linux/fs/ubifs/tnc.c
<<
>>
Prefs
   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Adrian Hunter
  20 *          Artem Bityutskiy (Битюцкий Артём)
  21 */
  22
  23/*
  24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
  25 * the UBIFS B-tree.
  26 *
  27 * At the moment the locking rules of the TNC tree are quite simple and
  28 * straightforward. We just have a mutex and lock it when we traverse the
  29 * tree. If a znode is not in memory, we read it from flash while still having
  30 * the mutex locked.
  31 */
  32
  33#include <linux/crc32.h>
  34#include <linux/slab.h>
  35#include "ubifs.h"
  36
  37/*
  38 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
  39 * @NAME_LESS: name corresponding to the first argument is less than second
  40 * @NAME_MATCHES: names match
  41 * @NAME_GREATER: name corresponding to the second argument is greater than
  42 *                first
  43 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
  44 *
  45 * These constants were introduce to improve readability.
  46 */
  47enum {
  48        NAME_LESS    = 0,
  49        NAME_MATCHES = 1,
  50        NAME_GREATER = 2,
  51        NOT_ON_MEDIA = 3,
  52};
  53
  54/**
  55 * insert_old_idx - record an index node obsoleted since the last commit start.
  56 * @c: UBIFS file-system description object
  57 * @lnum: LEB number of obsoleted index node
  58 * @offs: offset of obsoleted index node
  59 *
  60 * Returns %0 on success, and a negative error code on failure.
  61 *
  62 * For recovery, there must always be a complete intact version of the index on
  63 * flash at all times. That is called the "old index". It is the index as at the
  64 * time of the last successful commit. Many of the index nodes in the old index
  65 * may be dirty, but they must not be erased until the next successful commit
  66 * (at which point that index becomes the old index).
  67 *
  68 * That means that the garbage collection and the in-the-gaps method of
  69 * committing must be able to determine if an index node is in the old index.
  70 * Most of the old index nodes can be found by looking up the TNC using the
  71 * 'lookup_znode()' function. However, some of the old index nodes may have
  72 * been deleted from the current index or may have been changed so much that
  73 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
  74 * That is what this function does. The RB-tree is ordered by LEB number and
  75 * offset because they uniquely identify the old index node.
  76 */
  77static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
  78{
  79        struct ubifs_old_idx *old_idx, *o;
  80        struct rb_node **p, *parent = NULL;
  81
  82        old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
  83        if (unlikely(!old_idx))
  84                return -ENOMEM;
  85        old_idx->lnum = lnum;
  86        old_idx->offs = offs;
  87
  88        p = &c->old_idx.rb_node;
  89        while (*p) {
  90                parent = *p;
  91                o = rb_entry(parent, struct ubifs_old_idx, rb);
  92                if (lnum < o->lnum)
  93                        p = &(*p)->rb_left;
  94                else if (lnum > o->lnum)
  95                        p = &(*p)->rb_right;
  96                else if (offs < o->offs)
  97                        p = &(*p)->rb_left;
  98                else if (offs > o->offs)
  99                        p = &(*p)->rb_right;
 100                else {
 101                        ubifs_err("old idx added twice!");
 102                        kfree(old_idx);
 103                        return 0;
 104                }
 105        }
 106        rb_link_node(&old_idx->rb, parent, p);
 107        rb_insert_color(&old_idx->rb, &c->old_idx);
 108        return 0;
 109}
 110
 111/**
 112 * insert_old_idx_znode - record a znode obsoleted since last commit start.
 113 * @c: UBIFS file-system description object
 114 * @znode: znode of obsoleted index node
 115 *
 116 * Returns %0 on success, and a negative error code on failure.
 117 */
 118int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
 119{
 120        if (znode->parent) {
 121                struct ubifs_zbranch *zbr;
 122
 123                zbr = &znode->parent->zbranch[znode->iip];
 124                if (zbr->len)
 125                        return insert_old_idx(c, zbr->lnum, zbr->offs);
 126        } else
 127                if (c->zroot.len)
 128                        return insert_old_idx(c, c->zroot.lnum,
 129                                              c->zroot.offs);
 130        return 0;
 131}
 132
 133/**
 134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
 135 * @c: UBIFS file-system description object
 136 * @znode: znode of obsoleted index node
 137 *
 138 * Returns %0 on success, and a negative error code on failure.
 139 */
 140static int ins_clr_old_idx_znode(struct ubifs_info *c,
 141                                 struct ubifs_znode *znode)
 142{
 143        int err;
 144
 145        if (znode->parent) {
 146                struct ubifs_zbranch *zbr;
 147
 148                zbr = &znode->parent->zbranch[znode->iip];
 149                if (zbr->len) {
 150                        err = insert_old_idx(c, zbr->lnum, zbr->offs);
 151                        if (err)
 152                                return err;
 153                        zbr->lnum = 0;
 154                        zbr->offs = 0;
 155                        zbr->len = 0;
 156                }
 157        } else
 158                if (c->zroot.len) {
 159                        err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
 160                        if (err)
 161                                return err;
 162                        c->zroot.lnum = 0;
 163                        c->zroot.offs = 0;
 164                        c->zroot.len = 0;
 165                }
 166        return 0;
 167}
 168
 169/**
 170 * destroy_old_idx - destroy the old_idx RB-tree.
 171 * @c: UBIFS file-system description object
 172 *
 173 * During start commit, the old_idx RB-tree is used to avoid overwriting index
 174 * nodes that were in the index last commit but have since been deleted.  This
 175 * is necessary for recovery i.e. the old index must be kept intact until the
 176 * new index is successfully written.  The old-idx RB-tree is used for the
 177 * in-the-gaps method of writing index nodes and is destroyed every commit.
 178 */
 179void destroy_old_idx(struct ubifs_info *c)
 180{
 181        struct rb_node *this = c->old_idx.rb_node;
 182        struct ubifs_old_idx *old_idx;
 183
 184        while (this) {
 185                if (this->rb_left) {
 186                        this = this->rb_left;
 187                        continue;
 188                } else if (this->rb_right) {
 189                        this = this->rb_right;
 190                        continue;
 191                }
 192                old_idx = rb_entry(this, struct ubifs_old_idx, rb);
 193                this = rb_parent(this);
 194                if (this) {
 195                        if (this->rb_left == &old_idx->rb)
 196                                this->rb_left = NULL;
 197                        else
 198                                this->rb_right = NULL;
 199                }
 200                kfree(old_idx);
 201        }
 202        c->old_idx = RB_ROOT;
 203}
 204
 205/**
 206 * copy_znode - copy a dirty znode.
 207 * @c: UBIFS file-system description object
 208 * @znode: znode to copy
 209 *
 210 * A dirty znode being committed may not be changed, so it is copied.
 211 */
 212static struct ubifs_znode *copy_znode(struct ubifs_info *c,
 213                                      struct ubifs_znode *znode)
 214{
 215        struct ubifs_znode *zn;
 216
 217        zn = kmalloc(c->max_znode_sz, GFP_NOFS);
 218        if (unlikely(!zn))
 219                return ERR_PTR(-ENOMEM);
 220
 221        memcpy(zn, znode, c->max_znode_sz);
 222        zn->cnext = NULL;
 223        __set_bit(DIRTY_ZNODE, &zn->flags);
 224        __clear_bit(COW_ZNODE, &zn->flags);
 225
 226        ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
 227        __set_bit(OBSOLETE_ZNODE, &znode->flags);
 228
 229        if (znode->level != 0) {
 230                int i;
 231                const int n = zn->child_cnt;
 232
 233                /* The children now have new parent */
 234                for (i = 0; i < n; i++) {
 235                        struct ubifs_zbranch *zbr = &zn->zbranch[i];
 236
 237                        if (zbr->znode)
 238                                zbr->znode->parent = zn;
 239                }
 240        }
 241
 242        atomic_long_inc(&c->dirty_zn_cnt);
 243        return zn;
 244}
 245
 246/**
 247 * add_idx_dirt - add dirt due to a dirty znode.
 248 * @c: UBIFS file-system description object
 249 * @lnum: LEB number of index node
 250 * @dirt: size of index node
 251 *
 252 * This function updates lprops dirty space and the new size of the index.
 253 */
 254static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
 255{
 256        c->calc_idx_sz -= ALIGN(dirt, 8);
 257        return ubifs_add_dirt(c, lnum, dirt);
 258}
 259
 260/**
 261 * dirty_cow_znode - ensure a znode is not being committed.
 262 * @c: UBIFS file-system description object
 263 * @zbr: branch of znode to check
 264 *
 265 * Returns dirtied znode on success or negative error code on failure.
 266 */
 267static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
 268                                           struct ubifs_zbranch *zbr)
 269{
 270        struct ubifs_znode *znode = zbr->znode;
 271        struct ubifs_znode *zn;
 272        int err;
 273
 274        if (!test_bit(COW_ZNODE, &znode->flags)) {
 275                /* znode is not being committed */
 276                if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
 277                        atomic_long_inc(&c->dirty_zn_cnt);
 278                        atomic_long_dec(&c->clean_zn_cnt);
 279                        atomic_long_dec(&ubifs_clean_zn_cnt);
 280                        err = add_idx_dirt(c, zbr->lnum, zbr->len);
 281                        if (unlikely(err))
 282                                return ERR_PTR(err);
 283                }
 284                return znode;
 285        }
 286
 287        zn = copy_znode(c, znode);
 288        if (IS_ERR(zn))
 289                return zn;
 290
 291        if (zbr->len) {
 292                err = insert_old_idx(c, zbr->lnum, zbr->offs);
 293                if (unlikely(err))
 294                        return ERR_PTR(err);
 295                err = add_idx_dirt(c, zbr->lnum, zbr->len);
 296        } else
 297                err = 0;
 298
 299        zbr->znode = zn;
 300        zbr->lnum = 0;
 301        zbr->offs = 0;
 302        zbr->len = 0;
 303
 304        if (unlikely(err))
 305                return ERR_PTR(err);
 306        return zn;
 307}
 308
 309/**
 310 * lnc_add - add a leaf node to the leaf node cache.
 311 * @c: UBIFS file-system description object
 312 * @zbr: zbranch of leaf node
 313 * @node: leaf node
 314 *
 315 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
 316 * purpose of the leaf node cache is to save re-reading the same leaf node over
 317 * and over again. Most things are cached by VFS, however the file system must
 318 * cache directory entries for readdir and for resolving hash collisions. The
 319 * present implementation of the leaf node cache is extremely simple, and
 320 * allows for error returns that are not used but that may be needed if a more
 321 * complex implementation is created.
 322 *
 323 * Note, this function does not add the @node object to LNC directly, but
 324 * allocates a copy of the object and adds the copy to LNC. The reason for this
 325 * is that @node has been allocated outside of the TNC subsystem and will be
 326 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
 327 * may be changed at any time, e.g. freed by the shrinker.
 328 */
 329static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 330                   const void *node)
 331{
 332        int err;
 333        void *lnc_node;
 334        const struct ubifs_dent_node *dent = node;
 335
 336        ubifs_assert(!zbr->leaf);
 337        ubifs_assert(zbr->len != 0);
 338        ubifs_assert(is_hash_key(c, &zbr->key));
 339
 340        err = ubifs_validate_entry(c, dent);
 341        if (err) {
 342                dbg_dump_stack();
 343                dbg_dump_node(c, dent);
 344                return err;
 345        }
 346
 347        lnc_node = kmalloc(zbr->len, GFP_NOFS);
 348        if (!lnc_node)
 349                /* We don't have to have the cache, so no error */
 350                return 0;
 351
 352        memcpy(lnc_node, node, zbr->len);
 353        zbr->leaf = lnc_node;
 354        return 0;
 355}
 356
 357 /**
 358 * lnc_add_directly - add a leaf node to the leaf-node-cache.
 359 * @c: UBIFS file-system description object
 360 * @zbr: zbranch of leaf node
 361 * @node: leaf node
 362 *
 363 * This function is similar to 'lnc_add()', but it does not create a copy of
 364 * @node but inserts @node to TNC directly.
 365 */
 366static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 367                            void *node)
 368{
 369        int err;
 370
 371        ubifs_assert(!zbr->leaf);
 372        ubifs_assert(zbr->len != 0);
 373
 374        err = ubifs_validate_entry(c, node);
 375        if (err) {
 376                dbg_dump_stack();
 377                dbg_dump_node(c, node);
 378                return err;
 379        }
 380
 381        zbr->leaf = node;
 382        return 0;
 383}
 384
 385/**
 386 * lnc_free - remove a leaf node from the leaf node cache.
 387 * @zbr: zbranch of leaf node
 388 * @node: leaf node
 389 */
 390static void lnc_free(struct ubifs_zbranch *zbr)
 391{
 392        if (!zbr->leaf)
 393                return;
 394        kfree(zbr->leaf);
 395        zbr->leaf = NULL;
 396}
 397
 398/**
 399 * tnc_read_node_nm - read a "hashed" leaf node.
 400 * @c: UBIFS file-system description object
 401 * @zbr: key and position of the node
 402 * @node: node is returned here
 403 *
 404 * This function reads a "hashed" node defined by @zbr from the leaf node cache
 405 * (in it is there) or from the hash media, in which case the node is also
 406 * added to LNC. Returns zero in case of success or a negative negative error
 407 * code in case of failure.
 408 */
 409static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 410                            void *node)
 411{
 412        int err;
 413
 414        ubifs_assert(is_hash_key(c, &zbr->key));
 415
 416        if (zbr->leaf) {
 417                /* Read from the leaf node cache */
 418                ubifs_assert(zbr->len != 0);
 419                memcpy(node, zbr->leaf, zbr->len);
 420                return 0;
 421        }
 422
 423        err = ubifs_tnc_read_node(c, zbr, node);
 424        if (err)
 425                return err;
 426
 427        /* Add the node to the leaf node cache */
 428        err = lnc_add(c, zbr, node);
 429        return err;
 430}
 431
 432/**
 433 * try_read_node - read a node if it is a node.
 434 * @c: UBIFS file-system description object
 435 * @buf: buffer to read to
 436 * @type: node type
 437 * @len: node length (not aligned)
 438 * @lnum: LEB number of node to read
 439 * @offs: offset of node to read
 440 *
 441 * This function tries to read a node of known type and length, checks it and
 442 * stores it in @buf. This function returns %1 if a node is present and %0 if
 443 * a node is not present. A negative error code is returned for I/O errors.
 444 * This function performs that same function as ubifs_read_node except that
 445 * it does not require that there is actually a node present and instead
 446 * the return code indicates if a node was read.
 447 *
 448 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
 449 * is true (it is controlled by corresponding mount option). However, if
 450 * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always
 451 * checked.
 452 */
 453static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 454                         int len, int lnum, int offs)
 455{
 456        int err, node_len;
 457        struct ubifs_ch *ch = buf;
 458        uint32_t crc, node_crc;
 459
 460        dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
 461
 462        err = ubi_read(c->ubi, lnum, buf, offs, len);
 463        if (err) {
 464                ubifs_err("cannot read node type %d from LEB %d:%d, error %d",
 465                          type, lnum, offs, err);
 466                return err;
 467        }
 468
 469        if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
 470                return 0;
 471
 472        if (ch->node_type != type)
 473                return 0;
 474
 475        node_len = le32_to_cpu(ch->len);
 476        if (node_len != len)
 477                return 0;
 478
 479        if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc)
 480                return 1;
 481
 482        crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
 483        node_crc = le32_to_cpu(ch->crc);
 484        if (crc != node_crc)
 485                return 0;
 486
 487        return 1;
 488}
 489
 490/**
 491 * fallible_read_node - try to read a leaf node.
 492 * @c: UBIFS file-system description object
 493 * @key:  key of node to read
 494 * @zbr:  position of node
 495 * @node: node returned
 496 *
 497 * This function tries to read a node and returns %1 if the node is read, %0
 498 * if the node is not present, and a negative error code in the case of error.
 499 */
 500static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 501                              struct ubifs_zbranch *zbr, void *node)
 502{
 503        int ret;
 504
 505        dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key));
 506
 507        ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
 508                            zbr->offs);
 509        if (ret == 1) {
 510                union ubifs_key node_key;
 511                struct ubifs_dent_node *dent = node;
 512
 513                /* All nodes have key in the same place */
 514                key_read(c, &dent->key, &node_key);
 515                if (keys_cmp(c, key, &node_key) != 0)
 516                        ret = 0;
 517        }
 518        if (ret == 0 && c->replaying)
 519                dbg_mnt("dangling branch LEB %d:%d len %d, key %s",
 520                        zbr->lnum, zbr->offs, zbr->len, DBGKEY(key));
 521        return ret;
 522}
 523
 524/**
 525 * matches_name - determine if a direntry or xattr entry matches a given name.
 526 * @c: UBIFS file-system description object
 527 * @zbr: zbranch of dent
 528 * @nm: name to match
 529 *
 530 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 531 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
 532 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
 533 * of failure, a negative error code is returned.
 534 */
 535static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
 536                        const struct qstr *nm)
 537{
 538        struct ubifs_dent_node *dent;
 539        int nlen, err;
 540
 541        /* If possible, match against the dent in the leaf node cache */
 542        if (!zbr->leaf) {
 543                dent = kmalloc(zbr->len, GFP_NOFS);
 544                if (!dent)
 545                        return -ENOMEM;
 546
 547                err = ubifs_tnc_read_node(c, zbr, dent);
 548                if (err)
 549                        goto out_free;
 550
 551                /* Add the node to the leaf node cache */
 552                err = lnc_add_directly(c, zbr, dent);
 553                if (err)
 554                        goto out_free;
 555        } else
 556                dent = zbr->leaf;
 557
 558        nlen = le16_to_cpu(dent->nlen);
 559        err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 560        if (err == 0) {
 561                if (nlen == nm->len)
 562                        return NAME_MATCHES;
 563                else if (nlen < nm->len)
 564                        return NAME_LESS;
 565                else
 566                        return NAME_GREATER;
 567        } else if (err < 0)
 568                return NAME_LESS;
 569        else
 570                return NAME_GREATER;
 571
 572out_free:
 573        kfree(dent);
 574        return err;
 575}
 576
 577/**
 578 * get_znode - get a TNC znode that may not be loaded yet.
 579 * @c: UBIFS file-system description object
 580 * @znode: parent znode
 581 * @n: znode branch slot number
 582 *
 583 * This function returns the znode or a negative error code.
 584 */
 585static struct ubifs_znode *get_znode(struct ubifs_info *c,
 586                                     struct ubifs_znode *znode, int n)
 587{
 588        struct ubifs_zbranch *zbr;
 589
 590        zbr = &znode->zbranch[n];
 591        if (zbr->znode)
 592                znode = zbr->znode;
 593        else
 594                znode = ubifs_load_znode(c, zbr, znode, n);
 595        return znode;
 596}
 597
 598/**
 599 * tnc_next - find next TNC entry.
 600 * @c: UBIFS file-system description object
 601 * @zn: znode is passed and returned here
 602 * @n: znode branch slot number is passed and returned here
 603 *
 604 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
 605 * no next entry, or a negative error code otherwise.
 606 */
 607static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 608{
 609        struct ubifs_znode *znode = *zn;
 610        int nn = *n;
 611
 612        nn += 1;
 613        if (nn < znode->child_cnt) {
 614                *n = nn;
 615                return 0;
 616        }
 617        while (1) {
 618                struct ubifs_znode *zp;
 619
 620                zp = znode->parent;
 621                if (!zp)
 622                        return -ENOENT;
 623                nn = znode->iip + 1;
 624                znode = zp;
 625                if (nn < znode->child_cnt) {
 626                        znode = get_znode(c, znode, nn);
 627                        if (IS_ERR(znode))
 628                                return PTR_ERR(znode);
 629                        while (znode->level != 0) {
 630                                znode = get_znode(c, znode, 0);
 631                                if (IS_ERR(znode))
 632                                        return PTR_ERR(znode);
 633                        }
 634                        nn = 0;
 635                        break;
 636                }
 637        }
 638        *zn = znode;
 639        *n = nn;
 640        return 0;
 641}
 642
 643/**
 644 * tnc_prev - find previous TNC entry.
 645 * @c: UBIFS file-system description object
 646 * @zn: znode is returned here
 647 * @n: znode branch slot number is passed and returned here
 648 *
 649 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
 650 * there is no next entry, or a negative error code otherwise.
 651 */
 652static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
 653{
 654        struct ubifs_znode *znode = *zn;
 655        int nn = *n;
 656
 657        if (nn > 0) {
 658                *n = nn - 1;
 659                return 0;
 660        }
 661        while (1) {
 662                struct ubifs_znode *zp;
 663
 664                zp = znode->parent;
 665                if (!zp)
 666                        return -ENOENT;
 667                nn = znode->iip - 1;
 668                znode = zp;
 669                if (nn >= 0) {
 670                        znode = get_znode(c, znode, nn);
 671                        if (IS_ERR(znode))
 672                                return PTR_ERR(znode);
 673                        while (znode->level != 0) {
 674                                nn = znode->child_cnt - 1;
 675                                znode = get_znode(c, znode, nn);
 676                                if (IS_ERR(znode))
 677                                        return PTR_ERR(znode);
 678                        }
 679                        nn = znode->child_cnt - 1;
 680                        break;
 681                }
 682        }
 683        *zn = znode;
 684        *n = nn;
 685        return 0;
 686}
 687
 688/**
 689 * resolve_collision - resolve a collision.
 690 * @c: UBIFS file-system description object
 691 * @key: key of a directory or extended attribute entry
 692 * @zn: znode is returned here
 693 * @n: zbranch number is passed and returned here
 694 * @nm: name of the entry
 695 *
 696 * This function is called for "hashed" keys to make sure that the found key
 697 * really corresponds to the looked up node (directory or extended attribute
 698 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
 699 * %0 is returned if @nm is not found and @zn and @n are set to the previous
 700 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
 701 * This means that @n may be set to %-1 if the leftmost key in @zn is the
 702 * previous one. A negative error code is returned on failures.
 703 */
 704static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
 705                             struct ubifs_znode **zn, int *n,
 706                             const struct qstr *nm)
 707{
 708        int err;
 709
 710        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 711        if (unlikely(err < 0))
 712                return err;
 713        if (err == NAME_MATCHES)
 714                return 1;
 715
 716        if (err == NAME_GREATER) {
 717                /* Look left */
 718                while (1) {
 719                        err = tnc_prev(c, zn, n);
 720                        if (err == -ENOENT) {
 721                                ubifs_assert(*n == 0);
 722                                *n = -1;
 723                                return 0;
 724                        }
 725                        if (err < 0)
 726                                return err;
 727                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 728                                /*
 729                                 * We have found the branch after which we would
 730                                 * like to insert, but inserting in this znode
 731                                 * may still be wrong. Consider the following 3
 732                                 * znodes, in the case where we are resolving a
 733                                 * collision with Key2.
 734                                 *
 735                                 *                  znode zp
 736                                 *            ----------------------
 737                                 * level 1     |  Key0  |  Key1  |
 738                                 *            -----------------------
 739                                 *                 |            |
 740                                 *       znode za  |            |  znode zb
 741                                 *          ------------      ------------
 742                                 * level 0  |  Key0  |        |  Key2  |
 743                                 *          ------------      ------------
 744                                 *
 745                                 * The lookup finds Key2 in znode zb. Lets say
 746                                 * there is no match and the name is greater so
 747                                 * we look left. When we find Key0, we end up
 748                                 * here. If we return now, we will insert into
 749                                 * znode za at slot n = 1.  But that is invalid
 750                                 * according to the parent's keys.  Key2 must
 751                                 * be inserted into znode zb.
 752                                 *
 753                                 * Note, this problem is not relevant for the
 754                                 * case when we go right, because
 755                                 * 'tnc_insert()' would correct the parent key.
 756                                 */
 757                                if (*n == (*zn)->child_cnt - 1) {
 758                                        err = tnc_next(c, zn, n);
 759                                        if (err) {
 760                                                /* Should be impossible */
 761                                                ubifs_assert(0);
 762                                                if (err == -ENOENT)
 763                                                        err = -EINVAL;
 764                                                return err;
 765                                        }
 766                                        ubifs_assert(*n == 0);
 767                                        *n = -1;
 768                                }
 769                                return 0;
 770                        }
 771                        err = matches_name(c, &(*zn)->zbranch[*n], nm);
 772                        if (err < 0)
 773                                return err;
 774                        if (err == NAME_LESS)
 775                                return 0;
 776                        if (err == NAME_MATCHES)
 777                                return 1;
 778                        ubifs_assert(err == NAME_GREATER);
 779                }
 780        } else {
 781                int nn = *n;
 782                struct ubifs_znode *znode = *zn;
 783
 784                /* Look right */
 785                while (1) {
 786                        err = tnc_next(c, &znode, &nn);
 787                        if (err == -ENOENT)
 788                                return 0;
 789                        if (err < 0)
 790                                return err;
 791                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 792                                return 0;
 793                        err = matches_name(c, &znode->zbranch[nn], nm);
 794                        if (err < 0)
 795                                return err;
 796                        if (err == NAME_GREATER)
 797                                return 0;
 798                        *zn = znode;
 799                        *n = nn;
 800                        if (err == NAME_MATCHES)
 801                                return 1;
 802                        ubifs_assert(err == NAME_LESS);
 803                }
 804        }
 805}
 806
 807/**
 808 * fallible_matches_name - determine if a dent matches a given name.
 809 * @c: UBIFS file-system description object
 810 * @zbr: zbranch of dent
 811 * @nm: name to match
 812 *
 813 * This is a "fallible" version of 'matches_name()' function which does not
 814 * panic if the direntry/xentry referred by @zbr does not exist on the media.
 815 *
 816 * This function checks if xentry/direntry referred by zbranch @zbr matches name
 817 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
 818 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
 819 * if xentry/direntry referred by @zbr does not exist on the media. A negative
 820 * error code is returned in case of failure.
 821 */
 822static int fallible_matches_name(struct ubifs_info *c,
 823                                 struct ubifs_zbranch *zbr,
 824                                 const struct qstr *nm)
 825{
 826        struct ubifs_dent_node *dent;
 827        int nlen, err;
 828
 829        /* If possible, match against the dent in the leaf node cache */
 830        if (!zbr->leaf) {
 831                dent = kmalloc(zbr->len, GFP_NOFS);
 832                if (!dent)
 833                        return -ENOMEM;
 834
 835                err = fallible_read_node(c, &zbr->key, zbr, dent);
 836                if (err < 0)
 837                        goto out_free;
 838                if (err == 0) {
 839                        /* The node was not present */
 840                        err = NOT_ON_MEDIA;
 841                        goto out_free;
 842                }
 843                ubifs_assert(err == 1);
 844
 845                err = lnc_add_directly(c, zbr, dent);
 846                if (err)
 847                        goto out_free;
 848        } else
 849                dent = zbr->leaf;
 850
 851        nlen = le16_to_cpu(dent->nlen);
 852        err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len));
 853        if (err == 0) {
 854                if (nlen == nm->len)
 855                        return NAME_MATCHES;
 856                else if (nlen < nm->len)
 857                        return NAME_LESS;
 858                else
 859                        return NAME_GREATER;
 860        } else if (err < 0)
 861                return NAME_LESS;
 862        else
 863                return NAME_GREATER;
 864
 865out_free:
 866        kfree(dent);
 867        return err;
 868}
 869
 870/**
 871 * fallible_resolve_collision - resolve a collision even if nodes are missing.
 872 * @c: UBIFS file-system description object
 873 * @key: key
 874 * @zn: znode is returned here
 875 * @n: branch number is passed and returned here
 876 * @nm: name of directory entry
 877 * @adding: indicates caller is adding a key to the TNC
 878 *
 879 * This is a "fallible" version of the 'resolve_collision()' function which
 880 * does not panic if one of the nodes referred to by TNC does not exist on the
 881 * media. This may happen when replaying the journal if a deleted node was
 882 * Garbage-collected and the commit was not done. A branch that refers to a node
 883 * that is not present is called a dangling branch. The following are the return
 884 * codes for this function:
 885 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
 886 *    branch;
 887 *  o if we are @adding and @nm was not found, %0 is returned;
 888 *  o if we are not @adding and @nm was not found, but a dangling branch was
 889 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
 890 *  o a negative error code is returned in case of failure.
 891 */
 892static int fallible_resolve_collision(struct ubifs_info *c,
 893                                      const union ubifs_key *key,
 894                                      struct ubifs_znode **zn, int *n,
 895                                      const struct qstr *nm, int adding)
 896{
 897        struct ubifs_znode *o_znode = NULL, *znode = *zn;
 898        int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
 899
 900        cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
 901        if (unlikely(cmp < 0))
 902                return cmp;
 903        if (cmp == NAME_MATCHES)
 904                return 1;
 905        if (cmp == NOT_ON_MEDIA) {
 906                o_znode = znode;
 907                o_n = nn;
 908                /*
 909                 * We are unlucky and hit a dangling branch straight away.
 910                 * Now we do not really know where to go to find the needed
 911                 * branch - to the left or to the right. Well, let's try left.
 912                 */
 913                unsure = 1;
 914        } else if (!adding)
 915                unsure = 1; /* Remove a dangling branch wherever it is */
 916
 917        if (cmp == NAME_GREATER || unsure) {
 918                /* Look left */
 919                while (1) {
 920                        err = tnc_prev(c, zn, n);
 921                        if (err == -ENOENT) {
 922                                ubifs_assert(*n == 0);
 923                                *n = -1;
 924                                break;
 925                        }
 926                        if (err < 0)
 927                                return err;
 928                        if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
 929                                /* See comments in 'resolve_collision()' */
 930                                if (*n == (*zn)->child_cnt - 1) {
 931                                        err = tnc_next(c, zn, n);
 932                                        if (err) {
 933                                                /* Should be impossible */
 934                                                ubifs_assert(0);
 935                                                if (err == -ENOENT)
 936                                                        err = -EINVAL;
 937                                                return err;
 938                                        }
 939                                        ubifs_assert(*n == 0);
 940                                        *n = -1;
 941                                }
 942                                break;
 943                        }
 944                        err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
 945                        if (err < 0)
 946                                return err;
 947                        if (err == NAME_MATCHES)
 948                                return 1;
 949                        if (err == NOT_ON_MEDIA) {
 950                                o_znode = *zn;
 951                                o_n = *n;
 952                                continue;
 953                        }
 954                        if (!adding)
 955                                continue;
 956                        if (err == NAME_LESS)
 957                                break;
 958                        else
 959                                unsure = 0;
 960                }
 961        }
 962
 963        if (cmp == NAME_LESS || unsure) {
 964                /* Look right */
 965                *zn = znode;
 966                *n = nn;
 967                while (1) {
 968                        err = tnc_next(c, &znode, &nn);
 969                        if (err == -ENOENT)
 970                                break;
 971                        if (err < 0)
 972                                return err;
 973                        if (keys_cmp(c, &znode->zbranch[nn].key, key))
 974                                break;
 975                        err = fallible_matches_name(c, &znode->zbranch[nn], nm);
 976                        if (err < 0)
 977                                return err;
 978                        if (err == NAME_GREATER)
 979                                break;
 980                        *zn = znode;
 981                        *n = nn;
 982                        if (err == NAME_MATCHES)
 983                                return 1;
 984                        if (err == NOT_ON_MEDIA) {
 985                                o_znode = znode;
 986                                o_n = nn;
 987                        }
 988                }
 989        }
 990
 991        /* Never match a dangling branch when adding */
 992        if (adding || !o_znode)
 993                return 0;
 994
 995        dbg_mnt("dangling match LEB %d:%d len %d %s",
 996                o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
 997                o_znode->zbranch[o_n].len, DBGKEY(key));
 998        *zn = o_znode;
 999        *n = o_n;
1000        return 1;
1001}
1002
1003/**
1004 * matches_position - determine if a zbranch matches a given position.
1005 * @zbr: zbranch of dent
1006 * @lnum: LEB number of dent to match
1007 * @offs: offset of dent to match
1008 *
1009 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1010 */
1011static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1012{
1013        if (zbr->lnum == lnum && zbr->offs == offs)
1014                return 1;
1015        else
1016                return 0;
1017}
1018
1019/**
1020 * resolve_collision_directly - resolve a collision directly.
1021 * @c: UBIFS file-system description object
1022 * @key: key of directory entry
1023 * @zn: znode is passed and returned here
1024 * @n: zbranch number is passed and returned here
1025 * @lnum: LEB number of dent node to match
1026 * @offs: offset of dent node to match
1027 *
1028 * This function is used for "hashed" keys to make sure the found directory or
1029 * extended attribute entry node is what was looked for. It is used when the
1030 * flash address of the right node is known (@lnum:@offs) which makes it much
1031 * easier to resolve collisions (no need to read entries and match full
1032 * names). This function returns %1 and sets @zn and @n if the collision is
1033 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1034 * previous directory entry. Otherwise a negative error code is returned.
1035 */
1036static int resolve_collision_directly(struct ubifs_info *c,
1037                                      const union ubifs_key *key,
1038                                      struct ubifs_znode **zn, int *n,
1039                                      int lnum, int offs)
1040{
1041        struct ubifs_znode *znode;
1042        int nn, err;
1043
1044        znode = *zn;
1045        nn = *n;
1046        if (matches_position(&znode->zbranch[nn], lnum, offs))
1047                return 1;
1048
1049        /* Look left */
1050        while (1) {
1051                err = tnc_prev(c, &znode, &nn);
1052                if (err == -ENOENT)
1053                        break;
1054                if (err < 0)
1055                        return err;
1056                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1057                        break;
1058                if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1059                        *zn = znode;
1060                        *n = nn;
1061                        return 1;
1062                }
1063        }
1064
1065        /* Look right */
1066        znode = *zn;
1067        nn = *n;
1068        while (1) {
1069                err = tnc_next(c, &znode, &nn);
1070                if (err == -ENOENT)
1071                        return 0;
1072                if (err < 0)
1073                        return err;
1074                if (keys_cmp(c, &znode->zbranch[nn].key, key))
1075                        return 0;
1076                *zn = znode;
1077                *n = nn;
1078                if (matches_position(&znode->zbranch[nn], lnum, offs))
1079                        return 1;
1080        }
1081}
1082
1083/**
1084 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1085 * @c: UBIFS file-system description object
1086 * @znode: znode to dirty
1087 *
1088 * If we do not have a unique key that resides in a znode, then we cannot
1089 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1090 * This function records the path back to the last dirty ancestor, and then
1091 * dirties the znodes on that path.
1092 */
1093static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1094                                               struct ubifs_znode *znode)
1095{
1096        struct ubifs_znode *zp;
1097        int *path = c->bottom_up_buf, p = 0;
1098
1099        ubifs_assert(c->zroot.znode);
1100        ubifs_assert(znode);
1101        if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1102                kfree(c->bottom_up_buf);
1103                c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1104                                           GFP_NOFS);
1105                if (!c->bottom_up_buf)
1106                        return ERR_PTR(-ENOMEM);
1107                path = c->bottom_up_buf;
1108        }
1109        if (c->zroot.znode->level) {
1110                /* Go up until parent is dirty */
1111                while (1) {
1112                        int n;
1113
1114                        zp = znode->parent;
1115                        if (!zp)
1116                                break;
1117                        n = znode->iip;
1118                        ubifs_assert(p < c->zroot.znode->level);
1119                        path[p++] = n;
1120                        if (!zp->cnext && ubifs_zn_dirty(znode))
1121                                break;
1122                        znode = zp;
1123                }
1124        }
1125
1126        /* Come back down, dirtying as we go */
1127        while (1) {
1128                struct ubifs_zbranch *zbr;
1129
1130                zp = znode->parent;
1131                if (zp) {
1132                        ubifs_assert(path[p - 1] >= 0);
1133                        ubifs_assert(path[p - 1] < zp->child_cnt);
1134                        zbr = &zp->zbranch[path[--p]];
1135                        znode = dirty_cow_znode(c, zbr);
1136                } else {
1137                        ubifs_assert(znode == c->zroot.znode);
1138                        znode = dirty_cow_znode(c, &c->zroot);
1139                }
1140                if (IS_ERR(znode) || !p)
1141                        break;
1142                ubifs_assert(path[p - 1] >= 0);
1143                ubifs_assert(path[p - 1] < znode->child_cnt);
1144                znode = znode->zbranch[path[p - 1]].znode;
1145        }
1146
1147        return znode;
1148}
1149
1150/**
1151 * ubifs_lookup_level0 - search for zero-level znode.
1152 * @c: UBIFS file-system description object
1153 * @key:  key to lookup
1154 * @zn: znode is returned here
1155 * @n: znode branch slot number is returned here
1156 *
1157 * This function looks up the TNC tree and search for zero-level znode which
1158 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1159 * cases:
1160 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1161 *     is returned and slot number of the matched branch is stored in @n;
1162 *   o not exact match, which means that zero-level znode does not contain
1163 *     @key, then %0 is returned and slot number of the closest branch is stored
1164 *     in @n;
1165 *   o @key is so small that it is even less than the lowest key of the
1166 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1167 *
1168 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1169 * function reads corresponding indexing nodes and inserts them to TNC. In
1170 * case of failure, a negative error code is returned.
1171 */
1172int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1173                        struct ubifs_znode **zn, int *n)
1174{
1175        int err, exact;
1176        struct ubifs_znode *znode;
1177        unsigned long time = get_seconds();
1178
1179        dbg_tnc("search key %s", DBGKEY(key));
1180        ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1181
1182        znode = c->zroot.znode;
1183        if (unlikely(!znode)) {
1184                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1185                if (IS_ERR(znode))
1186                        return PTR_ERR(znode);
1187        }
1188
1189        znode->time = time;
1190
1191        while (1) {
1192                struct ubifs_zbranch *zbr;
1193
1194                exact = ubifs_search_zbranch(c, znode, key, n);
1195
1196                if (znode->level == 0)
1197                        break;
1198
1199                if (*n < 0)
1200                        *n = 0;
1201                zbr = &znode->zbranch[*n];
1202
1203                if (zbr->znode) {
1204                        znode->time = time;
1205                        znode = zbr->znode;
1206                        continue;
1207                }
1208
1209                /* znode is not in TNC cache, load it from the media */
1210                znode = ubifs_load_znode(c, zbr, znode, *n);
1211                if (IS_ERR(znode))
1212                        return PTR_ERR(znode);
1213        }
1214
1215        *zn = znode;
1216        if (exact || !is_hash_key(c, key) || *n != -1) {
1217                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1218                return exact;
1219        }
1220
1221        /*
1222         * Here is a tricky place. We have not found the key and this is a
1223         * "hashed" key, which may collide. The rest of the code deals with
1224         * situations like this:
1225         *
1226         *                  | 3 | 5 |
1227         *                  /       \
1228         *          | 3 | 5 |      | 6 | 7 | (x)
1229         *
1230         * Or more a complex example:
1231         *
1232         *                | 1 | 5 |
1233         *                /       \
1234         *       | 1 | 3 |         | 5 | 8 |
1235         *              \           /
1236         *          | 5 | 5 |   | 6 | 7 | (x)
1237         *
1238         * In the examples, if we are looking for key "5", we may reach nodes
1239         * marked with "(x)". In this case what we have do is to look at the
1240         * left and see if there is "5" key there. If there is, we have to
1241         * return it.
1242         *
1243         * Note, this whole situation is possible because we allow to have
1244         * elements which are equivalent to the next key in the parent in the
1245         * children of current znode. For example, this happens if we split a
1246         * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1247         * like this:
1248         *                      | 3 | 5 |
1249         *                       /     \
1250         *                | 3 | 5 |   | 5 | 6 | 7 |
1251         *                              ^
1252         * And this becomes what is at the first "picture" after key "5" marked
1253         * with "^" is removed. What could be done is we could prohibit
1254         * splitting in the middle of the colliding sequence. Also, when
1255         * removing the leftmost key, we would have to correct the key of the
1256         * parent node, which would introduce additional complications. Namely,
1257         * if we changed the leftmost key of the parent znode, the garbage
1258         * collector would be unable to find it (GC is doing this when GC'ing
1259         * indexing LEBs). Although we already have an additional RB-tree where
1260         * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1261         * after the commit. But anyway, this does not look easy to implement
1262         * so we did not try this.
1263         */
1264        err = tnc_prev(c, &znode, n);
1265        if (err == -ENOENT) {
1266                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1267                *n = -1;
1268                return 0;
1269        }
1270        if (unlikely(err < 0))
1271                return err;
1272        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1273                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1274                *n = -1;
1275                return 0;
1276        }
1277
1278        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1279        *zn = znode;
1280        return 1;
1281}
1282
1283/**
1284 * lookup_level0_dirty - search for zero-level znode dirtying.
1285 * @c: UBIFS file-system description object
1286 * @key:  key to lookup
1287 * @zn: znode is returned here
1288 * @n: znode branch slot number is returned here
1289 *
1290 * This function looks up the TNC tree and search for zero-level znode which
1291 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1292 * cases:
1293 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1294 *     is returned and slot number of the matched branch is stored in @n;
1295 *   o not exact match, which means that zero-level znode does not contain @key
1296 *     then %0 is returned and slot number of the closed branch is stored in
1297 *     @n;
1298 *   o @key is so small that it is even less than the lowest key of the
1299 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1300 *
1301 * Additionally all znodes in the path from the root to the located zero-level
1302 * znode are marked as dirty.
1303 *
1304 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1305 * function reads corresponding indexing nodes and inserts them to TNC. In
1306 * case of failure, a negative error code is returned.
1307 */
1308static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1309                               struct ubifs_znode **zn, int *n)
1310{
1311        int err, exact;
1312        struct ubifs_znode *znode;
1313        unsigned long time = get_seconds();
1314
1315        dbg_tnc("search and dirty key %s", DBGKEY(key));
1316
1317        znode = c->zroot.znode;
1318        if (unlikely(!znode)) {
1319                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1320                if (IS_ERR(znode))
1321                        return PTR_ERR(znode);
1322        }
1323
1324        znode = dirty_cow_znode(c, &c->zroot);
1325        if (IS_ERR(znode))
1326                return PTR_ERR(znode);
1327
1328        znode->time = time;
1329
1330        while (1) {
1331                struct ubifs_zbranch *zbr;
1332
1333                exact = ubifs_search_zbranch(c, znode, key, n);
1334
1335                if (znode->level == 0)
1336                        break;
1337
1338                if (*n < 0)
1339                        *n = 0;
1340                zbr = &znode->zbranch[*n];
1341
1342                if (zbr->znode) {
1343                        znode->time = time;
1344                        znode = dirty_cow_znode(c, zbr);
1345                        if (IS_ERR(znode))
1346                                return PTR_ERR(znode);
1347                        continue;
1348                }
1349
1350                /* znode is not in TNC cache, load it from the media */
1351                znode = ubifs_load_znode(c, zbr, znode, *n);
1352                if (IS_ERR(znode))
1353                        return PTR_ERR(znode);
1354                znode = dirty_cow_znode(c, zbr);
1355                if (IS_ERR(znode))
1356                        return PTR_ERR(znode);
1357        }
1358
1359        *zn = znode;
1360        if (exact || !is_hash_key(c, key) || *n != -1) {
1361                dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1362                return exact;
1363        }
1364
1365        /*
1366         * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1367         * code.
1368         */
1369        err = tnc_prev(c, &znode, n);
1370        if (err == -ENOENT) {
1371                *n = -1;
1372                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1373                return 0;
1374        }
1375        if (unlikely(err < 0))
1376                return err;
1377        if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1378                *n = -1;
1379                dbg_tnc("found 0, lvl %d, n -1", znode->level);
1380                return 0;
1381        }
1382
1383        if (znode->cnext || !ubifs_zn_dirty(znode)) {
1384                znode = dirty_cow_bottom_up(c, znode);
1385                if (IS_ERR(znode))
1386                        return PTR_ERR(znode);
1387        }
1388
1389        dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1390        *zn = znode;
1391        return 1;
1392}
1393
1394/**
1395 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1396 * @c: UBIFS file-system description object
1397 * @lnum: LEB number
1398 * @gc_seq1: garbage collection sequence number
1399 *
1400 * This function determines if @lnum may have been garbage collected since
1401 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1402 * %0 is returned.
1403 */
1404static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1405{
1406        int gc_seq2, gced_lnum;
1407
1408        gced_lnum = c->gced_lnum;
1409        smp_rmb();
1410        gc_seq2 = c->gc_seq;
1411        /* Same seq means no GC */
1412        if (gc_seq1 == gc_seq2)
1413                return 0;
1414        /* Different by more than 1 means we don't know */
1415        if (gc_seq1 + 1 != gc_seq2)
1416                return 1;
1417        /*
1418         * We have seen the sequence number has increased by 1. Now we need to
1419         * be sure we read the right LEB number, so read it again.
1420         */
1421        smp_rmb();
1422        if (gced_lnum != c->gced_lnum)
1423                return 1;
1424        /* Finally we can check lnum */
1425        if (gced_lnum == lnum)
1426                return 1;
1427        return 0;
1428}
1429
1430/**
1431 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1432 * @c: UBIFS file-system description object
1433 * @key: node key to lookup
1434 * @node: the node is returned here
1435 * @lnum: LEB number is returned here
1436 * @offs: offset is returned here
1437 *
1438 * This function looks up and reads node with key @key. The caller has to make
1439 * sure the @node buffer is large enough to fit the node. Returns zero in case
1440 * of success, %-ENOENT if the node was not found, and a negative error code in
1441 * case of failure. The node location can be returned in @lnum and @offs.
1442 */
1443int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1444                     void *node, int *lnum, int *offs)
1445{
1446        int found, n, err, safely = 0, gc_seq1;
1447        struct ubifs_znode *znode;
1448        struct ubifs_zbranch zbr, *zt;
1449
1450again:
1451        mutex_lock(&c->tnc_mutex);
1452        found = ubifs_lookup_level0(c, key, &znode, &n);
1453        if (!found) {
1454                err = -ENOENT;
1455                goto out;
1456        } else if (found < 0) {
1457                err = found;
1458                goto out;
1459        }
1460        zt = &znode->zbranch[n];
1461        if (lnum) {
1462                *lnum = zt->lnum;
1463                *offs = zt->offs;
1464        }
1465        if (is_hash_key(c, key)) {
1466                /*
1467                 * In this case the leaf node cache gets used, so we pass the
1468                 * address of the zbranch and keep the mutex locked
1469                 */
1470                err = tnc_read_node_nm(c, zt, node);
1471                goto out;
1472        }
1473        if (safely) {
1474                err = ubifs_tnc_read_node(c, zt, node);
1475                goto out;
1476        }
1477        /* Drop the TNC mutex prematurely and race with garbage collection */
1478        zbr = znode->zbranch[n];
1479        gc_seq1 = c->gc_seq;
1480        mutex_unlock(&c->tnc_mutex);
1481
1482        if (ubifs_get_wbuf(c, zbr.lnum)) {
1483                /* We do not GC journal heads */
1484                err = ubifs_tnc_read_node(c, &zbr, node);
1485                return err;
1486        }
1487
1488        err = fallible_read_node(c, key, &zbr, node);
1489        if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1490                /*
1491                 * The node may have been GC'ed out from under us so try again
1492                 * while keeping the TNC mutex locked.
1493                 */
1494                safely = 1;
1495                goto again;
1496        }
1497        return 0;
1498
1499out:
1500        mutex_unlock(&c->tnc_mutex);
1501        return err;
1502}
1503
1504/**
1505 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1506 * @c: UBIFS file-system description object
1507 * @bu: bulk-read parameters and results
1508 *
1509 * Lookup consecutive data node keys for the same inode that reside
1510 * consecutively in the same LEB. This function returns zero in case of success
1511 * and a negative error code in case of failure.
1512 *
1513 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1514 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1515 * maximum possible amount of nodes for bulk-read.
1516 */
1517int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1518{
1519        int n, err = 0, lnum = -1, uninitialized_var(offs);
1520        int uninitialized_var(len);
1521        unsigned int block = key_block(c, &bu->key);
1522        struct ubifs_znode *znode;
1523
1524        bu->cnt = 0;
1525        bu->blk_cnt = 0;
1526        bu->eof = 0;
1527
1528        mutex_lock(&c->tnc_mutex);
1529        /* Find first key */
1530        err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1531        if (err < 0)
1532                goto out;
1533        if (err) {
1534                /* Key found */
1535                len = znode->zbranch[n].len;
1536                /* The buffer must be big enough for at least 1 node */
1537                if (len > bu->buf_len) {
1538                        err = -EINVAL;
1539                        goto out;
1540                }
1541                /* Add this key */
1542                bu->zbranch[bu->cnt++] = znode->zbranch[n];
1543                bu->blk_cnt += 1;
1544                lnum = znode->zbranch[n].lnum;
1545                offs = ALIGN(znode->zbranch[n].offs + len, 8);
1546        }
1547        while (1) {
1548                struct ubifs_zbranch *zbr;
1549                union ubifs_key *key;
1550                unsigned int next_block;
1551
1552                /* Find next key */
1553                err = tnc_next(c, &znode, &n);
1554                if (err)
1555                        goto out;
1556                zbr = &znode->zbranch[n];
1557                key = &zbr->key;
1558                /* See if there is another data key for this file */
1559                if (key_inum(c, key) != key_inum(c, &bu->key) ||
1560                    key_type(c, key) != UBIFS_DATA_KEY) {
1561                        err = -ENOENT;
1562                        goto out;
1563                }
1564                if (lnum < 0) {
1565                        /* First key found */
1566                        lnum = zbr->lnum;
1567                        offs = ALIGN(zbr->offs + zbr->len, 8);
1568                        len = zbr->len;
1569                        if (len > bu->buf_len) {
1570                                err = -EINVAL;
1571                                goto out;
1572                        }
1573                } else {
1574                        /*
1575                         * The data nodes must be in consecutive positions in
1576                         * the same LEB.
1577                         */
1578                        if (zbr->lnum != lnum || zbr->offs != offs)
1579                                goto out;
1580                        offs += ALIGN(zbr->len, 8);
1581                        len = ALIGN(len, 8) + zbr->len;
1582                        /* Must not exceed buffer length */
1583                        if (len > bu->buf_len)
1584                                goto out;
1585                }
1586                /* Allow for holes */
1587                next_block = key_block(c, key);
1588                bu->blk_cnt += (next_block - block - 1);
1589                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1590                        goto out;
1591                block = next_block;
1592                /* Add this key */
1593                bu->zbranch[bu->cnt++] = *zbr;
1594                bu->blk_cnt += 1;
1595                /* See if we have room for more */
1596                if (bu->cnt >= UBIFS_MAX_BULK_READ)
1597                        goto out;
1598                if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1599                        goto out;
1600        }
1601out:
1602        if (err == -ENOENT) {
1603                bu->eof = 1;
1604                err = 0;
1605        }
1606        bu->gc_seq = c->gc_seq;
1607        mutex_unlock(&c->tnc_mutex);
1608        if (err)
1609                return err;
1610        /*
1611         * An enormous hole could cause bulk-read to encompass too many
1612         * page cache pages, so limit the number here.
1613         */
1614        if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1615                bu->blk_cnt = UBIFS_MAX_BULK_READ;
1616        /*
1617         * Ensure that bulk-read covers a whole number of page cache
1618         * pages.
1619         */
1620        if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1621            !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1622                return 0;
1623        if (bu->eof) {
1624                /* At the end of file we can round up */
1625                bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1626                return 0;
1627        }
1628        /* Exclude data nodes that do not make up a whole page cache page */
1629        block = key_block(c, &bu->key) + bu->blk_cnt;
1630        block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1631        while (bu->cnt) {
1632                if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1633                        break;
1634                bu->cnt -= 1;
1635        }
1636        return 0;
1637}
1638
1639/**
1640 * read_wbuf - bulk-read from a LEB with a wbuf.
1641 * @wbuf: wbuf that may overlap the read
1642 * @buf: buffer into which to read
1643 * @len: read length
1644 * @lnum: LEB number from which to read
1645 * @offs: offset from which to read
1646 *
1647 * This functions returns %0 on success or a negative error code on failure.
1648 */
1649static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1650                     int offs)
1651{
1652        const struct ubifs_info *c = wbuf->c;
1653        int rlen, overlap;
1654
1655        dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1656        ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1657        ubifs_assert(!(offs & 7) && offs < c->leb_size);
1658        ubifs_assert(offs + len <= c->leb_size);
1659
1660        spin_lock(&wbuf->lock);
1661        overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1662        if (!overlap) {
1663                /* We may safely unlock the write-buffer and read the data */
1664                spin_unlock(&wbuf->lock);
1665                return ubi_read(c->ubi, lnum, buf, offs, len);
1666        }
1667
1668        /* Don't read under wbuf */
1669        rlen = wbuf->offs - offs;
1670        if (rlen < 0)
1671                rlen = 0;
1672
1673        /* Copy the rest from the write-buffer */
1674        memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1675        spin_unlock(&wbuf->lock);
1676
1677        if (rlen > 0)
1678                /* Read everything that goes before write-buffer */
1679                return ubi_read(c->ubi, lnum, buf, offs, rlen);
1680
1681        return 0;
1682}
1683
1684/**
1685 * validate_data_node - validate data nodes for bulk-read.
1686 * @c: UBIFS file-system description object
1687 * @buf: buffer containing data node to validate
1688 * @zbr: zbranch of data node to validate
1689 *
1690 * This functions returns %0 on success or a negative error code on failure.
1691 */
1692static int validate_data_node(struct ubifs_info *c, void *buf,
1693                              struct ubifs_zbranch *zbr)
1694{
1695        union ubifs_key key1;
1696        struct ubifs_ch *ch = buf;
1697        int err, len;
1698
1699        if (ch->node_type != UBIFS_DATA_NODE) {
1700                ubifs_err("bad node type (%d but expected %d)",
1701                          ch->node_type, UBIFS_DATA_NODE);
1702                goto out_err;
1703        }
1704
1705        err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1706        if (err) {
1707                ubifs_err("expected node type %d", UBIFS_DATA_NODE);
1708                goto out;
1709        }
1710
1711        len = le32_to_cpu(ch->len);
1712        if (len != zbr->len) {
1713                ubifs_err("bad node length %d, expected %d", len, zbr->len);
1714                goto out_err;
1715        }
1716
1717        /* Make sure the key of the read node is correct */
1718        key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1719        if (!keys_eq(c, &zbr->key, &key1)) {
1720                ubifs_err("bad key in node at LEB %d:%d",
1721                          zbr->lnum, zbr->offs);
1722                dbg_tnc("looked for key %s found node's key %s",
1723                        DBGKEY(&zbr->key), DBGKEY1(&key1));
1724                goto out_err;
1725        }
1726
1727        return 0;
1728
1729out_err:
1730        err = -EINVAL;
1731out:
1732        ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1733        dbg_dump_node(c, buf);
1734        dbg_dump_stack();
1735        return err;
1736}
1737
1738/**
1739 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1740 * @c: UBIFS file-system description object
1741 * @bu: bulk-read parameters and results
1742 *
1743 * This functions reads and validates the data nodes that were identified by the
1744 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1745 * -EAGAIN to indicate a race with GC, or another negative error code on
1746 * failure.
1747 */
1748int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1749{
1750        int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1751        struct ubifs_wbuf *wbuf;
1752        void *buf;
1753
1754        len = bu->zbranch[bu->cnt - 1].offs;
1755        len += bu->zbranch[bu->cnt - 1].len - offs;
1756        if (len > bu->buf_len) {
1757                ubifs_err("buffer too small %d vs %d", bu->buf_len, len);
1758                return -EINVAL;
1759        }
1760
1761        /* Do the read */
1762        wbuf = ubifs_get_wbuf(c, lnum);
1763        if (wbuf)
1764                err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1765        else
1766                err = ubi_read(c->ubi, lnum, bu->buf, offs, len);
1767
1768        /* Check for a race with GC */
1769        if (maybe_leb_gced(c, lnum, bu->gc_seq))
1770                return -EAGAIN;
1771
1772        if (err && err != -EBADMSG) {
1773                ubifs_err("failed to read from LEB %d:%d, error %d",
1774                          lnum, offs, err);
1775                dbg_dump_stack();
1776                dbg_tnc("key %s", DBGKEY(&bu->key));
1777                return err;
1778        }
1779
1780        /* Validate the nodes read */
1781        buf = bu->buf;
1782        for (i = 0; i < bu->cnt; i++) {
1783                err = validate_data_node(c, buf, &bu->zbranch[i]);
1784                if (err)
1785                        return err;
1786                buf = buf + ALIGN(bu->zbranch[i].len, 8);
1787        }
1788
1789        return 0;
1790}
1791
1792/**
1793 * do_lookup_nm- look up a "hashed" node.
1794 * @c: UBIFS file-system description object
1795 * @key: node key to lookup
1796 * @node: the node is returned here
1797 * @nm: node name
1798 *
1799 * This function look up and reads a node which contains name hash in the key.
1800 * Since the hash may have collisions, there may be many nodes with the same
1801 * key, so we have to sequentially look to all of them until the needed one is
1802 * found. This function returns zero in case of success, %-ENOENT if the node
1803 * was not found, and a negative error code in case of failure.
1804 */
1805static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1806                        void *node, const struct qstr *nm)
1807{
1808        int found, n, err;
1809        struct ubifs_znode *znode;
1810
1811        dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key));
1812        mutex_lock(&c->tnc_mutex);
1813        found = ubifs_lookup_level0(c, key, &znode, &n);
1814        if (!found) {
1815                err = -ENOENT;
1816                goto out_unlock;
1817        } else if (found < 0) {
1818                err = found;
1819                goto out_unlock;
1820        }
1821
1822        ubifs_assert(n >= 0);
1823
1824        err = resolve_collision(c, key, &znode, &n, nm);
1825        dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1826        if (unlikely(err < 0))
1827                goto out_unlock;
1828        if (err == 0) {
1829                err = -ENOENT;
1830                goto out_unlock;
1831        }
1832
1833        err = tnc_read_node_nm(c, &znode->zbranch[n], node);
1834
1835out_unlock:
1836        mutex_unlock(&c->tnc_mutex);
1837        return err;
1838}
1839
1840/**
1841 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1842 * @c: UBIFS file-system description object
1843 * @key: node key to lookup
1844 * @node: the node is returned here
1845 * @nm: node name
1846 *
1847 * This function look up and reads a node which contains name hash in the key.
1848 * Since the hash may have collisions, there may be many nodes with the same
1849 * key, so we have to sequentially look to all of them until the needed one is
1850 * found. This function returns zero in case of success, %-ENOENT if the node
1851 * was not found, and a negative error code in case of failure.
1852 */
1853int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1854                        void *node, const struct qstr *nm)
1855{
1856        int err, len;
1857        const struct ubifs_dent_node *dent = node;
1858
1859        /*
1860         * We assume that in most of the cases there are no name collisions and
1861         * 'ubifs_tnc_lookup()' returns us the right direntry.
1862         */
1863        err = ubifs_tnc_lookup(c, key, node);
1864        if (err)
1865                return err;
1866
1867        len = le16_to_cpu(dent->nlen);
1868        if (nm->len == len && !memcmp(dent->name, nm->name, len))
1869                return 0;
1870
1871        /*
1872         * Unluckily, there are hash collisions and we have to iterate over
1873         * them look at each direntry with colliding name hash sequentially.
1874         */
1875        return do_lookup_nm(c, key, node, nm);
1876}
1877
1878/**
1879 * correct_parent_keys - correct parent znodes' keys.
1880 * @c: UBIFS file-system description object
1881 * @znode: znode to correct parent znodes for
1882 *
1883 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1884 * zbranch changes, keys of parent znodes have to be corrected. This helper
1885 * function is called in such situations and corrects the keys if needed.
1886 */
1887static void correct_parent_keys(const struct ubifs_info *c,
1888                                struct ubifs_znode *znode)
1889{
1890        union ubifs_key *key, *key1;
1891
1892        ubifs_assert(znode->parent);
1893        ubifs_assert(znode->iip == 0);
1894
1895        key = &znode->zbranch[0].key;
1896        key1 = &znode->parent->zbranch[0].key;
1897
1898        while (keys_cmp(c, key, key1) < 0) {
1899                key_copy(c, key, key1);
1900                znode = znode->parent;
1901                znode->alt = 1;
1902                if (!znode->parent || znode->iip)
1903                        break;
1904                key1 = &znode->parent->zbranch[0].key;
1905        }
1906}
1907
1908/**
1909 * insert_zbranch - insert a zbranch into a znode.
1910 * @znode: znode into which to insert
1911 * @zbr: zbranch to insert
1912 * @n: slot number to insert to
1913 *
1914 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
1915 * znode's array of zbranches and keeps zbranches consolidated, so when a new
1916 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
1917 * slot, zbranches starting from @n have to be moved right.
1918 */
1919static void insert_zbranch(struct ubifs_znode *znode,
1920                           const struct ubifs_zbranch *zbr, int n)
1921{
1922        int i;
1923
1924        ubifs_assert(ubifs_zn_dirty(znode));
1925
1926        if (znode->level) {
1927                for (i = znode->child_cnt; i > n; i--) {
1928                        znode->zbranch[i] = znode->zbranch[i - 1];
1929                        if (znode->zbranch[i].znode)
1930                                znode->zbranch[i].znode->iip = i;
1931                }
1932                if (zbr->znode)
1933                        zbr->znode->iip = n;
1934        } else
1935                for (i = znode->child_cnt; i > n; i--)
1936                        znode->zbranch[i] = znode->zbranch[i - 1];
1937
1938        znode->zbranch[n] = *zbr;
1939        znode->child_cnt += 1;
1940
1941        /*
1942         * After inserting at slot zero, the lower bound of the key range of
1943         * this znode may have changed. If this znode is subsequently split
1944         * then the upper bound of the key range may change, and furthermore
1945         * it could change to be lower than the original lower bound. If that
1946         * happens, then it will no longer be possible to find this znode in the
1947         * TNC using the key from the index node on flash. That is bad because
1948         * if it is not found, we will assume it is obsolete and may overwrite
1949         * it. Then if there is an unclean unmount, we will start using the
1950         * old index which will be broken.
1951         *
1952         * So we first mark znodes that have insertions at slot zero, and then
1953         * if they are split we add their lnum/offs to the old_idx tree.
1954         */
1955        if (n == 0)
1956                znode->alt = 1;
1957}
1958
1959/**
1960 * tnc_insert - insert a node into TNC.
1961 * @c: UBIFS file-system description object
1962 * @znode: znode to insert into
1963 * @zbr: branch to insert
1964 * @n: slot number to insert new zbranch to
1965 *
1966 * This function inserts a new node described by @zbr into znode @znode. If
1967 * znode does not have a free slot for new zbranch, it is split. Parent znodes
1968 * are splat as well if needed. Returns zero in case of success or a negative
1969 * error code in case of failure.
1970 */
1971static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
1972                      struct ubifs_zbranch *zbr, int n)
1973{
1974        struct ubifs_znode *zn, *zi, *zp;
1975        int i, keep, move, appending = 0;
1976        union ubifs_key *key = &zbr->key, *key1;
1977
1978        ubifs_assert(n >= 0 && n <= c->fanout);
1979
1980        /* Implement naive insert for now */
1981again:
1982        zp = znode->parent;
1983        if (znode->child_cnt < c->fanout) {
1984                ubifs_assert(n != c->fanout);
1985                dbg_tnc("inserted at %d level %d, key %s", n, znode->level,
1986                        DBGKEY(key));
1987
1988                insert_zbranch(znode, zbr, n);
1989
1990                /* Ensure parent's key is correct */
1991                if (n == 0 && zp && znode->iip == 0)
1992                        correct_parent_keys(c, znode);
1993
1994                return 0;
1995        }
1996
1997        /*
1998         * Unfortunately, @znode does not have more empty slots and we have to
1999         * split it.
2000         */
2001        dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key));
2002
2003        if (znode->alt)
2004                /*
2005                 * We can no longer be sure of finding this znode by key, so we
2006                 * record it in the old_idx tree.
2007                 */
2008                ins_clr_old_idx_znode(c, znode);
2009
2010        zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2011        if (!zn)
2012                return -ENOMEM;
2013        zn->parent = zp;
2014        zn->level = znode->level;
2015
2016        /* Decide where to split */
2017        if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2018                /* Try not to split consecutive data keys */
2019                if (n == c->fanout) {
2020                        key1 = &znode->zbranch[n - 1].key;
2021                        if (key_inum(c, key1) == key_inum(c, key) &&
2022                            key_type(c, key1) == UBIFS_DATA_KEY)
2023                                appending = 1;
2024                } else
2025                        goto check_split;
2026        } else if (appending && n != c->fanout) {
2027                /* Try not to split consecutive data keys */
2028                appending = 0;
2029check_split:
2030                if (n >= (c->fanout + 1) / 2) {
2031                        key1 = &znode->zbranch[0].key;
2032                        if (key_inum(c, key1) == key_inum(c, key) &&
2033                            key_type(c, key1) == UBIFS_DATA_KEY) {
2034                                key1 = &znode->zbranch[n].key;
2035                                if (key_inum(c, key1) != key_inum(c, key) ||
2036                                    key_type(c, key1) != UBIFS_DATA_KEY) {
2037                                        keep = n;
2038                                        move = c->fanout - keep;
2039                                        zi = znode;
2040                                        goto do_split;
2041                                }
2042                        }
2043                }
2044        }
2045
2046        if (appending) {
2047                keep = c->fanout;
2048                move = 0;
2049        } else {
2050                keep = (c->fanout + 1) / 2;
2051                move = c->fanout - keep;
2052        }
2053
2054        /*
2055         * Although we don't at present, we could look at the neighbors and see
2056         * if we can move some zbranches there.
2057         */
2058
2059        if (n < keep) {
2060                /* Insert into existing znode */
2061                zi = znode;
2062                move += 1;
2063                keep -= 1;
2064        } else {
2065                /* Insert into new znode */
2066                zi = zn;
2067                n -= keep;
2068                /* Re-parent */
2069                if (zn->level != 0)
2070                        zbr->znode->parent = zn;
2071        }
2072
2073do_split:
2074
2075        __set_bit(DIRTY_ZNODE, &zn->flags);
2076        atomic_long_inc(&c->dirty_zn_cnt);
2077
2078        zn->child_cnt = move;
2079        znode->child_cnt = keep;
2080
2081        dbg_tnc("moving %d, keeping %d", move, keep);
2082
2083        /* Move zbranch */
2084        for (i = 0; i < move; i++) {
2085                zn->zbranch[i] = znode->zbranch[keep + i];
2086                /* Re-parent */
2087                if (zn->level != 0)
2088                        if (zn->zbranch[i].znode) {
2089                                zn->zbranch[i].znode->parent = zn;
2090                                zn->zbranch[i].znode->iip = i;
2091                        }
2092        }
2093
2094        /* Insert new key and branch */
2095        dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key));
2096
2097        insert_zbranch(zi, zbr, n);
2098
2099        /* Insert new znode (produced by spitting) into the parent */
2100        if (zp) {
2101                if (n == 0 && zi == znode && znode->iip == 0)
2102                        correct_parent_keys(c, znode);
2103
2104                /* Locate insertion point */
2105                n = znode->iip + 1;
2106
2107                /* Tail recursion */
2108                zbr->key = zn->zbranch[0].key;
2109                zbr->znode = zn;
2110                zbr->lnum = 0;
2111                zbr->offs = 0;
2112                zbr->len = 0;
2113                znode = zp;
2114
2115                goto again;
2116        }
2117
2118        /* We have to split root znode */
2119        dbg_tnc("creating new zroot at level %d", znode->level + 1);
2120
2121        zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2122        if (!zi)
2123                return -ENOMEM;
2124
2125        zi->child_cnt = 2;
2126        zi->level = znode->level + 1;
2127
2128        __set_bit(DIRTY_ZNODE, &zi->flags);
2129        atomic_long_inc(&c->dirty_zn_cnt);
2130
2131        zi->zbranch[0].key = znode->zbranch[0].key;
2132        zi->zbranch[0].znode = znode;
2133        zi->zbranch[0].lnum = c->zroot.lnum;
2134        zi->zbranch[0].offs = c->zroot.offs;
2135        zi->zbranch[0].len = c->zroot.len;
2136        zi->zbranch[1].key = zn->zbranch[0].key;
2137        zi->zbranch[1].znode = zn;
2138
2139        c->zroot.lnum = 0;
2140        c->zroot.offs = 0;
2141        c->zroot.len = 0;
2142        c->zroot.znode = zi;
2143
2144        zn->parent = zi;
2145        zn->iip = 1;
2146        znode->parent = zi;
2147        znode->iip = 0;
2148
2149        return 0;
2150}
2151
2152/**
2153 * ubifs_tnc_add - add a node to TNC.
2154 * @c: UBIFS file-system description object
2155 * @key: key to add
2156 * @lnum: LEB number of node
2157 * @offs: node offset
2158 * @len: node length
2159 *
2160 * This function adds a node with key @key to TNC. The node may be new or it may
2161 * obsolete some existing one. Returns %0 on success or negative error code on
2162 * failure.
2163 */
2164int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2165                  int offs, int len)
2166{
2167        int found, n, err = 0;
2168        struct ubifs_znode *znode;
2169
2170        mutex_lock(&c->tnc_mutex);
2171        dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key));
2172        found = lookup_level0_dirty(c, key, &znode, &n);
2173        if (!found) {
2174                struct ubifs_zbranch zbr;
2175
2176                zbr.znode = NULL;
2177                zbr.lnum = lnum;
2178                zbr.offs = offs;
2179                zbr.len = len;
2180                key_copy(c, key, &zbr.key);
2181                err = tnc_insert(c, znode, &zbr, n + 1);
2182        } else if (found == 1) {
2183                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2184
2185                lnc_free(zbr);
2186                err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2187                zbr->lnum = lnum;
2188                zbr->offs = offs;
2189                zbr->len = len;
2190        } else
2191                err = found;
2192        if (!err)
2193                err = dbg_check_tnc(c, 0);
2194        mutex_unlock(&c->tnc_mutex);
2195
2196        return err;
2197}
2198
2199/**
2200 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2201 * @c: UBIFS file-system description object
2202 * @key: key to add
2203 * @old_lnum: LEB number of old node
2204 * @old_offs: old node offset
2205 * @lnum: LEB number of node
2206 * @offs: node offset
2207 * @len: node length
2208 *
2209 * This function replaces a node with key @key in the TNC only if the old node
2210 * is found.  This function is called by garbage collection when node are moved.
2211 * Returns %0 on success or negative error code on failure.
2212 */
2213int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2214                      int old_lnum, int old_offs, int lnum, int offs, int len)
2215{
2216        int found, n, err = 0;
2217        struct ubifs_znode *znode;
2218
2219        mutex_lock(&c->tnc_mutex);
2220        dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum,
2221                old_offs, lnum, offs, len, DBGKEY(key));
2222        found = lookup_level0_dirty(c, key, &znode, &n);
2223        if (found < 0) {
2224                err = found;
2225                goto out_unlock;
2226        }
2227
2228        if (found == 1) {
2229                struct ubifs_zbranch *zbr = &znode->zbranch[n];
2230
2231                found = 0;
2232                if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2233                        lnc_free(zbr);
2234                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2235                        if (err)
2236                                goto out_unlock;
2237                        zbr->lnum = lnum;
2238                        zbr->offs = offs;
2239                        zbr->len = len;
2240                        found = 1;
2241                } else if (is_hash_key(c, key)) {
2242                        found = resolve_collision_directly(c, key, &znode, &n,
2243                                                           old_lnum, old_offs);
2244                        dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2245                                found, znode, n, old_lnum, old_offs);
2246                        if (found < 0) {
2247                                err = found;
2248                                goto out_unlock;
2249                        }
2250
2251                        if (found) {
2252                                /* Ensure the znode is dirtied */
2253                                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2254                                        znode = dirty_cow_bottom_up(c, znode);
2255                                        if (IS_ERR(znode)) {
2256                                                err = PTR_ERR(znode);
2257                                                goto out_unlock;
2258                                        }
2259                                }
2260                                zbr = &znode->zbranch[n];
2261                                lnc_free(zbr);
2262                                err = ubifs_add_dirt(c, zbr->lnum,
2263                                                     zbr->len);
2264                                if (err)
2265                                        goto out_unlock;
2266                                zbr->lnum = lnum;
2267                                zbr->offs = offs;
2268                                zbr->len = len;
2269                        }
2270                }
2271        }
2272
2273        if (!found)
2274                err = ubifs_add_dirt(c, lnum, len);
2275
2276        if (!err)
2277                err = dbg_check_tnc(c, 0);
2278
2279out_unlock:
2280        mutex_unlock(&c->tnc_mutex);
2281        return err;
2282}
2283
2284/**
2285 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2286 * @c: UBIFS file-system description object
2287 * @key: key to add
2288 * @lnum: LEB number of node
2289 * @offs: node offset
2290 * @len: node length
2291 * @nm: node name
2292 *
2293 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2294 * may have collisions, like directory entry keys.
2295 */
2296int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2297                     int lnum, int offs, int len, const struct qstr *nm)
2298{
2299        int found, n, err = 0;
2300        struct ubifs_znode *znode;
2301
2302        mutex_lock(&c->tnc_mutex);
2303        dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name,
2304                DBGKEY(key));
2305        found = lookup_level0_dirty(c, key, &znode, &n);
2306        if (found < 0) {
2307                err = found;
2308                goto out_unlock;
2309        }
2310
2311        if (found == 1) {
2312                if (c->replaying)
2313                        found = fallible_resolve_collision(c, key, &znode, &n,
2314                                                           nm, 1);
2315                else
2316                        found = resolve_collision(c, key, &znode, &n, nm);
2317                dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2318                if (found < 0) {
2319                        err = found;
2320                        goto out_unlock;
2321                }
2322
2323                /* Ensure the znode is dirtied */
2324                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2325                        znode = dirty_cow_bottom_up(c, znode);
2326                        if (IS_ERR(znode)) {
2327                                err = PTR_ERR(znode);
2328                                goto out_unlock;
2329                        }
2330                }
2331
2332                if (found == 1) {
2333                        struct ubifs_zbranch *zbr = &znode->zbranch[n];
2334
2335                        lnc_free(zbr);
2336                        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2337                        zbr->lnum = lnum;
2338                        zbr->offs = offs;
2339                        zbr->len = len;
2340                        goto out_unlock;
2341                }
2342        }
2343
2344        if (!found) {
2345                struct ubifs_zbranch zbr;
2346
2347                zbr.znode = NULL;
2348                zbr.lnum = lnum;
2349                zbr.offs = offs;
2350                zbr.len = len;
2351                key_copy(c, key, &zbr.key);
2352                err = tnc_insert(c, znode, &zbr, n + 1);
2353                if (err)
2354                        goto out_unlock;
2355                if (c->replaying) {
2356                        /*
2357                         * We did not find it in the index so there may be a
2358                         * dangling branch still in the index. So we remove it
2359                         * by passing 'ubifs_tnc_remove_nm()' the same key but
2360                         * an unmatchable name.
2361                         */
2362                        struct qstr noname = { .len = 0, .name = "" };
2363
2364                        err = dbg_check_tnc(c, 0);
2365                        mutex_unlock(&c->tnc_mutex);
2366                        if (err)
2367                                return err;
2368                        return ubifs_tnc_remove_nm(c, key, &noname);
2369                }
2370        }
2371
2372out_unlock:
2373        if (!err)
2374                err = dbg_check_tnc(c, 0);
2375        mutex_unlock(&c->tnc_mutex);
2376        return err;
2377}
2378
2379/**
2380 * tnc_delete - delete a znode form TNC.
2381 * @c: UBIFS file-system description object
2382 * @znode: znode to delete from
2383 * @n: zbranch slot number to delete
2384 *
2385 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2386 * case of success and a negative error code in case of failure.
2387 */
2388static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2389{
2390        struct ubifs_zbranch *zbr;
2391        struct ubifs_znode *zp;
2392        int i, err;
2393
2394        /* Delete without merge for now */
2395        ubifs_assert(znode->level == 0);
2396        ubifs_assert(n >= 0 && n < c->fanout);
2397        dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key));
2398
2399        zbr = &znode->zbranch[n];
2400        lnc_free(zbr);
2401
2402        err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2403        if (err) {
2404                dbg_dump_znode(c, znode);
2405                return err;
2406        }
2407
2408        /* We do not "gap" zbranch slots */
2409        for (i = n; i < znode->child_cnt - 1; i++)
2410                znode->zbranch[i] = znode->zbranch[i + 1];
2411        znode->child_cnt -= 1;
2412
2413        if (znode->child_cnt > 0)
2414                return 0;
2415
2416        /*
2417         * This was the last zbranch, we have to delete this znode from the
2418         * parent.
2419         */
2420
2421        do {
2422                ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags));
2423                ubifs_assert(ubifs_zn_dirty(znode));
2424
2425                zp = znode->parent;
2426                n = znode->iip;
2427
2428                atomic_long_dec(&c->dirty_zn_cnt);
2429
2430                err = insert_old_idx_znode(c, znode);
2431                if (err)
2432                        return err;
2433
2434                if (znode->cnext) {
2435                        __set_bit(OBSOLETE_ZNODE, &znode->flags);
2436                        atomic_long_inc(&c->clean_zn_cnt);
2437                        atomic_long_inc(&ubifs_clean_zn_cnt);
2438                } else
2439                        kfree(znode);
2440                znode = zp;
2441        } while (znode->child_cnt == 1); /* while removing last child */
2442
2443        /* Remove from znode, entry n - 1 */
2444        znode->child_cnt -= 1;
2445        ubifs_assert(znode->level != 0);
2446        for (i = n; i < znode->child_cnt; i++) {
2447                znode->zbranch[i] = znode->zbranch[i + 1];
2448                if (znode->zbranch[i].znode)
2449                        znode->zbranch[i].znode->iip = i;
2450        }
2451
2452        /*
2453         * If this is the root and it has only 1 child then
2454         * collapse the tree.
2455         */
2456        if (!znode->parent) {
2457                while (znode->child_cnt == 1 && znode->level != 0) {
2458                        zp = znode;
2459                        zbr = &znode->zbranch[0];
2460                        znode = get_znode(c, znode, 0);
2461                        if (IS_ERR(znode))
2462                                return PTR_ERR(znode);
2463                        znode = dirty_cow_znode(c, zbr);
2464                        if (IS_ERR(znode))
2465                                return PTR_ERR(znode);
2466                        znode->parent = NULL;
2467                        znode->iip = 0;
2468                        if (c->zroot.len) {
2469                                err = insert_old_idx(c, c->zroot.lnum,
2470                                                     c->zroot.offs);
2471                                if (err)
2472                                        return err;
2473                        }
2474                        c->zroot.lnum = zbr->lnum;
2475                        c->zroot.offs = zbr->offs;
2476                        c->zroot.len = zbr->len;
2477                        c->zroot.znode = znode;
2478                        ubifs_assert(!test_bit(OBSOLETE_ZNODE,
2479                                     &zp->flags));
2480                        ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags));
2481                        atomic_long_dec(&c->dirty_zn_cnt);
2482
2483                        if (zp->cnext) {
2484                                __set_bit(OBSOLETE_ZNODE, &zp->flags);
2485                                atomic_long_inc(&c->clean_zn_cnt);
2486                                atomic_long_inc(&ubifs_clean_zn_cnt);
2487                        } else
2488                                kfree(zp);
2489                }
2490        }
2491
2492        return 0;
2493}
2494
2495/**
2496 * ubifs_tnc_remove - remove an index entry of a node.
2497 * @c: UBIFS file-system description object
2498 * @key: key of node
2499 *
2500 * Returns %0 on success or negative error code on failure.
2501 */
2502int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2503{
2504        int found, n, err = 0;
2505        struct ubifs_znode *znode;
2506
2507        mutex_lock(&c->tnc_mutex);
2508        dbg_tnc("key %s", DBGKEY(key));
2509        found = lookup_level0_dirty(c, key, &znode, &n);
2510        if (found < 0) {
2511                err = found;
2512                goto out_unlock;
2513        }
2514        if (found == 1)
2515                err = tnc_delete(c, znode, n);
2516        if (!err)
2517                err = dbg_check_tnc(c, 0);
2518
2519out_unlock:
2520        mutex_unlock(&c->tnc_mutex);
2521        return err;
2522}
2523
2524/**
2525 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2526 * @c: UBIFS file-system description object
2527 * @key: key of node
2528 * @nm: directory entry name
2529 *
2530 * Returns %0 on success or negative error code on failure.
2531 */
2532int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2533                        const struct qstr *nm)
2534{
2535        int n, err;
2536        struct ubifs_znode *znode;
2537
2538        mutex_lock(&c->tnc_mutex);
2539        dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key));
2540        err = lookup_level0_dirty(c, key, &znode, &n);
2541        if (err < 0)
2542                goto out_unlock;
2543
2544        if (err) {
2545                if (c->replaying)
2546                        err = fallible_resolve_collision(c, key, &znode, &n,
2547                                                         nm, 0);
2548                else
2549                        err = resolve_collision(c, key, &znode, &n, nm);
2550                dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2551                if (err < 0)
2552                        goto out_unlock;
2553                if (err) {
2554                        /* Ensure the znode is dirtied */
2555                        if (znode->cnext || !ubifs_zn_dirty(znode)) {
2556                                    znode = dirty_cow_bottom_up(c, znode);
2557                                    if (IS_ERR(znode)) {
2558                                            err = PTR_ERR(znode);
2559                                            goto out_unlock;
2560                                    }
2561                        }
2562                        err = tnc_delete(c, znode, n);
2563                }
2564        }
2565
2566out_unlock:
2567        if (!err)
2568                err = dbg_check_tnc(c, 0);
2569        mutex_unlock(&c->tnc_mutex);
2570        return err;
2571}
2572
2573/**
2574 * key_in_range - determine if a key falls within a range of keys.
2575 * @c: UBIFS file-system description object
2576 * @key: key to check
2577 * @from_key: lowest key in range
2578 * @to_key: highest key in range
2579 *
2580 * This function returns %1 if the key is in range and %0 otherwise.
2581 */
2582static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2583                        union ubifs_key *from_key, union ubifs_key *to_key)
2584{
2585        if (keys_cmp(c, key, from_key) < 0)
2586                return 0;
2587        if (keys_cmp(c, key, to_key) > 0)
2588                return 0;
2589        return 1;
2590}
2591
2592/**
2593 * ubifs_tnc_remove_range - remove index entries in range.
2594 * @c: UBIFS file-system description object
2595 * @from_key: lowest key to remove
2596 * @to_key: highest key to remove
2597 *
2598 * This function removes index entries starting at @from_key and ending at
2599 * @to_key.  This function returns zero in case of success and a negative error
2600 * code in case of failure.
2601 */
2602int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2603                           union ubifs_key *to_key)
2604{
2605        int i, n, k, err = 0;
2606        struct ubifs_znode *znode;
2607        union ubifs_key *key;
2608
2609        mutex_lock(&c->tnc_mutex);
2610        while (1) {
2611                /* Find first level 0 znode that contains keys to remove */
2612                err = ubifs_lookup_level0(c, from_key, &znode, &n);
2613                if (err < 0)
2614                        goto out_unlock;
2615
2616                if (err)
2617                        key = from_key;
2618                else {
2619                        err = tnc_next(c, &znode, &n);
2620                        if (err == -ENOENT) {
2621                                err = 0;
2622                                goto out_unlock;
2623                        }
2624                        if (err < 0)
2625                                goto out_unlock;
2626                        key = &znode->zbranch[n].key;
2627                        if (!key_in_range(c, key, from_key, to_key)) {
2628                                err = 0;
2629                                goto out_unlock;
2630                        }
2631                }
2632
2633                /* Ensure the znode is dirtied */
2634                if (znode->cnext || !ubifs_zn_dirty(znode)) {
2635                        znode = dirty_cow_bottom_up(c, znode);
2636                        if (IS_ERR(znode)) {
2637                                err = PTR_ERR(znode);
2638                                goto out_unlock;
2639                        }
2640                }
2641
2642                /* Remove all keys in range except the first */
2643                for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2644                        key = &znode->zbranch[i].key;
2645                        if (!key_in_range(c, key, from_key, to_key))
2646                                break;
2647                        lnc_free(&znode->zbranch[i]);
2648                        err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2649                                             znode->zbranch[i].len);
2650                        if (err) {
2651                                dbg_dump_znode(c, znode);
2652                                goto out_unlock;
2653                        }
2654                        dbg_tnc("removing %s", DBGKEY(key));
2655                }
2656                if (k) {
2657                        for (i = n + 1 + k; i < znode->child_cnt; i++)
2658                                znode->zbranch[i - k] = znode->zbranch[i];
2659                        znode->child_cnt -= k;
2660                }
2661
2662                /* Now delete the first */
2663                err = tnc_delete(c, znode, n);
2664                if (err)
2665                        goto out_unlock;
2666        }
2667
2668out_unlock:
2669        if (!err)
2670                err = dbg_check_tnc(c, 0);
2671        mutex_unlock(&c->tnc_mutex);
2672        return err;
2673}
2674
2675/**
2676 * ubifs_tnc_remove_ino - remove an inode from TNC.
2677 * @c: UBIFS file-system description object
2678 * @inum: inode number to remove
2679 *
2680 * This function remove inode @inum and all the extended attributes associated
2681 * with the anode from TNC and returns zero in case of success or a negative
2682 * error code in case of failure.
2683 */
2684int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2685{
2686        union ubifs_key key1, key2;
2687        struct ubifs_dent_node *xent, *pxent = NULL;
2688        struct qstr nm = { .name = NULL };
2689
2690        dbg_tnc("ino %lu", (unsigned long)inum);
2691
2692        /*
2693         * Walk all extended attribute entries and remove them together with
2694         * corresponding extended attribute inodes.
2695         */
2696        lowest_xent_key(c, &key1, inum);
2697        while (1) {
2698                ino_t xattr_inum;
2699                int err;
2700
2701                xent = ubifs_tnc_next_ent(c, &key1, &nm);
2702                if (IS_ERR(xent)) {
2703                        err = PTR_ERR(xent);
2704                        if (err == -ENOENT)
2705                                break;
2706                        return err;
2707                }
2708
2709                xattr_inum = le64_to_cpu(xent->inum);
2710                dbg_tnc("xent '%s', ino %lu", xent->name,
2711                        (unsigned long)xattr_inum);
2712
2713                nm.name = xent->name;
2714                nm.len = le16_to_cpu(xent->nlen);
2715                err = ubifs_tnc_remove_nm(c, &key1, &nm);
2716                if (err) {
2717                        kfree(xent);
2718                        return err;
2719                }
2720
2721                lowest_ino_key(c, &key1, xattr_inum);
2722                highest_ino_key(c, &key2, xattr_inum);
2723                err = ubifs_tnc_remove_range(c, &key1, &key2);
2724                if (err) {
2725                        kfree(xent);
2726                        return err;
2727                }
2728
2729                kfree(pxent);
2730                pxent = xent;
2731                key_read(c, &xent->key, &key1);
2732        }
2733
2734        kfree(pxent);
2735        lowest_ino_key(c, &key1, inum);
2736        highest_ino_key(c, &key2, inum);
2737
2738        return ubifs_tnc_remove_range(c, &key1, &key2);
2739}
2740
2741/**
2742 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2743 * @c: UBIFS file-system description object
2744 * @key: key of last entry
2745 * @nm: name of last entry found or %NULL
2746 *
2747 * This function finds and reads the next directory or extended attribute entry
2748 * after the given key (@key) if there is one. @nm is used to resolve
2749 * collisions.
2750 *
2751 * If the name of the current entry is not known and only the key is known,
2752 * @nm->name has to be %NULL. In this case the semantics of this function is a
2753 * little bit different and it returns the entry corresponding to this key, not
2754 * the next one. If the key was not found, the closest "right" entry is
2755 * returned.
2756 *
2757 * If the fist entry has to be found, @key has to contain the lowest possible
2758 * key value for this inode and @name has to be %NULL.
2759 *
2760 * This function returns the found directory or extended attribute entry node
2761 * in case of success, %-ENOENT is returned if no entry was found, and a
2762 * negative error code is returned in case of failure.
2763 */
2764struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2765                                           union ubifs_key *key,
2766                                           const struct qstr *nm)
2767{
2768        int n, err, type = key_type(c, key);
2769        struct ubifs_znode *znode;
2770        struct ubifs_dent_node *dent;
2771        struct ubifs_zbranch *zbr;
2772        union ubifs_key *dkey;
2773
2774        dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key));
2775        ubifs_assert(is_hash_key(c, key));
2776
2777        mutex_lock(&c->tnc_mutex);
2778        err = ubifs_lookup_level0(c, key, &znode, &n);
2779        if (unlikely(err < 0))
2780                goto out_unlock;
2781
2782        if (nm->name) {
2783                if (err) {
2784                        /* Handle collisions */
2785                        err = resolve_collision(c, key, &znode, &n, nm);
2786                        dbg_tnc("rc returned %d, znode %p, n %d",
2787                                err, znode, n);
2788                        if (unlikely(err < 0))
2789                                goto out_unlock;
2790                }
2791
2792                /* Now find next entry */
2793                err = tnc_next(c, &znode, &n);
2794                if (unlikely(err))
2795                        goto out_unlock;
2796        } else {
2797                /*
2798                 * The full name of the entry was not given, in which case the
2799                 * behavior of this function is a little different and it
2800                 * returns current entry, not the next one.
2801                 */
2802                if (!err) {
2803                        /*
2804                         * However, the given key does not exist in the TNC
2805                         * tree and @znode/@n variables contain the closest
2806                         * "preceding" element. Switch to the next one.
2807                         */
2808                        err = tnc_next(c, &znode, &n);
2809                        if (err)
2810                                goto out_unlock;
2811                }
2812        }
2813
2814        zbr = &znode->zbranch[n];
2815        dent = kmalloc(zbr->len, GFP_NOFS);
2816        if (unlikely(!dent)) {
2817                err = -ENOMEM;
2818                goto out_unlock;
2819        }
2820
2821        /*
2822         * The above 'tnc_next()' call could lead us to the next inode, check
2823         * this.
2824         */
2825        dkey = &zbr->key;
2826        if (key_inum(c, dkey) != key_inum(c, key) ||
2827            key_type(c, dkey) != type) {
2828                err = -ENOENT;
2829                goto out_free;
2830        }
2831
2832        err = tnc_read_node_nm(c, zbr, dent);
2833        if (unlikely(err))
2834                goto out_free;
2835
2836        mutex_unlock(&c->tnc_mutex);
2837        return dent;
2838
2839out_free:
2840        kfree(dent);
2841out_unlock:
2842        mutex_unlock(&c->tnc_mutex);
2843        return ERR_PTR(err);
2844}
2845
2846/**
2847 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
2848 * @c: UBIFS file-system description object
2849 *
2850 * Destroy left-over obsolete znodes from a failed commit.
2851 */
2852static void tnc_destroy_cnext(struct ubifs_info *c)
2853{
2854        struct ubifs_znode *cnext;
2855
2856        if (!c->cnext)
2857                return;
2858        ubifs_assert(c->cmt_state == COMMIT_BROKEN);
2859        cnext = c->cnext;
2860        do {
2861                struct ubifs_znode *znode = cnext;
2862
2863                cnext = cnext->cnext;
2864                if (test_bit(OBSOLETE_ZNODE, &znode->flags))
2865                        kfree(znode);
2866        } while (cnext && cnext != c->cnext);
2867}
2868
2869/**
2870 * ubifs_tnc_close - close TNC subsystem and free all related resources.
2871 * @c: UBIFS file-system description object
2872 */
2873void ubifs_tnc_close(struct ubifs_info *c)
2874{
2875        long clean_freed;
2876
2877        tnc_destroy_cnext(c);
2878        if (c->zroot.znode) {
2879                clean_freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
2880                atomic_long_sub(clean_freed, &ubifs_clean_zn_cnt);
2881        }
2882        kfree(c->gap_lebs);
2883        kfree(c->ilebs);
2884        destroy_old_idx(c);
2885}
2886
2887/**
2888 * left_znode - get the znode to the left.
2889 * @c: UBIFS file-system description object
2890 * @znode: znode
2891 *
2892 * This function returns a pointer to the znode to the left of @znode or NULL if
2893 * there is not one. A negative error code is returned on failure.
2894 */
2895static struct ubifs_znode *left_znode(struct ubifs_info *c,
2896                                      struct ubifs_znode *znode)
2897{
2898        int level = znode->level;
2899
2900        while (1) {
2901                int n = znode->iip - 1;
2902
2903                /* Go up until we can go left */
2904                znode = znode->parent;
2905                if (!znode)
2906                        return NULL;
2907                if (n >= 0) {
2908                        /* Now go down the rightmost branch to 'level' */
2909                        znode = get_znode(c, znode, n);
2910                        if (IS_ERR(znode))
2911                                return znode;
2912                        while (znode->level != level) {
2913                                n = znode->child_cnt - 1;
2914                                znode = get_znode(c, znode, n);
2915                                if (IS_ERR(znode))
2916                                        return znode;
2917                        }
2918                        break;
2919                }
2920        }
2921        return znode;
2922}
2923
2924/**
2925 * right_znode - get the znode to the right.
2926 * @c: UBIFS file-system description object
2927 * @znode: znode
2928 *
2929 * This function returns a pointer to the znode to the right of @znode or NULL
2930 * if there is not one. A negative error code is returned on failure.
2931 */
2932static struct ubifs_znode *right_znode(struct ubifs_info *c,
2933                                       struct ubifs_znode *znode)
2934{
2935        int level = znode->level;
2936
2937        while (1) {
2938                int n = znode->iip + 1;
2939
2940                /* Go up until we can go right */
2941                znode = znode->parent;
2942                if (!znode)
2943                        return NULL;
2944                if (n < znode->child_cnt) {
2945                        /* Now go down the leftmost branch to 'level' */
2946                        znode = get_znode(c, znode, n);
2947                        if (IS_ERR(znode))
2948                                return znode;
2949                        while (znode->level != level) {
2950                                znode = get_znode(c, znode, 0);
2951                                if (IS_ERR(znode))
2952                                        return znode;
2953                        }
2954                        break;
2955                }
2956        }
2957        return znode;
2958}
2959
2960/**
2961 * lookup_znode - find a particular indexing node from TNC.
2962 * @c: UBIFS file-system description object
2963 * @key: index node key to lookup
2964 * @level: index node level
2965 * @lnum: index node LEB number
2966 * @offs: index node offset
2967 *
2968 * This function searches an indexing node by its first key @key and its
2969 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
2970 * nodes it traverses to TNC. This function is called for indexing nodes which
2971 * were found on the media by scanning, for example when garbage-collecting or
2972 * when doing in-the-gaps commit. This means that the indexing node which is
2973 * looked for does not have to have exactly the same leftmost key @key, because
2974 * the leftmost key may have been changed, in which case TNC will contain a
2975 * dirty znode which still refers the same @lnum:@offs. This function is clever
2976 * enough to recognize such indexing nodes.
2977 *
2978 * Note, if a znode was deleted or changed too much, then this function will
2979 * not find it. For situations like this UBIFS has the old index RB-tree
2980 * (indexed by @lnum:@offs).
2981 *
2982 * This function returns a pointer to the znode found or %NULL if it is not
2983 * found. A negative error code is returned on failure.
2984 */
2985static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
2986                                        union ubifs_key *key, int level,
2987                                        int lnum, int offs)
2988{
2989        struct ubifs_znode *znode, *zn;
2990        int n, nn;
2991
2992        ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
2993
2994        /*
2995         * The arguments have probably been read off flash, so don't assume
2996         * they are valid.
2997         */
2998        if (level < 0)
2999                return ERR_PTR(-EINVAL);
3000
3001        /* Get the root znode */
3002        znode = c->zroot.znode;
3003        if (!znode) {
3004                znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3005                if (IS_ERR(znode))
3006                        return znode;
3007        }
3008        /* Check if it is the one we are looking for */
3009        if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3010                return znode;
3011        /* Descend to the parent level i.e. (level + 1) */
3012        if (level >= znode->level)
3013                return NULL;
3014        while (1) {
3015                ubifs_search_zbranch(c, znode, key, &n);
3016                if (n < 0) {
3017                        /*
3018                         * We reached a znode where the leftmost key is greater
3019                         * than the key we are searching for. This is the same
3020                         * situation as the one described in a huge comment at
3021                         * the end of the 'ubifs_lookup_level0()' function. And
3022                         * for exactly the same reasons we have to try to look
3023                         * left before giving up.
3024                         */
3025                        znode = left_znode(c, znode);
3026                        if (!znode)
3027                                return NULL;
3028                        if (IS_ERR(znode))
3029                                return znode;
3030                        ubifs_search_zbranch(c, znode, key, &n);
3031                        ubifs_assert(n >= 0);
3032                }
3033                if (znode->level == level + 1)
3034                        break;
3035                znode = get_znode(c, znode, n);
3036                if (IS_ERR(znode))
3037                        return znode;
3038        }
3039        /* Check if the child is the one we are looking for */
3040        if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3041                return get_znode(c, znode, n);
3042        /* If the key is unique, there is nowhere else to look */
3043        if (!is_hash_key(c, key))
3044                return NULL;
3045        /*
3046         * The key is not unique and so may be also in the znodes to either
3047         * side.
3048         */
3049        zn = znode;
3050        nn = n;
3051        /* Look left */
3052        while (1) {
3053                /* Move one branch to the left */
3054                if (n)
3055                        n -= 1;
3056                else {
3057                        znode = left_znode(c, znode);
3058                        if (!znode)
3059                                break;
3060                        if (IS_ERR(znode))
3061                                return znode;
3062                        n = znode->child_cnt - 1;
3063                }
3064                /* Check it */
3065                if (znode->zbranch[n].lnum == lnum &&
3066                    znode->zbranch[n].offs == offs)
3067                        return get_znode(c, znode, n);
3068                /* Stop if the key is less than the one we are looking for */
3069                if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3070                        break;
3071        }
3072        /* Back to the middle */
3073        znode = zn;
3074        n = nn;
3075        /* Look right */
3076        while (1) {
3077                /* Move one branch to the right */
3078                if (++n >= znode->child_cnt) {
3079                        znode = right_znode(c, znode);
3080                        if (!znode)
3081                                break;
3082                        if (IS_ERR(znode))
3083                                return znode;
3084                        n = 0;
3085                }
3086                /* Check it */
3087                if (znode->zbranch[n].lnum == lnum &&
3088                    znode->zbranch[n].offs == offs)
3089                        return get_znode(c, znode, n);
3090                /* Stop if the key is greater than the one we are looking for */
3091                if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3092                        break;
3093        }
3094        return NULL;
3095}
3096
3097/**
3098 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3099 * @c: UBIFS file-system description object
3100 * @key: key of index node
3101 * @level: index node level
3102 * @lnum: LEB number of index node
3103 * @offs: offset of index node
3104 *
3105 * This function returns %0 if the index node is not referred to in the TNC, %1
3106 * if the index node is referred to in the TNC and the corresponding znode is
3107 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3108 * znode is clean, and a negative error code in case of failure.
3109 *
3110 * Note, the @key argument has to be the key of the first child. Also note,
3111 * this function relies on the fact that 0:0 is never a valid LEB number and
3112 * offset for a main-area node.
3113 */
3114int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3115                       int lnum, int offs)
3116{
3117        struct ubifs_znode *znode;
3118
3119        znode = lookup_znode(c, key, level, lnum, offs);
3120        if (!znode)
3121                return 0;
3122        if (IS_ERR(znode))
3123                return PTR_ERR(znode);
3124
3125        return ubifs_zn_dirty(znode) ? 1 : 2;
3126}
3127
3128/**
3129 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3130 * @c: UBIFS file-system description object
3131 * @key: node key
3132 * @lnum: node LEB number
3133 * @offs: node offset
3134 *
3135 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3136 * not, and a negative error code in case of failure.
3137 *
3138 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3139 * and offset for a main-area node.
3140 */
3141static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3142                               int lnum, int offs)
3143{
3144        struct ubifs_zbranch *zbr;
3145        struct ubifs_znode *znode, *zn;
3146        int n, found, err, nn;
3147        const int unique = !is_hash_key(c, key);
3148
3149        found = ubifs_lookup_level0(c, key, &znode, &n);
3150        if (found < 0)
3151                return found; /* Error code */
3152        if (!found)
3153                return 0;
3154        zbr = &znode->zbranch[n];
3155        if (lnum == zbr->lnum && offs == zbr->offs)
3156                return 1; /* Found it */
3157        if (unique)
3158                return 0;
3159        /*
3160         * Because the key is not unique, we have to look left
3161         * and right as well
3162         */
3163        zn = znode;
3164        nn = n;
3165        /* Look left */
3166        while (1) {
3167                err = tnc_prev(c, &znode, &n);
3168                if (err == -ENOENT)
3169                        break;
3170                if (err)
3171                        return err;
3172                if (keys_cmp(c, key, &znode->zbranch[n].key))
3173                        break;
3174                zbr = &znode->zbranch[n];
3175                if (lnum == zbr->lnum && offs == zbr->offs)
3176                        return 1; /* Found it */
3177        }
3178        /* Look right */
3179        znode = zn;
3180        n = nn;
3181        while (1) {
3182                err = tnc_next(c, &znode, &n);
3183                if (err) {
3184                        if (err == -ENOENT)
3185                                return 0;
3186                        return err;
3187                }
3188                if (keys_cmp(c, key, &znode->zbranch[n].key))
3189                        break;
3190                zbr = &znode->zbranch[n];
3191                if (lnum == zbr->lnum && offs == zbr->offs)
3192                        return 1; /* Found it */
3193        }
3194        return 0;
3195}
3196
3197/**
3198 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3199 * @c: UBIFS file-system description object
3200 * @key: node key
3201 * @level: index node level (if it is an index node)
3202 * @lnum: node LEB number
3203 * @offs: node offset
3204 * @is_idx: non-zero if the node is an index node
3205 *
3206 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3207 * negative error code in case of failure. For index nodes, @key has to be the
3208 * key of the first child. An index node is considered to be in the TNC only if
3209 * the corresponding znode is clean or has not been loaded.
3210 */
3211int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3212                       int lnum, int offs, int is_idx)
3213{
3214        int err;
3215
3216        mutex_lock(&c->tnc_mutex);
3217        if (is_idx) {
3218                err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3219                if (err < 0)
3220                        goto out_unlock;
3221                if (err == 1)
3222                        /* The index node was found but it was dirty */
3223                        err = 0;
3224                else if (err == 2)
3225                        /* The index node was found and it was clean */
3226                        err = 1;
3227                else
3228                        BUG_ON(err != 0);
3229        } else
3230                err = is_leaf_node_in_tnc(c, key, lnum, offs);
3231
3232out_unlock:
3233        mutex_unlock(&c->tnc_mutex);
3234        return err;
3235}
3236
3237/**
3238 * ubifs_dirty_idx_node - dirty an index node.
3239 * @c: UBIFS file-system description object
3240 * @key: index node key
3241 * @level: index node level
3242 * @lnum: index node LEB number
3243 * @offs: index node offset
3244 *
3245 * This function loads and dirties an index node so that it can be garbage
3246 * collected. The @key argument has to be the key of the first child. This
3247 * function relies on the fact that 0:0 is never a valid LEB number and offset
3248 * for a main-area node. Returns %0 on success and a negative error code on
3249 * failure.
3250 */
3251int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3252                         int lnum, int offs)
3253{
3254        struct ubifs_znode *znode;
3255        int err = 0;
3256
3257        mutex_lock(&c->tnc_mutex);
3258        znode = lookup_znode(c, key, level, lnum, offs);
3259        if (!znode)
3260                goto out_unlock;
3261        if (IS_ERR(znode)) {
3262                err = PTR_ERR(znode);
3263                goto out_unlock;
3264        }
3265        znode = dirty_cow_bottom_up(c, znode);
3266        if (IS_ERR(znode)) {
3267                err = PTR_ERR(znode);
3268                goto out_unlock;
3269        }
3270
3271out_unlock:
3272        mutex_unlock(&c->tnc_mutex);
3273        return err;
3274}
3275
3276#ifdef CONFIG_UBIFS_FS_DEBUG
3277
3278/**
3279 * dbg_check_inode_size - check if inode size is correct.
3280 * @c: UBIFS file-system description object
3281 * @inum: inode number
3282 * @size: inode size
3283 *
3284 * This function makes sure that the inode size (@size) is correct and it does
3285 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3286 * if it has a data page beyond @size, and other negative error code in case of
3287 * other errors.
3288 */
3289int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3290                         loff_t size)
3291{
3292        int err, n;
3293        union ubifs_key from_key, to_key, *key;
3294        struct ubifs_znode *znode;
3295        unsigned int block;
3296
3297        if (!S_ISREG(inode->i_mode))
3298                return 0;
3299        if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
3300                return 0;
3301
3302        block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3303        data_key_init(c, &from_key, inode->i_ino, block);
3304        highest_data_key(c, &to_key, inode->i_ino);
3305
3306        mutex_lock(&c->tnc_mutex);
3307        err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3308        if (err < 0)
3309                goto out_unlock;
3310
3311        if (err) {
3312                err = -EINVAL;
3313                key = &from_key;
3314                goto out_dump;
3315        }
3316
3317        err = tnc_next(c, &znode, &n);
3318        if (err == -ENOENT) {
3319                err = 0;
3320                goto out_unlock;
3321        }
3322        if (err < 0)
3323                goto out_unlock;
3324
3325        ubifs_assert(err == 0);
3326        key = &znode->zbranch[n].key;
3327        if (!key_in_range(c, key, &from_key, &to_key))
3328                goto out_unlock;
3329
3330out_dump:
3331        block = key_block(c, key);
3332        ubifs_err("inode %lu has size %lld, but there are data at offset %lld "
3333                  "(data key %s)", (unsigned long)inode->i_ino, size,
3334                  ((loff_t)block) << UBIFS_BLOCK_SHIFT, DBGKEY(key));
3335        dbg_dump_inode(c, inode);
3336        dbg_dump_stack();
3337        err = -EINVAL;
3338
3339out_unlock:
3340        mutex_unlock(&c->tnc_mutex);
3341        return err;
3342}
3343
3344#endif /* CONFIG_UBIFS_FS_DEBUG */
3345