linux/fs/xfs/linux-2.6/xfs_buf.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include <linux/stddef.h>
  20#include <linux/errno.h>
  21#include <linux/gfp.h>
  22#include <linux/pagemap.h>
  23#include <linux/init.h>
  24#include <linux/vmalloc.h>
  25#include <linux/bio.h>
  26#include <linux/sysctl.h>
  27#include <linux/proc_fs.h>
  28#include <linux/workqueue.h>
  29#include <linux/percpu.h>
  30#include <linux/blkdev.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/migrate.h>
  34#include <linux/backing-dev.h>
  35#include <linux/freezer.h>
  36#include <linux/list_sort.h>
  37
  38#include "xfs_sb.h"
  39#include "xfs_inum.h"
  40#include "xfs_log.h"
  41#include "xfs_ag.h"
  42#include "xfs_mount.h"
  43#include "xfs_trace.h"
  44
  45static kmem_zone_t *xfs_buf_zone;
  46STATIC int xfsbufd(void *);
  47STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
  48
  49static struct workqueue_struct *xfslogd_workqueue;
  50struct workqueue_struct *xfsdatad_workqueue;
  51struct workqueue_struct *xfsconvertd_workqueue;
  52
  53#ifdef XFS_BUF_LOCK_TRACKING
  54# define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
  55# define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
  56# define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
  57#else
  58# define XB_SET_OWNER(bp)       do { } while (0)
  59# define XB_CLEAR_OWNER(bp)     do { } while (0)
  60# define XB_GET_OWNER(bp)       do { } while (0)
  61#endif
  62
  63#define xb_to_gfp(flags) \
  64        ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
  65          ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  66
  67#define xb_to_km(flags) \
  68         (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  69
  70#define xfs_buf_allocate(flags) \
  71        kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
  72#define xfs_buf_deallocate(bp) \
  73        kmem_zone_free(xfs_buf_zone, (bp));
  74
  75static inline int
  76xfs_buf_is_vmapped(
  77        struct xfs_buf  *bp)
  78{
  79        /*
  80         * Return true if the buffer is vmapped.
  81         *
  82         * The XBF_MAPPED flag is set if the buffer should be mapped, but the
  83         * code is clever enough to know it doesn't have to map a single page,
  84         * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
  85         */
  86        return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
  87}
  88
  89static inline int
  90xfs_buf_vmap_len(
  91        struct xfs_buf  *bp)
  92{
  93        return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  94}
  95
  96/*
  97 *      Page Region interfaces.
  98 *
  99 *      For pages in filesystems where the blocksize is smaller than the
 100 *      pagesize, we use the page->private field (long) to hold a bitmap
 101 *      of uptodate regions within the page.
 102 *
 103 *      Each such region is "bytes per page / bits per long" bytes long.
 104 *
 105 *      NBPPR == number-of-bytes-per-page-region
 106 *      BTOPR == bytes-to-page-region (rounded up)
 107 *      BTOPRT == bytes-to-page-region-truncated (rounded down)
 108 */
 109#if (BITS_PER_LONG == 32)
 110#define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
 111#elif (BITS_PER_LONG == 64)
 112#define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
 113#else
 114#error BITS_PER_LONG must be 32 or 64
 115#endif
 116#define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
 117#define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
 118#define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
 119
 120STATIC unsigned long
 121page_region_mask(
 122        size_t          offset,
 123        size_t          length)
 124{
 125        unsigned long   mask;
 126        int             first, final;
 127
 128        first = BTOPR(offset);
 129        final = BTOPRT(offset + length - 1);
 130        first = min(first, final);
 131
 132        mask = ~0UL;
 133        mask <<= BITS_PER_LONG - (final - first);
 134        mask >>= BITS_PER_LONG - (final);
 135
 136        ASSERT(offset + length <= PAGE_CACHE_SIZE);
 137        ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
 138
 139        return mask;
 140}
 141
 142STATIC void
 143set_page_region(
 144        struct page     *page,
 145        size_t          offset,
 146        size_t          length)
 147{
 148        set_page_private(page,
 149                page_private(page) | page_region_mask(offset, length));
 150        if (page_private(page) == ~0UL)
 151                SetPageUptodate(page);
 152}
 153
 154STATIC int
 155test_page_region(
 156        struct page     *page,
 157        size_t          offset,
 158        size_t          length)
 159{
 160        unsigned long   mask = page_region_mask(offset, length);
 161
 162        return (mask && (page_private(page) & mask) == mask);
 163}
 164
 165/*
 166 * xfs_buf_lru_add - add a buffer to the LRU.
 167 *
 168 * The LRU takes a new reference to the buffer so that it will only be freed
 169 * once the shrinker takes the buffer off the LRU.
 170 */
 171STATIC void
 172xfs_buf_lru_add(
 173        struct xfs_buf  *bp)
 174{
 175        struct xfs_buftarg *btp = bp->b_target;
 176
 177        spin_lock(&btp->bt_lru_lock);
 178        if (list_empty(&bp->b_lru)) {
 179                atomic_inc(&bp->b_hold);
 180                list_add_tail(&bp->b_lru, &btp->bt_lru);
 181                btp->bt_lru_nr++;
 182        }
 183        spin_unlock(&btp->bt_lru_lock);
 184}
 185
 186/*
 187 * xfs_buf_lru_del - remove a buffer from the LRU
 188 *
 189 * The unlocked check is safe here because it only occurs when there are not
 190 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
 191 * to optimise the shrinker removing the buffer from the LRU and calling
 192 * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
 193 * bt_lru_lock.
 194 */
 195STATIC void
 196xfs_buf_lru_del(
 197        struct xfs_buf  *bp)
 198{
 199        struct xfs_buftarg *btp = bp->b_target;
 200
 201        if (list_empty(&bp->b_lru))
 202                return;
 203
 204        spin_lock(&btp->bt_lru_lock);
 205        if (!list_empty(&bp->b_lru)) {
 206                list_del_init(&bp->b_lru);
 207                btp->bt_lru_nr--;
 208        }
 209        spin_unlock(&btp->bt_lru_lock);
 210}
 211
 212/*
 213 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
 214 * b_lru_ref count so that the buffer is freed immediately when the buffer
 215 * reference count falls to zero. If the buffer is already on the LRU, we need
 216 * to remove the reference that LRU holds on the buffer.
 217 *
 218 * This prevents build-up of stale buffers on the LRU.
 219 */
 220void
 221xfs_buf_stale(
 222        struct xfs_buf  *bp)
 223{
 224        bp->b_flags |= XBF_STALE;
 225        atomic_set(&(bp)->b_lru_ref, 0);
 226        if (!list_empty(&bp->b_lru)) {
 227                struct xfs_buftarg *btp = bp->b_target;
 228
 229                spin_lock(&btp->bt_lru_lock);
 230                if (!list_empty(&bp->b_lru)) {
 231                        list_del_init(&bp->b_lru);
 232                        btp->bt_lru_nr--;
 233                        atomic_dec(&bp->b_hold);
 234                }
 235                spin_unlock(&btp->bt_lru_lock);
 236        }
 237        ASSERT(atomic_read(&bp->b_hold) >= 1);
 238}
 239
 240STATIC void
 241_xfs_buf_initialize(
 242        xfs_buf_t               *bp,
 243        xfs_buftarg_t           *target,
 244        xfs_off_t               range_base,
 245        size_t                  range_length,
 246        xfs_buf_flags_t         flags)
 247{
 248        /*
 249         * We don't want certain flags to appear in b_flags.
 250         */
 251        flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
 252
 253        memset(bp, 0, sizeof(xfs_buf_t));
 254        atomic_set(&bp->b_hold, 1);
 255        atomic_set(&bp->b_lru_ref, 1);
 256        init_completion(&bp->b_iowait);
 257        INIT_LIST_HEAD(&bp->b_lru);
 258        INIT_LIST_HEAD(&bp->b_list);
 259        RB_CLEAR_NODE(&bp->b_rbnode);
 260        sema_init(&bp->b_sema, 0); /* held, no waiters */
 261        XB_SET_OWNER(bp);
 262        bp->b_target = target;
 263        bp->b_file_offset = range_base;
 264        /*
 265         * Set buffer_length and count_desired to the same value initially.
 266         * I/O routines should use count_desired, which will be the same in
 267         * most cases but may be reset (e.g. XFS recovery).
 268         */
 269        bp->b_buffer_length = bp->b_count_desired = range_length;
 270        bp->b_flags = flags;
 271        bp->b_bn = XFS_BUF_DADDR_NULL;
 272        atomic_set(&bp->b_pin_count, 0);
 273        init_waitqueue_head(&bp->b_waiters);
 274
 275        XFS_STATS_INC(xb_create);
 276
 277        trace_xfs_buf_init(bp, _RET_IP_);
 278}
 279
 280/*
 281 *      Allocate a page array capable of holding a specified number
 282 *      of pages, and point the page buf at it.
 283 */
 284STATIC int
 285_xfs_buf_get_pages(
 286        xfs_buf_t               *bp,
 287        int                     page_count,
 288        xfs_buf_flags_t         flags)
 289{
 290        /* Make sure that we have a page list */
 291        if (bp->b_pages == NULL) {
 292                bp->b_offset = xfs_buf_poff(bp->b_file_offset);
 293                bp->b_page_count = page_count;
 294                if (page_count <= XB_PAGES) {
 295                        bp->b_pages = bp->b_page_array;
 296                } else {
 297                        bp->b_pages = kmem_alloc(sizeof(struct page *) *
 298                                        page_count, xb_to_km(flags));
 299                        if (bp->b_pages == NULL)
 300                                return -ENOMEM;
 301                }
 302                memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 303        }
 304        return 0;
 305}
 306
 307/*
 308 *      Frees b_pages if it was allocated.
 309 */
 310STATIC void
 311_xfs_buf_free_pages(
 312        xfs_buf_t       *bp)
 313{
 314        if (bp->b_pages != bp->b_page_array) {
 315                kmem_free(bp->b_pages);
 316                bp->b_pages = NULL;
 317        }
 318}
 319
 320/*
 321 *      Releases the specified buffer.
 322 *
 323 *      The modification state of any associated pages is left unchanged.
 324 *      The buffer most not be on any hash - use xfs_buf_rele instead for
 325 *      hashed and refcounted buffers
 326 */
 327void
 328xfs_buf_free(
 329        xfs_buf_t               *bp)
 330{
 331        trace_xfs_buf_free(bp, _RET_IP_);
 332
 333        ASSERT(list_empty(&bp->b_lru));
 334
 335        if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
 336                uint            i;
 337
 338                if (xfs_buf_is_vmapped(bp))
 339                        vm_unmap_ram(bp->b_addr - bp->b_offset,
 340                                        bp->b_page_count);
 341
 342                for (i = 0; i < bp->b_page_count; i++) {
 343                        struct page     *page = bp->b_pages[i];
 344
 345                        if (bp->b_flags & _XBF_PAGE_CACHE)
 346                                ASSERT(!PagePrivate(page));
 347                        page_cache_release(page);
 348                }
 349        }
 350        _xfs_buf_free_pages(bp);
 351        xfs_buf_deallocate(bp);
 352}
 353
 354/*
 355 *      Finds all pages for buffer in question and builds it's page list.
 356 */
 357STATIC int
 358_xfs_buf_lookup_pages(
 359        xfs_buf_t               *bp,
 360        uint                    flags)
 361{
 362        struct address_space    *mapping = bp->b_target->bt_mapping;
 363        size_t                  blocksize = bp->b_target->bt_bsize;
 364        size_t                  size = bp->b_count_desired;
 365        size_t                  nbytes, offset;
 366        gfp_t                   gfp_mask = xb_to_gfp(flags);
 367        unsigned short          page_count, i;
 368        pgoff_t                 first;
 369        xfs_off_t               end;
 370        int                     error;
 371
 372        end = bp->b_file_offset + bp->b_buffer_length;
 373        page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
 374
 375        error = _xfs_buf_get_pages(bp, page_count, flags);
 376        if (unlikely(error))
 377                return error;
 378        bp->b_flags |= _XBF_PAGE_CACHE;
 379
 380        offset = bp->b_offset;
 381        first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
 382
 383        for (i = 0; i < bp->b_page_count; i++) {
 384                struct page     *page;
 385                uint            retries = 0;
 386
 387              retry:
 388                page = find_or_create_page(mapping, first + i, gfp_mask);
 389                if (unlikely(page == NULL)) {
 390                        if (flags & XBF_READ_AHEAD) {
 391                                bp->b_page_count = i;
 392                                for (i = 0; i < bp->b_page_count; i++)
 393                                        unlock_page(bp->b_pages[i]);
 394                                return -ENOMEM;
 395                        }
 396
 397                        /*
 398                         * This could deadlock.
 399                         *
 400                         * But until all the XFS lowlevel code is revamped to
 401                         * handle buffer allocation failures we can't do much.
 402                         */
 403                        if (!(++retries % 100))
 404                                printk(KERN_ERR
 405                                        "XFS: possible memory allocation "
 406                                        "deadlock in %s (mode:0x%x)\n",
 407                                        __func__, gfp_mask);
 408
 409                        XFS_STATS_INC(xb_page_retries);
 410                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 411                        goto retry;
 412                }
 413
 414                XFS_STATS_INC(xb_page_found);
 415
 416                nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
 417                size -= nbytes;
 418
 419                ASSERT(!PagePrivate(page));
 420                if (!PageUptodate(page)) {
 421                        page_count--;
 422                        if (blocksize >= PAGE_CACHE_SIZE) {
 423                                if (flags & XBF_READ)
 424                                        bp->b_flags |= _XBF_PAGE_LOCKED;
 425                        } else if (!PagePrivate(page)) {
 426                                if (test_page_region(page, offset, nbytes))
 427                                        page_count++;
 428                        }
 429                }
 430
 431                bp->b_pages[i] = page;
 432                offset = 0;
 433        }
 434
 435        if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
 436                for (i = 0; i < bp->b_page_count; i++)
 437                        unlock_page(bp->b_pages[i]);
 438        }
 439
 440        if (page_count == bp->b_page_count)
 441                bp->b_flags |= XBF_DONE;
 442
 443        return error;
 444}
 445
 446/*
 447 *      Map buffer into kernel address-space if nessecary.
 448 */
 449STATIC int
 450_xfs_buf_map_pages(
 451        xfs_buf_t               *bp,
 452        uint                    flags)
 453{
 454        /* A single page buffer is always mappable */
 455        if (bp->b_page_count == 1) {
 456                bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 457                bp->b_flags |= XBF_MAPPED;
 458        } else if (flags & XBF_MAPPED) {
 459                bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 460                                        -1, PAGE_KERNEL);
 461                if (unlikely(bp->b_addr == NULL))
 462                        return -ENOMEM;
 463                bp->b_addr += bp->b_offset;
 464                bp->b_flags |= XBF_MAPPED;
 465        }
 466
 467        return 0;
 468}
 469
 470/*
 471 *      Finding and Reading Buffers
 472 */
 473
 474/*
 475 *      Look up, and creates if absent, a lockable buffer for
 476 *      a given range of an inode.  The buffer is returned
 477 *      locked.  If other overlapping buffers exist, they are
 478 *      released before the new buffer is created and locked,
 479 *      which may imply that this call will block until those buffers
 480 *      are unlocked.  No I/O is implied by this call.
 481 */
 482xfs_buf_t *
 483_xfs_buf_find(
 484        xfs_buftarg_t           *btp,   /* block device target          */
 485        xfs_off_t               ioff,   /* starting offset of range     */
 486        size_t                  isize,  /* length of range              */
 487        xfs_buf_flags_t         flags,
 488        xfs_buf_t               *new_bp)
 489{
 490        xfs_off_t               range_base;
 491        size_t                  range_length;
 492        struct xfs_perag        *pag;
 493        struct rb_node          **rbp;
 494        struct rb_node          *parent;
 495        xfs_buf_t               *bp;
 496
 497        range_base = (ioff << BBSHIFT);
 498        range_length = (isize << BBSHIFT);
 499
 500        /* Check for IOs smaller than the sector size / not sector aligned */
 501        ASSERT(!(range_length < (1 << btp->bt_sshift)));
 502        ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
 503
 504        /* get tree root */
 505        pag = xfs_perag_get(btp->bt_mount,
 506                                xfs_daddr_to_agno(btp->bt_mount, ioff));
 507
 508        /* walk tree */
 509        spin_lock(&pag->pag_buf_lock);
 510        rbp = &pag->pag_buf_tree.rb_node;
 511        parent = NULL;
 512        bp = NULL;
 513        while (*rbp) {
 514                parent = *rbp;
 515                bp = rb_entry(parent, struct xfs_buf, b_rbnode);
 516
 517                if (range_base < bp->b_file_offset)
 518                        rbp = &(*rbp)->rb_left;
 519                else if (range_base > bp->b_file_offset)
 520                        rbp = &(*rbp)->rb_right;
 521                else {
 522                        /*
 523                         * found a block offset match. If the range doesn't
 524                         * match, the only way this is allowed is if the buffer
 525                         * in the cache is stale and the transaction that made
 526                         * it stale has not yet committed. i.e. we are
 527                         * reallocating a busy extent. Skip this buffer and
 528                         * continue searching to the right for an exact match.
 529                         */
 530                        if (bp->b_buffer_length != range_length) {
 531                                ASSERT(bp->b_flags & XBF_STALE);
 532                                rbp = &(*rbp)->rb_right;
 533                                continue;
 534                        }
 535                        atomic_inc(&bp->b_hold);
 536                        goto found;
 537                }
 538        }
 539
 540        /* No match found */
 541        if (new_bp) {
 542                _xfs_buf_initialize(new_bp, btp, range_base,
 543                                range_length, flags);
 544                rb_link_node(&new_bp->b_rbnode, parent, rbp);
 545                rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
 546                /* the buffer keeps the perag reference until it is freed */
 547                new_bp->b_pag = pag;
 548                spin_unlock(&pag->pag_buf_lock);
 549        } else {
 550                XFS_STATS_INC(xb_miss_locked);
 551                spin_unlock(&pag->pag_buf_lock);
 552                xfs_perag_put(pag);
 553        }
 554        return new_bp;
 555
 556found:
 557        spin_unlock(&pag->pag_buf_lock);
 558        xfs_perag_put(pag);
 559
 560        if (xfs_buf_cond_lock(bp)) {
 561                /* failed, so wait for the lock if requested. */
 562                if (!(flags & XBF_TRYLOCK)) {
 563                        xfs_buf_lock(bp);
 564                        XFS_STATS_INC(xb_get_locked_waited);
 565                } else {
 566                        xfs_buf_rele(bp);
 567                        XFS_STATS_INC(xb_busy_locked);
 568                        return NULL;
 569                }
 570        }
 571
 572        if (bp->b_flags & XBF_STALE) {
 573                ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 574                bp->b_flags &= XBF_MAPPED;
 575        }
 576
 577        trace_xfs_buf_find(bp, flags, _RET_IP_);
 578        XFS_STATS_INC(xb_get_locked);
 579        return bp;
 580}
 581
 582/*
 583 *      Assembles a buffer covering the specified range.
 584 *      Storage in memory for all portions of the buffer will be allocated,
 585 *      although backing storage may not be.
 586 */
 587xfs_buf_t *
 588xfs_buf_get(
 589        xfs_buftarg_t           *target,/* target for buffer            */
 590        xfs_off_t               ioff,   /* starting offset of range     */
 591        size_t                  isize,  /* length of range              */
 592        xfs_buf_flags_t         flags)
 593{
 594        xfs_buf_t               *bp, *new_bp;
 595        int                     error = 0, i;
 596
 597        new_bp = xfs_buf_allocate(flags);
 598        if (unlikely(!new_bp))
 599                return NULL;
 600
 601        bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
 602        if (bp == new_bp) {
 603                error = _xfs_buf_lookup_pages(bp, flags);
 604                if (error)
 605                        goto no_buffer;
 606        } else {
 607                xfs_buf_deallocate(new_bp);
 608                if (unlikely(bp == NULL))
 609                        return NULL;
 610        }
 611
 612        for (i = 0; i < bp->b_page_count; i++)
 613                mark_page_accessed(bp->b_pages[i]);
 614
 615        if (!(bp->b_flags & XBF_MAPPED)) {
 616                error = _xfs_buf_map_pages(bp, flags);
 617                if (unlikely(error)) {
 618                        printk(KERN_WARNING "%s: failed to map pages\n",
 619                                        __func__);
 620                        goto no_buffer;
 621                }
 622        }
 623
 624        XFS_STATS_INC(xb_get);
 625
 626        /*
 627         * Always fill in the block number now, the mapped cases can do
 628         * their own overlay of this later.
 629         */
 630        bp->b_bn = ioff;
 631        bp->b_count_desired = bp->b_buffer_length;
 632
 633        trace_xfs_buf_get(bp, flags, _RET_IP_);
 634        return bp;
 635
 636 no_buffer:
 637        if (flags & (XBF_LOCK | XBF_TRYLOCK))
 638                xfs_buf_unlock(bp);
 639        xfs_buf_rele(bp);
 640        return NULL;
 641}
 642
 643STATIC int
 644_xfs_buf_read(
 645        xfs_buf_t               *bp,
 646        xfs_buf_flags_t         flags)
 647{
 648        int                     status;
 649
 650        ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
 651        ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
 652
 653        bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
 654                        XBF_READ_AHEAD | _XBF_RUN_QUEUES);
 655        bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
 656                        XBF_READ_AHEAD | _XBF_RUN_QUEUES);
 657
 658        status = xfs_buf_iorequest(bp);
 659        if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
 660                return status;
 661        return xfs_buf_iowait(bp);
 662}
 663
 664xfs_buf_t *
 665xfs_buf_read(
 666        xfs_buftarg_t           *target,
 667        xfs_off_t               ioff,
 668        size_t                  isize,
 669        xfs_buf_flags_t         flags)
 670{
 671        xfs_buf_t               *bp;
 672
 673        flags |= XBF_READ;
 674
 675        bp = xfs_buf_get(target, ioff, isize, flags);
 676        if (bp) {
 677                trace_xfs_buf_read(bp, flags, _RET_IP_);
 678
 679                if (!XFS_BUF_ISDONE(bp)) {
 680                        XFS_STATS_INC(xb_get_read);
 681                        _xfs_buf_read(bp, flags);
 682                } else if (flags & XBF_ASYNC) {
 683                        /*
 684                         * Read ahead call which is already satisfied,
 685                         * drop the buffer
 686                         */
 687                        goto no_buffer;
 688                } else {
 689                        /* We do not want read in the flags */
 690                        bp->b_flags &= ~XBF_READ;
 691                }
 692        }
 693
 694        return bp;
 695
 696 no_buffer:
 697        if (flags & (XBF_LOCK | XBF_TRYLOCK))
 698                xfs_buf_unlock(bp);
 699        xfs_buf_rele(bp);
 700        return NULL;
 701}
 702
 703/*
 704 *      If we are not low on memory then do the readahead in a deadlock
 705 *      safe manner.
 706 */
 707void
 708xfs_buf_readahead(
 709        xfs_buftarg_t           *target,
 710        xfs_off_t               ioff,
 711        size_t                  isize)
 712{
 713        struct backing_dev_info *bdi;
 714
 715        bdi = target->bt_mapping->backing_dev_info;
 716        if (bdi_read_congested(bdi))
 717                return;
 718
 719        xfs_buf_read(target, ioff, isize,
 720                     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
 721}
 722
 723/*
 724 * Read an uncached buffer from disk. Allocates and returns a locked
 725 * buffer containing the disk contents or nothing.
 726 */
 727struct xfs_buf *
 728xfs_buf_read_uncached(
 729        struct xfs_mount        *mp,
 730        struct xfs_buftarg      *target,
 731        xfs_daddr_t             daddr,
 732        size_t                  length,
 733        int                     flags)
 734{
 735        xfs_buf_t               *bp;
 736        int                     error;
 737
 738        bp = xfs_buf_get_uncached(target, length, flags);
 739        if (!bp)
 740                return NULL;
 741
 742        /* set up the buffer for a read IO */
 743        xfs_buf_lock(bp);
 744        XFS_BUF_SET_ADDR(bp, daddr);
 745        XFS_BUF_READ(bp);
 746        XFS_BUF_BUSY(bp);
 747
 748        xfsbdstrat(mp, bp);
 749        error = xfs_buf_iowait(bp);
 750        if (error || bp->b_error) {
 751                xfs_buf_relse(bp);
 752                return NULL;
 753        }
 754        return bp;
 755}
 756
 757xfs_buf_t *
 758xfs_buf_get_empty(
 759        size_t                  len,
 760        xfs_buftarg_t           *target)
 761{
 762        xfs_buf_t               *bp;
 763
 764        bp = xfs_buf_allocate(0);
 765        if (bp)
 766                _xfs_buf_initialize(bp, target, 0, len, 0);
 767        return bp;
 768}
 769
 770static inline struct page *
 771mem_to_page(
 772        void                    *addr)
 773{
 774        if ((!is_vmalloc_addr(addr))) {
 775                return virt_to_page(addr);
 776        } else {
 777                return vmalloc_to_page(addr);
 778        }
 779}
 780
 781int
 782xfs_buf_associate_memory(
 783        xfs_buf_t               *bp,
 784        void                    *mem,
 785        size_t                  len)
 786{
 787        int                     rval;
 788        int                     i = 0;
 789        unsigned long           pageaddr;
 790        unsigned long           offset;
 791        size_t                  buflen;
 792        int                     page_count;
 793
 794        pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
 795        offset = (unsigned long)mem - pageaddr;
 796        buflen = PAGE_CACHE_ALIGN(len + offset);
 797        page_count = buflen >> PAGE_CACHE_SHIFT;
 798
 799        /* Free any previous set of page pointers */
 800        if (bp->b_pages)
 801                _xfs_buf_free_pages(bp);
 802
 803        bp->b_pages = NULL;
 804        bp->b_addr = mem;
 805
 806        rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
 807        if (rval)
 808                return rval;
 809
 810        bp->b_offset = offset;
 811
 812        for (i = 0; i < bp->b_page_count; i++) {
 813                bp->b_pages[i] = mem_to_page((void *)pageaddr);
 814                pageaddr += PAGE_CACHE_SIZE;
 815        }
 816
 817        bp->b_count_desired = len;
 818        bp->b_buffer_length = buflen;
 819        bp->b_flags |= XBF_MAPPED;
 820        bp->b_flags &= ~_XBF_PAGE_LOCKED;
 821
 822        return 0;
 823}
 824
 825xfs_buf_t *
 826xfs_buf_get_uncached(
 827        struct xfs_buftarg      *target,
 828        size_t                  len,
 829        int                     flags)
 830{
 831        unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
 832        int                     error, i;
 833        xfs_buf_t               *bp;
 834
 835        bp = xfs_buf_allocate(0);
 836        if (unlikely(bp == NULL))
 837                goto fail;
 838        _xfs_buf_initialize(bp, target, 0, len, 0);
 839
 840        error = _xfs_buf_get_pages(bp, page_count, 0);
 841        if (error)
 842                goto fail_free_buf;
 843
 844        for (i = 0; i < page_count; i++) {
 845                bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 846                if (!bp->b_pages[i])
 847                        goto fail_free_mem;
 848        }
 849        bp->b_flags |= _XBF_PAGES;
 850
 851        error = _xfs_buf_map_pages(bp, XBF_MAPPED);
 852        if (unlikely(error)) {
 853                printk(KERN_WARNING "%s: failed to map pages\n",
 854                                __func__);
 855                goto fail_free_mem;
 856        }
 857
 858        xfs_buf_unlock(bp);
 859
 860        trace_xfs_buf_get_uncached(bp, _RET_IP_);
 861        return bp;
 862
 863 fail_free_mem:
 864        while (--i >= 0)
 865                __free_page(bp->b_pages[i]);
 866        _xfs_buf_free_pages(bp);
 867 fail_free_buf:
 868        xfs_buf_deallocate(bp);
 869 fail:
 870        return NULL;
 871}
 872
 873/*
 874 *      Increment reference count on buffer, to hold the buffer concurrently
 875 *      with another thread which may release (free) the buffer asynchronously.
 876 *      Must hold the buffer already to call this function.
 877 */
 878void
 879xfs_buf_hold(
 880        xfs_buf_t               *bp)
 881{
 882        trace_xfs_buf_hold(bp, _RET_IP_);
 883        atomic_inc(&bp->b_hold);
 884}
 885
 886/*
 887 *      Releases a hold on the specified buffer.  If the
 888 *      the hold count is 1, calls xfs_buf_free.
 889 */
 890void
 891xfs_buf_rele(
 892        xfs_buf_t               *bp)
 893{
 894        struct xfs_perag        *pag = bp->b_pag;
 895
 896        trace_xfs_buf_rele(bp, _RET_IP_);
 897
 898        if (!pag) {
 899                ASSERT(list_empty(&bp->b_lru));
 900                ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
 901                if (atomic_dec_and_test(&bp->b_hold))
 902                        xfs_buf_free(bp);
 903                return;
 904        }
 905
 906        ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
 907
 908        ASSERT(atomic_read(&bp->b_hold) > 0);
 909        if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
 910                if (!(bp->b_flags & XBF_STALE) &&
 911                           atomic_read(&bp->b_lru_ref)) {
 912                        xfs_buf_lru_add(bp);
 913                        spin_unlock(&pag->pag_buf_lock);
 914                } else {
 915                        xfs_buf_lru_del(bp);
 916                        ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
 917                        rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
 918                        spin_unlock(&pag->pag_buf_lock);
 919                        xfs_perag_put(pag);
 920                        xfs_buf_free(bp);
 921                }
 922        }
 923}
 924
 925
 926/*
 927 *      Mutual exclusion on buffers.  Locking model:
 928 *
 929 *      Buffers associated with inodes for which buffer locking
 930 *      is not enabled are not protected by semaphores, and are
 931 *      assumed to be exclusively owned by the caller.  There is a
 932 *      spinlock in the buffer, used by the caller when concurrent
 933 *      access is possible.
 934 */
 935
 936/*
 937 *      Locks a buffer object, if it is not already locked.  Note that this in
 938 *      no way locks the underlying pages, so it is only useful for
 939 *      synchronizing concurrent use of buffer objects, not for synchronizing
 940 *      independent access to the underlying pages.
 941 *
 942 *      If we come across a stale, pinned, locked buffer, we know that we are
 943 *      being asked to lock a buffer that has been reallocated. Because it is
 944 *      pinned, we know that the log has not been pushed to disk and hence it
 945 *      will still be locked.  Rather than continuing to have trylock attempts
 946 *      fail until someone else pushes the log, push it ourselves before
 947 *      returning.  This means that the xfsaild will not get stuck trying
 948 *      to push on stale inode buffers.
 949 */
 950int
 951xfs_buf_cond_lock(
 952        xfs_buf_t               *bp)
 953{
 954        int                     locked;
 955
 956        locked = down_trylock(&bp->b_sema) == 0;
 957        if (locked)
 958                XB_SET_OWNER(bp);
 959        else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 960                xfs_log_force(bp->b_target->bt_mount, 0);
 961
 962        trace_xfs_buf_cond_lock(bp, _RET_IP_);
 963        return locked ? 0 : -EBUSY;
 964}
 965
 966int
 967xfs_buf_lock_value(
 968        xfs_buf_t               *bp)
 969{
 970        return bp->b_sema.count;
 971}
 972
 973/*
 974 *      Locks a buffer object.
 975 *      Note that this in no way locks the underlying pages, so it is only
 976 *      useful for synchronizing concurrent use of buffer objects, not for
 977 *      synchronizing independent access to the underlying pages.
 978 *
 979 *      If we come across a stale, pinned, locked buffer, we know that we
 980 *      are being asked to lock a buffer that has been reallocated. Because
 981 *      it is pinned, we know that the log has not been pushed to disk and
 982 *      hence it will still be locked. Rather than sleeping until someone
 983 *      else pushes the log, push it ourselves before trying to get the lock.
 984 */
 985void
 986xfs_buf_lock(
 987        xfs_buf_t               *bp)
 988{
 989        trace_xfs_buf_lock(bp, _RET_IP_);
 990
 991        if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
 992                xfs_log_force(bp->b_target->bt_mount, 0);
 993        if (atomic_read(&bp->b_io_remaining))
 994                blk_run_address_space(bp->b_target->bt_mapping);
 995        down(&bp->b_sema);
 996        XB_SET_OWNER(bp);
 997
 998        trace_xfs_buf_lock_done(bp, _RET_IP_);
 999}
1000
1001/*
1002 *      Releases the lock on the buffer object.
1003 *      If the buffer is marked delwri but is not queued, do so before we
1004 *      unlock the buffer as we need to set flags correctly.  We also need to
1005 *      take a reference for the delwri queue because the unlocker is going to
1006 *      drop their's and they don't know we just queued it.
1007 */
1008void
1009xfs_buf_unlock(
1010        xfs_buf_t               *bp)
1011{
1012        if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
1013                atomic_inc(&bp->b_hold);
1014                bp->b_flags |= XBF_ASYNC;
1015                xfs_buf_delwri_queue(bp, 0);
1016        }
1017
1018        XB_CLEAR_OWNER(bp);
1019        up(&bp->b_sema);
1020
1021        trace_xfs_buf_unlock(bp, _RET_IP_);
1022}
1023
1024STATIC void
1025xfs_buf_wait_unpin(
1026        xfs_buf_t               *bp)
1027{
1028        DECLARE_WAITQUEUE       (wait, current);
1029
1030        if (atomic_read(&bp->b_pin_count) == 0)
1031                return;
1032
1033        add_wait_queue(&bp->b_waiters, &wait);
1034        for (;;) {
1035                set_current_state(TASK_UNINTERRUPTIBLE);
1036                if (atomic_read(&bp->b_pin_count) == 0)
1037                        break;
1038                if (atomic_read(&bp->b_io_remaining))
1039                        blk_run_address_space(bp->b_target->bt_mapping);
1040                schedule();
1041        }
1042        remove_wait_queue(&bp->b_waiters, &wait);
1043        set_current_state(TASK_RUNNING);
1044}
1045
1046/*
1047 *      Buffer Utility Routines
1048 */
1049
1050STATIC void
1051xfs_buf_iodone_work(
1052        struct work_struct      *work)
1053{
1054        xfs_buf_t               *bp =
1055                container_of(work, xfs_buf_t, b_iodone_work);
1056
1057        if (bp->b_iodone)
1058                (*(bp->b_iodone))(bp);
1059        else if (bp->b_flags & XBF_ASYNC)
1060                xfs_buf_relse(bp);
1061}
1062
1063void
1064xfs_buf_ioend(
1065        xfs_buf_t               *bp,
1066        int                     schedule)
1067{
1068        trace_xfs_buf_iodone(bp, _RET_IP_);
1069
1070        bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1071        if (bp->b_error == 0)
1072                bp->b_flags |= XBF_DONE;
1073
1074        if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1075                if (schedule) {
1076                        INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1077                        queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1078                } else {
1079                        xfs_buf_iodone_work(&bp->b_iodone_work);
1080                }
1081        } else {
1082                complete(&bp->b_iowait);
1083        }
1084}
1085
1086void
1087xfs_buf_ioerror(
1088        xfs_buf_t               *bp,
1089        int                     error)
1090{
1091        ASSERT(error >= 0 && error <= 0xffff);
1092        bp->b_error = (unsigned short)error;
1093        trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1094}
1095
1096int
1097xfs_bwrite(
1098        struct xfs_mount        *mp,
1099        struct xfs_buf          *bp)
1100{
1101        int                     error;
1102
1103        bp->b_flags |= XBF_WRITE;
1104        bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1105
1106        xfs_buf_delwri_dequeue(bp);
1107        xfs_bdstrat_cb(bp);
1108
1109        error = xfs_buf_iowait(bp);
1110        if (error)
1111                xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1112        xfs_buf_relse(bp);
1113        return error;
1114}
1115
1116void
1117xfs_bdwrite(
1118        void                    *mp,
1119        struct xfs_buf          *bp)
1120{
1121        trace_xfs_buf_bdwrite(bp, _RET_IP_);
1122
1123        bp->b_flags &= ~XBF_READ;
1124        bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1125
1126        xfs_buf_delwri_queue(bp, 1);
1127}
1128
1129/*
1130 * Called when we want to stop a buffer from getting written or read.
1131 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1132 * so that the proper iodone callbacks get called.
1133 */
1134STATIC int
1135xfs_bioerror(
1136        xfs_buf_t *bp)
1137{
1138#ifdef XFSERRORDEBUG
1139        ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1140#endif
1141
1142        /*
1143         * No need to wait until the buffer is unpinned, we aren't flushing it.
1144         */
1145        XFS_BUF_ERROR(bp, EIO);
1146
1147        /*
1148         * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1149         */
1150        XFS_BUF_UNREAD(bp);
1151        XFS_BUF_UNDELAYWRITE(bp);
1152        XFS_BUF_UNDONE(bp);
1153        XFS_BUF_STALE(bp);
1154
1155        xfs_buf_ioend(bp, 0);
1156
1157        return EIO;
1158}
1159
1160/*
1161 * Same as xfs_bioerror, except that we are releasing the buffer
1162 * here ourselves, and avoiding the xfs_buf_ioend call.
1163 * This is meant for userdata errors; metadata bufs come with
1164 * iodone functions attached, so that we can track down errors.
1165 */
1166STATIC int
1167xfs_bioerror_relse(
1168        struct xfs_buf  *bp)
1169{
1170        int64_t         fl = XFS_BUF_BFLAGS(bp);
1171        /*
1172         * No need to wait until the buffer is unpinned.
1173         * We aren't flushing it.
1174         *
1175         * chunkhold expects B_DONE to be set, whether
1176         * we actually finish the I/O or not. We don't want to
1177         * change that interface.
1178         */
1179        XFS_BUF_UNREAD(bp);
1180        XFS_BUF_UNDELAYWRITE(bp);
1181        XFS_BUF_DONE(bp);
1182        XFS_BUF_STALE(bp);
1183        XFS_BUF_CLR_IODONE_FUNC(bp);
1184        if (!(fl & XBF_ASYNC)) {
1185                /*
1186                 * Mark b_error and B_ERROR _both_.
1187                 * Lot's of chunkcache code assumes that.
1188                 * There's no reason to mark error for
1189                 * ASYNC buffers.
1190                 */
1191                XFS_BUF_ERROR(bp, EIO);
1192                XFS_BUF_FINISH_IOWAIT(bp);
1193        } else {
1194                xfs_buf_relse(bp);
1195        }
1196
1197        return EIO;
1198}
1199
1200
1201/*
1202 * All xfs metadata buffers except log state machine buffers
1203 * get this attached as their b_bdstrat callback function.
1204 * This is so that we can catch a buffer
1205 * after prematurely unpinning it to forcibly shutdown the filesystem.
1206 */
1207int
1208xfs_bdstrat_cb(
1209        struct xfs_buf  *bp)
1210{
1211        if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1212                trace_xfs_bdstrat_shut(bp, _RET_IP_);
1213                /*
1214                 * Metadata write that didn't get logged but
1215                 * written delayed anyway. These aren't associated
1216                 * with a transaction, and can be ignored.
1217                 */
1218                if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1219                        return xfs_bioerror_relse(bp);
1220                else
1221                        return xfs_bioerror(bp);
1222        }
1223
1224        xfs_buf_iorequest(bp);
1225        return 0;
1226}
1227
1228/*
1229 * Wrapper around bdstrat so that we can stop data from going to disk in case
1230 * we are shutting down the filesystem.  Typically user data goes thru this
1231 * path; one of the exceptions is the superblock.
1232 */
1233void
1234xfsbdstrat(
1235        struct xfs_mount        *mp,
1236        struct xfs_buf          *bp)
1237{
1238        if (XFS_FORCED_SHUTDOWN(mp)) {
1239                trace_xfs_bdstrat_shut(bp, _RET_IP_);
1240                xfs_bioerror_relse(bp);
1241                return;
1242        }
1243
1244        xfs_buf_iorequest(bp);
1245}
1246
1247STATIC void
1248_xfs_buf_ioend(
1249        xfs_buf_t               *bp,
1250        int                     schedule)
1251{
1252        if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1253                bp->b_flags &= ~_XBF_PAGE_LOCKED;
1254                xfs_buf_ioend(bp, schedule);
1255        }
1256}
1257
1258STATIC void
1259xfs_buf_bio_end_io(
1260        struct bio              *bio,
1261        int                     error)
1262{
1263        xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1264        unsigned int            blocksize = bp->b_target->bt_bsize;
1265        struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1266
1267        xfs_buf_ioerror(bp, -error);
1268
1269        if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1270                invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1271
1272        do {
1273                struct page     *page = bvec->bv_page;
1274
1275                ASSERT(!PagePrivate(page));
1276                if (unlikely(bp->b_error)) {
1277                        if (bp->b_flags & XBF_READ)
1278                                ClearPageUptodate(page);
1279                } else if (blocksize >= PAGE_CACHE_SIZE) {
1280                        SetPageUptodate(page);
1281                } else if (!PagePrivate(page) &&
1282                                (bp->b_flags & _XBF_PAGE_CACHE)) {
1283                        set_page_region(page, bvec->bv_offset, bvec->bv_len);
1284                }
1285
1286                if (--bvec >= bio->bi_io_vec)
1287                        prefetchw(&bvec->bv_page->flags);
1288
1289                if (bp->b_flags & _XBF_PAGE_LOCKED)
1290                        unlock_page(page);
1291        } while (bvec >= bio->bi_io_vec);
1292
1293        _xfs_buf_ioend(bp, 1);
1294        bio_put(bio);
1295}
1296
1297STATIC void
1298_xfs_buf_ioapply(
1299        xfs_buf_t               *bp)
1300{
1301        int                     rw, map_i, total_nr_pages, nr_pages;
1302        struct bio              *bio;
1303        int                     offset = bp->b_offset;
1304        int                     size = bp->b_count_desired;
1305        sector_t                sector = bp->b_bn;
1306        unsigned int            blocksize = bp->b_target->bt_bsize;
1307
1308        total_nr_pages = bp->b_page_count;
1309        map_i = 0;
1310
1311        if (bp->b_flags & XBF_ORDERED) {
1312                ASSERT(!(bp->b_flags & XBF_READ));
1313                rw = WRITE_FLUSH_FUA;
1314        } else if (bp->b_flags & XBF_LOG_BUFFER) {
1315                ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1316                bp->b_flags &= ~_XBF_RUN_QUEUES;
1317                rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1318        } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1319                ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1320                bp->b_flags &= ~_XBF_RUN_QUEUES;
1321                rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
1322        } else {
1323                rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1324                     (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1325        }
1326
1327        /* Special code path for reading a sub page size buffer in --
1328         * we populate up the whole page, and hence the other metadata
1329         * in the same page.  This optimization is only valid when the
1330         * filesystem block size is not smaller than the page size.
1331         */
1332        if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1333            ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1334              (XBF_READ|_XBF_PAGE_LOCKED)) &&
1335            (blocksize >= PAGE_CACHE_SIZE)) {
1336                bio = bio_alloc(GFP_NOIO, 1);
1337
1338                bio->bi_bdev = bp->b_target->bt_bdev;
1339                bio->bi_sector = sector - (offset >> BBSHIFT);
1340                bio->bi_end_io = xfs_buf_bio_end_io;
1341                bio->bi_private = bp;
1342
1343                bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1344                size = 0;
1345
1346                atomic_inc(&bp->b_io_remaining);
1347
1348                goto submit_io;
1349        }
1350
1351next_chunk:
1352        atomic_inc(&bp->b_io_remaining);
1353        nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1354        if (nr_pages > total_nr_pages)
1355                nr_pages = total_nr_pages;
1356
1357        bio = bio_alloc(GFP_NOIO, nr_pages);
1358        bio->bi_bdev = bp->b_target->bt_bdev;
1359        bio->bi_sector = sector;
1360        bio->bi_end_io = xfs_buf_bio_end_io;
1361        bio->bi_private = bp;
1362
1363        for (; size && nr_pages; nr_pages--, map_i++) {
1364                int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1365
1366                if (nbytes > size)
1367                        nbytes = size;
1368
1369                rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1370                if (rbytes < nbytes)
1371                        break;
1372
1373                offset = 0;
1374                sector += nbytes >> BBSHIFT;
1375                size -= nbytes;
1376                total_nr_pages--;
1377        }
1378
1379submit_io:
1380        if (likely(bio->bi_size)) {
1381                if (xfs_buf_is_vmapped(bp)) {
1382                        flush_kernel_vmap_range(bp->b_addr,
1383                                                xfs_buf_vmap_len(bp));
1384                }
1385                submit_bio(rw, bio);
1386                if (size)
1387                        goto next_chunk;
1388        } else {
1389                /*
1390                 * if we get here, no pages were added to the bio. However,
1391                 * we can't just error out here - if the pages are locked then
1392                 * we have to unlock them otherwise we can hang on a later
1393                 * access to the page.
1394                 */
1395                xfs_buf_ioerror(bp, EIO);
1396                if (bp->b_flags & _XBF_PAGE_LOCKED) {
1397                        int i;
1398                        for (i = 0; i < bp->b_page_count; i++)
1399                                unlock_page(bp->b_pages[i]);
1400                }
1401                bio_put(bio);
1402        }
1403}
1404
1405int
1406xfs_buf_iorequest(
1407        xfs_buf_t               *bp)
1408{
1409        trace_xfs_buf_iorequest(bp, _RET_IP_);
1410
1411        if (bp->b_flags & XBF_DELWRI) {
1412                xfs_buf_delwri_queue(bp, 1);
1413                return 0;
1414        }
1415
1416        if (bp->b_flags & XBF_WRITE) {
1417                xfs_buf_wait_unpin(bp);
1418        }
1419
1420        xfs_buf_hold(bp);
1421
1422        /* Set the count to 1 initially, this will stop an I/O
1423         * completion callout which happens before we have started
1424         * all the I/O from calling xfs_buf_ioend too early.
1425         */
1426        atomic_set(&bp->b_io_remaining, 1);
1427        _xfs_buf_ioapply(bp);
1428        _xfs_buf_ioend(bp, 0);
1429
1430        xfs_buf_rele(bp);
1431        return 0;
1432}
1433
1434/*
1435 *      Waits for I/O to complete on the buffer supplied.
1436 *      It returns immediately if no I/O is pending.
1437 *      It returns the I/O error code, if any, or 0 if there was no error.
1438 */
1439int
1440xfs_buf_iowait(
1441        xfs_buf_t               *bp)
1442{
1443        trace_xfs_buf_iowait(bp, _RET_IP_);
1444
1445        if (atomic_read(&bp->b_io_remaining))
1446                blk_run_address_space(bp->b_target->bt_mapping);
1447        wait_for_completion(&bp->b_iowait);
1448
1449        trace_xfs_buf_iowait_done(bp, _RET_IP_);
1450        return bp->b_error;
1451}
1452
1453xfs_caddr_t
1454xfs_buf_offset(
1455        xfs_buf_t               *bp,
1456        size_t                  offset)
1457{
1458        struct page             *page;
1459
1460        if (bp->b_flags & XBF_MAPPED)
1461                return XFS_BUF_PTR(bp) + offset;
1462
1463        offset += bp->b_offset;
1464        page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1465        return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1466}
1467
1468/*
1469 *      Move data into or out of a buffer.
1470 */
1471void
1472xfs_buf_iomove(
1473        xfs_buf_t               *bp,    /* buffer to process            */
1474        size_t                  boff,   /* starting buffer offset       */
1475        size_t                  bsize,  /* length to copy               */
1476        void                    *data,  /* data address                 */
1477        xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1478{
1479        size_t                  bend, cpoff, csize;
1480        struct page             *page;
1481
1482        bend = boff + bsize;
1483        while (boff < bend) {
1484                page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1485                cpoff = xfs_buf_poff(boff + bp->b_offset);
1486                csize = min_t(size_t,
1487                              PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1488
1489                ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1490
1491                switch (mode) {
1492                case XBRW_ZERO:
1493                        memset(page_address(page) + cpoff, 0, csize);
1494                        break;
1495                case XBRW_READ:
1496                        memcpy(data, page_address(page) + cpoff, csize);
1497                        break;
1498                case XBRW_WRITE:
1499                        memcpy(page_address(page) + cpoff, data, csize);
1500                }
1501
1502                boff += csize;
1503                data += csize;
1504        }
1505}
1506
1507/*
1508 *      Handling of buffer targets (buftargs).
1509 */
1510
1511/*
1512 * Wait for any bufs with callbacks that have been submitted but have not yet
1513 * returned. These buffers will have an elevated hold count, so wait on those
1514 * while freeing all the buffers only held by the LRU.
1515 */
1516void
1517xfs_wait_buftarg(
1518        struct xfs_buftarg      *btp)
1519{
1520        struct xfs_buf          *bp;
1521
1522restart:
1523        spin_lock(&btp->bt_lru_lock);
1524        while (!list_empty(&btp->bt_lru)) {
1525                bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1526                if (atomic_read(&bp->b_hold) > 1) {
1527                        spin_unlock(&btp->bt_lru_lock);
1528                        delay(100);
1529                        goto restart;
1530                }
1531                /*
1532                 * clear the LRU reference count so the bufer doesn't get
1533                 * ignored in xfs_buf_rele().
1534                 */
1535                atomic_set(&bp->b_lru_ref, 0);
1536                spin_unlock(&btp->bt_lru_lock);
1537                xfs_buf_rele(bp);
1538                spin_lock(&btp->bt_lru_lock);
1539        }
1540        spin_unlock(&btp->bt_lru_lock);
1541}
1542
1543int
1544xfs_buftarg_shrink(
1545        struct shrinker         *shrink,
1546        int                     nr_to_scan,
1547        gfp_t                   mask)
1548{
1549        struct xfs_buftarg      *btp = container_of(shrink,
1550                                        struct xfs_buftarg, bt_shrinker);
1551        struct xfs_buf          *bp;
1552        LIST_HEAD(dispose);
1553
1554        if (!nr_to_scan)
1555                return btp->bt_lru_nr;
1556
1557        spin_lock(&btp->bt_lru_lock);
1558        while (!list_empty(&btp->bt_lru)) {
1559                if (nr_to_scan-- <= 0)
1560                        break;
1561
1562                bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1563
1564                /*
1565                 * Decrement the b_lru_ref count unless the value is already
1566                 * zero. If the value is already zero, we need to reclaim the
1567                 * buffer, otherwise it gets another trip through the LRU.
1568                 */
1569                if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1570                        list_move_tail(&bp->b_lru, &btp->bt_lru);
1571                        continue;
1572                }
1573
1574                /*
1575                 * remove the buffer from the LRU now to avoid needing another
1576                 * lock round trip inside xfs_buf_rele().
1577                 */
1578                list_move(&bp->b_lru, &dispose);
1579                btp->bt_lru_nr--;
1580        }
1581        spin_unlock(&btp->bt_lru_lock);
1582
1583        while (!list_empty(&dispose)) {
1584                bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1585                list_del_init(&bp->b_lru);
1586                xfs_buf_rele(bp);
1587        }
1588
1589        return btp->bt_lru_nr;
1590}
1591
1592void
1593xfs_free_buftarg(
1594        struct xfs_mount        *mp,
1595        struct xfs_buftarg      *btp)
1596{
1597        unregister_shrinker(&btp->bt_shrinker);
1598
1599        xfs_flush_buftarg(btp, 1);
1600        if (mp->m_flags & XFS_MOUNT_BARRIER)
1601                xfs_blkdev_issue_flush(btp);
1602        iput(btp->bt_mapping->host);
1603
1604        kthread_stop(btp->bt_task);
1605        kmem_free(btp);
1606}
1607
1608STATIC int
1609xfs_setsize_buftarg_flags(
1610        xfs_buftarg_t           *btp,
1611        unsigned int            blocksize,
1612        unsigned int            sectorsize,
1613        int                     verbose)
1614{
1615        btp->bt_bsize = blocksize;
1616        btp->bt_sshift = ffs(sectorsize) - 1;
1617        btp->bt_smask = sectorsize - 1;
1618
1619        if (set_blocksize(btp->bt_bdev, sectorsize)) {
1620                printk(KERN_WARNING
1621                        "XFS: Cannot set_blocksize to %u on device %s\n",
1622                        sectorsize, XFS_BUFTARG_NAME(btp));
1623                return EINVAL;
1624        }
1625
1626        if (verbose &&
1627            (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1628                printk(KERN_WARNING
1629                        "XFS: %u byte sectors in use on device %s.  "
1630                        "This is suboptimal; %u or greater is ideal.\n",
1631                        sectorsize, XFS_BUFTARG_NAME(btp),
1632                        (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1633        }
1634
1635        return 0;
1636}
1637
1638/*
1639 *      When allocating the initial buffer target we have not yet
1640 *      read in the superblock, so don't know what sized sectors
1641 *      are being used is at this early stage.  Play safe.
1642 */
1643STATIC int
1644xfs_setsize_buftarg_early(
1645        xfs_buftarg_t           *btp,
1646        struct block_device     *bdev)
1647{
1648        return xfs_setsize_buftarg_flags(btp,
1649                        PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1650}
1651
1652int
1653xfs_setsize_buftarg(
1654        xfs_buftarg_t           *btp,
1655        unsigned int            blocksize,
1656        unsigned int            sectorsize)
1657{
1658        return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1659}
1660
1661STATIC int
1662xfs_mapping_buftarg(
1663        xfs_buftarg_t           *btp,
1664        struct block_device     *bdev)
1665{
1666        struct backing_dev_info *bdi;
1667        struct inode            *inode;
1668        struct address_space    *mapping;
1669        static const struct address_space_operations mapping_aops = {
1670                .sync_page = block_sync_page,
1671                .migratepage = fail_migrate_page,
1672        };
1673
1674        inode = new_inode(bdev->bd_inode->i_sb);
1675        if (!inode) {
1676                printk(KERN_WARNING
1677                        "XFS: Cannot allocate mapping inode for device %s\n",
1678                        XFS_BUFTARG_NAME(btp));
1679                return ENOMEM;
1680        }
1681        inode->i_ino = get_next_ino();
1682        inode->i_mode = S_IFBLK;
1683        inode->i_bdev = bdev;
1684        inode->i_rdev = bdev->bd_dev;
1685        bdi = blk_get_backing_dev_info(bdev);
1686        if (!bdi)
1687                bdi = &default_backing_dev_info;
1688        mapping = &inode->i_data;
1689        mapping->a_ops = &mapping_aops;
1690        mapping->backing_dev_info = bdi;
1691        mapping_set_gfp_mask(mapping, GFP_NOFS);
1692        btp->bt_mapping = mapping;
1693        return 0;
1694}
1695
1696STATIC int
1697xfs_alloc_delwrite_queue(
1698        xfs_buftarg_t           *btp,
1699        const char              *fsname)
1700{
1701        INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1702        spin_lock_init(&btp->bt_delwrite_lock);
1703        btp->bt_flags = 0;
1704        btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1705        if (IS_ERR(btp->bt_task))
1706                return PTR_ERR(btp->bt_task);
1707        return 0;
1708}
1709
1710xfs_buftarg_t *
1711xfs_alloc_buftarg(
1712        struct xfs_mount        *mp,
1713        struct block_device     *bdev,
1714        int                     external,
1715        const char              *fsname)
1716{
1717        xfs_buftarg_t           *btp;
1718
1719        btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1720
1721        btp->bt_mount = mp;
1722        btp->bt_dev =  bdev->bd_dev;
1723        btp->bt_bdev = bdev;
1724        INIT_LIST_HEAD(&btp->bt_lru);
1725        spin_lock_init(&btp->bt_lru_lock);
1726        if (xfs_setsize_buftarg_early(btp, bdev))
1727                goto error;
1728        if (xfs_mapping_buftarg(btp, bdev))
1729                goto error;
1730        if (xfs_alloc_delwrite_queue(btp, fsname))
1731                goto error;
1732        btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1733        btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1734        register_shrinker(&btp->bt_shrinker);
1735        return btp;
1736
1737error:
1738        kmem_free(btp);
1739        return NULL;
1740}
1741
1742
1743/*
1744 *      Delayed write buffer handling
1745 */
1746STATIC void
1747xfs_buf_delwri_queue(
1748        xfs_buf_t               *bp,
1749        int                     unlock)
1750{
1751        struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1752        spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1753
1754        trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1755
1756        ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1757
1758        spin_lock(dwlk);
1759        /* If already in the queue, dequeue and place at tail */
1760        if (!list_empty(&bp->b_list)) {
1761                ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1762                if (unlock)
1763                        atomic_dec(&bp->b_hold);
1764                list_del(&bp->b_list);
1765        }
1766
1767        if (list_empty(dwq)) {
1768                /* start xfsbufd as it is about to have something to do */
1769                wake_up_process(bp->b_target->bt_task);
1770        }
1771
1772        bp->b_flags |= _XBF_DELWRI_Q;
1773        list_add_tail(&bp->b_list, dwq);
1774        bp->b_queuetime = jiffies;
1775        spin_unlock(dwlk);
1776
1777        if (unlock)
1778                xfs_buf_unlock(bp);
1779}
1780
1781void
1782xfs_buf_delwri_dequeue(
1783        xfs_buf_t               *bp)
1784{
1785        spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1786        int                     dequeued = 0;
1787
1788        spin_lock(dwlk);
1789        if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1790                ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1791                list_del_init(&bp->b_list);
1792                dequeued = 1;
1793        }
1794        bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1795        spin_unlock(dwlk);
1796
1797        if (dequeued)
1798                xfs_buf_rele(bp);
1799
1800        trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1801}
1802
1803/*
1804 * If a delwri buffer needs to be pushed before it has aged out, then promote
1805 * it to the head of the delwri queue so that it will be flushed on the next
1806 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1807 * than the age currently needed to flush the buffer. Hence the next time the
1808 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1809 */
1810void
1811xfs_buf_delwri_promote(
1812        struct xfs_buf  *bp)
1813{
1814        struct xfs_buftarg *btp = bp->b_target;
1815        long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1816
1817        ASSERT(bp->b_flags & XBF_DELWRI);
1818        ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1819
1820        /*
1821         * Check the buffer age before locking the delayed write queue as we
1822         * don't need to promote buffers that are already past the flush age.
1823         */
1824        if (bp->b_queuetime < jiffies - age)
1825                return;
1826        bp->b_queuetime = jiffies - age;
1827        spin_lock(&btp->bt_delwrite_lock);
1828        list_move(&bp->b_list, &btp->bt_delwrite_queue);
1829        spin_unlock(&btp->bt_delwrite_lock);
1830}
1831
1832STATIC void
1833xfs_buf_runall_queues(
1834        struct workqueue_struct *queue)
1835{
1836        flush_workqueue(queue);
1837}
1838
1839/*
1840 * Move as many buffers as specified to the supplied list
1841 * idicating if we skipped any buffers to prevent deadlocks.
1842 */
1843STATIC int
1844xfs_buf_delwri_split(
1845        xfs_buftarg_t   *target,
1846        struct list_head *list,
1847        unsigned long   age)
1848{
1849        xfs_buf_t       *bp, *n;
1850        struct list_head *dwq = &target->bt_delwrite_queue;
1851        spinlock_t      *dwlk = &target->bt_delwrite_lock;
1852        int             skipped = 0;
1853        int             force;
1854
1855        force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1856        INIT_LIST_HEAD(list);
1857        spin_lock(dwlk);
1858        list_for_each_entry_safe(bp, n, dwq, b_list) {
1859                ASSERT(bp->b_flags & XBF_DELWRI);
1860
1861                if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
1862                        if (!force &&
1863                            time_before(jiffies, bp->b_queuetime + age)) {
1864                                xfs_buf_unlock(bp);
1865                                break;
1866                        }
1867
1868                        bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1869                                         _XBF_RUN_QUEUES);
1870                        bp->b_flags |= XBF_WRITE;
1871                        list_move_tail(&bp->b_list, list);
1872                        trace_xfs_buf_delwri_split(bp, _RET_IP_);
1873                } else
1874                        skipped++;
1875        }
1876        spin_unlock(dwlk);
1877
1878        return skipped;
1879
1880}
1881
1882/*
1883 * Compare function is more complex than it needs to be because
1884 * the return value is only 32 bits and we are doing comparisons
1885 * on 64 bit values
1886 */
1887static int
1888xfs_buf_cmp(
1889        void            *priv,
1890        struct list_head *a,
1891        struct list_head *b)
1892{
1893        struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1894        struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1895        xfs_daddr_t             diff;
1896
1897        diff = ap->b_bn - bp->b_bn;
1898        if (diff < 0)
1899                return -1;
1900        if (diff > 0)
1901                return 1;
1902        return 0;
1903}
1904
1905void
1906xfs_buf_delwri_sort(
1907        xfs_buftarg_t   *target,
1908        struct list_head *list)
1909{
1910        list_sort(NULL, list, xfs_buf_cmp);
1911}
1912
1913STATIC int
1914xfsbufd(
1915        void            *data)
1916{
1917        xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1918
1919        current->flags |= PF_MEMALLOC;
1920
1921        set_freezable();
1922
1923        do {
1924                long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1925                long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1926                int     count = 0;
1927                struct list_head tmp;
1928
1929                if (unlikely(freezing(current))) {
1930                        set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1931                        refrigerator();
1932                } else {
1933                        clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1934                }
1935
1936                /* sleep for a long time if there is nothing to do. */
1937                if (list_empty(&target->bt_delwrite_queue))
1938                        tout = MAX_SCHEDULE_TIMEOUT;
1939                schedule_timeout_interruptible(tout);
1940
1941                xfs_buf_delwri_split(target, &tmp, age);
1942                list_sort(NULL, &tmp, xfs_buf_cmp);
1943                while (!list_empty(&tmp)) {
1944                        struct xfs_buf *bp;
1945                        bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1946                        list_del_init(&bp->b_list);
1947                        xfs_bdstrat_cb(bp);
1948                        count++;
1949                }
1950                if (count)
1951                        blk_run_address_space(target->bt_mapping);
1952
1953        } while (!kthread_should_stop());
1954
1955        return 0;
1956}
1957
1958/*
1959 *      Go through all incore buffers, and release buffers if they belong to
1960 *      the given device. This is used in filesystem error handling to
1961 *      preserve the consistency of its metadata.
1962 */
1963int
1964xfs_flush_buftarg(
1965        xfs_buftarg_t   *target,
1966        int             wait)
1967{
1968        xfs_buf_t       *bp;
1969        int             pincount = 0;
1970        LIST_HEAD(tmp_list);
1971        LIST_HEAD(wait_list);
1972
1973        xfs_buf_runall_queues(xfsconvertd_workqueue);
1974        xfs_buf_runall_queues(xfsdatad_workqueue);
1975        xfs_buf_runall_queues(xfslogd_workqueue);
1976
1977        set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1978        pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1979
1980        /*
1981         * Dropped the delayed write list lock, now walk the temporary list.
1982         * All I/O is issued async and then if we need to wait for completion
1983         * we do that after issuing all the IO.
1984         */
1985        list_sort(NULL, &tmp_list, xfs_buf_cmp);
1986        while (!list_empty(&tmp_list)) {
1987                bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1988                ASSERT(target == bp->b_target);
1989                list_del_init(&bp->b_list);
1990                if (wait) {
1991                        bp->b_flags &= ~XBF_ASYNC;
1992                        list_add(&bp->b_list, &wait_list);
1993                }
1994                xfs_bdstrat_cb(bp);
1995        }
1996
1997        if (wait) {
1998                /* Expedite and wait for IO to complete. */
1999                blk_run_address_space(target->bt_mapping);
2000                while (!list_empty(&wait_list)) {
2001                        bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2002
2003                        list_del_init(&bp->b_list);
2004                        xfs_buf_iowait(bp);
2005                        xfs_buf_relse(bp);
2006                }
2007        }
2008
2009        return pincount;
2010}
2011
2012int __init
2013xfs_buf_init(void)
2014{
2015        xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2016                                                KM_ZONE_HWALIGN, NULL);
2017        if (!xfs_buf_zone)
2018                goto out;
2019
2020        xfslogd_workqueue = alloc_workqueue("xfslogd",
2021                                        WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
2022        if (!xfslogd_workqueue)
2023                goto out_free_buf_zone;
2024
2025        xfsdatad_workqueue = create_workqueue("xfsdatad");
2026        if (!xfsdatad_workqueue)
2027                goto out_destroy_xfslogd_workqueue;
2028
2029        xfsconvertd_workqueue = create_workqueue("xfsconvertd");
2030        if (!xfsconvertd_workqueue)
2031                goto out_destroy_xfsdatad_workqueue;
2032
2033        return 0;
2034
2035 out_destroy_xfsdatad_workqueue:
2036        destroy_workqueue(xfsdatad_workqueue);
2037 out_destroy_xfslogd_workqueue:
2038        destroy_workqueue(xfslogd_workqueue);
2039 out_free_buf_zone:
2040        kmem_zone_destroy(xfs_buf_zone);
2041 out:
2042        return -ENOMEM;
2043}
2044
2045void
2046xfs_buf_terminate(void)
2047{
2048        destroy_workqueue(xfsconvertd_workqueue);
2049        destroy_workqueue(xfsdatad_workqueue);
2050        destroy_workqueue(xfslogd_workqueue);
2051        kmem_zone_destroy(xfs_buf_zone);
2052}
2053
2054#ifdef CONFIG_KDB_MODULES
2055struct list_head *
2056xfs_get_buftarg_list(void)
2057{
2058        return &xfs_buftarg_list;
2059}
2060#endif
2061