linux/fs/xfs/xfs_log_recover.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
  28#include "xfs_error.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_dinode.h"
  33#include "xfs_inode.h"
  34#include "xfs_inode_item.h"
  35#include "xfs_alloc.h"
  36#include "xfs_ialloc.h"
  37#include "xfs_log_priv.h"
  38#include "xfs_buf_item.h"
  39#include "xfs_log_recover.h"
  40#include "xfs_extfree_item.h"
  41#include "xfs_trans_priv.h"
  42#include "xfs_quota.h"
  43#include "xfs_rw.h"
  44#include "xfs_utils.h"
  45#include "xfs_trace.h"
  46
  47STATIC int      xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  48STATIC int      xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  49#if defined(DEBUG)
  50STATIC void     xlog_recover_check_summary(xlog_t *);
  51#else
  52#define xlog_recover_check_summary(log)
  53#endif
  54
  55/*
  56 * This structure is used during recovery to record the buf log items which
  57 * have been canceled and should not be replayed.
  58 */
  59struct xfs_buf_cancel {
  60        xfs_daddr_t             bc_blkno;
  61        uint                    bc_len;
  62        int                     bc_refcount;
  63        struct list_head        bc_list;
  64};
  65
  66/*
  67 * Sector aligned buffer routines for buffer create/read/write/access
  68 */
  69
  70/*
  71 * Verify the given count of basic blocks is valid number of blocks
  72 * to specify for an operation involving the given XFS log buffer.
  73 * Returns nonzero if the count is valid, 0 otherwise.
  74 */
  75
  76static inline int
  77xlog_buf_bbcount_valid(
  78        xlog_t          *log,
  79        int             bbcount)
  80{
  81        return bbcount > 0 && bbcount <= log->l_logBBsize;
  82}
  83
  84/*
  85 * Allocate a buffer to hold log data.  The buffer needs to be able
  86 * to map to a range of nbblks basic blocks at any valid (basic
  87 * block) offset within the log.
  88 */
  89STATIC xfs_buf_t *
  90xlog_get_bp(
  91        xlog_t          *log,
  92        int             nbblks)
  93{
  94        if (!xlog_buf_bbcount_valid(log, nbblks)) {
  95                xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
  96                        nbblks);
  97                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  98                return NULL;
  99        }
 100
 101        /*
 102         * We do log I/O in units of log sectors (a power-of-2
 103         * multiple of the basic block size), so we round up the
 104         * requested size to acommodate the basic blocks required
 105         * for complete log sectors.
 106         *
 107         * In addition, the buffer may be used for a non-sector-
 108         * aligned block offset, in which case an I/O of the
 109         * requested size could extend beyond the end of the
 110         * buffer.  If the requested size is only 1 basic block it
 111         * will never straddle a sector boundary, so this won't be
 112         * an issue.  Nor will this be a problem if the log I/O is
 113         * done in basic blocks (sector size 1).  But otherwise we
 114         * extend the buffer by one extra log sector to ensure
 115         * there's space to accomodate this possiblility.
 116         */
 117        if (nbblks > 1 && log->l_sectBBsize > 1)
 118                nbblks += log->l_sectBBsize;
 119        nbblks = round_up(nbblks, log->l_sectBBsize);
 120
 121        return xfs_buf_get_uncached(log->l_mp->m_logdev_targp,
 122                                        BBTOB(nbblks), 0);
 123}
 124
 125STATIC void
 126xlog_put_bp(
 127        xfs_buf_t       *bp)
 128{
 129        xfs_buf_free(bp);
 130}
 131
 132/*
 133 * Return the address of the start of the given block number's data
 134 * in a log buffer.  The buffer covers a log sector-aligned region.
 135 */
 136STATIC xfs_caddr_t
 137xlog_align(
 138        xlog_t          *log,
 139        xfs_daddr_t     blk_no,
 140        int             nbblks,
 141        xfs_buf_t       *bp)
 142{
 143        xfs_daddr_t     offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
 144
 145        ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
 146        return XFS_BUF_PTR(bp) + BBTOB(offset);
 147}
 148
 149
 150/*
 151 * nbblks should be uint, but oh well.  Just want to catch that 32-bit length.
 152 */
 153STATIC int
 154xlog_bread_noalign(
 155        xlog_t          *log,
 156        xfs_daddr_t     blk_no,
 157        int             nbblks,
 158        xfs_buf_t       *bp)
 159{
 160        int             error;
 161
 162        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 163                xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
 164                        nbblks);
 165                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 166                return EFSCORRUPTED;
 167        }
 168
 169        blk_no = round_down(blk_no, log->l_sectBBsize);
 170        nbblks = round_up(nbblks, log->l_sectBBsize);
 171
 172        ASSERT(nbblks > 0);
 173        ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 174
 175        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 176        XFS_BUF_READ(bp);
 177        XFS_BUF_BUSY(bp);
 178        XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 179        XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
 180
 181        xfsbdstrat(log->l_mp, bp);
 182        error = xfs_buf_iowait(bp);
 183        if (error)
 184                xfs_ioerror_alert("xlog_bread", log->l_mp,
 185                                  bp, XFS_BUF_ADDR(bp));
 186        return error;
 187}
 188
 189STATIC int
 190xlog_bread(
 191        xlog_t          *log,
 192        xfs_daddr_t     blk_no,
 193        int             nbblks,
 194        xfs_buf_t       *bp,
 195        xfs_caddr_t     *offset)
 196{
 197        int             error;
 198
 199        error = xlog_bread_noalign(log, blk_no, nbblks, bp);
 200        if (error)
 201                return error;
 202
 203        *offset = xlog_align(log, blk_no, nbblks, bp);
 204        return 0;
 205}
 206
 207/*
 208 * Write out the buffer at the given block for the given number of blocks.
 209 * The buffer is kept locked across the write and is returned locked.
 210 * This can only be used for synchronous log writes.
 211 */
 212STATIC int
 213xlog_bwrite(
 214        xlog_t          *log,
 215        xfs_daddr_t     blk_no,
 216        int             nbblks,
 217        xfs_buf_t       *bp)
 218{
 219        int             error;
 220
 221        if (!xlog_buf_bbcount_valid(log, nbblks)) {
 222                xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
 223                        nbblks);
 224                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
 225                return EFSCORRUPTED;
 226        }
 227
 228        blk_no = round_down(blk_no, log->l_sectBBsize);
 229        nbblks = round_up(nbblks, log->l_sectBBsize);
 230
 231        ASSERT(nbblks > 0);
 232        ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
 233
 234        XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
 235        XFS_BUF_ZEROFLAGS(bp);
 236        XFS_BUF_BUSY(bp);
 237        XFS_BUF_HOLD(bp);
 238        XFS_BUF_PSEMA(bp, PRIBIO);
 239        XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
 240        XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
 241
 242        if ((error = xfs_bwrite(log->l_mp, bp)))
 243                xfs_ioerror_alert("xlog_bwrite", log->l_mp,
 244                                  bp, XFS_BUF_ADDR(bp));
 245        return error;
 246}
 247
 248#ifdef DEBUG
 249/*
 250 * dump debug superblock and log record information
 251 */
 252STATIC void
 253xlog_header_check_dump(
 254        xfs_mount_t             *mp,
 255        xlog_rec_header_t       *head)
 256{
 257        cmn_err(CE_DEBUG, "%s:  SB : uuid = %pU, fmt = %d\n",
 258                __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
 259        cmn_err(CE_DEBUG, "    log : uuid = %pU, fmt = %d\n",
 260                &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
 261}
 262#else
 263#define xlog_header_check_dump(mp, head)
 264#endif
 265
 266/*
 267 * check log record header for recovery
 268 */
 269STATIC int
 270xlog_header_check_recover(
 271        xfs_mount_t             *mp,
 272        xlog_rec_header_t       *head)
 273{
 274        ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
 275
 276        /*
 277         * IRIX doesn't write the h_fmt field and leaves it zeroed
 278         * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
 279         * a dirty log created in IRIX.
 280         */
 281        if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
 282                xlog_warn(
 283        "XFS: dirty log written in incompatible format - can't recover");
 284                xlog_header_check_dump(mp, head);
 285                XFS_ERROR_REPORT("xlog_header_check_recover(1)",
 286                                 XFS_ERRLEVEL_HIGH, mp);
 287                return XFS_ERROR(EFSCORRUPTED);
 288        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 289                xlog_warn(
 290        "XFS: dirty log entry has mismatched uuid - can't recover");
 291                xlog_header_check_dump(mp, head);
 292                XFS_ERROR_REPORT("xlog_header_check_recover(2)",
 293                                 XFS_ERRLEVEL_HIGH, mp);
 294                return XFS_ERROR(EFSCORRUPTED);
 295        }
 296        return 0;
 297}
 298
 299/*
 300 * read the head block of the log and check the header
 301 */
 302STATIC int
 303xlog_header_check_mount(
 304        xfs_mount_t             *mp,
 305        xlog_rec_header_t       *head)
 306{
 307        ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
 308
 309        if (uuid_is_nil(&head->h_fs_uuid)) {
 310                /*
 311                 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
 312                 * h_fs_uuid is nil, we assume this log was last mounted
 313                 * by IRIX and continue.
 314                 */
 315                xlog_warn("XFS: nil uuid in log - IRIX style log");
 316        } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
 317                xlog_warn("XFS: log has mismatched uuid - can't recover");
 318                xlog_header_check_dump(mp, head);
 319                XFS_ERROR_REPORT("xlog_header_check_mount",
 320                                 XFS_ERRLEVEL_HIGH, mp);
 321                return XFS_ERROR(EFSCORRUPTED);
 322        }
 323        return 0;
 324}
 325
 326STATIC void
 327xlog_recover_iodone(
 328        struct xfs_buf  *bp)
 329{
 330        if (XFS_BUF_GETERROR(bp)) {
 331                /*
 332                 * We're not going to bother about retrying
 333                 * this during recovery. One strike!
 334                 */
 335                xfs_ioerror_alert("xlog_recover_iodone",
 336                                        bp->b_target->bt_mount, bp,
 337                                        XFS_BUF_ADDR(bp));
 338                xfs_force_shutdown(bp->b_target->bt_mount,
 339                                        SHUTDOWN_META_IO_ERROR);
 340        }
 341        XFS_BUF_CLR_IODONE_FUNC(bp);
 342        xfs_buf_ioend(bp, 0);
 343}
 344
 345/*
 346 * This routine finds (to an approximation) the first block in the physical
 347 * log which contains the given cycle.  It uses a binary search algorithm.
 348 * Note that the algorithm can not be perfect because the disk will not
 349 * necessarily be perfect.
 350 */
 351STATIC int
 352xlog_find_cycle_start(
 353        xlog_t          *log,
 354        xfs_buf_t       *bp,
 355        xfs_daddr_t     first_blk,
 356        xfs_daddr_t     *last_blk,
 357        uint            cycle)
 358{
 359        xfs_caddr_t     offset;
 360        xfs_daddr_t     mid_blk;
 361        xfs_daddr_t     end_blk;
 362        uint            mid_cycle;
 363        int             error;
 364
 365        end_blk = *last_blk;
 366        mid_blk = BLK_AVG(first_blk, end_blk);
 367        while (mid_blk != first_blk && mid_blk != end_blk) {
 368                error = xlog_bread(log, mid_blk, 1, bp, &offset);
 369                if (error)
 370                        return error;
 371                mid_cycle = xlog_get_cycle(offset);
 372                if (mid_cycle == cycle)
 373                        end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
 374                else
 375                        first_blk = mid_blk; /* first_half_cycle == mid_cycle */
 376                mid_blk = BLK_AVG(first_blk, end_blk);
 377        }
 378        ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
 379               (mid_blk == end_blk && mid_blk-1 == first_blk));
 380
 381        *last_blk = end_blk;
 382
 383        return 0;
 384}
 385
 386/*
 387 * Check that a range of blocks does not contain stop_on_cycle_no.
 388 * Fill in *new_blk with the block offset where such a block is
 389 * found, or with -1 (an invalid block number) if there is no such
 390 * block in the range.  The scan needs to occur from front to back
 391 * and the pointer into the region must be updated since a later
 392 * routine will need to perform another test.
 393 */
 394STATIC int
 395xlog_find_verify_cycle(
 396        xlog_t          *log,
 397        xfs_daddr_t     start_blk,
 398        int             nbblks,
 399        uint            stop_on_cycle_no,
 400        xfs_daddr_t     *new_blk)
 401{
 402        xfs_daddr_t     i, j;
 403        uint            cycle;
 404        xfs_buf_t       *bp;
 405        xfs_daddr_t     bufblks;
 406        xfs_caddr_t     buf = NULL;
 407        int             error = 0;
 408
 409        /*
 410         * Greedily allocate a buffer big enough to handle the full
 411         * range of basic blocks we'll be examining.  If that fails,
 412         * try a smaller size.  We need to be able to read at least
 413         * a log sector, or we're out of luck.
 414         */
 415        bufblks = 1 << ffs(nbblks);
 416        while (!(bp = xlog_get_bp(log, bufblks))) {
 417                bufblks >>= 1;
 418                if (bufblks < log->l_sectBBsize)
 419                        return ENOMEM;
 420        }
 421
 422        for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
 423                int     bcount;
 424
 425                bcount = min(bufblks, (start_blk + nbblks - i));
 426
 427                error = xlog_bread(log, i, bcount, bp, &buf);
 428                if (error)
 429                        goto out;
 430
 431                for (j = 0; j < bcount; j++) {
 432                        cycle = xlog_get_cycle(buf);
 433                        if (cycle == stop_on_cycle_no) {
 434                                *new_blk = i+j;
 435                                goto out;
 436                        }
 437
 438                        buf += BBSIZE;
 439                }
 440        }
 441
 442        *new_blk = -1;
 443
 444out:
 445        xlog_put_bp(bp);
 446        return error;
 447}
 448
 449/*
 450 * Potentially backup over partial log record write.
 451 *
 452 * In the typical case, last_blk is the number of the block directly after
 453 * a good log record.  Therefore, we subtract one to get the block number
 454 * of the last block in the given buffer.  extra_bblks contains the number
 455 * of blocks we would have read on a previous read.  This happens when the
 456 * last log record is split over the end of the physical log.
 457 *
 458 * extra_bblks is the number of blocks potentially verified on a previous
 459 * call to this routine.
 460 */
 461STATIC int
 462xlog_find_verify_log_record(
 463        xlog_t                  *log,
 464        xfs_daddr_t             start_blk,
 465        xfs_daddr_t             *last_blk,
 466        int                     extra_bblks)
 467{
 468        xfs_daddr_t             i;
 469        xfs_buf_t               *bp;
 470        xfs_caddr_t             offset = NULL;
 471        xlog_rec_header_t       *head = NULL;
 472        int                     error = 0;
 473        int                     smallmem = 0;
 474        int                     num_blks = *last_blk - start_blk;
 475        int                     xhdrs;
 476
 477        ASSERT(start_blk != 0 || *last_blk != start_blk);
 478
 479        if (!(bp = xlog_get_bp(log, num_blks))) {
 480                if (!(bp = xlog_get_bp(log, 1)))
 481                        return ENOMEM;
 482                smallmem = 1;
 483        } else {
 484                error = xlog_bread(log, start_blk, num_blks, bp, &offset);
 485                if (error)
 486                        goto out;
 487                offset += ((num_blks - 1) << BBSHIFT);
 488        }
 489
 490        for (i = (*last_blk) - 1; i >= 0; i--) {
 491                if (i < start_blk) {
 492                        /* valid log record not found */
 493                        xlog_warn(
 494                "XFS: Log inconsistent (didn't find previous header)");
 495                        ASSERT(0);
 496                        error = XFS_ERROR(EIO);
 497                        goto out;
 498                }
 499
 500                if (smallmem) {
 501                        error = xlog_bread(log, i, 1, bp, &offset);
 502                        if (error)
 503                                goto out;
 504                }
 505
 506                head = (xlog_rec_header_t *)offset;
 507
 508                if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
 509                        break;
 510
 511                if (!smallmem)
 512                        offset -= BBSIZE;
 513        }
 514
 515        /*
 516         * We hit the beginning of the physical log & still no header.  Return
 517         * to caller.  If caller can handle a return of -1, then this routine
 518         * will be called again for the end of the physical log.
 519         */
 520        if (i == -1) {
 521                error = -1;
 522                goto out;
 523        }
 524
 525        /*
 526         * We have the final block of the good log (the first block
 527         * of the log record _before_ the head. So we check the uuid.
 528         */
 529        if ((error = xlog_header_check_mount(log->l_mp, head)))
 530                goto out;
 531
 532        /*
 533         * We may have found a log record header before we expected one.
 534         * last_blk will be the 1st block # with a given cycle #.  We may end
 535         * up reading an entire log record.  In this case, we don't want to
 536         * reset last_blk.  Only when last_blk points in the middle of a log
 537         * record do we update last_blk.
 538         */
 539        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 540                uint    h_size = be32_to_cpu(head->h_size);
 541
 542                xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
 543                if (h_size % XLOG_HEADER_CYCLE_SIZE)
 544                        xhdrs++;
 545        } else {
 546                xhdrs = 1;
 547        }
 548
 549        if (*last_blk - i + extra_bblks !=
 550            BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
 551                *last_blk = i;
 552
 553out:
 554        xlog_put_bp(bp);
 555        return error;
 556}
 557
 558/*
 559 * Head is defined to be the point of the log where the next log write
 560 * write could go.  This means that incomplete LR writes at the end are
 561 * eliminated when calculating the head.  We aren't guaranteed that previous
 562 * LR have complete transactions.  We only know that a cycle number of
 563 * current cycle number -1 won't be present in the log if we start writing
 564 * from our current block number.
 565 *
 566 * last_blk contains the block number of the first block with a given
 567 * cycle number.
 568 *
 569 * Return: zero if normal, non-zero if error.
 570 */
 571STATIC int
 572xlog_find_head(
 573        xlog_t          *log,
 574        xfs_daddr_t     *return_head_blk)
 575{
 576        xfs_buf_t       *bp;
 577        xfs_caddr_t     offset;
 578        xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
 579        int             num_scan_bblks;
 580        uint            first_half_cycle, last_half_cycle;
 581        uint            stop_on_cycle;
 582        int             error, log_bbnum = log->l_logBBsize;
 583
 584        /* Is the end of the log device zeroed? */
 585        if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
 586                *return_head_blk = first_blk;
 587
 588                /* Is the whole lot zeroed? */
 589                if (!first_blk) {
 590                        /* Linux XFS shouldn't generate totally zeroed logs -
 591                         * mkfs etc write a dummy unmount record to a fresh
 592                         * log so we can store the uuid in there
 593                         */
 594                        xlog_warn("XFS: totally zeroed log");
 595                }
 596
 597                return 0;
 598        } else if (error) {
 599                xlog_warn("XFS: empty log check failed");
 600                return error;
 601        }
 602
 603        first_blk = 0;                  /* get cycle # of 1st block */
 604        bp = xlog_get_bp(log, 1);
 605        if (!bp)
 606                return ENOMEM;
 607
 608        error = xlog_bread(log, 0, 1, bp, &offset);
 609        if (error)
 610                goto bp_err;
 611
 612        first_half_cycle = xlog_get_cycle(offset);
 613
 614        last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
 615        error = xlog_bread(log, last_blk, 1, bp, &offset);
 616        if (error)
 617                goto bp_err;
 618
 619        last_half_cycle = xlog_get_cycle(offset);
 620        ASSERT(last_half_cycle != 0);
 621
 622        /*
 623         * If the 1st half cycle number is equal to the last half cycle number,
 624         * then the entire log is stamped with the same cycle number.  In this
 625         * case, head_blk can't be set to zero (which makes sense).  The below
 626         * math doesn't work out properly with head_blk equal to zero.  Instead,
 627         * we set it to log_bbnum which is an invalid block number, but this
 628         * value makes the math correct.  If head_blk doesn't changed through
 629         * all the tests below, *head_blk is set to zero at the very end rather
 630         * than log_bbnum.  In a sense, log_bbnum and zero are the same block
 631         * in a circular file.
 632         */
 633        if (first_half_cycle == last_half_cycle) {
 634                /*
 635                 * In this case we believe that the entire log should have
 636                 * cycle number last_half_cycle.  We need to scan backwards
 637                 * from the end verifying that there are no holes still
 638                 * containing last_half_cycle - 1.  If we find such a hole,
 639                 * then the start of that hole will be the new head.  The
 640                 * simple case looks like
 641                 *        x | x ... | x - 1 | x
 642                 * Another case that fits this picture would be
 643                 *        x | x + 1 | x ... | x
 644                 * In this case the head really is somewhere at the end of the
 645                 * log, as one of the latest writes at the beginning was
 646                 * incomplete.
 647                 * One more case is
 648                 *        x | x + 1 | x ... | x - 1 | x
 649                 * This is really the combination of the above two cases, and
 650                 * the head has to end up at the start of the x-1 hole at the
 651                 * end of the log.
 652                 *
 653                 * In the 256k log case, we will read from the beginning to the
 654                 * end of the log and search for cycle numbers equal to x-1.
 655                 * We don't worry about the x+1 blocks that we encounter,
 656                 * because we know that they cannot be the head since the log
 657                 * started with x.
 658                 */
 659                head_blk = log_bbnum;
 660                stop_on_cycle = last_half_cycle - 1;
 661        } else {
 662                /*
 663                 * In this case we want to find the first block with cycle
 664                 * number matching last_half_cycle.  We expect the log to be
 665                 * some variation on
 666                 *        x + 1 ... | x ... | x
 667                 * The first block with cycle number x (last_half_cycle) will
 668                 * be where the new head belongs.  First we do a binary search
 669                 * for the first occurrence of last_half_cycle.  The binary
 670                 * search may not be totally accurate, so then we scan back
 671                 * from there looking for occurrences of last_half_cycle before
 672                 * us.  If that backwards scan wraps around the beginning of
 673                 * the log, then we look for occurrences of last_half_cycle - 1
 674                 * at the end of the log.  The cases we're looking for look
 675                 * like
 676                 *                               v binary search stopped here
 677                 *        x + 1 ... | x | x + 1 | x ... | x
 678                 *                   ^ but we want to locate this spot
 679                 * or
 680                 *        <---------> less than scan distance
 681                 *        x + 1 ... | x ... | x - 1 | x
 682                 *                           ^ we want to locate this spot
 683                 */
 684                stop_on_cycle = last_half_cycle;
 685                if ((error = xlog_find_cycle_start(log, bp, first_blk,
 686                                                &head_blk, last_half_cycle)))
 687                        goto bp_err;
 688        }
 689
 690        /*
 691         * Now validate the answer.  Scan back some number of maximum possible
 692         * blocks and make sure each one has the expected cycle number.  The
 693         * maximum is determined by the total possible amount of buffering
 694         * in the in-core log.  The following number can be made tighter if
 695         * we actually look at the block size of the filesystem.
 696         */
 697        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
 698        if (head_blk >= num_scan_bblks) {
 699                /*
 700                 * We are guaranteed that the entire check can be performed
 701                 * in one buffer.
 702                 */
 703                start_blk = head_blk - num_scan_bblks;
 704                if ((error = xlog_find_verify_cycle(log,
 705                                                start_blk, num_scan_bblks,
 706                                                stop_on_cycle, &new_blk)))
 707                        goto bp_err;
 708                if (new_blk != -1)
 709                        head_blk = new_blk;
 710        } else {                /* need to read 2 parts of log */
 711                /*
 712                 * We are going to scan backwards in the log in two parts.
 713                 * First we scan the physical end of the log.  In this part
 714                 * of the log, we are looking for blocks with cycle number
 715                 * last_half_cycle - 1.
 716                 * If we find one, then we know that the log starts there, as
 717                 * we've found a hole that didn't get written in going around
 718                 * the end of the physical log.  The simple case for this is
 719                 *        x + 1 ... | x ... | x - 1 | x
 720                 *        <---------> less than scan distance
 721                 * If all of the blocks at the end of the log have cycle number
 722                 * last_half_cycle, then we check the blocks at the start of
 723                 * the log looking for occurrences of last_half_cycle.  If we
 724                 * find one, then our current estimate for the location of the
 725                 * first occurrence of last_half_cycle is wrong and we move
 726                 * back to the hole we've found.  This case looks like
 727                 *        x + 1 ... | x | x + 1 | x ...
 728                 *                               ^ binary search stopped here
 729                 * Another case we need to handle that only occurs in 256k
 730                 * logs is
 731                 *        x + 1 ... | x ... | x+1 | x ...
 732                 *                   ^ binary search stops here
 733                 * In a 256k log, the scan at the end of the log will see the
 734                 * x + 1 blocks.  We need to skip past those since that is
 735                 * certainly not the head of the log.  By searching for
 736                 * last_half_cycle-1 we accomplish that.
 737                 */
 738                ASSERT(head_blk <= INT_MAX &&
 739                        (xfs_daddr_t) num_scan_bblks >= head_blk);
 740                start_blk = log_bbnum - (num_scan_bblks - head_blk);
 741                if ((error = xlog_find_verify_cycle(log, start_blk,
 742                                        num_scan_bblks - (int)head_blk,
 743                                        (stop_on_cycle - 1), &new_blk)))
 744                        goto bp_err;
 745                if (new_blk != -1) {
 746                        head_blk = new_blk;
 747                        goto validate_head;
 748                }
 749
 750                /*
 751                 * Scan beginning of log now.  The last part of the physical
 752                 * log is good.  This scan needs to verify that it doesn't find
 753                 * the last_half_cycle.
 754                 */
 755                start_blk = 0;
 756                ASSERT(head_blk <= INT_MAX);
 757                if ((error = xlog_find_verify_cycle(log,
 758                                        start_blk, (int)head_blk,
 759                                        stop_on_cycle, &new_blk)))
 760                        goto bp_err;
 761                if (new_blk != -1)
 762                        head_blk = new_blk;
 763        }
 764
 765validate_head:
 766        /*
 767         * Now we need to make sure head_blk is not pointing to a block in
 768         * the middle of a log record.
 769         */
 770        num_scan_bblks = XLOG_REC_SHIFT(log);
 771        if (head_blk >= num_scan_bblks) {
 772                start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
 773
 774                /* start ptr at last block ptr before head_blk */
 775                if ((error = xlog_find_verify_log_record(log, start_blk,
 776                                                        &head_blk, 0)) == -1) {
 777                        error = XFS_ERROR(EIO);
 778                        goto bp_err;
 779                } else if (error)
 780                        goto bp_err;
 781        } else {
 782                start_blk = 0;
 783                ASSERT(head_blk <= INT_MAX);
 784                if ((error = xlog_find_verify_log_record(log, start_blk,
 785                                                        &head_blk, 0)) == -1) {
 786                        /* We hit the beginning of the log during our search */
 787                        start_blk = log_bbnum - (num_scan_bblks - head_blk);
 788                        new_blk = log_bbnum;
 789                        ASSERT(start_blk <= INT_MAX &&
 790                                (xfs_daddr_t) log_bbnum-start_blk >= 0);
 791                        ASSERT(head_blk <= INT_MAX);
 792                        if ((error = xlog_find_verify_log_record(log,
 793                                                        start_blk, &new_blk,
 794                                                        (int)head_blk)) == -1) {
 795                                error = XFS_ERROR(EIO);
 796                                goto bp_err;
 797                        } else if (error)
 798                                goto bp_err;
 799                        if (new_blk != log_bbnum)
 800                                head_blk = new_blk;
 801                } else if (error)
 802                        goto bp_err;
 803        }
 804
 805        xlog_put_bp(bp);
 806        if (head_blk == log_bbnum)
 807                *return_head_blk = 0;
 808        else
 809                *return_head_blk = head_blk;
 810        /*
 811         * When returning here, we have a good block number.  Bad block
 812         * means that during a previous crash, we didn't have a clean break
 813         * from cycle number N to cycle number N-1.  In this case, we need
 814         * to find the first block with cycle number N-1.
 815         */
 816        return 0;
 817
 818 bp_err:
 819        xlog_put_bp(bp);
 820
 821        if (error)
 822            xlog_warn("XFS: failed to find log head");
 823        return error;
 824}
 825
 826/*
 827 * Find the sync block number or the tail of the log.
 828 *
 829 * This will be the block number of the last record to have its
 830 * associated buffers synced to disk.  Every log record header has
 831 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
 832 * to get a sync block number.  The only concern is to figure out which
 833 * log record header to believe.
 834 *
 835 * The following algorithm uses the log record header with the largest
 836 * lsn.  The entire log record does not need to be valid.  We only care
 837 * that the header is valid.
 838 *
 839 * We could speed up search by using current head_blk buffer, but it is not
 840 * available.
 841 */
 842STATIC int
 843xlog_find_tail(
 844        xlog_t                  *log,
 845        xfs_daddr_t             *head_blk,
 846        xfs_daddr_t             *tail_blk)
 847{
 848        xlog_rec_header_t       *rhead;
 849        xlog_op_header_t        *op_head;
 850        xfs_caddr_t             offset = NULL;
 851        xfs_buf_t               *bp;
 852        int                     error, i, found;
 853        xfs_daddr_t             umount_data_blk;
 854        xfs_daddr_t             after_umount_blk;
 855        xfs_lsn_t               tail_lsn;
 856        int                     hblks;
 857
 858        found = 0;
 859
 860        /*
 861         * Find previous log record
 862         */
 863        if ((error = xlog_find_head(log, head_blk)))
 864                return error;
 865
 866        bp = xlog_get_bp(log, 1);
 867        if (!bp)
 868                return ENOMEM;
 869        if (*head_blk == 0) {                           /* special case */
 870                error = xlog_bread(log, 0, 1, bp, &offset);
 871                if (error)
 872                        goto done;
 873
 874                if (xlog_get_cycle(offset) == 0) {
 875                        *tail_blk = 0;
 876                        /* leave all other log inited values alone */
 877                        goto done;
 878                }
 879        }
 880
 881        /*
 882         * Search backwards looking for log record header block
 883         */
 884        ASSERT(*head_blk < INT_MAX);
 885        for (i = (int)(*head_blk) - 1; i >= 0; i--) {
 886                error = xlog_bread(log, i, 1, bp, &offset);
 887                if (error)
 888                        goto done;
 889
 890                if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
 891                        found = 1;
 892                        break;
 893                }
 894        }
 895        /*
 896         * If we haven't found the log record header block, start looking
 897         * again from the end of the physical log.  XXXmiken: There should be
 898         * a check here to make sure we didn't search more than N blocks in
 899         * the previous code.
 900         */
 901        if (!found) {
 902                for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
 903                        error = xlog_bread(log, i, 1, bp, &offset);
 904                        if (error)
 905                                goto done;
 906
 907                        if (XLOG_HEADER_MAGIC_NUM ==
 908                            be32_to_cpu(*(__be32 *)offset)) {
 909                                found = 2;
 910                                break;
 911                        }
 912                }
 913        }
 914        if (!found) {
 915                xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
 916                ASSERT(0);
 917                return XFS_ERROR(EIO);
 918        }
 919
 920        /* find blk_no of tail of log */
 921        rhead = (xlog_rec_header_t *)offset;
 922        *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
 923
 924        /*
 925         * Reset log values according to the state of the log when we
 926         * crashed.  In the case where head_blk == 0, we bump curr_cycle
 927         * one because the next write starts a new cycle rather than
 928         * continuing the cycle of the last good log record.  At this
 929         * point we have guaranteed that all partial log records have been
 930         * accounted for.  Therefore, we know that the last good log record
 931         * written was complete and ended exactly on the end boundary
 932         * of the physical log.
 933         */
 934        log->l_prev_block = i;
 935        log->l_curr_block = (int)*head_blk;
 936        log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
 937        if (found == 2)
 938                log->l_curr_cycle++;
 939        atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
 940        atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
 941        xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
 942                                        BBTOB(log->l_curr_block));
 943        xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
 944                                        BBTOB(log->l_curr_block));
 945
 946        /*
 947         * Look for unmount record.  If we find it, then we know there
 948         * was a clean unmount.  Since 'i' could be the last block in
 949         * the physical log, we convert to a log block before comparing
 950         * to the head_blk.
 951         *
 952         * Save the current tail lsn to use to pass to
 953         * xlog_clear_stale_blocks() below.  We won't want to clear the
 954         * unmount record if there is one, so we pass the lsn of the
 955         * unmount record rather than the block after it.
 956         */
 957        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
 958                int     h_size = be32_to_cpu(rhead->h_size);
 959                int     h_version = be32_to_cpu(rhead->h_version);
 960
 961                if ((h_version & XLOG_VERSION_2) &&
 962                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
 963                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
 964                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
 965                                hblks++;
 966                } else {
 967                        hblks = 1;
 968                }
 969        } else {
 970                hblks = 1;
 971        }
 972        after_umount_blk = (i + hblks + (int)
 973                BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
 974        tail_lsn = atomic64_read(&log->l_tail_lsn);
 975        if (*head_blk == after_umount_blk &&
 976            be32_to_cpu(rhead->h_num_logops) == 1) {
 977                umount_data_blk = (i + hblks) % log->l_logBBsize;
 978                error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
 979                if (error)
 980                        goto done;
 981
 982                op_head = (xlog_op_header_t *)offset;
 983                if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
 984                        /*
 985                         * Set tail and last sync so that newly written
 986                         * log records will point recovery to after the
 987                         * current unmount record.
 988                         */
 989                        xlog_assign_atomic_lsn(&log->l_tail_lsn,
 990                                        log->l_curr_cycle, after_umount_blk);
 991                        xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
 992                                        log->l_curr_cycle, after_umount_blk);
 993                        *tail_blk = after_umount_blk;
 994
 995                        /*
 996                         * Note that the unmount was clean. If the unmount
 997                         * was not clean, we need to know this to rebuild the
 998                         * superblock counters from the perag headers if we
 999                         * have a filesystem using non-persistent counters.
1000                         */
1001                        log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1002                }
1003        }
1004
1005        /*
1006         * Make sure that there are no blocks in front of the head
1007         * with the same cycle number as the head.  This can happen
1008         * because we allow multiple outstanding log writes concurrently,
1009         * and the later writes might make it out before earlier ones.
1010         *
1011         * We use the lsn from before modifying it so that we'll never
1012         * overwrite the unmount record after a clean unmount.
1013         *
1014         * Do this only if we are going to recover the filesystem
1015         *
1016         * NOTE: This used to say "if (!readonly)"
1017         * However on Linux, we can & do recover a read-only filesystem.
1018         * We only skip recovery if NORECOVERY is specified on mount,
1019         * in which case we would not be here.
1020         *
1021         * But... if the -device- itself is readonly, just skip this.
1022         * We can't recover this device anyway, so it won't matter.
1023         */
1024        if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1025                error = xlog_clear_stale_blocks(log, tail_lsn);
1026
1027done:
1028        xlog_put_bp(bp);
1029
1030        if (error)
1031                xlog_warn("XFS: failed to locate log tail");
1032        return error;
1033}
1034
1035/*
1036 * Is the log zeroed at all?
1037 *
1038 * The last binary search should be changed to perform an X block read
1039 * once X becomes small enough.  You can then search linearly through
1040 * the X blocks.  This will cut down on the number of reads we need to do.
1041 *
1042 * If the log is partially zeroed, this routine will pass back the blkno
1043 * of the first block with cycle number 0.  It won't have a complete LR
1044 * preceding it.
1045 *
1046 * Return:
1047 *      0  => the log is completely written to
1048 *      -1 => use *blk_no as the first block of the log
1049 *      >0 => error has occurred
1050 */
1051STATIC int
1052xlog_find_zeroed(
1053        xlog_t          *log,
1054        xfs_daddr_t     *blk_no)
1055{
1056        xfs_buf_t       *bp;
1057        xfs_caddr_t     offset;
1058        uint            first_cycle, last_cycle;
1059        xfs_daddr_t     new_blk, last_blk, start_blk;
1060        xfs_daddr_t     num_scan_bblks;
1061        int             error, log_bbnum = log->l_logBBsize;
1062
1063        *blk_no = 0;
1064
1065        /* check totally zeroed log */
1066        bp = xlog_get_bp(log, 1);
1067        if (!bp)
1068                return ENOMEM;
1069        error = xlog_bread(log, 0, 1, bp, &offset);
1070        if (error)
1071                goto bp_err;
1072
1073        first_cycle = xlog_get_cycle(offset);
1074        if (first_cycle == 0) {         /* completely zeroed log */
1075                *blk_no = 0;
1076                xlog_put_bp(bp);
1077                return -1;
1078        }
1079
1080        /* check partially zeroed log */
1081        error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1082        if (error)
1083                goto bp_err;
1084
1085        last_cycle = xlog_get_cycle(offset);
1086        if (last_cycle != 0) {          /* log completely written to */
1087                xlog_put_bp(bp);
1088                return 0;
1089        } else if (first_cycle != 1) {
1090                /*
1091                 * If the cycle of the last block is zero, the cycle of
1092                 * the first block must be 1. If it's not, maybe we're
1093                 * not looking at a log... Bail out.
1094                 */
1095                xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1096                return XFS_ERROR(EINVAL);
1097        }
1098
1099        /* we have a partially zeroed log */
1100        last_blk = log_bbnum-1;
1101        if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1102                goto bp_err;
1103
1104        /*
1105         * Validate the answer.  Because there is no way to guarantee that
1106         * the entire log is made up of log records which are the same size,
1107         * we scan over the defined maximum blocks.  At this point, the maximum
1108         * is not chosen to mean anything special.   XXXmiken
1109         */
1110        num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1111        ASSERT(num_scan_bblks <= INT_MAX);
1112
1113        if (last_blk < num_scan_bblks)
1114                num_scan_bblks = last_blk;
1115        start_blk = last_blk - num_scan_bblks;
1116
1117        /*
1118         * We search for any instances of cycle number 0 that occur before
1119         * our current estimate of the head.  What we're trying to detect is
1120         *        1 ... | 0 | 1 | 0...
1121         *                       ^ binary search ends here
1122         */
1123        if ((error = xlog_find_verify_cycle(log, start_blk,
1124                                         (int)num_scan_bblks, 0, &new_blk)))
1125                goto bp_err;
1126        if (new_blk != -1)
1127                last_blk = new_blk;
1128
1129        /*
1130         * Potentially backup over partial log record write.  We don't need
1131         * to search the end of the log because we know it is zero.
1132         */
1133        if ((error = xlog_find_verify_log_record(log, start_blk,
1134                                &last_blk, 0)) == -1) {
1135            error = XFS_ERROR(EIO);
1136            goto bp_err;
1137        } else if (error)
1138            goto bp_err;
1139
1140        *blk_no = last_blk;
1141bp_err:
1142        xlog_put_bp(bp);
1143        if (error)
1144                return error;
1145        return -1;
1146}
1147
1148/*
1149 * These are simple subroutines used by xlog_clear_stale_blocks() below
1150 * to initialize a buffer full of empty log record headers and write
1151 * them into the log.
1152 */
1153STATIC void
1154xlog_add_record(
1155        xlog_t                  *log,
1156        xfs_caddr_t             buf,
1157        int                     cycle,
1158        int                     block,
1159        int                     tail_cycle,
1160        int                     tail_block)
1161{
1162        xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1163
1164        memset(buf, 0, BBSIZE);
1165        recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1166        recp->h_cycle = cpu_to_be32(cycle);
1167        recp->h_version = cpu_to_be32(
1168                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1169        recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1170        recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1171        recp->h_fmt = cpu_to_be32(XLOG_FMT);
1172        memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1173}
1174
1175STATIC int
1176xlog_write_log_records(
1177        xlog_t          *log,
1178        int             cycle,
1179        int             start_block,
1180        int             blocks,
1181        int             tail_cycle,
1182        int             tail_block)
1183{
1184        xfs_caddr_t     offset;
1185        xfs_buf_t       *bp;
1186        int             balign, ealign;
1187        int             sectbb = log->l_sectBBsize;
1188        int             end_block = start_block + blocks;
1189        int             bufblks;
1190        int             error = 0;
1191        int             i, j = 0;
1192
1193        /*
1194         * Greedily allocate a buffer big enough to handle the full
1195         * range of basic blocks to be written.  If that fails, try
1196         * a smaller size.  We need to be able to write at least a
1197         * log sector, or we're out of luck.
1198         */
1199        bufblks = 1 << ffs(blocks);
1200        while (!(bp = xlog_get_bp(log, bufblks))) {
1201                bufblks >>= 1;
1202                if (bufblks < sectbb)
1203                        return ENOMEM;
1204        }
1205
1206        /* We may need to do a read at the start to fill in part of
1207         * the buffer in the starting sector not covered by the first
1208         * write below.
1209         */
1210        balign = round_down(start_block, sectbb);
1211        if (balign != start_block) {
1212                error = xlog_bread_noalign(log, start_block, 1, bp);
1213                if (error)
1214                        goto out_put_bp;
1215
1216                j = start_block - balign;
1217        }
1218
1219        for (i = start_block; i < end_block; i += bufblks) {
1220                int             bcount, endcount;
1221
1222                bcount = min(bufblks, end_block - start_block);
1223                endcount = bcount - j;
1224
1225                /* We may need to do a read at the end to fill in part of
1226                 * the buffer in the final sector not covered by the write.
1227                 * If this is the same sector as the above read, skip it.
1228                 */
1229                ealign = round_down(end_block, sectbb);
1230                if (j == 0 && (start_block + endcount > ealign)) {
1231                        offset = XFS_BUF_PTR(bp);
1232                        balign = BBTOB(ealign - start_block);
1233                        error = XFS_BUF_SET_PTR(bp, offset + balign,
1234                                                BBTOB(sectbb));
1235                        if (error)
1236                                break;
1237
1238                        error = xlog_bread_noalign(log, ealign, sectbb, bp);
1239                        if (error)
1240                                break;
1241
1242                        error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1243                        if (error)
1244                                break;
1245                }
1246
1247                offset = xlog_align(log, start_block, endcount, bp);
1248                for (; j < endcount; j++) {
1249                        xlog_add_record(log, offset, cycle, i+j,
1250                                        tail_cycle, tail_block);
1251                        offset += BBSIZE;
1252                }
1253                error = xlog_bwrite(log, start_block, endcount, bp);
1254                if (error)
1255                        break;
1256                start_block += endcount;
1257                j = 0;
1258        }
1259
1260 out_put_bp:
1261        xlog_put_bp(bp);
1262        return error;
1263}
1264
1265/*
1266 * This routine is called to blow away any incomplete log writes out
1267 * in front of the log head.  We do this so that we won't become confused
1268 * if we come up, write only a little bit more, and then crash again.
1269 * If we leave the partial log records out there, this situation could
1270 * cause us to think those partial writes are valid blocks since they
1271 * have the current cycle number.  We get rid of them by overwriting them
1272 * with empty log records with the old cycle number rather than the
1273 * current one.
1274 *
1275 * The tail lsn is passed in rather than taken from
1276 * the log so that we will not write over the unmount record after a
1277 * clean unmount in a 512 block log.  Doing so would leave the log without
1278 * any valid log records in it until a new one was written.  If we crashed
1279 * during that time we would not be able to recover.
1280 */
1281STATIC int
1282xlog_clear_stale_blocks(
1283        xlog_t          *log,
1284        xfs_lsn_t       tail_lsn)
1285{
1286        int             tail_cycle, head_cycle;
1287        int             tail_block, head_block;
1288        int             tail_distance, max_distance;
1289        int             distance;
1290        int             error;
1291
1292        tail_cycle = CYCLE_LSN(tail_lsn);
1293        tail_block = BLOCK_LSN(tail_lsn);
1294        head_cycle = log->l_curr_cycle;
1295        head_block = log->l_curr_block;
1296
1297        /*
1298         * Figure out the distance between the new head of the log
1299         * and the tail.  We want to write over any blocks beyond the
1300         * head that we may have written just before the crash, but
1301         * we don't want to overwrite the tail of the log.
1302         */
1303        if (head_cycle == tail_cycle) {
1304                /*
1305                 * The tail is behind the head in the physical log,
1306                 * so the distance from the head to the tail is the
1307                 * distance from the head to the end of the log plus
1308                 * the distance from the beginning of the log to the
1309                 * tail.
1310                 */
1311                if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1312                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1313                                         XFS_ERRLEVEL_LOW, log->l_mp);
1314                        return XFS_ERROR(EFSCORRUPTED);
1315                }
1316                tail_distance = tail_block + (log->l_logBBsize - head_block);
1317        } else {
1318                /*
1319                 * The head is behind the tail in the physical log,
1320                 * so the distance from the head to the tail is just
1321                 * the tail block minus the head block.
1322                 */
1323                if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1324                        XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1325                                         XFS_ERRLEVEL_LOW, log->l_mp);
1326                        return XFS_ERROR(EFSCORRUPTED);
1327                }
1328                tail_distance = tail_block - head_block;
1329        }
1330
1331        /*
1332         * If the head is right up against the tail, we can't clear
1333         * anything.
1334         */
1335        if (tail_distance <= 0) {
1336                ASSERT(tail_distance == 0);
1337                return 0;
1338        }
1339
1340        max_distance = XLOG_TOTAL_REC_SHIFT(log);
1341        /*
1342         * Take the smaller of the maximum amount of outstanding I/O
1343         * we could have and the distance to the tail to clear out.
1344         * We take the smaller so that we don't overwrite the tail and
1345         * we don't waste all day writing from the head to the tail
1346         * for no reason.
1347         */
1348        max_distance = MIN(max_distance, tail_distance);
1349
1350        if ((head_block + max_distance) <= log->l_logBBsize) {
1351                /*
1352                 * We can stomp all the blocks we need to without
1353                 * wrapping around the end of the log.  Just do it
1354                 * in a single write.  Use the cycle number of the
1355                 * current cycle minus one so that the log will look like:
1356                 *     n ... | n - 1 ...
1357                 */
1358                error = xlog_write_log_records(log, (head_cycle - 1),
1359                                head_block, max_distance, tail_cycle,
1360                                tail_block);
1361                if (error)
1362                        return error;
1363        } else {
1364                /*
1365                 * We need to wrap around the end of the physical log in
1366                 * order to clear all the blocks.  Do it in two separate
1367                 * I/Os.  The first write should be from the head to the
1368                 * end of the physical log, and it should use the current
1369                 * cycle number minus one just like above.
1370                 */
1371                distance = log->l_logBBsize - head_block;
1372                error = xlog_write_log_records(log, (head_cycle - 1),
1373                                head_block, distance, tail_cycle,
1374                                tail_block);
1375
1376                if (error)
1377                        return error;
1378
1379                /*
1380                 * Now write the blocks at the start of the physical log.
1381                 * This writes the remainder of the blocks we want to clear.
1382                 * It uses the current cycle number since we're now on the
1383                 * same cycle as the head so that we get:
1384                 *    n ... n ... | n - 1 ...
1385                 *    ^^^^^ blocks we're writing
1386                 */
1387                distance = max_distance - (log->l_logBBsize - head_block);
1388                error = xlog_write_log_records(log, head_cycle, 0, distance,
1389                                tail_cycle, tail_block);
1390                if (error)
1391                        return error;
1392        }
1393
1394        return 0;
1395}
1396
1397/******************************************************************************
1398 *
1399 *              Log recover routines
1400 *
1401 ******************************************************************************
1402 */
1403
1404STATIC xlog_recover_t *
1405xlog_recover_find_tid(
1406        struct hlist_head       *head,
1407        xlog_tid_t              tid)
1408{
1409        xlog_recover_t          *trans;
1410        struct hlist_node       *n;
1411
1412        hlist_for_each_entry(trans, n, head, r_list) {
1413                if (trans->r_log_tid == tid)
1414                        return trans;
1415        }
1416        return NULL;
1417}
1418
1419STATIC void
1420xlog_recover_new_tid(
1421        struct hlist_head       *head,
1422        xlog_tid_t              tid,
1423        xfs_lsn_t               lsn)
1424{
1425        xlog_recover_t          *trans;
1426
1427        trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1428        trans->r_log_tid   = tid;
1429        trans->r_lsn       = lsn;
1430        INIT_LIST_HEAD(&trans->r_itemq);
1431
1432        INIT_HLIST_NODE(&trans->r_list);
1433        hlist_add_head(&trans->r_list, head);
1434}
1435
1436STATIC void
1437xlog_recover_add_item(
1438        struct list_head        *head)
1439{
1440        xlog_recover_item_t     *item;
1441
1442        item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1443        INIT_LIST_HEAD(&item->ri_list);
1444        list_add_tail(&item->ri_list, head);
1445}
1446
1447STATIC int
1448xlog_recover_add_to_cont_trans(
1449        struct log              *log,
1450        xlog_recover_t          *trans,
1451        xfs_caddr_t             dp,
1452        int                     len)
1453{
1454        xlog_recover_item_t     *item;
1455        xfs_caddr_t             ptr, old_ptr;
1456        int                     old_len;
1457
1458        if (list_empty(&trans->r_itemq)) {
1459                /* finish copying rest of trans header */
1460                xlog_recover_add_item(&trans->r_itemq);
1461                ptr = (xfs_caddr_t) &trans->r_theader +
1462                                sizeof(xfs_trans_header_t) - len;
1463                memcpy(ptr, dp, len); /* d, s, l */
1464                return 0;
1465        }
1466        /* take the tail entry */
1467        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1468
1469        old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1470        old_len = item->ri_buf[item->ri_cnt-1].i_len;
1471
1472        ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1473        memcpy(&ptr[old_len], dp, len); /* d, s, l */
1474        item->ri_buf[item->ri_cnt-1].i_len += len;
1475        item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1476        trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1477        return 0;
1478}
1479
1480/*
1481 * The next region to add is the start of a new region.  It could be
1482 * a whole region or it could be the first part of a new region.  Because
1483 * of this, the assumption here is that the type and size fields of all
1484 * format structures fit into the first 32 bits of the structure.
1485 *
1486 * This works because all regions must be 32 bit aligned.  Therefore, we
1487 * either have both fields or we have neither field.  In the case we have
1488 * neither field, the data part of the region is zero length.  We only have
1489 * a log_op_header and can throw away the header since a new one will appear
1490 * later.  If we have at least 4 bytes, then we can determine how many regions
1491 * will appear in the current log item.
1492 */
1493STATIC int
1494xlog_recover_add_to_trans(
1495        struct log              *log,
1496        xlog_recover_t          *trans,
1497        xfs_caddr_t             dp,
1498        int                     len)
1499{
1500        xfs_inode_log_format_t  *in_f;                  /* any will do */
1501        xlog_recover_item_t     *item;
1502        xfs_caddr_t             ptr;
1503
1504        if (!len)
1505                return 0;
1506        if (list_empty(&trans->r_itemq)) {
1507                /* we need to catch log corruptions here */
1508                if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1509                        xlog_warn("XFS: xlog_recover_add_to_trans: "
1510                                  "bad header magic number");
1511                        ASSERT(0);
1512                        return XFS_ERROR(EIO);
1513                }
1514                if (len == sizeof(xfs_trans_header_t))
1515                        xlog_recover_add_item(&trans->r_itemq);
1516                memcpy(&trans->r_theader, dp, len); /* d, s, l */
1517                return 0;
1518        }
1519
1520        ptr = kmem_alloc(len, KM_SLEEP);
1521        memcpy(ptr, dp, len);
1522        in_f = (xfs_inode_log_format_t *)ptr;
1523
1524        /* take the tail entry */
1525        item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1526        if (item->ri_total != 0 &&
1527             item->ri_total == item->ri_cnt) {
1528                /* tail item is in use, get a new one */
1529                xlog_recover_add_item(&trans->r_itemq);
1530                item = list_entry(trans->r_itemq.prev,
1531                                        xlog_recover_item_t, ri_list);
1532        }
1533
1534        if (item->ri_total == 0) {              /* first region to be added */
1535                if (in_f->ilf_size == 0 ||
1536                    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1537                        xlog_warn(
1538        "XFS: bad number of regions (%d) in inode log format",
1539                                  in_f->ilf_size);
1540                        ASSERT(0);
1541                        return XFS_ERROR(EIO);
1542                }
1543
1544                item->ri_total = in_f->ilf_size;
1545                item->ri_buf =
1546                        kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1547                                    KM_SLEEP);
1548        }
1549        ASSERT(item->ri_total > item->ri_cnt);
1550        /* Description region is ri_buf[0] */
1551        item->ri_buf[item->ri_cnt].i_addr = ptr;
1552        item->ri_buf[item->ri_cnt].i_len  = len;
1553        item->ri_cnt++;
1554        trace_xfs_log_recover_item_add(log, trans, item, 0);
1555        return 0;
1556}
1557
1558/*
1559 * Sort the log items in the transaction. Cancelled buffers need
1560 * to be put first so they are processed before any items that might
1561 * modify the buffers. If they are cancelled, then the modifications
1562 * don't need to be replayed.
1563 */
1564STATIC int
1565xlog_recover_reorder_trans(
1566        struct log              *log,
1567        xlog_recover_t          *trans,
1568        int                     pass)
1569{
1570        xlog_recover_item_t     *item, *n;
1571        LIST_HEAD(sort_list);
1572
1573        list_splice_init(&trans->r_itemq, &sort_list);
1574        list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1575                xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1576
1577                switch (ITEM_TYPE(item)) {
1578                case XFS_LI_BUF:
1579                        if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1580                                trace_xfs_log_recover_item_reorder_head(log,
1581                                                        trans, item, pass);
1582                                list_move(&item->ri_list, &trans->r_itemq);
1583                                break;
1584                        }
1585                case XFS_LI_INODE:
1586                case XFS_LI_DQUOT:
1587                case XFS_LI_QUOTAOFF:
1588                case XFS_LI_EFD:
1589                case XFS_LI_EFI:
1590                        trace_xfs_log_recover_item_reorder_tail(log,
1591                                                        trans, item, pass);
1592                        list_move_tail(&item->ri_list, &trans->r_itemq);
1593                        break;
1594                default:
1595                        xlog_warn(
1596        "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1597                        ASSERT(0);
1598                        return XFS_ERROR(EIO);
1599                }
1600        }
1601        ASSERT(list_empty(&sort_list));
1602        return 0;
1603}
1604
1605/*
1606 * Build up the table of buf cancel records so that we don't replay
1607 * cancelled data in the second pass.  For buffer records that are
1608 * not cancel records, there is nothing to do here so we just return.
1609 *
1610 * If we get a cancel record which is already in the table, this indicates
1611 * that the buffer was cancelled multiple times.  In order to ensure
1612 * that during pass 2 we keep the record in the table until we reach its
1613 * last occurrence in the log, we keep a reference count in the cancel
1614 * record in the table to tell us how many times we expect to see this
1615 * record during the second pass.
1616 */
1617STATIC int
1618xlog_recover_buffer_pass1(
1619        struct log              *log,
1620        xlog_recover_item_t     *item)
1621{
1622        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
1623        struct list_head        *bucket;
1624        struct xfs_buf_cancel   *bcp;
1625
1626        /*
1627         * If this isn't a cancel buffer item, then just return.
1628         */
1629        if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1630                trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1631                return 0;
1632        }
1633
1634        /*
1635         * Insert an xfs_buf_cancel record into the hash table of them.
1636         * If there is already an identical record, bump its reference count.
1637         */
1638        bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1639        list_for_each_entry(bcp, bucket, bc_list) {
1640                if (bcp->bc_blkno == buf_f->blf_blkno &&
1641                    bcp->bc_len == buf_f->blf_len) {
1642                        bcp->bc_refcount++;
1643                        trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1644                        return 0;
1645                }
1646        }
1647
1648        bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1649        bcp->bc_blkno = buf_f->blf_blkno;
1650        bcp->bc_len = buf_f->blf_len;
1651        bcp->bc_refcount = 1;
1652        list_add_tail(&bcp->bc_list, bucket);
1653
1654        trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1655        return 0;
1656}
1657
1658/*
1659 * Check to see whether the buffer being recovered has a corresponding
1660 * entry in the buffer cancel record table.  If it does then return 1
1661 * so that it will be cancelled, otherwise return 0.  If the buffer is
1662 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1663 * the refcount on the entry in the table and remove it from the table
1664 * if this is the last reference.
1665 *
1666 * We remove the cancel record from the table when we encounter its
1667 * last occurrence in the log so that if the same buffer is re-used
1668 * again after its last cancellation we actually replay the changes
1669 * made at that point.
1670 */
1671STATIC int
1672xlog_check_buffer_cancelled(
1673        struct log              *log,
1674        xfs_daddr_t             blkno,
1675        uint                    len,
1676        ushort                  flags)
1677{
1678        struct list_head        *bucket;
1679        struct xfs_buf_cancel   *bcp;
1680
1681        if (log->l_buf_cancel_table == NULL) {
1682                /*
1683                 * There is nothing in the table built in pass one,
1684                 * so this buffer must not be cancelled.
1685                 */
1686                ASSERT(!(flags & XFS_BLF_CANCEL));
1687                return 0;
1688        }
1689
1690        /*
1691         * Search for an entry in the  cancel table that matches our buffer.
1692         */
1693        bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1694        list_for_each_entry(bcp, bucket, bc_list) {
1695                if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1696                        goto found;
1697        }
1698
1699        /*
1700         * We didn't find a corresponding entry in the table, so return 0 so
1701         * that the buffer is NOT cancelled.
1702         */
1703        ASSERT(!(flags & XFS_BLF_CANCEL));
1704        return 0;
1705
1706found:
1707        /*
1708         * We've go a match, so return 1 so that the recovery of this buffer
1709         * is cancelled.  If this buffer is actually a buffer cancel log
1710         * item, then decrement the refcount on the one in the table and
1711         * remove it if this is the last reference.
1712         */
1713        if (flags & XFS_BLF_CANCEL) {
1714                if (--bcp->bc_refcount == 0) {
1715                        list_del(&bcp->bc_list);
1716                        kmem_free(bcp);
1717                }
1718        }
1719        return 1;
1720}
1721
1722/*
1723 * Perform recovery for a buffer full of inodes.  In these buffers, the only
1724 * data which should be recovered is that which corresponds to the
1725 * di_next_unlinked pointers in the on disk inode structures.  The rest of the
1726 * data for the inodes is always logged through the inodes themselves rather
1727 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1728 *
1729 * The only time when buffers full of inodes are fully recovered is when the
1730 * buffer is full of newly allocated inodes.  In this case the buffer will
1731 * not be marked as an inode buffer and so will be sent to
1732 * xlog_recover_do_reg_buffer() below during recovery.
1733 */
1734STATIC int
1735xlog_recover_do_inode_buffer(
1736        struct xfs_mount        *mp,
1737        xlog_recover_item_t     *item,
1738        struct xfs_buf          *bp,
1739        xfs_buf_log_format_t    *buf_f)
1740{
1741        int                     i;
1742        int                     item_index = 0;
1743        int                     bit = 0;
1744        int                     nbits = 0;
1745        int                     reg_buf_offset = 0;
1746        int                     reg_buf_bytes = 0;
1747        int                     next_unlinked_offset;
1748        int                     inodes_per_buf;
1749        xfs_agino_t             *logged_nextp;
1750        xfs_agino_t             *buffer_nextp;
1751
1752        trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1753
1754        inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1755        for (i = 0; i < inodes_per_buf; i++) {
1756                next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1757                        offsetof(xfs_dinode_t, di_next_unlinked);
1758
1759                while (next_unlinked_offset >=
1760                       (reg_buf_offset + reg_buf_bytes)) {
1761                        /*
1762                         * The next di_next_unlinked field is beyond
1763                         * the current logged region.  Find the next
1764                         * logged region that contains or is beyond
1765                         * the current di_next_unlinked field.
1766                         */
1767                        bit += nbits;
1768                        bit = xfs_next_bit(buf_f->blf_data_map,
1769                                           buf_f->blf_map_size, bit);
1770
1771                        /*
1772                         * If there are no more logged regions in the
1773                         * buffer, then we're done.
1774                         */
1775                        if (bit == -1)
1776                                return 0;
1777
1778                        nbits = xfs_contig_bits(buf_f->blf_data_map,
1779                                                buf_f->blf_map_size, bit);
1780                        ASSERT(nbits > 0);
1781                        reg_buf_offset = bit << XFS_BLF_SHIFT;
1782                        reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1783                        item_index++;
1784                }
1785
1786                /*
1787                 * If the current logged region starts after the current
1788                 * di_next_unlinked field, then move on to the next
1789                 * di_next_unlinked field.
1790                 */
1791                if (next_unlinked_offset < reg_buf_offset)
1792                        continue;
1793
1794                ASSERT(item->ri_buf[item_index].i_addr != NULL);
1795                ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1796                ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1797
1798                /*
1799                 * The current logged region contains a copy of the
1800                 * current di_next_unlinked field.  Extract its value
1801                 * and copy it to the buffer copy.
1802                 */
1803                logged_nextp = item->ri_buf[item_index].i_addr +
1804                                next_unlinked_offset - reg_buf_offset;
1805                if (unlikely(*logged_nextp == 0)) {
1806                        xfs_fs_cmn_err(CE_ALERT, mp,
1807                                "bad inode buffer log record (ptr = 0x%p, bp = 0x%p).  XFS trying to replay bad (0) inode di_next_unlinked field",
1808                                item, bp);
1809                        XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1810                                         XFS_ERRLEVEL_LOW, mp);
1811                        return XFS_ERROR(EFSCORRUPTED);
1812                }
1813
1814                buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1815                                              next_unlinked_offset);
1816                *buffer_nextp = *logged_nextp;
1817        }
1818
1819        return 0;
1820}
1821
1822/*
1823 * Perform a 'normal' buffer recovery.  Each logged region of the
1824 * buffer should be copied over the corresponding region in the
1825 * given buffer.  The bitmap in the buf log format structure indicates
1826 * where to place the logged data.
1827 */
1828STATIC void
1829xlog_recover_do_reg_buffer(
1830        struct xfs_mount        *mp,
1831        xlog_recover_item_t     *item,
1832        struct xfs_buf          *bp,
1833        xfs_buf_log_format_t    *buf_f)
1834{
1835        int                     i;
1836        int                     bit;
1837        int                     nbits;
1838        int                     error;
1839
1840        trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1841
1842        bit = 0;
1843        i = 1;  /* 0 is the buf format structure */
1844        while (1) {
1845                bit = xfs_next_bit(buf_f->blf_data_map,
1846                                   buf_f->blf_map_size, bit);
1847                if (bit == -1)
1848                        break;
1849                nbits = xfs_contig_bits(buf_f->blf_data_map,
1850                                        buf_f->blf_map_size, bit);
1851                ASSERT(nbits > 0);
1852                ASSERT(item->ri_buf[i].i_addr != NULL);
1853                ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1854                ASSERT(XFS_BUF_COUNT(bp) >=
1855                       ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1856
1857                /*
1858                 * Do a sanity check if this is a dquot buffer. Just checking
1859                 * the first dquot in the buffer should do. XXXThis is
1860                 * probably a good thing to do for other buf types also.
1861                 */
1862                error = 0;
1863                if (buf_f->blf_flags &
1864                   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1865                        if (item->ri_buf[i].i_addr == NULL) {
1866                                cmn_err(CE_ALERT,
1867                                        "XFS: NULL dquot in %s.", __func__);
1868                                goto next;
1869                        }
1870                        if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1871                                cmn_err(CE_ALERT,
1872                                        "XFS: dquot too small (%d) in %s.",
1873                                        item->ri_buf[i].i_len, __func__);
1874                                goto next;
1875                        }
1876                        error = xfs_qm_dqcheck(item->ri_buf[i].i_addr,
1877                                               -1, 0, XFS_QMOPT_DOWARN,
1878                                               "dquot_buf_recover");
1879                        if (error)
1880                                goto next;
1881                }
1882
1883                memcpy(xfs_buf_offset(bp,
1884                        (uint)bit << XFS_BLF_SHIFT),    /* dest */
1885                        item->ri_buf[i].i_addr,         /* source */
1886                        nbits<<XFS_BLF_SHIFT);          /* length */
1887 next:
1888                i++;
1889                bit += nbits;
1890        }
1891
1892        /* Shouldn't be any more regions */
1893        ASSERT(i == item->ri_total);
1894}
1895
1896/*
1897 * Do some primitive error checking on ondisk dquot data structures.
1898 */
1899int
1900xfs_qm_dqcheck(
1901        xfs_disk_dquot_t *ddq,
1902        xfs_dqid_t       id,
1903        uint             type,    /* used only when IO_dorepair is true */
1904        uint             flags,
1905        char             *str)
1906{
1907        xfs_dqblk_t      *d = (xfs_dqblk_t *)ddq;
1908        int             errs = 0;
1909
1910        /*
1911         * We can encounter an uninitialized dquot buffer for 2 reasons:
1912         * 1. If we crash while deleting the quotainode(s), and those blks got
1913         *    used for user data. This is because we take the path of regular
1914         *    file deletion; however, the size field of quotainodes is never
1915         *    updated, so all the tricks that we play in itruncate_finish
1916         *    don't quite matter.
1917         *
1918         * 2. We don't play the quota buffers when there's a quotaoff logitem.
1919         *    But the allocation will be replayed so we'll end up with an
1920         *    uninitialized quota block.
1921         *
1922         * This is all fine; things are still consistent, and we haven't lost
1923         * any quota information. Just don't complain about bad dquot blks.
1924         */
1925        if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1926                if (flags & XFS_QMOPT_DOWARN)
1927                        cmn_err(CE_ALERT,
1928                        "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1929                        str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1930                errs++;
1931        }
1932        if (ddq->d_version != XFS_DQUOT_VERSION) {
1933                if (flags & XFS_QMOPT_DOWARN)
1934                        cmn_err(CE_ALERT,
1935                        "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1936                        str, id, ddq->d_version, XFS_DQUOT_VERSION);
1937                errs++;
1938        }
1939
1940        if (ddq->d_flags != XFS_DQ_USER &&
1941            ddq->d_flags != XFS_DQ_PROJ &&
1942            ddq->d_flags != XFS_DQ_GROUP) {
1943                if (flags & XFS_QMOPT_DOWARN)
1944                        cmn_err(CE_ALERT,
1945                        "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1946                        str, id, ddq->d_flags);
1947                errs++;
1948        }
1949
1950        if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1951                if (flags & XFS_QMOPT_DOWARN)
1952                        cmn_err(CE_ALERT,
1953                        "%s : ondisk-dquot 0x%p, ID mismatch: "
1954                        "0x%x expected, found id 0x%x",
1955                        str, ddq, id, be32_to_cpu(ddq->d_id));
1956                errs++;
1957        }
1958
1959        if (!errs && ddq->d_id) {
1960                if (ddq->d_blk_softlimit &&
1961                    be64_to_cpu(ddq->d_bcount) >=
1962                                be64_to_cpu(ddq->d_blk_softlimit)) {
1963                        if (!ddq->d_btimer) {
1964                                if (flags & XFS_QMOPT_DOWARN)
1965                                        cmn_err(CE_ALERT,
1966                                        "%s : Dquot ID 0x%x (0x%p) "
1967                                        "BLK TIMER NOT STARTED",
1968                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
1969                                errs++;
1970                        }
1971                }
1972                if (ddq->d_ino_softlimit &&
1973                    be64_to_cpu(ddq->d_icount) >=
1974                                be64_to_cpu(ddq->d_ino_softlimit)) {
1975                        if (!ddq->d_itimer) {
1976                                if (flags & XFS_QMOPT_DOWARN)
1977                                        cmn_err(CE_ALERT,
1978                                        "%s : Dquot ID 0x%x (0x%p) "
1979                                        "INODE TIMER NOT STARTED",
1980                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
1981                                errs++;
1982                        }
1983                }
1984                if (ddq->d_rtb_softlimit &&
1985                    be64_to_cpu(ddq->d_rtbcount) >=
1986                                be64_to_cpu(ddq->d_rtb_softlimit)) {
1987                        if (!ddq->d_rtbtimer) {
1988                                if (flags & XFS_QMOPT_DOWARN)
1989                                        cmn_err(CE_ALERT,
1990                                        "%s : Dquot ID 0x%x (0x%p) "
1991                                        "RTBLK TIMER NOT STARTED",
1992                                        str, (int)be32_to_cpu(ddq->d_id), ddq);
1993                                errs++;
1994                        }
1995                }
1996        }
1997
1998        if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
1999                return errs;
2000
2001        if (flags & XFS_QMOPT_DOWARN)
2002                cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2003
2004        /*
2005         * Typically, a repair is only requested by quotacheck.
2006         */
2007        ASSERT(id != -1);
2008        ASSERT(flags & XFS_QMOPT_DQREPAIR);
2009        memset(d, 0, sizeof(xfs_dqblk_t));
2010
2011        d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2012        d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2013        d->dd_diskdq.d_flags = type;
2014        d->dd_diskdq.d_id = cpu_to_be32(id);
2015
2016        return errs;
2017}
2018
2019/*
2020 * Perform a dquot buffer recovery.
2021 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2022 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2023 * Else, treat it as a regular buffer and do recovery.
2024 */
2025STATIC void
2026xlog_recover_do_dquot_buffer(
2027        xfs_mount_t             *mp,
2028        xlog_t                  *log,
2029        xlog_recover_item_t     *item,
2030        xfs_buf_t               *bp,
2031        xfs_buf_log_format_t    *buf_f)
2032{
2033        uint                    type;
2034
2035        trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2036
2037        /*
2038         * Filesystems are required to send in quota flags at mount time.
2039         */
2040        if (mp->m_qflags == 0) {
2041                return;
2042        }
2043
2044        type = 0;
2045        if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2046                type |= XFS_DQ_USER;
2047        if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2048                type |= XFS_DQ_PROJ;
2049        if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2050                type |= XFS_DQ_GROUP;
2051        /*
2052         * This type of quotas was turned off, so ignore this buffer
2053         */
2054        if (log->l_quotaoffs_flag & type)
2055                return;
2056
2057        xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2058}
2059
2060/*
2061 * This routine replays a modification made to a buffer at runtime.
2062 * There are actually two types of buffer, regular and inode, which
2063 * are handled differently.  Inode buffers are handled differently
2064 * in that we only recover a specific set of data from them, namely
2065 * the inode di_next_unlinked fields.  This is because all other inode
2066 * data is actually logged via inode records and any data we replay
2067 * here which overlaps that may be stale.
2068 *
2069 * When meta-data buffers are freed at run time we log a buffer item
2070 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2071 * of the buffer in the log should not be replayed at recovery time.
2072 * This is so that if the blocks covered by the buffer are reused for
2073 * file data before we crash we don't end up replaying old, freed
2074 * meta-data into a user's file.
2075 *
2076 * To handle the cancellation of buffer log items, we make two passes
2077 * over the log during recovery.  During the first we build a table of
2078 * those buffers which have been cancelled, and during the second we
2079 * only replay those buffers which do not have corresponding cancel
2080 * records in the table.  See xlog_recover_do_buffer_pass[1,2] above
2081 * for more details on the implementation of the table of cancel records.
2082 */
2083STATIC int
2084xlog_recover_buffer_pass2(
2085        xlog_t                  *log,
2086        xlog_recover_item_t     *item)
2087{
2088        xfs_buf_log_format_t    *buf_f = item->ri_buf[0].i_addr;
2089        xfs_mount_t             *mp = log->l_mp;
2090        xfs_buf_t               *bp;
2091        int                     error;
2092        uint                    buf_flags;
2093
2094        /*
2095         * In this pass we only want to recover all the buffers which have
2096         * not been cancelled and are not cancellation buffers themselves.
2097         */
2098        if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2099                        buf_f->blf_len, buf_f->blf_flags)) {
2100                trace_xfs_log_recover_buf_cancel(log, buf_f);
2101                return 0;
2102        }
2103
2104        trace_xfs_log_recover_buf_recover(log, buf_f);
2105
2106        buf_flags = XBF_LOCK;
2107        if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
2108                buf_flags |= XBF_MAPPED;
2109
2110        bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2111                          buf_flags);
2112        if (XFS_BUF_ISERROR(bp)) {
2113                xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
2114                                  bp, buf_f->blf_blkno);
2115                error = XFS_BUF_GETERROR(bp);
2116                xfs_buf_relse(bp);
2117                return error;
2118        }
2119
2120        error = 0;
2121        if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2122                error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2123        } else if (buf_f->blf_flags &
2124                  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2125                xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2126        } else {
2127                xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2128        }
2129        if (error)
2130                return XFS_ERROR(error);
2131
2132        /*
2133         * Perform delayed write on the buffer.  Asynchronous writes will be
2134         * slower when taking into account all the buffers to be flushed.
2135         *
2136         * Also make sure that only inode buffers with good sizes stay in
2137         * the buffer cache.  The kernel moves inodes in buffers of 1 block
2138         * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger.  The inode
2139         * buffers in the log can be a different size if the log was generated
2140         * by an older kernel using unclustered inode buffers or a newer kernel
2141         * running with a different inode cluster size.  Regardless, if the
2142         * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2143         * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2144         * the buffer out of the buffer cache so that the buffer won't
2145         * overlap with future reads of those inodes.
2146         */
2147        if (XFS_DINODE_MAGIC ==
2148            be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2149            (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2150                        (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2151                XFS_BUF_STALE(bp);
2152                error = xfs_bwrite(mp, bp);
2153        } else {
2154                ASSERT(bp->b_target->bt_mount == mp);
2155                XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2156                xfs_bdwrite(mp, bp);
2157        }
2158
2159        return (error);
2160}
2161
2162STATIC int
2163xlog_recover_inode_pass2(
2164        xlog_t                  *log,
2165        xlog_recover_item_t     *item)
2166{
2167        xfs_inode_log_format_t  *in_f;
2168        xfs_mount_t             *mp = log->l_mp;
2169        xfs_buf_t               *bp;
2170        xfs_dinode_t            *dip;
2171        int                     len;
2172        xfs_caddr_t             src;
2173        xfs_caddr_t             dest;
2174        int                     error;
2175        int                     attr_index;
2176        uint                    fields;
2177        xfs_icdinode_t          *dicp;
2178        int                     need_free = 0;
2179
2180        if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2181                in_f = item->ri_buf[0].i_addr;
2182        } else {
2183                in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2184                need_free = 1;
2185                error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2186                if (error)
2187                        goto error;
2188        }
2189
2190        /*
2191         * Inode buffers can be freed, look out for it,
2192         * and do not replay the inode.
2193         */
2194        if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2195                                        in_f->ilf_len, 0)) {
2196                error = 0;
2197                trace_xfs_log_recover_inode_cancel(log, in_f);
2198                goto error;
2199        }
2200        trace_xfs_log_recover_inode_recover(log, in_f);
2201
2202        bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2203                          XBF_LOCK);
2204        if (XFS_BUF_ISERROR(bp)) {
2205                xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2206                                  bp, in_f->ilf_blkno);
2207                error = XFS_BUF_GETERROR(bp);
2208                xfs_buf_relse(bp);
2209                goto error;
2210        }
2211        error = 0;
2212        ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2213        dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2214
2215        /*
2216         * Make sure the place we're flushing out to really looks
2217         * like an inode!
2218         */
2219        if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
2220                xfs_buf_relse(bp);
2221                xfs_fs_cmn_err(CE_ALERT, mp,
2222                        "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2223                        dip, bp, in_f->ilf_ino);
2224                XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2225                                 XFS_ERRLEVEL_LOW, mp);
2226                error = EFSCORRUPTED;
2227                goto error;
2228        }
2229        dicp = item->ri_buf[1].i_addr;
2230        if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2231                xfs_buf_relse(bp);
2232                xfs_fs_cmn_err(CE_ALERT, mp,
2233                        "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2234                        item, in_f->ilf_ino);
2235                XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2236                                 XFS_ERRLEVEL_LOW, mp);
2237                error = EFSCORRUPTED;
2238                goto error;
2239        }
2240
2241        /* Skip replay when the on disk inode is newer than the log one */
2242        if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2243                /*
2244                 * Deal with the wrap case, DI_MAX_FLUSH is less
2245                 * than smaller numbers
2246                 */
2247                if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2248                    dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2249                        /* do nothing */
2250                } else {
2251                        xfs_buf_relse(bp);
2252                        trace_xfs_log_recover_inode_skip(log, in_f);
2253                        error = 0;
2254                        goto error;
2255                }
2256        }
2257        /* Take the opportunity to reset the flush iteration count */
2258        dicp->di_flushiter = 0;
2259
2260        if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2261                if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2262                    (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2263                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2264                                         XFS_ERRLEVEL_LOW, mp, dicp);
2265                        xfs_buf_relse(bp);
2266                        xfs_fs_cmn_err(CE_ALERT, mp,
2267                                "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2268                                item, dip, bp, in_f->ilf_ino);
2269                        error = EFSCORRUPTED;
2270                        goto error;
2271                }
2272        } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2273                if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2274                    (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2275                    (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2276                        XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2277                                             XFS_ERRLEVEL_LOW, mp, dicp);
2278                        xfs_buf_relse(bp);
2279                        xfs_fs_cmn_err(CE_ALERT, mp,
2280                                "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2281                                item, dip, bp, in_f->ilf_ino);
2282                        error = EFSCORRUPTED;
2283                        goto error;
2284                }
2285        }
2286        if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2287                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2288                                     XFS_ERRLEVEL_LOW, mp, dicp);
2289                xfs_buf_relse(bp);
2290                xfs_fs_cmn_err(CE_ALERT, mp,
2291                        "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2292                        item, dip, bp, in_f->ilf_ino,
2293                        dicp->di_nextents + dicp->di_anextents,
2294                        dicp->di_nblocks);
2295                error = EFSCORRUPTED;
2296                goto error;
2297        }
2298        if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2299                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2300                                     XFS_ERRLEVEL_LOW, mp, dicp);
2301                xfs_buf_relse(bp);
2302                xfs_fs_cmn_err(CE_ALERT, mp,
2303                        "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2304                        item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2305                error = EFSCORRUPTED;
2306                goto error;
2307        }
2308        if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2309                XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2310                                     XFS_ERRLEVEL_LOW, mp, dicp);
2311                xfs_buf_relse(bp);
2312                xfs_fs_cmn_err(CE_ALERT, mp,
2313                        "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2314                        item->ri_buf[1].i_len, item);
2315                error = EFSCORRUPTED;
2316                goto error;
2317        }
2318
2319        /* The core is in in-core format */
2320        xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2321
2322        /* the rest is in on-disk format */
2323        if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2324                memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2325                        item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2326                        item->ri_buf[1].i_len  - sizeof(struct xfs_icdinode));
2327        }
2328
2329        fields = in_f->ilf_fields;
2330        switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2331        case XFS_ILOG_DEV:
2332                xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2333                break;
2334        case XFS_ILOG_UUID:
2335                memcpy(XFS_DFORK_DPTR(dip),
2336                       &in_f->ilf_u.ilfu_uuid,
2337                       sizeof(uuid_t));
2338                break;
2339        }
2340
2341        if (in_f->ilf_size == 2)
2342                goto write_inode_buffer;
2343        len = item->ri_buf[2].i_len;
2344        src = item->ri_buf[2].i_addr;
2345        ASSERT(in_f->ilf_size <= 4);
2346        ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2347        ASSERT(!(fields & XFS_ILOG_DFORK) ||
2348               (len == in_f->ilf_dsize));
2349
2350        switch (fields & XFS_ILOG_DFORK) {
2351        case XFS_ILOG_DDATA:
2352        case XFS_ILOG_DEXT:
2353                memcpy(XFS_DFORK_DPTR(dip), src, len);
2354                break;
2355
2356        case XFS_ILOG_DBROOT:
2357                xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2358                                 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2359                                 XFS_DFORK_DSIZE(dip, mp));
2360                break;
2361
2362        default:
2363                /*
2364                 * There are no data fork flags set.
2365                 */
2366                ASSERT((fields & XFS_ILOG_DFORK) == 0);
2367                break;
2368        }
2369
2370        /*
2371         * If we logged any attribute data, recover it.  There may or
2372         * may not have been any other non-core data logged in this
2373         * transaction.
2374         */
2375        if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2376                if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2377                        attr_index = 3;
2378                } else {
2379                        attr_index = 2;
2380                }
2381                len = item->ri_buf[attr_index].i_len;
2382                src = item->ri_buf[attr_index].i_addr;
2383                ASSERT(len == in_f->ilf_asize);
2384
2385                switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2386                case XFS_ILOG_ADATA:
2387                case XFS_ILOG_AEXT:
2388                        dest = XFS_DFORK_APTR(dip);
2389                        ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2390                        memcpy(dest, src, len);
2391                        break;
2392
2393                case XFS_ILOG_ABROOT:
2394                        dest = XFS_DFORK_APTR(dip);
2395                        xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2396                                         len, (xfs_bmdr_block_t*)dest,
2397                                         XFS_DFORK_ASIZE(dip, mp));
2398                        break;
2399
2400                default:
2401                        xlog_warn("XFS: xlog_recover_inode_pass2: Invalid flag");
2402                        ASSERT(0);
2403                        xfs_buf_relse(bp);
2404                        error = EIO;
2405                        goto error;
2406                }
2407        }
2408
2409write_inode_buffer:
2410        ASSERT(bp->b_target->bt_mount == mp);
2411        XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2412        xfs_bdwrite(mp, bp);
2413error:
2414        if (need_free)
2415                kmem_free(in_f);
2416        return XFS_ERROR(error);
2417}
2418
2419/*
2420 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2421 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2422 * of that type.
2423 */
2424STATIC int
2425xlog_recover_quotaoff_pass1(
2426        xlog_t                  *log,
2427        xlog_recover_item_t     *item)
2428{
2429        xfs_qoff_logformat_t    *qoff_f = item->ri_buf[0].i_addr;
2430        ASSERT(qoff_f);
2431
2432        /*
2433         * The logitem format's flag tells us if this was user quotaoff,
2434         * group/project quotaoff or both.
2435         */
2436        if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2437                log->l_quotaoffs_flag |= XFS_DQ_USER;
2438        if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2439                log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2440        if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2441                log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2442
2443        return (0);
2444}
2445
2446/*
2447 * Recover a dquot record
2448 */
2449STATIC int
2450xlog_recover_dquot_pass2(
2451        xlog_t                  *log,
2452        xlog_recover_item_t     *item)
2453{
2454        xfs_mount_t             *mp = log->l_mp;
2455        xfs_buf_t               *bp;
2456        struct xfs_disk_dquot   *ddq, *recddq;
2457        int                     error;
2458        xfs_dq_logformat_t      *dq_f;
2459        uint                    type;
2460
2461
2462        /*
2463         * Filesystems are required to send in quota flags at mount time.
2464         */
2465        if (mp->m_qflags == 0)
2466                return (0);
2467
2468        recddq = item->ri_buf[1].i_addr;
2469        if (recddq == NULL) {
2470                cmn_err(CE_ALERT,
2471                        "XFS: NULL dquot in %s.", __func__);
2472                return XFS_ERROR(EIO);
2473        }
2474        if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2475                cmn_err(CE_ALERT,
2476                        "XFS: dquot too small (%d) in %s.",
2477                        item->ri_buf[1].i_len, __func__);
2478                return XFS_ERROR(EIO);
2479        }
2480
2481        /*
2482         * This type of quotas was turned off, so ignore this record.
2483         */
2484        type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2485        ASSERT(type);
2486        if (log->l_quotaoffs_flag & type)
2487                return (0);
2488
2489        /*
2490         * At this point we know that quota was _not_ turned off.
2491         * Since the mount flags are not indicating to us otherwise, this
2492         * must mean that quota is on, and the dquot needs to be replayed.
2493         * Remember that we may not have fully recovered the superblock yet,
2494         * so we can't do the usual trick of looking at the SB quota bits.
2495         *
2496         * The other possibility, of course, is that the quota subsystem was
2497         * removed since the last mount - ENOSYS.
2498         */
2499        dq_f = item->ri_buf[0].i_addr;
2500        ASSERT(dq_f);
2501        if ((error = xfs_qm_dqcheck(recddq,
2502                           dq_f->qlf_id,
2503                           0, XFS_QMOPT_DOWARN,
2504                           "xlog_recover_dquot_pass2 (log copy)"))) {
2505                return XFS_ERROR(EIO);
2506        }
2507        ASSERT(dq_f->qlf_len == 1);
2508
2509        error = xfs_read_buf(mp, mp->m_ddev_targp,
2510                             dq_f->qlf_blkno,
2511                             XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2512                             0, &bp);
2513        if (error) {
2514                xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2515                                  bp, dq_f->qlf_blkno);
2516                return error;
2517        }
2518        ASSERT(bp);
2519        ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2520
2521        /*
2522         * At least the magic num portion should be on disk because this
2523         * was among a chunk of dquots created earlier, and we did some
2524         * minimal initialization then.
2525         */
2526        if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2527                           "xlog_recover_dquot_pass2")) {
2528                xfs_buf_relse(bp);
2529                return XFS_ERROR(EIO);
2530        }
2531
2532        memcpy(ddq, recddq, item->ri_buf[1].i_len);
2533
2534        ASSERT(dq_f->qlf_size == 2);
2535        ASSERT(bp->b_target->bt_mount == mp);
2536        XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2537        xfs_bdwrite(mp, bp);
2538
2539        return (0);
2540}
2541
2542/*
2543 * This routine is called to create an in-core extent free intent
2544 * item from the efi format structure which was logged on disk.
2545 * It allocates an in-core efi, copies the extents from the format
2546 * structure into it, and adds the efi to the AIL with the given
2547 * LSN.
2548 */
2549STATIC int
2550xlog_recover_efi_pass2(
2551        xlog_t                  *log,
2552        xlog_recover_item_t     *item,
2553        xfs_lsn_t               lsn)
2554{
2555        int                     error;
2556        xfs_mount_t             *mp = log->l_mp;
2557        xfs_efi_log_item_t      *efip;
2558        xfs_efi_log_format_t    *efi_formatp;
2559
2560        efi_formatp = item->ri_buf[0].i_addr;
2561
2562        efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2563        if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2564                                         &(efip->efi_format)))) {
2565                xfs_efi_item_free(efip);
2566                return error;
2567        }
2568        atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2569
2570        spin_lock(&log->l_ailp->xa_lock);
2571        /*
2572         * xfs_trans_ail_update() drops the AIL lock.
2573         */
2574        xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2575        return 0;
2576}
2577
2578
2579/*
2580 * This routine is called when an efd format structure is found in
2581 * a committed transaction in the log.  It's purpose is to cancel
2582 * the corresponding efi if it was still in the log.  To do this
2583 * it searches the AIL for the efi with an id equal to that in the
2584 * efd format structure.  If we find it, we remove the efi from the
2585 * AIL and free it.
2586 */
2587STATIC int
2588xlog_recover_efd_pass2(
2589        xlog_t                  *log,
2590        xlog_recover_item_t     *item)
2591{
2592        xfs_efd_log_format_t    *efd_formatp;
2593        xfs_efi_log_item_t      *efip = NULL;
2594        xfs_log_item_t          *lip;
2595        __uint64_t              efi_id;
2596        struct xfs_ail_cursor   cur;
2597        struct xfs_ail          *ailp = log->l_ailp;
2598
2599        efd_formatp = item->ri_buf[0].i_addr;
2600        ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2601                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2602               (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2603                ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2604        efi_id = efd_formatp->efd_efi_id;
2605
2606        /*
2607         * Search for the efi with the id in the efd format structure
2608         * in the AIL.
2609         */
2610        spin_lock(&ailp->xa_lock);
2611        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2612        while (lip != NULL) {
2613                if (lip->li_type == XFS_LI_EFI) {
2614                        efip = (xfs_efi_log_item_t *)lip;
2615                        if (efip->efi_format.efi_id == efi_id) {
2616                                /*
2617                                 * xfs_trans_ail_delete() drops the
2618                                 * AIL lock.
2619                                 */
2620                                xfs_trans_ail_delete(ailp, lip);
2621                                xfs_efi_item_free(efip);
2622                                spin_lock(&ailp->xa_lock);
2623                                break;
2624                        }
2625                }
2626                lip = xfs_trans_ail_cursor_next(ailp, &cur);
2627        }
2628        xfs_trans_ail_cursor_done(ailp, &cur);
2629        spin_unlock(&ailp->xa_lock);
2630
2631        return 0;
2632}
2633
2634/*
2635 * Free up any resources allocated by the transaction
2636 *
2637 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2638 */
2639STATIC void
2640xlog_recover_free_trans(
2641        struct xlog_recover     *trans)
2642{
2643        xlog_recover_item_t     *item, *n;
2644        int                     i;
2645
2646        list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2647                /* Free the regions in the item. */
2648                list_del(&item->ri_list);
2649                for (i = 0; i < item->ri_cnt; i++)
2650                        kmem_free(item->ri_buf[i].i_addr);
2651                /* Free the item itself */
2652                kmem_free(item->ri_buf);
2653                kmem_free(item);
2654        }
2655        /* Free the transaction recover structure */
2656        kmem_free(trans);
2657}
2658
2659STATIC int
2660xlog_recover_commit_pass1(
2661        struct log              *log,
2662        struct xlog_recover     *trans,
2663        xlog_recover_item_t     *item)
2664{
2665        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2666
2667        switch (ITEM_TYPE(item)) {
2668        case XFS_LI_BUF:
2669                return xlog_recover_buffer_pass1(log, item);
2670        case XFS_LI_QUOTAOFF:
2671                return xlog_recover_quotaoff_pass1(log, item);
2672        case XFS_LI_INODE:
2673        case XFS_LI_EFI:
2674        case XFS_LI_EFD:
2675        case XFS_LI_DQUOT:
2676                /* nothing to do in pass 1 */
2677                return 0;
2678        default:
2679                xlog_warn(
2680        "XFS: invalid item type (%d) xlog_recover_commit_pass1",
2681                        ITEM_TYPE(item));
2682                ASSERT(0);
2683                return XFS_ERROR(EIO);
2684        }
2685}
2686
2687STATIC int
2688xlog_recover_commit_pass2(
2689        struct log              *log,
2690        struct xlog_recover     *trans,
2691        xlog_recover_item_t     *item)
2692{
2693        trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2694
2695        switch (ITEM_TYPE(item)) {
2696        case XFS_LI_BUF:
2697                return xlog_recover_buffer_pass2(log, item);
2698        case XFS_LI_INODE:
2699                return xlog_recover_inode_pass2(log, item);
2700        case XFS_LI_EFI:
2701                return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2702        case XFS_LI_EFD:
2703                return xlog_recover_efd_pass2(log, item);
2704        case XFS_LI_DQUOT:
2705                return xlog_recover_dquot_pass2(log, item);
2706        case XFS_LI_QUOTAOFF:
2707                /* nothing to do in pass2 */
2708                return 0;
2709        default:
2710                xlog_warn(
2711        "XFS: invalid item type (%d) xlog_recover_commit_pass2",
2712                        ITEM_TYPE(item));
2713                ASSERT(0);
2714                return XFS_ERROR(EIO);
2715        }
2716}
2717
2718/*
2719 * Perform the transaction.
2720 *
2721 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2722 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2723 */
2724STATIC int
2725xlog_recover_commit_trans(
2726        struct log              *log,
2727        struct xlog_recover     *trans,
2728        int                     pass)
2729{
2730        int                     error = 0;
2731        xlog_recover_item_t     *item;
2732
2733        hlist_del(&trans->r_list);
2734
2735        error = xlog_recover_reorder_trans(log, trans, pass);
2736        if (error)
2737                return error;
2738
2739        list_for_each_entry(item, &trans->r_itemq, ri_list) {
2740                if (pass == XLOG_RECOVER_PASS1)
2741                        error = xlog_recover_commit_pass1(log, trans, item);
2742                else
2743                        error = xlog_recover_commit_pass2(log, trans, item);
2744                if (error)
2745                        return error;
2746        }
2747
2748        xlog_recover_free_trans(trans);
2749        return 0;
2750}
2751
2752STATIC int
2753xlog_recover_unmount_trans(
2754        xlog_recover_t          *trans)
2755{
2756        /* Do nothing now */
2757        xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2758        return 0;
2759}
2760
2761/*
2762 * There are two valid states of the r_state field.  0 indicates that the
2763 * transaction structure is in a normal state.  We have either seen the
2764 * start of the transaction or the last operation we added was not a partial
2765 * operation.  If the last operation we added to the transaction was a
2766 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2767 *
2768 * NOTE: skip LRs with 0 data length.
2769 */
2770STATIC int
2771xlog_recover_process_data(
2772        xlog_t                  *log,
2773        struct hlist_head       rhash[],
2774        xlog_rec_header_t       *rhead,
2775        xfs_caddr_t             dp,
2776        int                     pass)
2777{
2778        xfs_caddr_t             lp;
2779        int                     num_logops;
2780        xlog_op_header_t        *ohead;
2781        xlog_recover_t          *trans;
2782        xlog_tid_t              tid;
2783        int                     error;
2784        unsigned long           hash;
2785        uint                    flags;
2786
2787        lp = dp + be32_to_cpu(rhead->h_len);
2788        num_logops = be32_to_cpu(rhead->h_num_logops);
2789
2790        /* check the log format matches our own - else we can't recover */
2791        if (xlog_header_check_recover(log->l_mp, rhead))
2792                return (XFS_ERROR(EIO));
2793
2794        while ((dp < lp) && num_logops) {
2795                ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2796                ohead = (xlog_op_header_t *)dp;
2797                dp += sizeof(xlog_op_header_t);
2798                if (ohead->oh_clientid != XFS_TRANSACTION &&
2799                    ohead->oh_clientid != XFS_LOG) {
2800                        xlog_warn(
2801                "XFS: xlog_recover_process_data: bad clientid");
2802                        ASSERT(0);
2803                        return (XFS_ERROR(EIO));
2804                }
2805                tid = be32_to_cpu(ohead->oh_tid);
2806                hash = XLOG_RHASH(tid);
2807                trans = xlog_recover_find_tid(&rhash[hash], tid);
2808                if (trans == NULL) {               /* not found; add new tid */
2809                        if (ohead->oh_flags & XLOG_START_TRANS)
2810                                xlog_recover_new_tid(&rhash[hash], tid,
2811                                        be64_to_cpu(rhead->h_lsn));
2812                } else {
2813                        if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2814                                xlog_warn(
2815                        "XFS: xlog_recover_process_data: bad length");
2816                                WARN_ON(1);
2817                                return (XFS_ERROR(EIO));
2818                        }
2819                        flags = ohead->oh_flags & ~XLOG_END_TRANS;
2820                        if (flags & XLOG_WAS_CONT_TRANS)
2821                                flags &= ~XLOG_CONTINUE_TRANS;
2822                        switch (flags) {
2823                        case XLOG_COMMIT_TRANS:
2824                                error = xlog_recover_commit_trans(log,
2825                                                                trans, pass);
2826                                break;
2827                        case XLOG_UNMOUNT_TRANS:
2828                                error = xlog_recover_unmount_trans(trans);
2829                                break;
2830                        case XLOG_WAS_CONT_TRANS:
2831                                error = xlog_recover_add_to_cont_trans(log,
2832                                                trans, dp,
2833                                                be32_to_cpu(ohead->oh_len));
2834                                break;
2835                        case XLOG_START_TRANS:
2836                                xlog_warn(
2837                        "XFS: xlog_recover_process_data: bad transaction");
2838                                ASSERT(0);
2839                                error = XFS_ERROR(EIO);
2840                                break;
2841                        case 0:
2842                        case XLOG_CONTINUE_TRANS:
2843                                error = xlog_recover_add_to_trans(log, trans,
2844                                                dp, be32_to_cpu(ohead->oh_len));
2845                                break;
2846                        default:
2847                                xlog_warn(
2848                        "XFS: xlog_recover_process_data: bad flag");
2849                                ASSERT(0);
2850                                error = XFS_ERROR(EIO);
2851                                break;
2852                        }
2853                        if (error)
2854                                return error;
2855                }
2856                dp += be32_to_cpu(ohead->oh_len);
2857                num_logops--;
2858        }
2859        return 0;
2860}
2861
2862/*
2863 * Process an extent free intent item that was recovered from
2864 * the log.  We need to free the extents that it describes.
2865 */
2866STATIC int
2867xlog_recover_process_efi(
2868        xfs_mount_t             *mp,
2869        xfs_efi_log_item_t      *efip)
2870{
2871        xfs_efd_log_item_t      *efdp;
2872        xfs_trans_t             *tp;
2873        int                     i;
2874        int                     error = 0;
2875        xfs_extent_t            *extp;
2876        xfs_fsblock_t           startblock_fsb;
2877
2878        ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2879
2880        /*
2881         * First check the validity of the extents described by the
2882         * EFI.  If any are bad, then assume that all are bad and
2883         * just toss the EFI.
2884         */
2885        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2886                extp = &(efip->efi_format.efi_extents[i]);
2887                startblock_fsb = XFS_BB_TO_FSB(mp,
2888                                   XFS_FSB_TO_DADDR(mp, extp->ext_start));
2889                if ((startblock_fsb == 0) ||
2890                    (extp->ext_len == 0) ||
2891                    (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2892                    (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2893                        /*
2894                         * This will pull the EFI from the AIL and
2895                         * free the memory associated with it.
2896                         */
2897                        xfs_efi_release(efip, efip->efi_format.efi_nextents);
2898                        return XFS_ERROR(EIO);
2899                }
2900        }
2901
2902        tp = xfs_trans_alloc(mp, 0);
2903        error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2904        if (error)
2905                goto abort_error;
2906        efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2907
2908        for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2909                extp = &(efip->efi_format.efi_extents[i]);
2910                error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2911                if (error)
2912                        goto abort_error;
2913                xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2914                                         extp->ext_len);
2915        }
2916
2917        set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2918        error = xfs_trans_commit(tp, 0);
2919        return error;
2920
2921abort_error:
2922        xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2923        return error;
2924}
2925
2926/*
2927 * When this is called, all of the EFIs which did not have
2928 * corresponding EFDs should be in the AIL.  What we do now
2929 * is free the extents associated with each one.
2930 *
2931 * Since we process the EFIs in normal transactions, they
2932 * will be removed at some point after the commit.  This prevents
2933 * us from just walking down the list processing each one.
2934 * We'll use a flag in the EFI to skip those that we've already
2935 * processed and use the AIL iteration mechanism's generation
2936 * count to try to speed this up at least a bit.
2937 *
2938 * When we start, we know that the EFIs are the only things in
2939 * the AIL.  As we process them, however, other items are added
2940 * to the AIL.  Since everything added to the AIL must come after
2941 * everything already in the AIL, we stop processing as soon as
2942 * we see something other than an EFI in the AIL.
2943 */
2944STATIC int
2945xlog_recover_process_efis(
2946        xlog_t                  *log)
2947{
2948        xfs_log_item_t          *lip;
2949        xfs_efi_log_item_t      *efip;
2950        int                     error = 0;
2951        struct xfs_ail_cursor   cur;
2952        struct xfs_ail          *ailp;
2953
2954        ailp = log->l_ailp;
2955        spin_lock(&ailp->xa_lock);
2956        lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2957        while (lip != NULL) {
2958                /*
2959                 * We're done when we see something other than an EFI.
2960                 * There should be no EFIs left in the AIL now.
2961                 */
2962                if (lip->li_type != XFS_LI_EFI) {
2963#ifdef DEBUG
2964                        for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2965                                ASSERT(lip->li_type != XFS_LI_EFI);
2966#endif
2967                        break;
2968                }
2969
2970                /*
2971                 * Skip EFIs that we've already processed.
2972                 */
2973                efip = (xfs_efi_log_item_t *)lip;
2974                if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
2975                        lip = xfs_trans_ail_cursor_next(ailp, &cur);
2976                        continue;
2977                }
2978
2979                spin_unlock(&ailp->xa_lock);
2980                error = xlog_recover_process_efi(log->l_mp, efip);
2981                spin_lock(&ailp->xa_lock);
2982                if (error)
2983                        goto out;
2984                lip = xfs_trans_ail_cursor_next(ailp, &cur);
2985        }
2986out:
2987        xfs_trans_ail_cursor_done(ailp, &cur);
2988        spin_unlock(&ailp->xa_lock);
2989        return error;
2990}
2991
2992/*
2993 * This routine performs a transaction to null out a bad inode pointer
2994 * in an agi unlinked inode hash bucket.
2995 */
2996STATIC void
2997xlog_recover_clear_agi_bucket(
2998        xfs_mount_t     *mp,
2999        xfs_agnumber_t  agno,
3000        int             bucket)
3001{
3002        xfs_trans_t     *tp;
3003        xfs_agi_t       *agi;
3004        xfs_buf_t       *agibp;
3005        int             offset;
3006        int             error;
3007
3008        tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3009        error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3010                                  0, 0, 0);
3011        if (error)
3012                goto out_abort;
3013
3014        error = xfs_read_agi(mp, tp, agno, &agibp);
3015        if (error)
3016                goto out_abort;
3017
3018        agi = XFS_BUF_TO_AGI(agibp);
3019        agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3020        offset = offsetof(xfs_agi_t, agi_unlinked) +
3021                 (sizeof(xfs_agino_t) * bucket);
3022        xfs_trans_log_buf(tp, agibp, offset,
3023                          (offset + sizeof(xfs_agino_t) - 1));
3024
3025        error = xfs_trans_commit(tp, 0);
3026        if (error)
3027                goto out_error;
3028        return;
3029
3030out_abort:
3031        xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3032out_error:
3033        xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3034                        "failed to clear agi %d. Continuing.", agno);
3035        return;
3036}
3037
3038STATIC xfs_agino_t
3039xlog_recover_process_one_iunlink(
3040        struct xfs_mount                *mp,
3041        xfs_agnumber_t                  agno,
3042        xfs_agino_t                     agino,
3043        int                             bucket)
3044{
3045        struct xfs_buf                  *ibp;
3046        struct xfs_dinode               *dip;
3047        struct xfs_inode                *ip;
3048        xfs_ino_t                       ino;
3049        int                             error;
3050
3051        ino = XFS_AGINO_TO_INO(mp, agno, agino);
3052        error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3053        if (error)
3054                goto fail;
3055
3056        /*
3057         * Get the on disk inode to find the next inode in the bucket.
3058         */
3059        error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3060        if (error)
3061                goto fail_iput;
3062
3063        ASSERT(ip->i_d.di_nlink == 0);
3064        ASSERT(ip->i_d.di_mode != 0);
3065
3066        /* setup for the next pass */
3067        agino = be32_to_cpu(dip->di_next_unlinked);
3068        xfs_buf_relse(ibp);
3069
3070        /*
3071         * Prevent any DMAPI event from being sent when the reference on
3072         * the inode is dropped.
3073         */
3074        ip->i_d.di_dmevmask = 0;
3075
3076        IRELE(ip);
3077        return agino;
3078
3079 fail_iput:
3080        IRELE(ip);
3081 fail:
3082        /*
3083         * We can't read in the inode this bucket points to, or this inode
3084         * is messed up.  Just ditch this bucket of inodes.  We will lose
3085         * some inodes and space, but at least we won't hang.
3086         *
3087         * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3088         * clear the inode pointer in the bucket.
3089         */
3090        xlog_recover_clear_agi_bucket(mp, agno, bucket);
3091        return NULLAGINO;
3092}
3093
3094/*
3095 * xlog_iunlink_recover
3096 *
3097 * This is called during recovery to process any inodes which
3098 * we unlinked but not freed when the system crashed.  These
3099 * inodes will be on the lists in the AGI blocks.  What we do
3100 * here is scan all the AGIs and fully truncate and free any
3101 * inodes found on the lists.  Each inode is removed from the
3102 * lists when it has been fully truncated and is freed.  The
3103 * freeing of the inode and its removal from the list must be
3104 * atomic.
3105 */
3106STATIC void
3107xlog_recover_process_iunlinks(
3108        xlog_t          *log)
3109{
3110        xfs_mount_t     *mp;
3111        xfs_agnumber_t  agno;
3112        xfs_agi_t       *agi;
3113        xfs_buf_t       *agibp;
3114        xfs_agino_t     agino;
3115        int             bucket;
3116        int             error;
3117        uint            mp_dmevmask;
3118
3119        mp = log->l_mp;
3120
3121        /*
3122         * Prevent any DMAPI event from being sent while in this function.
3123         */
3124        mp_dmevmask = mp->m_dmevmask;
3125        mp->m_dmevmask = 0;
3126
3127        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3128                /*
3129                 * Find the agi for this ag.
3130                 */
3131                error = xfs_read_agi(mp, NULL, agno, &agibp);
3132                if (error) {
3133                        /*
3134                         * AGI is b0rked. Don't process it.
3135                         *
3136                         * We should probably mark the filesystem as corrupt
3137                         * after we've recovered all the ag's we can....
3138                         */
3139                        continue;
3140                }
3141                agi = XFS_BUF_TO_AGI(agibp);
3142
3143                for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3144                        agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3145                        while (agino != NULLAGINO) {
3146                                /*
3147                                 * Release the agi buffer so that it can
3148                                 * be acquired in the normal course of the
3149                                 * transaction to truncate and free the inode.
3150                                 */
3151                                xfs_buf_relse(agibp);
3152
3153                                agino = xlog_recover_process_one_iunlink(mp,
3154                                                        agno, agino, bucket);
3155
3156                                /*
3157                                 * Reacquire the agibuffer and continue around
3158                                 * the loop. This should never fail as we know
3159                                 * the buffer was good earlier on.
3160                                 */
3161                                error = xfs_read_agi(mp, NULL, agno, &agibp);
3162                                ASSERT(error == 0);
3163                                agi = XFS_BUF_TO_AGI(agibp);
3164                        }
3165                }
3166
3167                /*
3168                 * Release the buffer for the current agi so we can
3169                 * go on to the next one.
3170                 */
3171                xfs_buf_relse(agibp);
3172        }
3173
3174        mp->m_dmevmask = mp_dmevmask;
3175}
3176
3177
3178#ifdef DEBUG
3179STATIC void
3180xlog_pack_data_checksum(
3181        xlog_t          *log,
3182        xlog_in_core_t  *iclog,
3183        int             size)
3184{
3185        int             i;
3186        __be32          *up;
3187        uint            chksum = 0;
3188
3189        up = (__be32 *)iclog->ic_datap;
3190        /* divide length by 4 to get # words */
3191        for (i = 0; i < (size >> 2); i++) {
3192                chksum ^= be32_to_cpu(*up);
3193                up++;
3194        }
3195        iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3196}
3197#else
3198#define xlog_pack_data_checksum(log, iclog, size)
3199#endif
3200
3201/*
3202 * Stamp cycle number in every block
3203 */
3204void
3205xlog_pack_data(
3206        xlog_t                  *log,
3207        xlog_in_core_t          *iclog,
3208        int                     roundoff)
3209{
3210        int                     i, j, k;
3211        int                     size = iclog->ic_offset + roundoff;
3212        __be32                  cycle_lsn;
3213        xfs_caddr_t             dp;
3214
3215        xlog_pack_data_checksum(log, iclog, size);
3216
3217        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3218
3219        dp = iclog->ic_datap;
3220        for (i = 0; i < BTOBB(size) &&
3221                i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3222                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3223                *(__be32 *)dp = cycle_lsn;
3224                dp += BBSIZE;
3225        }
3226
3227        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3228                xlog_in_core_2_t *xhdr = iclog->ic_data;
3229
3230                for ( ; i < BTOBB(size); i++) {
3231                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3232                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3233                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3234                        *(__be32 *)dp = cycle_lsn;
3235                        dp += BBSIZE;
3236                }
3237
3238                for (i = 1; i < log->l_iclog_heads; i++) {
3239                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3240                }
3241        }
3242}
3243
3244STATIC void
3245xlog_unpack_data(
3246        xlog_rec_header_t       *rhead,
3247        xfs_caddr_t             dp,
3248        xlog_t                  *log)
3249{
3250        int                     i, j, k;
3251
3252        for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3253                  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3254                *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3255                dp += BBSIZE;
3256        }
3257
3258        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3259                xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3260                for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3261                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3262                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3263                        *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3264                        dp += BBSIZE;
3265                }
3266        }
3267}
3268
3269STATIC int
3270xlog_valid_rec_header(
3271        xlog_t                  *log,
3272        xlog_rec_header_t       *rhead,
3273        xfs_daddr_t             blkno)
3274{
3275        int                     hlen;
3276
3277        if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
3278                XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3279                                XFS_ERRLEVEL_LOW, log->l_mp);
3280                return XFS_ERROR(EFSCORRUPTED);
3281        }
3282        if (unlikely(
3283            (!rhead->h_version ||
3284            (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3285                xlog_warn("XFS: %s: unrecognised log version (%d).",
3286                        __func__, be32_to_cpu(rhead->h_version));
3287                return XFS_ERROR(EIO);
3288        }
3289
3290        /* LR body must have data or it wouldn't have been written */
3291        hlen = be32_to_cpu(rhead->h_len);
3292        if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3293                XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3294                                XFS_ERRLEVEL_LOW, log->l_mp);
3295                return XFS_ERROR(EFSCORRUPTED);
3296        }
3297        if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3298                XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3299                                XFS_ERRLEVEL_LOW, log->l_mp);
3300                return XFS_ERROR(EFSCORRUPTED);
3301        }
3302        return 0;
3303}
3304
3305/*
3306 * Read the log from tail to head and process the log records found.
3307 * Handle the two cases where the tail and head are in the same cycle
3308 * and where the active portion of the log wraps around the end of
3309 * the physical log separately.  The pass parameter is passed through
3310 * to the routines called to process the data and is not looked at
3311 * here.
3312 */
3313STATIC int
3314xlog_do_recovery_pass(
3315        xlog_t                  *log,
3316        xfs_daddr_t             head_blk,
3317        xfs_daddr_t             tail_blk,
3318        int                     pass)
3319{
3320        xlog_rec_header_t       *rhead;
3321        xfs_daddr_t             blk_no;
3322        xfs_caddr_t             offset;
3323        xfs_buf_t               *hbp, *dbp;
3324        int                     error = 0, h_size;
3325        int                     bblks, split_bblks;
3326        int                     hblks, split_hblks, wrapped_hblks;
3327        struct hlist_head       rhash[XLOG_RHASH_SIZE];
3328
3329        ASSERT(head_blk != tail_blk);
3330
3331        /*
3332         * Read the header of the tail block and get the iclog buffer size from
3333         * h_size.  Use this to tell how many sectors make up the log header.
3334         */
3335        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3336                /*
3337                 * When using variable length iclogs, read first sector of
3338                 * iclog header and extract the header size from it.  Get a
3339                 * new hbp that is the correct size.
3340                 */
3341                hbp = xlog_get_bp(log, 1);
3342                if (!hbp)
3343                        return ENOMEM;
3344
3345                error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3346                if (error)
3347                        goto bread_err1;
3348
3349                rhead = (xlog_rec_header_t *)offset;
3350                error = xlog_valid_rec_header(log, rhead, tail_blk);
3351                if (error)
3352                        goto bread_err1;
3353                h_size = be32_to_cpu(rhead->h_size);
3354                if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3355                    (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3356                        hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3357                        if (h_size % XLOG_HEADER_CYCLE_SIZE)
3358                                hblks++;
3359                        xlog_put_bp(hbp);
3360                        hbp = xlog_get_bp(log, hblks);
3361                } else {
3362                        hblks = 1;
3363                }
3364        } else {
3365                ASSERT(log->l_sectBBsize == 1);
3366                hblks = 1;
3367                hbp = xlog_get_bp(log, 1);
3368                h_size = XLOG_BIG_RECORD_BSIZE;
3369        }
3370
3371        if (!hbp)
3372                return ENOMEM;
3373        dbp = xlog_get_bp(log, BTOBB(h_size));
3374        if (!dbp) {
3375                xlog_put_bp(hbp);
3376                return ENOMEM;
3377        }
3378
3379        memset(rhash, 0, sizeof(rhash));
3380        if (tail_blk <= head_blk) {
3381                for (blk_no = tail_blk; blk_no < head_blk; ) {
3382                        error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3383                        if (error)
3384                                goto bread_err2;
3385
3386                        rhead = (xlog_rec_header_t *)offset;
3387                        error = xlog_valid_rec_header(log, rhead, blk_no);
3388                        if (error)
3389                                goto bread_err2;
3390
3391                        /* blocks in data section */
3392                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3393                        error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3394                                           &offset);
3395                        if (error)
3396                                goto bread_err2;
3397
3398                        xlog_unpack_data(rhead, offset, log);
3399                        if ((error = xlog_recover_process_data(log,
3400                                                rhash, rhead, offset, pass)))
3401                                goto bread_err2;
3402                        blk_no += bblks + hblks;
3403                }
3404        } else {
3405                /*
3406                 * Perform recovery around the end of the physical log.
3407                 * When the head is not on the same cycle number as the tail,
3408                 * we can't do a sequential recovery as above.
3409                 */
3410                blk_no = tail_blk;
3411                while (blk_no < log->l_logBBsize) {
3412                        /*
3413                         * Check for header wrapping around physical end-of-log
3414                         */
3415                        offset = XFS_BUF_PTR(hbp);
3416                        split_hblks = 0;
3417                        wrapped_hblks = 0;
3418                        if (blk_no + hblks <= log->l_logBBsize) {
3419                                /* Read header in one read */
3420                                error = xlog_bread(log, blk_no, hblks, hbp,
3421                                                   &offset);
3422                                if (error)
3423                                        goto bread_err2;
3424                        } else {
3425                                /* This LR is split across physical log end */
3426                                if (blk_no != log->l_logBBsize) {
3427                                        /* some data before physical log end */
3428                                        ASSERT(blk_no <= INT_MAX);
3429                                        split_hblks = log->l_logBBsize - (int)blk_no;
3430                                        ASSERT(split_hblks > 0);
3431                                        error = xlog_bread(log, blk_no,
3432                                                           split_hblks, hbp,
3433                                                           &offset);
3434                                        if (error)
3435                                                goto bread_err2;
3436                                }
3437
3438                                /*
3439                                 * Note: this black magic still works with
3440                                 * large sector sizes (non-512) only because:
3441                                 * - we increased the buffer size originally
3442                                 *   by 1 sector giving us enough extra space
3443                                 *   for the second read;
3444                                 * - the log start is guaranteed to be sector
3445                                 *   aligned;
3446                                 * - we read the log end (LR header start)
3447                                 *   _first_, then the log start (LR header end)
3448                                 *   - order is important.
3449                                 */
3450                                wrapped_hblks = hblks - split_hblks;
3451                                error = XFS_BUF_SET_PTR(hbp,
3452                                                offset + BBTOB(split_hblks),
3453                                                BBTOB(hblks - split_hblks));
3454                                if (error)
3455                                        goto bread_err2;
3456
3457                                error = xlog_bread_noalign(log, 0,
3458                                                           wrapped_hblks, hbp);
3459                                if (error)
3460                                        goto bread_err2;
3461
3462                                error = XFS_BUF_SET_PTR(hbp, offset,
3463                                                        BBTOB(hblks));
3464                                if (error)
3465                                        goto bread_err2;
3466                        }
3467                        rhead = (xlog_rec_header_t *)offset;
3468                        error = xlog_valid_rec_header(log, rhead,
3469                                                split_hblks ? blk_no : 0);
3470                        if (error)
3471                                goto bread_err2;
3472
3473                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3474                        blk_no += hblks;
3475
3476                        /* Read in data for log record */
3477                        if (blk_no + bblks <= log->l_logBBsize) {
3478                                error = xlog_bread(log, blk_no, bblks, dbp,
3479                                                   &offset);
3480                                if (error)
3481                                        goto bread_err2;
3482                        } else {
3483                                /* This log record is split across the
3484                                 * physical end of log */
3485                                offset = XFS_BUF_PTR(dbp);
3486                                split_bblks = 0;
3487                                if (blk_no != log->l_logBBsize) {
3488                                        /* some data is before the physical
3489                                         * end of log */
3490                                        ASSERT(!wrapped_hblks);
3491                                        ASSERT(blk_no <= INT_MAX);
3492                                        split_bblks =
3493                                                log->l_logBBsize - (int)blk_no;
3494                                        ASSERT(split_bblks > 0);
3495                                        error = xlog_bread(log, blk_no,
3496                                                        split_bblks, dbp,
3497                                                        &offset);
3498                                        if (error)
3499                                                goto bread_err2;
3500                                }
3501
3502                                /*
3503                                 * Note: this black magic still works with
3504                                 * large sector sizes (non-512) only because:
3505                                 * - we increased the buffer size originally
3506                                 *   by 1 sector giving us enough extra space
3507                                 *   for the second read;
3508                                 * - the log start is guaranteed to be sector
3509                                 *   aligned;
3510                                 * - we read the log end (LR header start)
3511                                 *   _first_, then the log start (LR header end)
3512                                 *   - order is important.
3513                                 */
3514                                error = XFS_BUF_SET_PTR(dbp,
3515                                                offset + BBTOB(split_bblks),
3516                                                BBTOB(bblks - split_bblks));
3517                                if (error)
3518                                        goto bread_err2;
3519
3520                                error = xlog_bread_noalign(log, wrapped_hblks,
3521                                                bblks - split_bblks,
3522                                                dbp);
3523                                if (error)
3524                                        goto bread_err2;
3525
3526                                error = XFS_BUF_SET_PTR(dbp, offset, h_size);
3527                                if (error)
3528                                        goto bread_err2;
3529                        }
3530                        xlog_unpack_data(rhead, offset, log);
3531                        if ((error = xlog_recover_process_data(log, rhash,
3532                                                        rhead, offset, pass)))
3533                                goto bread_err2;
3534                        blk_no += bblks;
3535                }
3536
3537                ASSERT(blk_no >= log->l_logBBsize);
3538                blk_no -= log->l_logBBsize;
3539
3540                /* read first part of physical log */
3541                while (blk_no < head_blk) {
3542                        error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3543                        if (error)
3544                                goto bread_err2;
3545
3546                        rhead = (xlog_rec_header_t *)offset;
3547                        error = xlog_valid_rec_header(log, rhead, blk_no);
3548                        if (error)
3549                                goto bread_err2;
3550
3551                        bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3552                        error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3553                                           &offset);
3554                        if (error)
3555                                goto bread_err2;
3556
3557                        xlog_unpack_data(rhead, offset, log);
3558                        if ((error = xlog_recover_process_data(log, rhash,
3559                                                        rhead, offset, pass)))
3560                                goto bread_err2;
3561                        blk_no += bblks + hblks;
3562                }
3563        }
3564
3565 bread_err2:
3566        xlog_put_bp(dbp);
3567 bread_err1:
3568        xlog_put_bp(hbp);
3569        return error;
3570}
3571
3572/*
3573 * Do the recovery of the log.  We actually do this in two phases.
3574 * The two passes are necessary in order to implement the function
3575 * of cancelling a record written into the log.  The first pass
3576 * determines those things which have been cancelled, and the
3577 * second pass replays log items normally except for those which
3578 * have been cancelled.  The handling of the replay and cancellations
3579 * takes place in the log item type specific routines.
3580 *
3581 * The table of items which have cancel records in the log is allocated
3582 * and freed at this level, since only here do we know when all of
3583 * the log recovery has been completed.
3584 */
3585STATIC int
3586xlog_do_log_recovery(
3587        xlog_t          *log,
3588        xfs_daddr_t     head_blk,
3589        xfs_daddr_t     tail_blk)
3590{
3591        int             error, i;
3592
3593        ASSERT(head_blk != tail_blk);
3594
3595        /*
3596         * First do a pass to find all of the cancelled buf log items.
3597         * Store them in the buf_cancel_table for use in the second pass.
3598         */
3599        log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3600                                                 sizeof(struct list_head),
3601                                                 KM_SLEEP);
3602        for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3603                INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3604
3605        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3606                                      XLOG_RECOVER_PASS1);
3607        if (error != 0) {
3608                kmem_free(log->l_buf_cancel_table);
3609                log->l_buf_cancel_table = NULL;
3610                return error;
3611        }
3612        /*
3613         * Then do a second pass to actually recover the items in the log.
3614         * When it is complete free the table of buf cancel items.
3615         */
3616        error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3617                                      XLOG_RECOVER_PASS2);
3618#ifdef DEBUG
3619        if (!error) {
3620                int     i;
3621
3622                for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3623                        ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3624        }
3625#endif  /* DEBUG */
3626
3627        kmem_free(log->l_buf_cancel_table);
3628        log->l_buf_cancel_table = NULL;
3629
3630        return error;
3631}
3632
3633/*
3634 * Do the actual recovery
3635 */
3636STATIC int
3637xlog_do_recover(
3638        xlog_t          *log,
3639        xfs_daddr_t     head_blk,
3640        xfs_daddr_t     tail_blk)
3641{
3642        int             error;
3643        xfs_buf_t       *bp;
3644        xfs_sb_t        *sbp;
3645
3646        /*
3647         * First replay the images in the log.
3648         */
3649        error = xlog_do_log_recovery(log, head_blk, tail_blk);
3650        if (error) {
3651                return error;
3652        }
3653
3654        XFS_bflush(log->l_mp->m_ddev_targp);
3655
3656        /*
3657         * If IO errors happened during recovery, bail out.
3658         */
3659        if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3660                return (EIO);
3661        }
3662
3663        /*
3664         * We now update the tail_lsn since much of the recovery has completed
3665         * and there may be space available to use.  If there were no extent
3666         * or iunlinks, we can free up the entire log and set the tail_lsn to
3667         * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3668         * lsn of the last known good LR on disk.  If there are extent frees
3669         * or iunlinks they will have some entries in the AIL; so we look at
3670         * the AIL to determine how to set the tail_lsn.
3671         */
3672        xlog_assign_tail_lsn(log->l_mp);
3673
3674        /*
3675         * Now that we've finished replaying all buffer and inode
3676         * updates, re-read in the superblock.
3677         */
3678        bp = xfs_getsb(log->l_mp, 0);
3679        XFS_BUF_UNDONE(bp);
3680        ASSERT(!(XFS_BUF_ISWRITE(bp)));
3681        ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3682        XFS_BUF_READ(bp);
3683        XFS_BUF_UNASYNC(bp);
3684        xfsbdstrat(log->l_mp, bp);
3685        error = xfs_buf_iowait(bp);
3686        if (error) {
3687                xfs_ioerror_alert("xlog_do_recover",
3688                                  log->l_mp, bp, XFS_BUF_ADDR(bp));
3689                ASSERT(0);
3690                xfs_buf_relse(bp);
3691                return error;
3692        }
3693
3694        /* Convert superblock from on-disk format */
3695        sbp = &log->l_mp->m_sb;
3696        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3697        ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3698        ASSERT(xfs_sb_good_version(sbp));
3699        xfs_buf_relse(bp);
3700
3701        /* We've re-read the superblock so re-initialize per-cpu counters */
3702        xfs_icsb_reinit_counters(log->l_mp);
3703
3704        xlog_recover_check_summary(log);
3705
3706        /* Normal transactions can now occur */
3707        log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3708        return 0;
3709}
3710
3711/*
3712 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3713 *
3714 * Return error or zero.
3715 */
3716int
3717xlog_recover(
3718        xlog_t          *log)
3719{
3720        xfs_daddr_t     head_blk, tail_blk;
3721        int             error;
3722
3723        /* find the tail of the log */
3724        if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3725                return error;
3726
3727        if (tail_blk != head_blk) {
3728                /* There used to be a comment here:
3729                 *
3730                 * disallow recovery on read-only mounts.  note -- mount
3731                 * checks for ENOSPC and turns it into an intelligent
3732                 * error message.
3733                 * ...but this is no longer true.  Now, unless you specify
3734                 * NORECOVERY (in which case this function would never be
3735                 * called), we just go ahead and recover.  We do this all
3736                 * under the vfs layer, so we can get away with it unless
3737                 * the device itself is read-only, in which case we fail.
3738                 */
3739                if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3740                        return error;
3741                }
3742
3743                cmn_err(CE_NOTE,
3744                        "Starting XFS recovery on filesystem: %s (logdev: %s)",
3745                        log->l_mp->m_fsname, log->l_mp->m_logname ?
3746                        log->l_mp->m_logname : "internal");
3747
3748                error = xlog_do_recover(log, head_blk, tail_blk);
3749                log->l_flags |= XLOG_RECOVERY_NEEDED;
3750        }
3751        return error;
3752}
3753
3754/*
3755 * In the first part of recovery we replay inodes and buffers and build
3756 * up the list of extent free items which need to be processed.  Here
3757 * we process the extent free items and clean up the on disk unlinked
3758 * inode lists.  This is separated from the first part of recovery so
3759 * that the root and real-time bitmap inodes can be read in from disk in
3760 * between the two stages.  This is necessary so that we can free space
3761 * in the real-time portion of the file system.
3762 */
3763int
3764xlog_recover_finish(
3765        xlog_t          *log)
3766{
3767        /*
3768         * Now we're ready to do the transactions needed for the
3769         * rest of recovery.  Start with completing all the extent
3770         * free intent records and then process the unlinked inode
3771         * lists.  At this point, we essentially run in normal mode
3772         * except that we're still performing recovery actions
3773         * rather than accepting new requests.
3774         */
3775        if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3776                int     error;
3777                error = xlog_recover_process_efis(log);
3778                if (error) {
3779                        cmn_err(CE_ALERT,
3780                                "Failed to recover EFIs on filesystem: %s",
3781                                log->l_mp->m_fsname);
3782                        return error;
3783                }
3784                /*
3785                 * Sync the log to get all the EFIs out of the AIL.
3786                 * This isn't absolutely necessary, but it helps in
3787                 * case the unlink transactions would have problems
3788                 * pushing the EFIs out of the way.
3789                 */
3790                xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3791
3792                xlog_recover_process_iunlinks(log);
3793
3794                xlog_recover_check_summary(log);
3795
3796                cmn_err(CE_NOTE,
3797                        "Ending XFS recovery on filesystem: %s (logdev: %s)",
3798                        log->l_mp->m_fsname, log->l_mp->m_logname ?
3799                        log->l_mp->m_logname : "internal");
3800                log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3801        } else {
3802                cmn_err(CE_DEBUG,
3803                        "Ending clean XFS mount for filesystem: %s\n",
3804                        log->l_mp->m_fsname);
3805        }
3806        return 0;
3807}
3808
3809
3810#if defined(DEBUG)
3811/*
3812 * Read all of the agf and agi counters and check that they
3813 * are consistent with the superblock counters.
3814 */
3815void
3816xlog_recover_check_summary(
3817        xlog_t          *log)
3818{
3819        xfs_mount_t     *mp;
3820        xfs_agf_t       *agfp;
3821        xfs_buf_t       *agfbp;
3822        xfs_buf_t       *agibp;
3823        xfs_agnumber_t  agno;
3824        __uint64_t      freeblks;
3825        __uint64_t      itotal;
3826        __uint64_t      ifree;
3827        int             error;
3828
3829        mp = log->l_mp;
3830
3831        freeblks = 0LL;
3832        itotal = 0LL;
3833        ifree = 0LL;
3834        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3835                error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3836                if (error) {
3837                        xfs_fs_cmn_err(CE_ALERT, mp,
3838                                        "xlog_recover_check_summary(agf)"
3839                                        "agf read failed agno %d error %d",
3840                                                        agno, error);
3841                } else {
3842                        agfp = XFS_BUF_TO_AGF(agfbp);
3843                        freeblks += be32_to_cpu(agfp->agf_freeblks) +
3844                                    be32_to_cpu(agfp->agf_flcount);
3845                        xfs_buf_relse(agfbp);
3846                }
3847
3848                error = xfs_read_agi(mp, NULL, agno, &agibp);
3849                if (!error) {
3850                        struct xfs_agi  *agi = XFS_BUF_TO_AGI(agibp);
3851
3852                        itotal += be32_to_cpu(agi->agi_count);
3853                        ifree += be32_to_cpu(agi->agi_freecount);
3854                        xfs_buf_relse(agibp);
3855                }
3856        }
3857}
3858#endif /* DEBUG */
3859