The result of checking is stored in the @c->empty variable.
 886 * Returns zero in case of success and a negative error code in case of
 887 * failure.
 888 */
 889static int check_volume_empty(struct ubifs_info *c)
 890{
 891        int lnum, err;
 892
 893        c->empty = 1;
 894        for (lnum = 0; lnum < c->leb_cnt; lnum++) {
 895                err = ubi_is_mapped(c->ubi, lnum);
 896                if (unlikely(err < 0))
 897                        return err;
 898                if (err == 1) {
 899                        c->empty = 0;
 900                        break;
 901                }
 902
 903                cond_resched();
 904        }
 905
 906        return 0;
 907}
 908
 909/*
 910 * UBIFS mount options.
 911 *
 912 * Opt_fast_unmount: do not run a journal commit before un-mounting
 913 * Opt_norm_unmount: run a journal commit before un-mounting
 914 * Opt_bulk_read: enable bulk-reads
 915 * Opt_no_bulk_read: disable bulk-reads
 916 * Opt_chk_data_crc: check CRCs when reading data nodes
 917 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
 918 * Opt_override_compr: override default compressor
 919 * Opt_err: just end of array marker
 920 */
 921enum {
 922        Opt_fast_unmount,
 923        Opt_norm_unmount,
 924        Opt_bulk_read,
 925        Opt_no_bulk_read,
 926        Opt_chk_data_crc,
 927        Opt_no_chk_data_crc,
 928        Opt_override_compr,
 929        Opt_err,
 930};
 931
 932static const match_table_t tokens = {
 933        {Opt_fast_unmount, "fast_unmount"},
 934        {Opt_norm_unmount, "norm_unmount"},
 935        {Opt_bulk_read, "bulk_read"},
 936        {Opt_no_bulk_read, "no_bulk_read"},
 937        {Opt_chk_data_crc, "chk_data_crc"},
 938        {Opt_no_chk_data_crc, "no_chk_data_crc"},
 939        {Opt_override_compr, "compr=%s"},
 940        {Opt_err, NULL},
 941};
 942
 943/**
 944 * parse_standard_option - parse a standard mount option.
 945 * @option: the option to parse
 946 *
 947 * Normally, standard mount options like "sync" are passed to file-systems as
 948 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
 949 * be present in the options string. This function tries to deal with this
 950 * situation and parse standard options. Returns 0 if the option was not
 951 * recognized, and the corresponding integer flag if it was.
 952 *
 953 * UBIFS is only interested in the "sync" option, so do not check for anything
 954 * else.
 955 */
 956static int parse_standard_option(const char *option)
 957{
 958        ubifs_msg("parse %s", option);
 959        if (!strcmp(option, "sync"))
 960                return MS_SYNCHRONOUS;
 961        return 0;
 962}
 963
 964/**
 965 * ubifs_parse_options - parse mount parameters.
 966 * @c: UBIFS file-system description object
 967 * @options: parameters to parse
 968 * @is_remount: non-zero if this is FS re-mount
 969 *
 970 * This function parses UBIFS mount options and returns zero in case success
 971 * and a negative error code in case of failure.
 972 */
 973static int ubifs_parse_options(struct ubifs_info *c, char *options,
 974                               int is_remount)
 975{
 976        char *p;
 977        substring_t args[MAX_OPT_ARGS];
 978
 979        if (!options)
 980                return 0;
 981
 982        while ((p = strsep(&options, ","))) {
 983                int token;
 984
 985                if (!*p)
 986                        continue;
 987
 988                token = match_token(p, tokens, args);
 989                switch (token) {
 990                /*
 991                 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
 992                 * We accept them in order to be backward-compatible. But this
 993                 * should be removed at some point.
 994                 */
 995                case Opt_fast_unmount:
 996                        c->mount_opts.unmount_mode = 2;
 997                        break;
 998                case Opt_norm_unmount:
 999                        c->mount_opts.unmount_mode = 1;
1000                        break;
1001                case Opt_bulk_read:
1002                        c->mount_opts.bulk_read = 2;
1003                        c->bulk_read = 1;
1004                        break;
1005                case Opt_no_bulk_read:
1006                        c->mount_opts.bulk_read = 1;
1007                        c->bulk_read = 0;
1008                        break;
1009                case Opt_chk_data_crc:
1010                        c->mount_opts.chk_data_crc = 2;
1011                        c->no_chk_data_crc = 0;
1012                        break;
1013                case Opt_no_chk_data_crc:
1014                        c->mount_opts.chk_data_crc = 1;
1015                        c->no_chk_data_crc = 1;
1016                        break;
1017                case Opt_override_compr:
1018                {
1019                        char *name = match_strdup(&args[0]);
1020
1021                        if (!name)
1022                                return -ENOMEM;
1023                        if (!strcmp(name, "none"))
1024                                c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1025                        else if (!strcmp(name, "lzo"))
1026                                c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1027                        else if (!strcmp(name, "zlib"))
1028                                c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1029                        else {
1030                                ubifs_err("unknown compressor \"%s\"", name);
1031                                kfree(name);
1032                                return -EINVAL;
1033                        }
1034                        kfree(name);
1035                        c->mount_opts.override_compr = 1;
1036                        c->default_compr = c->mount_opts.compr_type;
1037                        break;
1038                }
1039                default:
1040                {
1041                        unsigned long flag;
1042                        struct super_block *sb = c->vfs_sb;
1043
1044                        flag = parse_standard_option(p);
1045                        if (!flag) {
1046                                ubifs_err("unrecognized mount option \"%s\" "
1047                                          "or missing value", p);
1048                                return -EINVAL;
1049                        }
1050                        sb->s_flags |= flag;
1051                        break;
1052                }
1053                }
1054        }
1055
1056        return 0;
1057}
1058
1059/**
1060 * destroy_journal - destroy journal data structures.
1061 * @c: UBIFS file-system description object
1062 *
1063 * This function destroys journal data structures including those that may have
1064 * been created by recovery functions.
1065 */
1066static void destroy_journal(struct ubifs_info *c)
1067{
1068        while (!list_empty(&c->unclean_leb_list)) {
1069                struct ubifs_unclean_leb *ucleb;
1070
1071                ucleb = list_entry(c->unclean_leb_list.next,
1072                                   struct ubifs_unclean_leb, list);
1073                list_del(&ucleb->list);
1074                kfree(ucleb);
1075        }
1076        while (!list_empty(&c->old_buds)) {
1077                struct ubifs_bud *bud;
1078
1079                bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1080                list_del(&bud->list);
1081                kfree(bud);
1082        }
1083        ubifs_destroy_idx_gc(c);
1084        ubifs_destroy_size_tree(c);
1085        ubifs_tnc_close(c);
1086        free_buds(c);
1087}
1088
1089/**
1090 * bu_init - initialize bulk-read information.
1091 * @c: UBIFS file-system description object
1092 */
1093static void bu_init(struct ubifs_info *c)
1094{
1095        ubifs_assert(c->bulk_read == 1);
1096
1097        if (c->bu.buf)
1098                return; /* Already initialized */
1099
1100again:
1101        c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1102        if (!c->bu.buf) {
1103                if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1104                        c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1105                        goto again;
1106                }
1107
1108                /* Just disable bulk-read */
1109                ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1110                           "disabling it", c->max_bu_buf_len);
1111                c->mount_opts.bulk_read = 1;
1112                c->bulk_read = 0;
1113                return;
1114        }
1115}
1116
1117/**
1118 * check_free_space - check if there is enough free space to mount.
1119 * @c: UBIFS file-system description object
1120 *
1121 * This function makes sure UBIFS has enough free space to be mounted in
1122 * read/write mode. UBIFS must always have some free space to allow deletions.
1123 */
1124static int check_free_space(struct ubifs_info *c)
1125{
1126        ubifs_assert(c->dark_wm > 0);
1127        if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1128                ubifs_err("insufficient free space to mount in read/write mode");
1129                dbg_dump_budg(c);
1130                dbg_dump_lprops(c);
1131                return -ENOSPC;
1132        }
1133        return 0;
1134}
1135
1136/**
1137 * mount_ubifs - mount UBIFS file-system.
1138 * @c: UBIFS file-system description object
1139 *
1140 * This function mounts UBIFS file system. Returns zero in case of success and
1141 * a negative error code in case of failure.
1142 *
1143 * Note, the function does not de-allocate resources it it fails half way
1144 * through, and the caller has to do this instead.
1145 */
1146static int mount_ubifs(struct ubifs_info *c)
1147{
1148        int err;
1149        long long x;
1150        size_t sz;
1151
1152        c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1153        err = init_constants_early(c);
1154        if (err)
1155                return err;
1156
1157        err = ubifs_debugging_init(c);
1158        if (err)
1159                return err;
1160
1161        err = check_volume_empty(c);
1162        if (err)
1163                goto out_free;
1164
1165        if (c->empty && (c->ro_mount || c->ro_media)) {
1166                /*
1167                 * This UBI volume is empty, and read-only, or the file system
1168                 * is mounted read-only - we cannot format it.
1169                 */
1170                ubifs_err("can't format empty UBI volume: read-only %s",
1171                          c->ro_media ? "UBI volume" : "mount");
1172                err = -EROFS;
1173                goto out_free;
1174        }
1175
1176        if (c->ro_media && !c->ro_mount) {
1177                ubifs_err("cannot mount read-write - read-only media");
1178                err = -EROFS;
1179                goto out_free;
1180        }
1181
1182        /*
1183         * The requirement for the buffer is that it should fit indexing B-tree
1184         * height amount of integers. We assume the height if the TNC tree will
1185         * never exceed 64.
1186         */
1187        err = -ENOMEM;
1188        c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1189        if (!c->bottom_up_buf)
1190                goto out_free;
1191
1192        c->sbuf = vmalloc(c->leb_size);
1193        if (!c->sbuf)
1194                goto out_free;
1195
1196        if (!c->ro_mount) {
1197                c->ileb_buf = vmalloc(c->leb_size);
1198                if (!c->ileb_buf)
1199                        goto out_free;
1200        }
1201
1202        if (c->bulk_read == 1)
1203                bu_init(c);
1204
1205        /*
1206         * We have to check all CRCs, even for data nodes, when we mount the FS
1207         * (specifically, when we are replaying).
1208         */
1209        c->always_chk_crc = 1;
1210
1211        err = ubifs_read_superblock(c);
1212        if (err)
1213                goto out_free;
1214
1215        /*
1216         * Make sure the compressor which is set as default in the superblock
1217         * or overridden by mount options is actually compiled in.
1218         */
1219        if (!ubifs_compr_present(c->default_compr)) {
1220                ubifs_err("'compressor \"%s\" is not compiled in",
1221                          ubifs_compr_name(c->default_compr));
1222                err = -ENOTSUPP;
1223                goto out_free;
1224        }
1225
1226        err = init_constants_sb(c);
1227        if (err)
1228                goto out_free;
1229
1230        sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1231        sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1232        c->cbuf = kmalloc(sz, GFP_NOFS);
1233        if (!c->cbuf) {
1234                err = -ENOMEM;
1235                goto out_free;
1236        }
1237
1238        sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1239        if (!c->ro_mount) {
1240                err = alloc_wbufs(c);
1241                if (err)
1242                        goto out_cbuf;
1243
1244                /* Create background thread */
1245                c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1246                if (IS_ERR(c->bgt)) {
1247                        err = PTR_ERR(c->bgt);
1248                        c->bgt = NULL;
1249                        ubifs_err("cannot spawn \"%s\", error %d",
1250                                  c->bgt_name, err);
1251                        goto out_wbufs;
1252                }
1253                wake_up_process(c->bgt);
1254        }
1255
1256        err = ubifs_read_master(c);
1257        if (err)
1258                goto out_master;
1259
1260        init_constants_master(c);
1261
1262        if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1263                ubifs_msg("recovery needed");
1264                c->need_recovery = 1;
1265                if (!c->ro_mount) {
1266                        err = ubifs_recover_inl_heads(c, c->sbuf);
1267                        if (err)
1268                                goto out_master;
1269                }
1270        } else if (!c->ro_mount) {
1271                /*
1272                 * Set the "dirty" flag so that if we reboot uncleanly we
1273                 * will notice this immediately on the next mount.
1274                 */
1275                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1276                err = ubifs_write_master(c);
1277                if (err)
1278                        goto out_master;
1279        }
1280
1281        err = ubifs_lpt_init(c, 1, !c->ro_mount);
1282        if (err)
1283                goto out_lpt;
1284
1285        err = dbg_check_idx_size(c, c->old_idx_sz);
1286        if (err)
1287                goto out_lpt;
1288
1289        err = ubifs_replay_journal(c);
1290        if (err)
1291                goto out_journal;
1292
1293        /* Calculate 'min_idx_lebs' after journal replay */
1294        c->min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1295
1296        err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1297        if (err)
1298                goto out_orphans;
1299
1300        if (!c->ro_mount) {
1301                int lnum;
1302
1303                err = check_free_space(c);
1304                if (err)
1305                        goto out_orphans;
1306
1307                /* Check for enough log space */
1308                lnum = c->lhead_lnum + 1;
1309                if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1310                        lnum = UBIFS_LOG_LNUM;
1311                if (lnum == c->ltail_lnum) {
1312                        err = ubifs_consolidate_log(c);
1313                        if (err)
1314                                goto out_orphans;
1315                }
1316
1317                if (c->need_recovery) {
1318                        err = ubifs_recover_size(c);
1319                        if (err)
1320                                goto out_orphans;
1321                        err = ubifs_rcvry_gc_commit(c);
1322                        if (err)
1323                                goto out_orphans;
1324                } else {
1325                        err = take_gc_lnum(c);
1326                        if (err)
1327                                goto out_orphans;
1328
1329                        /*
1330                         * GC LEB may contain garbage if there was an unclean
1331                         * reboot, and it should be un-mapped.
1332                         */
1333                        err = ubifs_leb_unmap(c, c->gc_lnum);
1334                        if (err)
1335                                goto out_orphans;
1336                }
1337
1338                err = dbg_check_lprops(c);
1339                if (err)
1340                        goto out_orphans;
1341        } else if (c->need_recovery) {
1342                err = ubifs_recover_size(c);
1343                if (err)
1344                        goto out_orphans;
1345        } else {
1346                /*
1347                 * Even if we mount read-only, we have to set space in GC LEB
1348                 * to proper value because this affects UBIFS free space
1349                 * reporting. We do not want to have a situation when
1350                 * re-mounting from R/O to R/W changes amount of free space.
1351                 */
1352                err = take_gc_lnum(c);
1353                if (err)
1354                        goto out_orphans;
1355        }
1356
1357        spin_lock(&ubifs_infos_lock);
1358        list_add_tail(&c->infos_list, &ubifs_infos);
1359        spin_unlock(&ubifs_infos_lock);
1360
1361        if (c->need_recovery) {
1362                if (c->ro_mount)
1363                        ubifs_msg("recovery deferred");
1364                else {
1365                        c->need_recovery = 0;
1366                        ubifs_msg("recovery completed");
1367                        /*
1368                         * GC LEB has to be empty and taken at this point. But
1369                         * the journal head LEBs may also be accounted as
1370                         * "empty taken" if they are empty.
1371                         */
1372                        ubifs_assert(c->lst.taken_empty_lebs > 0);
1373                }
1374        } else
1375                ubifs_assert(c->lst.taken_empty_lebs > 0);
1376
1377        err = dbg_check_filesystem(c);
1378        if (err)
1379                goto out_infos;
1380
1381        err = dbg_debugfs_init_fs(c);
1382        if (err)
1383                goto out_infos;
1384
1385        c->always_chk_crc = 0;
1386
1387        ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1388                  c->vi.ubi_num, c->vi.vol_id, c->vi.name);
1389        if (c->ro_mount)
1390                ubifs_msg("mounted read-only");
1391        x = (long long)c->main_lebs * c->leb_size;
1392        ubifs_msg("file system size:   %lld bytes (%lld KiB, %lld MiB, %d "
1393                  "LEBs)", x, x >> 10, x >> 20, c->main_lebs);
1394        x = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1395        ubifs_msg("journal size:       %lld bytes (%lld KiB, %lld MiB, %d "
1396                  "LEBs)", x, x >> 10, x >> 20, c->log_lebs + c->max_bud_cnt);
1397        ubifs_msg("media format:       w%d/r%d (latest is w%d/r%d)",
1398                  c->fmt_version, c->ro_compat_version,
1399                  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1400        ubifs_msg("default compressor: %s", ubifs_compr_name(c->default_compr));
1401        ubifs_msg("reserved for root:  %llu bytes (%llu KiB)",
1402                c->report_rp_size, c->report_rp_size >> 10);
1403
1404        dbg_msg("compiled on:         " __DATE__ " at " __TIME__);
1405        dbg_msg("min. I/O unit size:  %d bytes", c->min_io_size);
1406        dbg_msg("LEB size:            %d bytes (%d KiB)",
1407                c->leb_size, c->leb_size >> 10);
1408        dbg_msg("data journal heads:  %d",
1409                c->jhead_cnt - NONDATA_JHEADS_CNT);
1410        dbg_msg("UUID:                %pUB", c->uuid);
1411        dbg_msg("big_lpt              %d", c->big_lpt);
1412        dbg_msg("log LEBs:            %d (%d - %d)",
1413                c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1414        dbg_msg("LPT area LEBs:       %d (%d - %d)",
1415                c->lpt_lebs, c->lpt_first, c->lpt_last);
1416        dbg_msg("orphan area LEBs:    %d (%d - %d)",
1417                c->orph_lebs, c->orph_first, c->orph_last);
1418        dbg_msg("main area LEBs:      %d (%d - %d)",
1419                c->main_lebs, c->main_first, c->leb_cnt - 1);
1420        dbg_msg("index LEBs:          %d", c->lst.idx_lebs);
1421        dbg_msg("total index bytes:   %lld (%lld KiB, %lld MiB)",
1422                c->old_idx_sz, c->old_idx_sz >> 10, c->old_idx_sz >> 20);
1423        dbg_msg("key hash type:       %d", c->key_hash_type);
1424        dbg_msg("tree fanout:         %d", c->fanout);
1425        dbg_msg("reserved GC LEB:     %d", c->gc_lnum);
1426        dbg_msg("first main LEB:      %d", c->main_first);
1427        dbg_msg("max. znode size      %d", c->max_znode_sz);
1428        dbg_msg("max. index node size %d", c->max_idx_node_sz);
1429        dbg_msg("node sizes:          data %zu, inode %zu, dentry %zu",
1430                UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1431        dbg_msg("node sizes:          trun %zu, sb %zu, master %zu",
1432                UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1433        dbg_msg("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1434                UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1435        dbg_msg("max. node sizes:     data %zu, inode %zu dentry %zu",
1436                UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1437                UBIFS_MAX_DENT_NODE_SZ);
1438        dbg_msg("dead watermark:      %d", c->dead_wm);
1439        dbg_msg("dark watermark:      %d", c->dark_wm);
1440        dbg_msg("LEB overhead:        %d", c->leb_overhead);
1441        x = (long long)c->main_lebs * c->dark_wm;
1442        dbg_msg("max. dark space:     %lld (%lld KiB, %lld MiB)",
1443                x, x >> 10, x >> 20);
1444        dbg_msg("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1445                c->max_bud_bytes, c->max_bud_bytes >> 10,
1446                c->max_bud_bytes >> 20);
1447        dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1448                c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1449                c->bg_bud_bytes >> 20);
1450        dbg_msg("current bud bytes    %lld (%lld KiB, %lld MiB)",
1451                c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1452        dbg_msg("max. seq. number:    %llu", c->max_sqnum);
1453        dbg_msg("commit number:       %llu", c->cmt_no);
1454
1455        return 0;
1456
1457out_infos:
1458        spin_lock(&ubifs_infos_lock);
1459        list_del(&c->infos_list);
1460        spin_unlock(&ubifs_infos_lock);
1461out_orphans:
1462        free_orphans(c);
1463out_journal:
1464        destroy_journal(c);
1465out_lpt:
1466        ubifs_lpt_free(c, 0);
1467out_master:
1468        kfree(c->mst_node);
1469        kfree(c->rcvrd_mst_node);
1470        if (c->bgt)
1471                kthread_stop(c->bgt);
1472out_wbufs:
1473        free_wbufs(c);
1474out_cbuf:
1475        kfree(c->cbuf);
1476out_free:
1477        kfree(c->bu.buf);
1478        vfree(c->ileb_buf);
1479        vfree(c->sbuf);
1480        kfree(c->bottom_up_buf);
1481        ubifs_debugging_exit(c);
1482        return err;
1483}
1484
1485/**
1486 * ubifs_umount - un-mount UBIFS file-system.
1487 * @c: UBIFS file-system description object
1488 *
1489 * Note, this function is called to free allocated resourced when un-mounting,
1490 * as well as free resources when an error occurred while we were half way
1491 * through mounting (error path cleanup function). So it has to make sure the
1492 * resource was actually allocated before freeing it.
1493 */
1494static void ubifs_umount(struct ubifs_info *c)
1495{
1496        dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1497                c->vi.vol_id);
1498
1499        dbg_debugfs_exit_fs(c);
1500        spin_lock(&ubifs_infos_lock);
1501        list_del(&c->infos_list);
1502        spin_unlock(&ubifs_infos_lock);
1503
1504        if (c->bgt)
1505                kthread_stop(c->bgt);
1506
1507        destroy_journal(c);
1508        free_wbufs(c);
1509        free_orphans(c);
1510        ubifs_lpt_free(c, 0);
1511
1512        kfree(c->cbuf);
1513        kfree(c->rcvrd_mst_node);
1514        kfree(c->mst_node);
1515        kfree(c->bu.buf);
1516        vfree(c->ileb_buf);
1517        vfree(c->sbuf);
1518        kfree(c->bottom_up_buf);
1519        ubifs_debugging_exit(c);
1520}
1521
1522/**
1523 * ubifs_remount_rw - re-mount in read-write mode.
1524 * @c: UBIFS file-system description object
1525 *
1526 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1527 * mode. This function allocates the needed resources and re-mounts UBIFS in
1528 * read-write mode.
1529 */
1530static int ubifs_remount_rw(struct ubifs_info *c)
1531{
1532        int err, lnum;
1533
1534        if (c->rw_incompat) {
1535                ubifs_err("the file-system is not R/W-compatible");
1536                ubifs_msg("on-flash format version is w%d/r%d, but software "
1537                          "only supports up to version w%d/r%d", c->fmt_version,
1538                          c->ro_compat_version, UBIFS_FORMAT_VERSION,
1539                          UBIFS_RO_COMPAT_VERSION);
1540                return -EROFS;
1541        }
1542
1543        mutex_lock(&c->umount_mutex);
1544        dbg_save_space_info(c);
1545        c->remounting_rw = 1;
1546        c->always_chk_crc = 1;
1547
1548        err = check_free_space(c);
1549        if (err)
1550                goto out;
1551
1552        if (c->old_leb_cnt != c->leb_cnt) {
1553                struct ubifs_sb_node *sup;
1554
1555                sup = ubifs_read_sb_node(c);
1556                if (IS_ERR(sup)) {
1557                        err = PTR_ERR(sup);
1558                        goto out;
1559                }
1560                sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1561                err = ubifs_write_sb_node(c, sup);
1562                if (err)
1563                        goto out;
1564        }
1565
1566        if (c->need_recovery) {
1567                ubifs_msg("completing deferred recovery");
1568                err = ubifs_write_rcvrd_mst_node(c);
1569                if (err)
1570                        goto out;
1571                err = ubifs_recover_size(c);
1572                if (err)
1573                        goto out;
1574                err = ubifs_clean_lebs(c, c->sbuf);
1575                if (err)
1576                        goto out;
1577                err = ubifs_recover_inl_heads(c, c->sbuf);
1578                if (err)
1579                        goto out;
1580        } else {
1581                /* A readonly mount is not allowed to have orphans */
1582                ubifs_assert(c->tot_orphans == 0);
1583                err = ubifs_clear_orphans(c);
1584                if (err)
1585                        goto out;
1586        }
1587
1588        if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1589                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1590                err = ubifs_write_master(c);
1591                if (err)
1592                        goto out;
1593        }
1594
1595        c->ileb_buf = vmalloc(c->leb_size);
1596        if (!c->ileb_buf) {
1597                err = -ENOMEM;
1598                goto out;
1599        }
1600
1601        err = ubifs_lpt_init(c, 0, 1);
1602        if (err)
1603                goto out;
1604
1605        err = alloc_wbufs(c);
1606        if (err)
1607                goto out;
1608
1609        ubifs_create_buds_lists(c);
1610
1611        /* Create background thread */
1612        c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1613        if (IS_ERR(c->bgt)) {
1614                err = PTR_ERR(c->bgt);
1615                c->bgt = NULL;
1616                ubifs_err("cannot spawn \"%s\", error %d",
1617                          c->bgt_name, err);
1618                goto out;
1619        }
1620        wake_up_process(c->bgt);
1621
1622        c->orph_buf = vmalloc(c->leb_size);
1623        if (!c->orph_buf) {
1624                err = -ENOMEM;
1625                goto out;
1626        }
1627
1628        /* Check for enough log space */
1629        lnum = c->lhead_lnum + 1;
1630        if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1631                lnum = UBIFS_LOG_LNUM;
1632        if (lnum == c->ltail_lnum) {
1633                err = ubifs_consolidate_log(c);
1634                if (err)
1635                        goto out;
1636        }
1637
1638        if (c->need_recovery)
1639                err = ubifs_rcvry_gc_commit(c);
1640        else
1641                err = ubifs_leb_unmap(c, c->gc_lnum);
1642        if (err)
1643                goto out;
1644
1645        if (c->need_recovery) {
1646                c->need_recovery = 0;
1647                ubifs_msg("deferred recovery completed");
1648        }
1649
1650        dbg_gen("re-mounted read-write");
1651        c->ro_mount = 0;
1652        c->remounting_rw = 0;
1653        c->always_chk_crc = 0;
1654        err = dbg_check_space_info(c);
1655        mutex_unlock(&c->umount_mutex);
1656        return err;
1657
1658out:
1659        vfree(c->orph_buf);
1660        c->orph_buf = NULL;
1661        if (c->bgt) {
1662                kthread_stop(c->bgt);
1663                c->bgt = NULL;
1664        }
1665        free_wbufs(c);
1666        vfree(c->ileb_buf);
1667        c->ileb_buf = NULL;
1668        ubifs_lpt_free(c, 1);
1669        c->remounting_rw = 0;
1670        c->always_chk_crc = 0;
1671        mutex_unlock(&c->umount_mutex);
1672        return err;
1673}
1674
1675/**
1676 * ubifs_remount_ro - re-mount in read-only mode.
1677 * @c: UBIFS file-system description object
1678 *
1679 * We assume VFS has stopped writing. Possibly the background thread could be
1680 * running a commit, however kthread_stop will wait in that case.
1681 */
1682static void ubifs_remount_ro(struct ubifs_info *c)
1683{
1684        int i, err;
1685
1686        ubifs_assert(!c->need_recovery);
1687        ubifs_assert(!c->ro_mount);
1688
1689        mutex_lock(&c->umount_mutex);
1690        if (c->bgt) {
1691                kthread_stop(c->bgt);
1692                c->bgt = NULL;
1693        }
1694
1695        dbg_save_space_info(c);
1696
1697        for (i = 0; i < c->jhead_cnt; i++)
1698                ubifs_wbuf_sync(&c->jheads[i].wbuf);
1699
1700        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1701        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1702        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1703        err = ubifs_write_master(c);
1704        if (err)
1705                ubifs_ro_mode(c, err);
1706
1707        free_wbufs(c);
1708        vfree(c->orph_buf);
1709        c->orph_buf = NULL;
1710        vfree(c->ileb_buf);
1711        c->ileb_buf = NULL;
1712        ubifs_lpt_free(c, 1);
1713        c->ro_mount = 1;
1714        err = dbg_check_space_info(c);
1715        if (err)
1716                ubifs_ro_mode(c, err);
1717        mutex_unlock(&c->umount_mutex);
1718}
1719
1720static void ubifs_put_super(struct super_block *sb)
1721{
1722        int i;
1723        struct ubifs_info *c = sb->s_fs_info;
1724
1725        ubifs_msg("un-mount UBI device %d, volume %d", c->vi.ubi_num,
1726                  c->vi.vol_id);
1727
1728        /*
1729         * The following asserts are only valid if there has not been a failure
1730         * of the media. For example, there will be dirty inodes if we failed
1731         * to write them back because of I/O errors.
1732         */
1733        ubifs_assert(atomic_long_read(&c->dirty_pg_cnt) == 0);
1734        ubifs_assert(c->budg_idx_growth == 0);
1735        ubifs_assert(c->budg_dd_growth == 0);
1736        ubifs_assert(c->budg_data_growth == 0);
1737
1738        /*
1739         * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1740         * and file system un-mount. Namely, it prevents the shrinker from
1741         * picking this superblock for shrinking - it will be just skipped if
1742         * the mutex is locked.
1743         */
1744        mutex_lock(&c->umount_mutex);
1745        if (!c->ro_mount) {
1746                /*
1747                 * First of all kill the background thread to make sure it does
1748                 * not interfere with un-mounting and freeing resources.
1749                 */
1750                if (c->bgt) {
1751                        kthread_stop(c->bgt);
1752                        c->bgt = NULL;
1753                }
1754
1755                /*
1756                 * On fatal errors c->ro_error is set to 1, in which case we do
1757                 * not write the master node.
1758                 */
1759                if (!c->ro_error) {
1760                        int err;
1761
1762                        /* Synchronize write-buffers */
1763                        for (i = 0; i < c->jhead_cnt; i++)
1764                                ubifs_wbuf_sync(&c->jheads[i].wbuf);
1765
1766                        /*
1767                         * We are being cleanly unmounted which means the
1768                         * orphans were killed - indicate this in the master
1769                         * node. Also save the reserved GC LEB number.
1770                         */
1771                        c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1772                        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1773                        c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1774                        err = ubifs_write_master(c);
1775                        if (err)
1776                                /*
1777                                 * Recovery will attempt to fix the master area
1778                                 * next mount, so we just print a message and
1779                                 * continue to unmount normally.
1780                                 */
1781                                ubifs_err("failed to write master node, "
1782                                          "error %d", err);
1783                } else {
1784                        for (i = 0; i < c->jhead_cnt; i++)
1785                                /* Make sure write-buffer timers are canceled */
1786                                hrtimer_cancel(&c->jheads[i].wbuf.timer);
1787                }
1788        }
1789
1790        ubifs_umount(c);
1791        bdi_destroy(&c->bdi);
1792        ubi_close_volume(c->ubi);
1793        mutex_unlock(&c->umount_mutex);
1794        kfree(c);
1795}
1796
1797static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1798{
1799        int err;
1800        struct ubifs_info *c = sb->s_fs_info;
1801
1802        dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1803
1804        err = ubifs_parse_options(c, data, 1);
1805        if (err) {
1806                ubifs_err("invalid or unknown remount parameter");
1807                return err;
1808        }
1809
1810        if (c->ro_mount && !(*flags & MS_RDONLY)) {
1811                if (c->ro_error) {
1812                        ubifs_msg("cannot re-mount R/W due to prior errors");
1813                        return -EROFS;
1814                }
1815                if (c->ro_media) {
1816                        ubifs_msg("cannot re-mount R/W - UBI volume is R/O");
1817                        return -EROFS;
1818                }
1819                err = ubifs_remount_rw(c);
1820                if (err)
1821                        return err;
1822        } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1823                if (c->ro_error) {
1824                        ubifs_msg("cannot re-mount R/O due to prior errors");
1825                        return -EROFS;
1826                }
1827                ubifs_remount_ro(c);
1828        }
1829
1830        if (c->bulk_read == 1)
1831                bu_init(c);
1832        else {
1833                dbg_gen("disable bulk-read");
1834                kfree(c->bu.buf);
1835                c->bu.buf = NULL;
1836        }
1837
1838        ubifs_assert(c->lst.taken_empty_lebs > 0);
1839        return 0;
1840}
1841
1842const struct super_operations ubifs_super_operations = {
1843        .alloc_inode   = ubifs_alloc_inode,
1844        .destroy_inode = ubifs_destroy_inode,
1845        .put_super     = ubifs_put_super,
1846        .write_inode   = ubifs_write_inode,
1847        .evict_inode   = ubifs_evict_inode,
1848        .statfs        = ubifs_statfs,
1849        .dirty_inode   = ubifs_dirty_inode,
1850        .remount_fs    = ubifs_remount_fs,
1851        .show_options  = ubifs_show_options,
1852        .sync_fs       = ubifs_sync_fs,
1853};
1854
1855/**
1856 * open_ubi - parse UBI device name string and open the UBI device.
1857 * @name: UBI volume name
1858 * @mode: UBI volume open mode
1859 *
1860 * The primary method of mounting UBIFS is by specifying the UBI volume
1861 * character device node path. However, UBIFS may also be mounted withoug any
1862 * character device node using one of the following methods:
1863 *
1864 * o ubiX_Y    - mount UBI device number X, volume Y;
1865 * o ubiY      - mount UBI device number 0, volume Y;
1866 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1867 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1868 *
1869 * Alternative '!' separator may be used instead of ':' (because some shells
1870 * like busybox may interpret ':' as an NFS host name separator). This function
1871 * returns UBI volume description object in case of success and a negative
1872 * error code in case of failure.
1873 */
1874static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1875{
1876        struct ubi_volume_desc *ubi;
1877        int dev, vol;
1878        char *endptr;
1879
1880        /* First, try to open using the device node path method */
1881        ubi = ubi_open_volume_path(name, mode);
1882        if (!IS_ERR(ubi))
1883                return ubi;
1884
1885        /* Try the "nodev" method */
1886        if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1887                return ERR_PTR(-EINVAL);
1888
1889        /* ubi:NAME method */
1890        if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1891                return ubi_open_volume_nm(0, name + 4, mode);
1892
1893        if (!isdigit(name[3]))
1894                return ERR_PTR(-EINVAL);
1895
1896        dev = simple_strtoul(name + 3, &endptr, 0);
1897
1898        /* ubiY method */
1899        if (*endptr == '\0')
1900                return ubi_open_volume(0, dev, mode);
1901
1902        /* ubiX_Y method */
1903        if (*endptr == '_' && isdigit(endptr[1])) {
1904                vol = simple_strtoul(endptr + 1, &endptr, 0);
1905                if (*endptr != '\0')
1906                        return ERR_PTR(-EINVAL);
1907                return ubi_open_volume(dev, vol, mode);
1908        }
1909
1910        /* ubiX:NAME method */
1911        if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1912                return ubi_open_volume_nm(dev, ++endptr, mode);
1913
1914        return ERR_PTR(-EINVAL);
1915}
1916
1917static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1918{
1919        struct ubi_volume_desc *ubi = sb->s_fs_info;
1920        struct ubifs_info *c;
1921        struct inode *root;
1922        int err;
1923
1924        c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1925        if (!c)
1926                return -ENOMEM;
1927
1928        spin_lock_init(&c->cnt_lock);
1929        spin_lock_init(&c->cs_lock);
1930        spin_lock_init(&c->buds_lock);
1931        spin_lock_init(&c->space_lock);
1932        spin_lock_init(&c->orphan_lock);
1933        init_rwsem(&c->commit_sem);
1934        mutex_init(&c->lp_mutex);
1935        mutex_init(&c->tnc_mutex);
1936        mutex_init(&c->log_mutex);
1937        mutex_init(&c->mst_mutex);
1938        mutex_init(&c->umount_mutex);
1939        mutex_init(&c->bu_mutex);
1940        init_waitqueue_head(&c->cmt_wq);
1941        c->buds = RB_ROOT;
1942        c->old_idx = RB_ROOT;
1943        c->size_tree = RB_ROOT;
1944        c->orph_tree = RB_ROOT;
1945        INIT_LIST_HEAD(&c->infos_list);
1946        INIT_LIST_HEAD(&c->idx_gc);
1947        INIT_LIST_HEAD(&c->replay_list);
1948        INIT_LIST_HEAD(&c->replay_buds);
1949        INIT_LIST_HEAD(&c->uncat_list);
1950        INIT_LIST_HEAD(&c->empty_list);
1951        INIT_LIST_HEAD(&c->freeable_list);
1952        INIT_LIST_HEAD(&c->frdi_idx_list);
1953        INIT_LIST_HEAD(&c->unclean_leb_list);
1954        INIT_LIST_HEAD(&c->old_buds);
1955        INIT_LIST_HEAD(&c->orph_list);
1956        INIT_LIST_HEAD(&c->orph_new);
1957
1958        c->vfs_sb = sb;
1959        c->highest_inum = UBIFS_FIRST_INO;
1960        c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1961
1962        ubi_get_volume_info(ubi, &c->vi);
1963        ubi_get_device_info(c->vi.ubi_num, &c->di);
1964
1965        /* Re-open the UBI device in read-write mode */
1966        c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
1967        if (IS_ERR(c->ubi)) {
1968                err = PTR_ERR(c->ubi);
1969                goto out_free;
1970        }
1971
1972        /*
1973         * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1974         * UBIFS, I/O is not deferred, it is done immediately in readpage,
1975         * which means the user would have to wait not just for their own I/O
1976         * but the read-ahead I/O as well i.e. completely pointless.
1977         *
1978         * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1979         */
1980        c->bdi.name = "ubifs",
1981        c->bdi.capabilities = BDI_CAP_MAP_COPY;
1982        c->bdi.unplug_io_fn = default_unplug_io_fn;
1983        err  = bdi_init(&c->bdi);
1984        if (err)
1985                goto out_close;
1986        err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
1987                           c->vi.ubi_num, c->vi.vol_id);
1988        if (err)
1989                goto out_bdi;
1990
1991        err = ubifs_parse_options(c, data, 0);
1992        if (err)
1993                goto out_bdi;
1994
1995        sb->s_bdi = &c->bdi;
1996        sb->s_fs_info = c;
1997        sb->s_magic = UBIFS_SUPER_MAGIC;
1998        sb->s_blocksize = UBIFS_BLOCK_SIZE;
1999        sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2000        sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2001        if (c->max_inode_sz > MAX_LFS_FILESIZE)
2002                sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2003        sb->s_op = &ubifs_super_operations;
2004
2005        mutex_lock(&c->umount_mutex);
2006        err = mount_ubifs(c);
2007        if (err) {
2008                ubifs_assert(err < 0);
2009                goto out_unlock;
2010        }
2011
2012        /* Read the root inode */
2013        root = ubifs_iget(sb, UBIFS_ROOT_INO);
2014        if (IS_ERR(root)) {
2015                err = PTR_ERR(root);
2016                goto out_umount;
2017        }
2018
2019        sb->s_root = d_alloc_root(root);
2020        if (!sb->s_root)
2021                goto out_iput;
2022
2023        mutex_unlock(&c->umount_mutex);
2024        return 0;
2025
2026out_iput:
2027        iput(root);
2028out_umount:
2029        ubifs_umount(c);
2030out_unlock:
2031        mutex_unlock(&c->umount_mutex);
2032out_bdi:
2033        bdi_destroy(&c->bdi);
2034out_close:
2035        ubi_close_volume(c->ubi);
2036out_free:
2037        kfree(c);
2038        return err;
2039}
2040
2041static int sb_test(struct super_block *sb, void *data)
2042{
2043        dev_t *dev = data;
2044        struct ubifs_info *c = sb->s_fs_info;
2045
2046        return c->vi.cdev == *dev;
2047}
2048
2049static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2050                        const char *name, void *data)
2051{
2052        struct ubi_volume_desc *ubi;
2053        struct ubi_volume_info vi;
2054        struct super_block *sb;
2055        int err;
2056
2057        dbg_gen("name %s, flags %#x", name, flags);
2058
2059        /*
2060         * Get UBI device number and volume ID. Mount it read-only so far
2061         * because this might be a new mount point, and UBI allows only one
2062         * read-write user at a time.
2063         */
2064        ubi = open_ubi(name, UBI_READONLY);
2065        if (IS_ERR(ubi)) {
2066                dbg_err("cannot open \"%s\", error %d",
2067                        name, (int)PTR_ERR(ubi));
2068                return ERR_CAST(ubi);
2069        }
2070        ubi_get_volume_info(ubi, &vi);
2071
2072        dbg_gen("opened ubi%d_%d", vi.ubi_num, vi.vol_id);
2073
2074        sb = sget(fs_type, &sb_test, &set_anon_super, &vi.cdev);
2075        if (IS_ERR(sb)) {
2076                err = PTR_ERR(sb);
2077                goto out_close;
2078        }
2079
2080        if (sb->s_root) {
2081                struct ubifs_info *c1 = sb->s_fs_info;
2082
2083                /* A new mount point for already mounted UBIFS */
2084                dbg_gen("this ubi volume is already mounted");
2085                if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2086                        err = -EBUSY;
2087                        goto out_deact;
2088                }
2089        } else {
2090                sb->s_flags = flags;
2091                /*
2092                 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
2093                 * replaced by 'c'.
2094                 */
2095                sb->s_fs_info = ubi;
2096                err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2097                if (err)
2098                        goto out_deact;
2099                /* We do not support atime */
2100                sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2101        }
2102
2103        /* 'fill_super()' opens ubi again so we must close it here */
2104        ubi_close_volume(ubi);
2105
2106        return dget(sb->s_root);
2107
2108out_deact:
2109        deactivate_locked_super(sb);
2110out_close:
2111        ubi_close_volume(ubi);
2112        return ERR_PTR(err);
2113}
2114
2115static struct file_system_type ubifs_fs_type = {
2116        .name    = "ubifs",
2117        .owner   = THIS_MODULE,
2118        .mount   = ubifs_mount,
2119        .kill_sb = kill_anon_super,
2120};
2121
2122/*
2123 * Inode slab cache constructor.
2124 */
2125static void inode_slab_ctor(void *obj)
2126{
2127        struct ubifs_inode *ui = obj;
2128        inode_init_once(&ui->vfs_inode);
2129}
2130
2131static int __init ubifs_init(void)
2132{
2133        int err;
2134
2135        BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2136
2137        /* Make sure node sizes are 8-byte aligned */
2138        BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2139        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2140        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2141        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2142        BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2143        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2144        BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2145        BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2146        BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2147        BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2148        BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2149
2150        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2151        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2152        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2153        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2154        BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2155        BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2156
2157        /* Check min. node size */
2158        BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2159        BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2160        BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2161        BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2162
2163        BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2164        BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2165        BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2166        BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2167
2168        /* Defined node sizes */
2169        BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2170        BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2171        BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2172        BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2173
2174        /*
2175         * We use 2 bit wide bit-fields to store compression type, which should
2176         * be amended if more compressors are added. The bit-fields are:
2177         * @compr_type in 'struct ubifs_inode', @default_compr in
2178         * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2179         */
2180        BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2181
2182        /*
2183         * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2184         * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2185         */
2186        if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2187                ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2188                          " at least 4096 bytes",
2189                          (unsigned int)PAGE_CACHE_SIZE);
2190                return -EINVAL;
2191        }
2192
2193        err = register_filesystem(&ubifs_fs_type);
2194        if (err) {
2195                ubifs_err("cannot register file system, error %d", err);
2196                return err;
2197        }
2198
2199        err = -ENOMEM;
2200        ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2201                                sizeof(struct ubifs_inode), 0,
2202                                SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2203                                &inode_slab_ctor);
2204        if (!ubifs_inode_slab)
2205                goto out_reg;
2206
2207        register_shrinker(&ubifs_shrinker_info);
2208
2209        err = ubifs_compressors_init();
2210        if (err)
2211                goto out_shrinker;
2212
2213        err = dbg_debugfs_init();
2214        if (err)
2215                goto out_compr;
2216
2217        return 0;
2218
2219out_compr:
2220        ubifs_compressors_exit();
2221out_shrinker:
2222        unregister_shrinker(&ubifs_shrinker_info);
2223        kmem_cache_destroy(ubifs_inode_slab);
2224out_reg:
2225        unregister_filesystem(&ubifs_fs_type);
2226        return err;
2227}
2228/* late_initcall to let compressors initialize first */
2229late_initcall(ubifs_init);
2230
2231static void __exit ubifs_exit(void)
2232{
2233        ubifs_assert(list_empty(&ubifs_infos));
2234        ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2235
2236        dbg_debugfs_exit();
2237        ubifs_compressors_exit();
2238        unregister_shrinker(&ubifs_shrinker_info);
2239        kmem_cache_destroy(ubifs_inode_slab);
2240        unregister_filesystem(&ubifs_fs_type);
2241}
2242module_exit(ubifs_exit);
2243
2244MODULE_LICENSE("GPL");
2245MODULE_VERSION(__stringify(UBIFS_VERSION));
2246MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2247MODULE_DESCRIPTION("UBIFS - UBI File System");
2248