linux/fs/xfs/xfs_trans.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
   3 * Copyright (C) 2010 Red Hat, Inc.
   4 * All Rights Reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it would be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write the Free Software Foundation,
  17 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  18 */
  19#include "xfs.h"
  20#include "xfs_fs.h"
  21#include "xfs_types.h"
  22#include "xfs_bit.h"
  23#include "xfs_log.h"
  24#include "xfs_inum.h"
  25#include "xfs_trans.h"
  26#include "xfs_sb.h"
  27#include "xfs_ag.h"
  28#include "xfs_mount.h"
  29#include "xfs_error.h"
  30#include "xfs_da_btree.h"
  31#include "xfs_bmap_btree.h"
  32#include "xfs_alloc_btree.h"
  33#include "xfs_ialloc_btree.h"
  34#include "xfs_dinode.h"
  35#include "xfs_inode.h"
  36#include "xfs_btree.h"
  37#include "xfs_ialloc.h"
  38#include "xfs_alloc.h"
  39#include "xfs_bmap.h"
  40#include "xfs_quota.h"
  41#include "xfs_trans_priv.h"
  42#include "xfs_trans_space.h"
  43#include "xfs_inode_item.h"
  44#include "xfs_trace.h"
  45
  46kmem_zone_t     *xfs_trans_zone;
  47kmem_zone_t     *xfs_log_item_desc_zone;
  48
  49
  50/*
  51 * Various log reservation values.
  52 *
  53 * These are based on the size of the file system block because that is what
  54 * most transactions manipulate.  Each adds in an additional 128 bytes per
  55 * item logged to try to account for the overhead of the transaction mechanism.
  56 *
  57 * Note:  Most of the reservations underestimate the number of allocation
  58 * groups into which they could free extents in the xfs_bmap_finish() call.
  59 * This is because the number in the worst case is quite high and quite
  60 * unusual.  In order to fix this we need to change xfs_bmap_finish() to free
  61 * extents in only a single AG at a time.  This will require changes to the
  62 * EFI code as well, however, so that the EFI for the extents not freed is
  63 * logged again in each transaction.  See SGI PV #261917.
  64 *
  65 * Reservation functions here avoid a huge stack in xfs_trans_init due to
  66 * register overflow from temporaries in the calculations.
  67 */
  68
  69
  70/*
  71 * In a write transaction we can allocate a maximum of 2
  72 * extents.  This gives:
  73 *    the inode getting the new extents: inode size
  74 *    the inode's bmap btree: max depth * block size
  75 *    the agfs of the ags from which the extents are allocated: 2 * sector
  76 *    the superblock free block counter: sector size
  77 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
  78 * And the bmap_finish transaction can free bmap blocks in a join:
  79 *    the agfs of the ags containing the blocks: 2 * sector size
  80 *    the agfls of the ags containing the blocks: 2 * sector size
  81 *    the super block free block counter: sector size
  82 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
  83 */
  84STATIC uint
  85xfs_calc_write_reservation(
  86        struct xfs_mount        *mp)
  87{
  88        return XFS_DQUOT_LOGRES(mp) +
  89                MAX((mp->m_sb.sb_inodesize +
  90                     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
  91                     2 * mp->m_sb.sb_sectsize +
  92                     mp->m_sb.sb_sectsize +
  93                     XFS_ALLOCFREE_LOG_RES(mp, 2) +
  94                     128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
  95                            XFS_ALLOCFREE_LOG_COUNT(mp, 2))),
  96                    (2 * mp->m_sb.sb_sectsize +
  97                     2 * mp->m_sb.sb_sectsize +
  98                     mp->m_sb.sb_sectsize +
  99                     XFS_ALLOCFREE_LOG_RES(mp, 2) +
 100                     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
 101}
 102
 103/*
 104 * In truncating a file we free up to two extents at once.  We can modify:
 105 *    the inode being truncated: inode size
 106 *    the inode's bmap btree: (max depth + 1) * block size
 107 * And the bmap_finish transaction can free the blocks and bmap blocks:
 108 *    the agf for each of the ags: 4 * sector size
 109 *    the agfl for each of the ags: 4 * sector size
 110 *    the super block to reflect the freed blocks: sector size
 111 *    worst case split in allocation btrees per extent assuming 4 extents:
 112 *              4 exts * 2 trees * (2 * max depth - 1) * block size
 113 *    the inode btree: max depth * blocksize
 114 *    the allocation btrees: 2 trees * (max depth - 1) * block size
 115 */
 116STATIC uint
 117xfs_calc_itruncate_reservation(
 118        struct xfs_mount        *mp)
 119{
 120        return XFS_DQUOT_LOGRES(mp) +
 121                MAX((mp->m_sb.sb_inodesize +
 122                     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) +
 123                     128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
 124                    (4 * mp->m_sb.sb_sectsize +
 125                     4 * mp->m_sb.sb_sectsize +
 126                     mp->m_sb.sb_sectsize +
 127                     XFS_ALLOCFREE_LOG_RES(mp, 4) +
 128                     128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) +
 129                     128 * 5 +
 130                     XFS_ALLOCFREE_LOG_RES(mp, 1) +
 131                     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
 132                            XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
 133}
 134
 135/*
 136 * In renaming a files we can modify:
 137 *    the four inodes involved: 4 * inode size
 138 *    the two directory btrees: 2 * (max depth + v2) * dir block size
 139 *    the two directory bmap btrees: 2 * max depth * block size
 140 * And the bmap_finish transaction can free dir and bmap blocks (two sets
 141 *      of bmap blocks) giving:
 142 *    the agf for the ags in which the blocks live: 3 * sector size
 143 *    the agfl for the ags in which the blocks live: 3 * sector size
 144 *    the superblock for the free block count: sector size
 145 *    the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
 146 */
 147STATIC uint
 148xfs_calc_rename_reservation(
 149        struct xfs_mount        *mp)
 150{
 151        return XFS_DQUOT_LOGRES(mp) +
 152                MAX((4 * mp->m_sb.sb_inodesize +
 153                     2 * XFS_DIROP_LOG_RES(mp) +
 154                     128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))),
 155                    (3 * mp->m_sb.sb_sectsize +
 156                     3 * mp->m_sb.sb_sectsize +
 157                     mp->m_sb.sb_sectsize +
 158                     XFS_ALLOCFREE_LOG_RES(mp, 3) +
 159                     128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3))));
 160}
 161
 162/*
 163 * For creating a link to an inode:
 164 *    the parent directory inode: inode size
 165 *    the linked inode: inode size
 166 *    the directory btree could split: (max depth + v2) * dir block size
 167 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
 168 * And the bmap_finish transaction can free some bmap blocks giving:
 169 *    the agf for the ag in which the blocks live: sector size
 170 *    the agfl for the ag in which the blocks live: sector size
 171 *    the superblock for the free block count: sector size
 172 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
 173 */
 174STATIC uint
 175xfs_calc_link_reservation(
 176        struct xfs_mount        *mp)
 177{
 178        return XFS_DQUOT_LOGRES(mp) +
 179                MAX((mp->m_sb.sb_inodesize +
 180                     mp->m_sb.sb_inodesize +
 181                     XFS_DIROP_LOG_RES(mp) +
 182                     128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
 183                    (mp->m_sb.sb_sectsize +
 184                     mp->m_sb.sb_sectsize +
 185                     mp->m_sb.sb_sectsize +
 186                     XFS_ALLOCFREE_LOG_RES(mp, 1) +
 187                     128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
 188}
 189
 190/*
 191 * For removing a directory entry we can modify:
 192 *    the parent directory inode: inode size
 193 *    the removed inode: inode size
 194 *    the directory btree could join: (max depth + v2) * dir block size
 195 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
 196 * And the bmap_finish transaction can free the dir and bmap blocks giving:
 197 *    the agf for the ag in which the blocks live: 2 * sector size
 198 *    the agfl for the ag in which the blocks live: 2 * sector size
 199 *    the superblock for the free block count: sector size
 200 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 201 */
 202STATIC uint
 203xfs_calc_remove_reservation(
 204        struct xfs_mount        *mp)
 205{
 206        return XFS_DQUOT_LOGRES(mp) +
 207                MAX((mp->m_sb.sb_inodesize +
 208                     mp->m_sb.sb_inodesize +
 209                     XFS_DIROP_LOG_RES(mp) +
 210                     128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
 211                    (2 * mp->m_sb.sb_sectsize +
 212                     2 * mp->m_sb.sb_sectsize +
 213                     mp->m_sb.sb_sectsize +
 214                     XFS_ALLOCFREE_LOG_RES(mp, 2) +
 215                     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
 216}
 217
 218/*
 219 * For symlink we can modify:
 220 *    the parent directory inode: inode size
 221 *    the new inode: inode size
 222 *    the inode btree entry: 1 block
 223 *    the directory btree: (max depth + v2) * dir block size
 224 *    the directory inode's bmap btree: (max depth + v2) * block size
 225 *    the blocks for the symlink: 1 kB
 226 * Or in the first xact we allocate some inodes giving:
 227 *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
 228 *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
 229 *    the inode btree: max depth * blocksize
 230 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
 231 */
 232STATIC uint
 233xfs_calc_symlink_reservation(
 234        struct xfs_mount        *mp)
 235{
 236        return XFS_DQUOT_LOGRES(mp) +
 237                MAX((mp->m_sb.sb_inodesize +
 238                     mp->m_sb.sb_inodesize +
 239                     XFS_FSB_TO_B(mp, 1) +
 240                     XFS_DIROP_LOG_RES(mp) +
 241                     1024 +
 242                     128 * (4 + XFS_DIROP_LOG_COUNT(mp))),
 243                    (2 * mp->m_sb.sb_sectsize +
 244                     XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
 245                     XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
 246                     XFS_ALLOCFREE_LOG_RES(mp, 1) +
 247                     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
 248                            XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
 249}
 250
 251/*
 252 * For create we can modify:
 253 *    the parent directory inode: inode size
 254 *    the new inode: inode size
 255 *    the inode btree entry: block size
 256 *    the superblock for the nlink flag: sector size
 257 *    the directory btree: (max depth + v2) * dir block size
 258 *    the directory inode's bmap btree: (max depth + v2) * block size
 259 * Or in the first xact we allocate some inodes giving:
 260 *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
 261 *    the superblock for the nlink flag: sector size
 262 *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
 263 *    the inode btree: max depth * blocksize
 264 *    the allocation btrees: 2 trees * (max depth - 1) * block size
 265 */
 266STATIC uint
 267xfs_calc_create_reservation(
 268        struct xfs_mount        *mp)
 269{
 270        return XFS_DQUOT_LOGRES(mp) +
 271                MAX((mp->m_sb.sb_inodesize +
 272                     mp->m_sb.sb_inodesize +
 273                     mp->m_sb.sb_sectsize +
 274                     XFS_FSB_TO_B(mp, 1) +
 275                     XFS_DIROP_LOG_RES(mp) +
 276                     128 * (3 + XFS_DIROP_LOG_COUNT(mp))),
 277                    (3 * mp->m_sb.sb_sectsize +
 278                     XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
 279                     XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
 280                     XFS_ALLOCFREE_LOG_RES(mp, 1) +
 281                     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
 282                            XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
 283}
 284
 285/*
 286 * Making a new directory is the same as creating a new file.
 287 */
 288STATIC uint
 289xfs_calc_mkdir_reservation(
 290        struct xfs_mount        *mp)
 291{
 292        return xfs_calc_create_reservation(mp);
 293}
 294
 295/*
 296 * In freeing an inode we can modify:
 297 *    the inode being freed: inode size
 298 *    the super block free inode counter: sector size
 299 *    the agi hash list and counters: sector size
 300 *    the inode btree entry: block size
 301 *    the on disk inode before ours in the agi hash list: inode cluster size
 302 *    the inode btree: max depth * blocksize
 303 *    the allocation btrees: 2 trees * (max depth - 1) * block size
 304 */
 305STATIC uint
 306xfs_calc_ifree_reservation(
 307        struct xfs_mount        *mp)
 308{
 309        return XFS_DQUOT_LOGRES(mp) +
 310                mp->m_sb.sb_inodesize +
 311                mp->m_sb.sb_sectsize +
 312                mp->m_sb.sb_sectsize +
 313                XFS_FSB_TO_B(mp, 1) +
 314                MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
 315                    XFS_INODE_CLUSTER_SIZE(mp)) +
 316                128 * 5 +
 317                XFS_ALLOCFREE_LOG_RES(mp, 1) +
 318                128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
 319                       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
 320}
 321
 322/*
 323 * When only changing the inode we log the inode and possibly the superblock
 324 * We also add a bit of slop for the transaction stuff.
 325 */
 326STATIC uint
 327xfs_calc_ichange_reservation(
 328        struct xfs_mount        *mp)
 329{
 330        return XFS_DQUOT_LOGRES(mp) +
 331                mp->m_sb.sb_inodesize +
 332                mp->m_sb.sb_sectsize +
 333                512;
 334
 335}
 336
 337/*
 338 * Growing the data section of the filesystem.
 339 *      superblock
 340 *      agi and agf
 341 *      allocation btrees
 342 */
 343STATIC uint
 344xfs_calc_growdata_reservation(
 345        struct xfs_mount        *mp)
 346{
 347        return mp->m_sb.sb_sectsize * 3 +
 348                XFS_ALLOCFREE_LOG_RES(mp, 1) +
 349                128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1));
 350}
 351
 352/*
 353 * Growing the rt section of the filesystem.
 354 * In the first set of transactions (ALLOC) we allocate space to the
 355 * bitmap or summary files.
 356 *      superblock: sector size
 357 *      agf of the ag from which the extent is allocated: sector size
 358 *      bmap btree for bitmap/summary inode: max depth * blocksize
 359 *      bitmap/summary inode: inode size
 360 *      allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
 361 */
 362STATIC uint
 363xfs_calc_growrtalloc_reservation(
 364        struct xfs_mount        *mp)
 365{
 366        return 2 * mp->m_sb.sb_sectsize +
 367                XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
 368                mp->m_sb.sb_inodesize +
 369                XFS_ALLOCFREE_LOG_RES(mp, 1) +
 370                128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
 371                       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
 372}
 373
 374/*
 375 * Growing the rt section of the filesystem.
 376 * In the second set of transactions (ZERO) we zero the new metadata blocks.
 377 *      one bitmap/summary block: blocksize
 378 */
 379STATIC uint
 380xfs_calc_growrtzero_reservation(
 381        struct xfs_mount        *mp)
 382{
 383        return mp->m_sb.sb_blocksize + 128;
 384}
 385
 386/*
 387 * Growing the rt section of the filesystem.
 388 * In the third set of transactions (FREE) we update metadata without
 389 * allocating any new blocks.
 390 *      superblock: sector size
 391 *      bitmap inode: inode size
 392 *      summary inode: inode size
 393 *      one bitmap block: blocksize
 394 *      summary blocks: new summary size
 395 */
 396STATIC uint
 397xfs_calc_growrtfree_reservation(
 398        struct xfs_mount        *mp)
 399{
 400        return mp->m_sb.sb_sectsize +
 401                2 * mp->m_sb.sb_inodesize +
 402                mp->m_sb.sb_blocksize +
 403                mp->m_rsumsize +
 404                128 * 5;
 405}
 406
 407/*
 408 * Logging the inode modification timestamp on a synchronous write.
 409 *      inode
 410 */
 411STATIC uint
 412xfs_calc_swrite_reservation(
 413        struct xfs_mount        *mp)
 414{
 415        return mp->m_sb.sb_inodesize + 128;
 416}
 417
 418/*
 419 * Logging the inode mode bits when writing a setuid/setgid file
 420 *      inode
 421 */
 422STATIC uint
 423xfs_calc_writeid_reservation(xfs_mount_t *mp)
 424{
 425        return mp->m_sb.sb_inodesize + 128;
 426}
 427
 428/*
 429 * Converting the inode from non-attributed to attributed.
 430 *      the inode being converted: inode size
 431 *      agf block and superblock (for block allocation)
 432 *      the new block (directory sized)
 433 *      bmap blocks for the new directory block
 434 *      allocation btrees
 435 */
 436STATIC uint
 437xfs_calc_addafork_reservation(
 438        struct xfs_mount        *mp)
 439{
 440        return XFS_DQUOT_LOGRES(mp) +
 441                mp->m_sb.sb_inodesize +
 442                mp->m_sb.sb_sectsize * 2 +
 443                mp->m_dirblksize +
 444                XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) +
 445                XFS_ALLOCFREE_LOG_RES(mp, 1) +
 446                128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 +
 447                       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
 448}
 449
 450/*
 451 * Removing the attribute fork of a file
 452 *    the inode being truncated: inode size
 453 *    the inode's bmap btree: max depth * block size
 454 * And the bmap_finish transaction can free the blocks and bmap blocks:
 455 *    the agf for each of the ags: 4 * sector size
 456 *    the agfl for each of the ags: 4 * sector size
 457 *    the super block to reflect the freed blocks: sector size
 458 *    worst case split in allocation btrees per extent assuming 4 extents:
 459 *              4 exts * 2 trees * (2 * max depth - 1) * block size
 460 */
 461STATIC uint
 462xfs_calc_attrinval_reservation(
 463        struct xfs_mount        *mp)
 464{
 465        return MAX((mp->m_sb.sb_inodesize +
 466                    XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
 467                    128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))),
 468                   (4 * mp->m_sb.sb_sectsize +
 469                    4 * mp->m_sb.sb_sectsize +
 470                    mp->m_sb.sb_sectsize +
 471                    XFS_ALLOCFREE_LOG_RES(mp, 4) +
 472                    128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4))));
 473}
 474
 475/*
 476 * Setting an attribute.
 477 *      the inode getting the attribute
 478 *      the superblock for allocations
 479 *      the agfs extents are allocated from
 480 *      the attribute btree * max depth
 481 *      the inode allocation btree
 482 * Since attribute transaction space is dependent on the size of the attribute,
 483 * the calculation is done partially at mount time and partially at runtime.
 484 */
 485STATIC uint
 486xfs_calc_attrset_reservation(
 487        struct xfs_mount        *mp)
 488{
 489        return XFS_DQUOT_LOGRES(mp) +
 490                mp->m_sb.sb_inodesize +
 491                mp->m_sb.sb_sectsize +
 492                XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
 493                128 * (2 + XFS_DA_NODE_MAXDEPTH);
 494}
 495
 496/*
 497 * Removing an attribute.
 498 *    the inode: inode size
 499 *    the attribute btree could join: max depth * block size
 500 *    the inode bmap btree could join or split: max depth * block size
 501 * And the bmap_finish transaction can free the attr blocks freed giving:
 502 *    the agf for the ag in which the blocks live: 2 * sector size
 503 *    the agfl for the ag in which the blocks live: 2 * sector size
 504 *    the superblock for the free block count: sector size
 505 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 506 */
 507STATIC uint
 508xfs_calc_attrrm_reservation(
 509        struct xfs_mount        *mp)
 510{
 511        return XFS_DQUOT_LOGRES(mp) +
 512                MAX((mp->m_sb.sb_inodesize +
 513                     XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
 514                     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
 515                     128 * (1 + XFS_DA_NODE_MAXDEPTH +
 516                            XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
 517                    (2 * mp->m_sb.sb_sectsize +
 518                     2 * mp->m_sb.sb_sectsize +
 519                     mp->m_sb.sb_sectsize +
 520                     XFS_ALLOCFREE_LOG_RES(mp, 2) +
 521                     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
 522}
 523
 524/*
 525 * Clearing a bad agino number in an agi hash bucket.
 526 */
 527STATIC uint
 528xfs_calc_clear_agi_bucket_reservation(
 529        struct xfs_mount        *mp)
 530{
 531        return mp->m_sb.sb_sectsize + 128;
 532}
 533
 534/*
 535 * Initialize the precomputed transaction reservation values
 536 * in the mount structure.
 537 */
 538void
 539xfs_trans_init(
 540        struct xfs_mount        *mp)
 541{
 542        struct xfs_trans_reservations *resp = &mp->m_reservations;
 543
 544        resp->tr_write = xfs_calc_write_reservation(mp);
 545        resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
 546        resp->tr_rename = xfs_calc_rename_reservation(mp);
 547        resp->tr_link = xfs_calc_link_reservation(mp);
 548        resp->tr_remove = xfs_calc_remove_reservation(mp);
 549        resp->tr_symlink = xfs_calc_symlink_reservation(mp);
 550        resp->tr_create = xfs_calc_create_reservation(mp);
 551        resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
 552        resp->tr_ifree = xfs_calc_ifree_reservation(mp);
 553        resp->tr_ichange = xfs_calc_ichange_reservation(mp);
 554        resp->tr_growdata = xfs_calc_growdata_reservation(mp);
 555        resp->tr_swrite = xfs_calc_swrite_reservation(mp);
 556        resp->tr_writeid = xfs_calc_writeid_reservation(mp);
 557        resp->tr_addafork = xfs_calc_addafork_reservation(mp);
 558        resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
 559        resp->tr_attrset = xfs_calc_attrset_reservation(mp);
 560        resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
 561        resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
 562        resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
 563        resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
 564        resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
 565}
 566
 567/*
 568 * This routine is called to allocate a transaction structure.
 569 * The type parameter indicates the type of the transaction.  These
 570 * are enumerated in xfs_trans.h.
 571 *
 572 * Dynamically allocate the transaction structure from the transaction
 573 * zone, initialize it, and return it to the caller.
 574 */
 575xfs_trans_t *
 576xfs_trans_alloc(
 577        xfs_mount_t     *mp,
 578        uint            type)
 579{
 580        xfs_wait_for_freeze(mp, SB_FREEZE_TRANS);
 581        return _xfs_trans_alloc(mp, type, KM_SLEEP);
 582}
 583
 584xfs_trans_t *
 585_xfs_trans_alloc(
 586        xfs_mount_t     *mp,
 587        uint            type,
 588        uint            memflags)
 589{
 590        xfs_trans_t     *tp;
 591
 592        atomic_inc(&mp->m_active_trans);
 593
 594        tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
 595        tp->t_magic = XFS_TRANS_MAGIC;
 596        tp->t_type = type;
 597        tp->t_mountp = mp;
 598        INIT_LIST_HEAD(&tp->t_items);
 599        INIT_LIST_HEAD(&tp->t_busy);
 600        return tp;
 601}
 602
 603/*
 604 * Free the transaction structure.  If there is more clean up
 605 * to do when the structure is freed, add it here.
 606 */
 607STATIC void
 608xfs_trans_free(
 609        struct xfs_trans        *tp)
 610{
 611        struct xfs_busy_extent  *busyp, *n;
 612
 613        list_for_each_entry_safe(busyp, n, &tp->t_busy, list)
 614                xfs_alloc_busy_clear(tp->t_mountp, busyp);
 615
 616        atomic_dec(&tp->t_mountp->m_active_trans);
 617        xfs_trans_free_dqinfo(tp);
 618        kmem_zone_free(xfs_trans_zone, tp);
 619}
 620
 621/*
 622 * This is called to create a new transaction which will share the
 623 * permanent log reservation of the given transaction.  The remaining
 624 * unused block and rt extent reservations are also inherited.  This
 625 * implies that the original transaction is no longer allowed to allocate
 626 * blocks.  Locks and log items, however, are no inherited.  They must
 627 * be added to the new transaction explicitly.
 628 */
 629xfs_trans_t *
 630xfs_trans_dup(
 631        xfs_trans_t     *tp)
 632{
 633        xfs_trans_t     *ntp;
 634
 635        ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
 636
 637        /*
 638         * Initialize the new transaction structure.
 639         */
 640        ntp->t_magic = XFS_TRANS_MAGIC;
 641        ntp->t_type = tp->t_type;
 642        ntp->t_mountp = tp->t_mountp;
 643        INIT_LIST_HEAD(&ntp->t_items);
 644        INIT_LIST_HEAD(&ntp->t_busy);
 645
 646        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 647        ASSERT(tp->t_ticket != NULL);
 648
 649        ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE);
 650        ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
 651        ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
 652        tp->t_blk_res = tp->t_blk_res_used;
 653        ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
 654        tp->t_rtx_res = tp->t_rtx_res_used;
 655        ntp->t_pflags = tp->t_pflags;
 656
 657        xfs_trans_dup_dqinfo(tp, ntp);
 658
 659        atomic_inc(&tp->t_mountp->m_active_trans);
 660        return ntp;
 661}
 662
 663/*
 664 * This is called to reserve free disk blocks and log space for the
 665 * given transaction.  This must be done before allocating any resources
 666 * within the transaction.
 667 *
 668 * This will return ENOSPC if there are not enough blocks available.
 669 * It will sleep waiting for available log space.
 670 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
 671 * is used by long running transactions.  If any one of the reservations
 672 * fails then they will all be backed out.
 673 *
 674 * This does not do quota reservations. That typically is done by the
 675 * caller afterwards.
 676 */
 677int
 678xfs_trans_reserve(
 679        xfs_trans_t     *tp,
 680        uint            blocks,
 681        uint            logspace,
 682        uint            rtextents,
 683        uint            flags,
 684        uint            logcount)
 685{
 686        int             log_flags;
 687        int             error = 0;
 688        int             rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
 689
 690        /* Mark this thread as being in a transaction */
 691        current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
 692
 693        /*
 694         * Attempt to reserve the needed disk blocks by decrementing
 695         * the number needed from the number available.  This will
 696         * fail if the count would go below zero.
 697         */
 698        if (blocks > 0) {
 699                error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
 700                                          -((int64_t)blocks), rsvd);
 701                if (error != 0) {
 702                        current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 703                        return (XFS_ERROR(ENOSPC));
 704                }
 705                tp->t_blk_res += blocks;
 706        }
 707
 708        /*
 709         * Reserve the log space needed for this transaction.
 710         */
 711        if (logspace > 0) {
 712                ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace));
 713                ASSERT((tp->t_log_count == 0) ||
 714                        (tp->t_log_count == logcount));
 715                if (flags & XFS_TRANS_PERM_LOG_RES) {
 716                        log_flags = XFS_LOG_PERM_RESERV;
 717                        tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
 718                } else {
 719                        ASSERT(tp->t_ticket == NULL);
 720                        ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 721                        log_flags = 0;
 722                }
 723
 724                error = xfs_log_reserve(tp->t_mountp, logspace, logcount,
 725                                        &tp->t_ticket,
 726                                        XFS_TRANSACTION, log_flags, tp->t_type);
 727                if (error) {
 728                        goto undo_blocks;
 729                }
 730                tp->t_log_res = logspace;
 731                tp->t_log_count = logcount;
 732        }
 733
 734        /*
 735         * Attempt to reserve the needed realtime extents by decrementing
 736         * the number needed from the number available.  This will
 737         * fail if the count would go below zero.
 738         */
 739        if (rtextents > 0) {
 740                error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
 741                                          -((int64_t)rtextents), rsvd);
 742                if (error) {
 743                        error = XFS_ERROR(ENOSPC);
 744                        goto undo_log;
 745                }
 746                tp->t_rtx_res += rtextents;
 747        }
 748
 749        return 0;
 750
 751        /*
 752         * Error cases jump to one of these labels to undo any
 753         * reservations which have already been performed.
 754         */
 755undo_log:
 756        if (logspace > 0) {
 757                if (flags & XFS_TRANS_PERM_LOG_RES) {
 758                        log_flags = XFS_LOG_REL_PERM_RESERV;
 759                } else {
 760                        log_flags = 0;
 761                }
 762                xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
 763                tp->t_ticket = NULL;
 764                tp->t_log_res = 0;
 765                tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
 766        }
 767
 768undo_blocks:
 769        if (blocks > 0) {
 770                xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
 771                                         (int64_t)blocks, rsvd);
 772                tp->t_blk_res = 0;
 773        }
 774
 775        current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 776
 777        return error;
 778}
 779
 780/*
 781 * Record the indicated change to the given field for application
 782 * to the file system's superblock when the transaction commits.
 783 * For now, just store the change in the transaction structure.
 784 *
 785 * Mark the transaction structure to indicate that the superblock
 786 * needs to be updated before committing.
 787 *
 788 * Because we may not be keeping track of allocated/free inodes and
 789 * used filesystem blocks in the superblock, we do not mark the
 790 * superblock dirty in this transaction if we modify these fields.
 791 * We still need to update the transaction deltas so that they get
 792 * applied to the incore superblock, but we don't want them to
 793 * cause the superblock to get locked and logged if these are the
 794 * only fields in the superblock that the transaction modifies.
 795 */
 796void
 797xfs_trans_mod_sb(
 798        xfs_trans_t     *tp,
 799        uint            field,
 800        int64_t         delta)
 801{
 802        uint32_t        flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
 803        xfs_mount_t     *mp = tp->t_mountp;
 804
 805        switch (field) {
 806        case XFS_TRANS_SB_ICOUNT:
 807                tp->t_icount_delta += delta;
 808                if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 809                        flags &= ~XFS_TRANS_SB_DIRTY;
 810                break;
 811        case XFS_TRANS_SB_IFREE:
 812                tp->t_ifree_delta += delta;
 813                if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 814                        flags &= ~XFS_TRANS_SB_DIRTY;
 815                break;
 816        case XFS_TRANS_SB_FDBLOCKS:
 817                /*
 818                 * Track the number of blocks allocated in the
 819                 * transaction.  Make sure it does not exceed the
 820                 * number reserved.
 821                 */
 822                if (delta < 0) {
 823                        tp->t_blk_res_used += (uint)-delta;
 824                        ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
 825                }
 826                tp->t_fdblocks_delta += delta;
 827                if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 828                        flags &= ~XFS_TRANS_SB_DIRTY;
 829                break;
 830        case XFS_TRANS_SB_RES_FDBLOCKS:
 831                /*
 832                 * The allocation has already been applied to the
 833                 * in-core superblock's counter.  This should only
 834                 * be applied to the on-disk superblock.
 835                 */
 836                ASSERT(delta < 0);
 837                tp->t_res_fdblocks_delta += delta;
 838                if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 839                        flags &= ~XFS_TRANS_SB_DIRTY;
 840                break;
 841        case XFS_TRANS_SB_FREXTENTS:
 842                /*
 843                 * Track the number of blocks allocated in the
 844                 * transaction.  Make sure it does not exceed the
 845                 * number reserved.
 846                 */
 847                if (delta < 0) {
 848                        tp->t_rtx_res_used += (uint)-delta;
 849                        ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
 850                }
 851                tp->t_frextents_delta += delta;
 852                break;
 853        case XFS_TRANS_SB_RES_FREXTENTS:
 854                /*
 855                 * The allocation has already been applied to the
 856                 * in-core superblock's counter.  This should only
 857                 * be applied to the on-disk superblock.
 858                 */
 859                ASSERT(delta < 0);
 860                tp->t_res_frextents_delta += delta;
 861                break;
 862        case XFS_TRANS_SB_DBLOCKS:
 863                ASSERT(delta > 0);
 864                tp->t_dblocks_delta += delta;
 865                break;
 866        case XFS_TRANS_SB_AGCOUNT:
 867                ASSERT(delta > 0);
 868                tp->t_agcount_delta += delta;
 869                break;
 870        case XFS_TRANS_SB_IMAXPCT:
 871                tp->t_imaxpct_delta += delta;
 872                break;
 873        case XFS_TRANS_SB_REXTSIZE:
 874                tp->t_rextsize_delta += delta;
 875                break;
 876        case XFS_TRANS_SB_RBMBLOCKS:
 877                tp->t_rbmblocks_delta += delta;
 878                break;
 879        case XFS_TRANS_SB_RBLOCKS:
 880                tp->t_rblocks_delta += delta;
 881                break;
 882        case XFS_TRANS_SB_REXTENTS:
 883                tp->t_rextents_delta += delta;
 884                break;
 885        case XFS_TRANS_SB_REXTSLOG:
 886                tp->t_rextslog_delta += delta;
 887                break;
 888        default:
 889                ASSERT(0);
 890                return;
 891        }
 892
 893        tp->t_flags |= flags;
 894}
 895
 896/*
 897 * xfs_trans_apply_sb_deltas() is called from the commit code
 898 * to bring the superblock buffer into the current transaction
 899 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
 900 *
 901 * For now we just look at each field allowed to change and change
 902 * it if necessary.
 903 */
 904STATIC void
 905xfs_trans_apply_sb_deltas(
 906        xfs_trans_t     *tp)
 907{
 908        xfs_dsb_t       *sbp;
 909        xfs_buf_t       *bp;
 910        int             whole = 0;
 911
 912        bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
 913        sbp = XFS_BUF_TO_SBP(bp);
 914
 915        /*
 916         * Check that superblock mods match the mods made to AGF counters.
 917         */
 918        ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
 919               (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
 920                tp->t_ag_btree_delta));
 921
 922        /*
 923         * Only update the superblock counters if we are logging them
 924         */
 925        if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
 926                if (tp->t_icount_delta)
 927                        be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
 928                if (tp->t_ifree_delta)
 929                        be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
 930                if (tp->t_fdblocks_delta)
 931                        be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
 932                if (tp->t_res_fdblocks_delta)
 933                        be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
 934        }
 935
 936        if (tp->t_frextents_delta)
 937                be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
 938        if (tp->t_res_frextents_delta)
 939                be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
 940
 941        if (tp->t_dblocks_delta) {
 942                be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
 943                whole = 1;
 944        }
 945        if (tp->t_agcount_delta) {
 946                be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
 947                whole = 1;
 948        }
 949        if (tp->t_imaxpct_delta) {
 950                sbp->sb_imax_pct += tp->t_imaxpct_delta;
 951                whole = 1;
 952        }
 953        if (tp->t_rextsize_delta) {
 954                be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
 955                whole = 1;
 956        }
 957        if (tp->t_rbmblocks_delta) {
 958                be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
 959                whole = 1;
 960        }
 961        if (tp->t_rblocks_delta) {
 962                be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
 963                whole = 1;
 964        }
 965        if (tp->t_rextents_delta) {
 966                be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
 967                whole = 1;
 968        }
 969        if (tp->t_rextslog_delta) {
 970                sbp->sb_rextslog += tp->t_rextslog_delta;
 971                whole = 1;
 972        }
 973
 974        if (whole)
 975                /*
 976                 * Log the whole thing, the fields are noncontiguous.
 977                 */
 978                xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
 979        else
 980                /*
 981                 * Since all the modifiable fields are contiguous, we
 982                 * can get away with this.
 983                 */
 984                xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
 985                                  offsetof(xfs_dsb_t, sb_frextents) +
 986                                  sizeof(sbp->sb_frextents) - 1);
 987}
 988
 989/*
 990 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
 991 * and apply superblock counter changes to the in-core superblock.  The
 992 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
 993 * applied to the in-core superblock.  The idea is that that has already been
 994 * done.
 995 *
 996 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
 997 * However, we have to ensure that we only modify each superblock field only
 998 * once because the application of the delta values may not be atomic. That can
 999 * lead to ENOSPC races occurring if we have two separate modifcations of the
1000 * free space counter to put back the entire reservation and then take away
1001 * what we used.
1002 *
1003 * If we are not logging superblock counters, then the inode allocated/free and
1004 * used block counts are not updated in the on disk superblock. In this case,
1005 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1006 * still need to update the incore superblock with the changes.
1007 */
1008void
1009xfs_trans_unreserve_and_mod_sb(
1010        xfs_trans_t     *tp)
1011{
1012        xfs_mod_sb_t    msb[9]; /* If you add cases, add entries */
1013        xfs_mod_sb_t    *msbp;
1014        xfs_mount_t     *mp = tp->t_mountp;
1015        /* REFERENCED */
1016        int             error;
1017        int             rsvd;
1018        int64_t         blkdelta = 0;
1019        int64_t         rtxdelta = 0;
1020        int64_t         idelta = 0;
1021        int64_t         ifreedelta = 0;
1022
1023        msbp = msb;
1024        rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1025
1026        /* calculate deltas */
1027        if (tp->t_blk_res > 0)
1028                blkdelta = tp->t_blk_res;
1029        if ((tp->t_fdblocks_delta != 0) &&
1030            (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1031             (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1032                blkdelta += tp->t_fdblocks_delta;
1033
1034        if (tp->t_rtx_res > 0)
1035                rtxdelta = tp->t_rtx_res;
1036        if ((tp->t_frextents_delta != 0) &&
1037            (tp->t_flags & XFS_TRANS_SB_DIRTY))
1038                rtxdelta += tp->t_frextents_delta;
1039
1040        if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1041             (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1042                idelta = tp->t_icount_delta;
1043                ifreedelta = tp->t_ifree_delta;
1044        }
1045
1046        /* apply the per-cpu counters */
1047        if (blkdelta) {
1048                error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1049                                                 blkdelta, rsvd);
1050                if (error)
1051                        goto out;
1052        }
1053
1054        if (idelta) {
1055                error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1056                                                 idelta, rsvd);
1057                if (error)
1058                        goto out_undo_fdblocks;
1059        }
1060
1061        if (ifreedelta) {
1062                error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1063                                                 ifreedelta, rsvd);
1064                if (error)
1065                        goto out_undo_icount;
1066        }
1067
1068        /* apply remaining deltas */
1069        if (rtxdelta != 0) {
1070                msbp->msb_field = XFS_SBS_FREXTENTS;
1071                msbp->msb_delta = rtxdelta;
1072                msbp++;
1073        }
1074
1075        if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1076                if (tp->t_dblocks_delta != 0) {
1077                        msbp->msb_field = XFS_SBS_DBLOCKS;
1078                        msbp->msb_delta = tp->t_dblocks_delta;
1079                        msbp++;
1080                }
1081                if (tp->t_agcount_delta != 0) {
1082                        msbp->msb_field = XFS_SBS_AGCOUNT;
1083                        msbp->msb_delta = tp->t_agcount_delta;
1084                        msbp++;
1085                }
1086                if (tp->t_imaxpct_delta != 0) {
1087                        msbp->msb_field = XFS_SBS_IMAX_PCT;
1088                        msbp->msb_delta = tp->t_imaxpct_delta;
1089                        msbp++;
1090                }
1091                if (tp->t_rextsize_delta != 0) {
1092                        msbp->msb_field = XFS_SBS_REXTSIZE;
1093                        msbp->msb_delta = tp->t_rextsize_delta;
1094                        msbp++;
1095                }
1096                if (tp->t_rbmblocks_delta != 0) {
1097                        msbp->msb_field = XFS_SBS_RBMBLOCKS;
1098                        msbp->msb_delta = tp->t_rbmblocks_delta;
1099                        msbp++;
1100                }
1101                if (tp->t_rblocks_delta != 0) {
1102                        msbp->msb_field = XFS_SBS_RBLOCKS;
1103                        msbp->msb_delta = tp->t_rblocks_delta;
1104                        msbp++;
1105                }
1106                if (tp->t_rextents_delta != 0) {
1107                        msbp->msb_field = XFS_SBS_REXTENTS;
1108                        msbp->msb_delta = tp->t_rextents_delta;
1109                        msbp++;
1110                }
1111                if (tp->t_rextslog_delta != 0) {
1112                        msbp->msb_field = XFS_SBS_REXTSLOG;
1113                        msbp->msb_delta = tp->t_rextslog_delta;
1114                        msbp++;
1115                }
1116        }
1117
1118        /*
1119         * If we need to change anything, do it.
1120         */
1121        if (msbp > msb) {
1122                error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1123                        (uint)(msbp - msb), rsvd);
1124                if (error)
1125                        goto out_undo_ifreecount;
1126        }
1127
1128        return;
1129
1130out_undo_ifreecount:
1131        if (ifreedelta)
1132                xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1133out_undo_icount:
1134        if (idelta)
1135                xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1136out_undo_fdblocks:
1137        if (blkdelta)
1138                xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1139out:
1140        ASSERT(error == 0);
1141        return;
1142}
1143
1144/*
1145 * Add the given log item to the transaction's list of log items.
1146 *
1147 * The log item will now point to its new descriptor with its li_desc field.
1148 */
1149void
1150xfs_trans_add_item(
1151        struct xfs_trans        *tp,
1152        struct xfs_log_item     *lip)
1153{
1154        struct xfs_log_item_desc *lidp;
1155
1156        ASSERT(lip->li_mountp = tp->t_mountp);
1157        ASSERT(lip->li_ailp = tp->t_mountp->m_ail);
1158
1159        lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1160
1161        lidp->lid_item = lip;
1162        lidp->lid_flags = 0;
1163        lidp->lid_size = 0;
1164        list_add_tail(&lidp->lid_trans, &tp->t_items);
1165
1166        lip->li_desc = lidp;
1167}
1168
1169STATIC void
1170xfs_trans_free_item_desc(
1171        struct xfs_log_item_desc *lidp)
1172{
1173        list_del_init(&lidp->lid_trans);
1174        kmem_zone_free(xfs_log_item_desc_zone, lidp);
1175}
1176
1177/*
1178 * Unlink and free the given descriptor.
1179 */
1180void
1181xfs_trans_del_item(
1182        struct xfs_log_item     *lip)
1183{
1184        xfs_trans_free_item_desc(lip->li_desc);
1185        lip->li_desc = NULL;
1186}
1187
1188/*
1189 * Unlock all of the items of a transaction and free all the descriptors
1190 * of that transaction.
1191 */
1192void
1193xfs_trans_free_items(
1194        struct xfs_trans        *tp,
1195        xfs_lsn_t               commit_lsn,
1196        int                     flags)
1197{
1198        struct xfs_log_item_desc *lidp, *next;
1199
1200        list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1201                struct xfs_log_item     *lip = lidp->lid_item;
1202
1203                lip->li_desc = NULL;
1204
1205                if (commit_lsn != NULLCOMMITLSN)
1206                        IOP_COMMITTING(lip, commit_lsn);
1207                if (flags & XFS_TRANS_ABORT)
1208                        lip->li_flags |= XFS_LI_ABORTED;
1209                IOP_UNLOCK(lip);
1210
1211                xfs_trans_free_item_desc(lidp);
1212        }
1213}
1214
1215/*
1216 * Unlock the items associated with a transaction.
1217 *
1218 * Items which were not logged should be freed.  Those which were logged must
1219 * still be tracked so they can be unpinned when the transaction commits.
1220 */
1221STATIC void
1222xfs_trans_unlock_items(
1223        struct xfs_trans        *tp,
1224        xfs_lsn_t               commit_lsn)
1225{
1226        struct xfs_log_item_desc *lidp, *next;
1227
1228        list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1229                struct xfs_log_item     *lip = lidp->lid_item;
1230
1231                lip->li_desc = NULL;
1232
1233                if (commit_lsn != NULLCOMMITLSN)
1234                        IOP_COMMITTING(lip, commit_lsn);
1235                IOP_UNLOCK(lip);
1236
1237                /*
1238                 * Free the descriptor if the item is not dirty
1239                 * within this transaction.
1240                 */
1241                if (!(lidp->lid_flags & XFS_LID_DIRTY))
1242                        xfs_trans_free_item_desc(lidp);
1243        }
1244}
1245
1246/*
1247 * Total up the number of log iovecs needed to commit this
1248 * transaction.  The transaction itself needs one for the
1249 * transaction header.  Ask each dirty item in turn how many
1250 * it needs to get the total.
1251 */
1252static uint
1253xfs_trans_count_vecs(
1254        struct xfs_trans        *tp)
1255{
1256        int                     nvecs;
1257        struct xfs_log_item_desc *lidp;
1258
1259        nvecs = 1;
1260
1261        /* In the non-debug case we need to start bailing out if we
1262         * didn't find a log_item here, return zero and let trans_commit
1263         * deal with it.
1264         */
1265        if (list_empty(&tp->t_items)) {
1266                ASSERT(0);
1267                return 0;
1268        }
1269
1270        list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1271                /*
1272                 * Skip items which aren't dirty in this transaction.
1273                 */
1274                if (!(lidp->lid_flags & XFS_LID_DIRTY))
1275                        continue;
1276                lidp->lid_size = IOP_SIZE(lidp->lid_item);
1277                nvecs += lidp->lid_size;
1278        }
1279
1280        return nvecs;
1281}
1282
1283/*
1284 * Fill in the vector with pointers to data to be logged
1285 * by this transaction.  The transaction header takes
1286 * the first vector, and then each dirty item takes the
1287 * number of vectors it indicated it needed in xfs_trans_count_vecs().
1288 *
1289 * As each item fills in the entries it needs, also pin the item
1290 * so that it cannot be flushed out until the log write completes.
1291 */
1292static void
1293xfs_trans_fill_vecs(
1294        struct xfs_trans        *tp,
1295        struct xfs_log_iovec    *log_vector)
1296{
1297        struct xfs_log_item_desc *lidp;
1298        struct xfs_log_iovec    *vecp;
1299        uint                    nitems;
1300
1301        /*
1302         * Skip over the entry for the transaction header, we'll
1303         * fill that in at the end.
1304         */
1305        vecp = log_vector + 1;
1306
1307        nitems = 0;
1308        ASSERT(!list_empty(&tp->t_items));
1309        list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1310                /* Skip items which aren't dirty in this transaction. */
1311                if (!(lidp->lid_flags & XFS_LID_DIRTY))
1312                        continue;
1313
1314                /*
1315                 * The item may be marked dirty but not log anything.  This can
1316                 * be used to get called when a transaction is committed.
1317                 */
1318                if (lidp->lid_size)
1319                        nitems++;
1320                IOP_FORMAT(lidp->lid_item, vecp);
1321                vecp += lidp->lid_size;
1322                IOP_PIN(lidp->lid_item);
1323        }
1324
1325        /*
1326         * Now that we've counted the number of items in this transaction, fill
1327         * in the transaction header. Note that the transaction header does not
1328         * have a log item.
1329         */
1330        tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC;
1331        tp->t_header.th_type = tp->t_type;
1332        tp->t_header.th_num_items = nitems;
1333        log_vector->i_addr = (xfs_caddr_t)&tp->t_header;
1334        log_vector->i_len = sizeof(xfs_trans_header_t);
1335        log_vector->i_type = XLOG_REG_TYPE_TRANSHDR;
1336}
1337
1338/*
1339 * The committed item processing consists of calling the committed routine of
1340 * each logged item, updating the item's position in the AIL if necessary, and
1341 * unpinning each item.  If the committed routine returns -1, then do nothing
1342 * further with the item because it may have been freed.
1343 *
1344 * Since items are unlocked when they are copied to the incore log, it is
1345 * possible for two transactions to be completing and manipulating the same
1346 * item simultaneously.  The AIL lock will protect the lsn field of each item.
1347 * The value of this field can never go backwards.
1348 *
1349 * We unpin the items after repositioning them in the AIL, because otherwise
1350 * they could be immediately flushed and we'd have to race with the flusher
1351 * trying to pull the item from the AIL as we add it.
1352 */
1353static void
1354xfs_trans_item_committed(
1355        struct xfs_log_item     *lip,
1356        xfs_lsn_t               commit_lsn,
1357        int                     aborted)
1358{
1359        xfs_lsn_t               item_lsn;
1360        struct xfs_ail          *ailp;
1361
1362        if (aborted)
1363                lip->li_flags |= XFS_LI_ABORTED;
1364        item_lsn = IOP_COMMITTED(lip, commit_lsn);
1365
1366        /* If the committed routine returns -1, item has been freed. */
1367        if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1368                return;
1369
1370        /*
1371         * If the returned lsn is greater than what it contained before, update
1372         * the location of the item in the AIL.  If it is not, then do nothing.
1373         * Items can never move backwards in the AIL.
1374         *
1375         * While the new lsn should usually be greater, it is possible that a
1376         * later transaction completing simultaneously with an earlier one
1377         * using the same item could complete first with a higher lsn.  This
1378         * would cause the earlier transaction to fail the test below.
1379         */
1380        ailp = lip->li_ailp;
1381        spin_lock(&ailp->xa_lock);
1382        if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) {
1383                /*
1384                 * This will set the item's lsn to item_lsn and update the
1385                 * position of the item in the AIL.
1386                 *
1387                 * xfs_trans_ail_update() drops the AIL lock.
1388                 */
1389                xfs_trans_ail_update(ailp, lip, item_lsn);
1390        } else {
1391                spin_unlock(&ailp->xa_lock);
1392        }
1393
1394        /*
1395         * Now that we've repositioned the item in the AIL, unpin it so it can
1396         * be flushed. Pass information about buffer stale state down from the
1397         * log item flags, if anyone else stales the buffer we do not want to
1398         * pay any attention to it.
1399         */
1400        IOP_UNPIN(lip, 0);
1401}
1402
1403/*
1404 * This is typically called by the LM when a transaction has been fully
1405 * committed to disk.  It needs to unpin the items which have
1406 * been logged by the transaction and update their positions
1407 * in the AIL if necessary.
1408 *
1409 * This also gets called when the transactions didn't get written out
1410 * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then.
1411 */
1412STATIC void
1413xfs_trans_committed(
1414        void                    *arg,
1415        int                     abortflag)
1416{
1417        struct xfs_trans        *tp = arg;
1418        struct xfs_log_item_desc *lidp, *next;
1419
1420        list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1421                xfs_trans_item_committed(lidp->lid_item, tp->t_lsn, abortflag);
1422                xfs_trans_free_item_desc(lidp);
1423        }
1424
1425        xfs_trans_free(tp);
1426}
1427
1428static inline void
1429xfs_log_item_batch_insert(
1430        struct xfs_ail          *ailp,
1431        struct xfs_log_item     **log_items,
1432        int                     nr_items,
1433        xfs_lsn_t               commit_lsn)
1434{
1435        int     i;
1436
1437        spin_lock(&ailp->xa_lock);
1438        /* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1439        xfs_trans_ail_update_bulk(ailp, log_items, nr_items, commit_lsn);
1440
1441        for (i = 0; i < nr_items; i++)
1442                IOP_UNPIN(log_items[i], 0);
1443}
1444
1445/*
1446 * Bulk operation version of xfs_trans_committed that takes a log vector of
1447 * items to insert into the AIL. This uses bulk AIL insertion techniques to
1448 * minimise lock traffic.
1449 *
1450 * If we are called with the aborted flag set, it is because a log write during
1451 * a CIL checkpoint commit has failed. In this case, all the items in the
1452 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1453 * means that checkpoint commit abort handling is treated exactly the same
1454 * as an iclog write error even though we haven't started any IO yet. Hence in
1455 * this case all we need to do is IOP_COMMITTED processing, followed by an
1456 * IOP_UNPIN(aborted) call.
1457 */
1458void
1459xfs_trans_committed_bulk(
1460        struct xfs_ail          *ailp,
1461        struct xfs_log_vec      *log_vector,
1462        xfs_lsn_t               commit_lsn,
1463        int                     aborted)
1464{
1465#define LOG_ITEM_BATCH_SIZE     32
1466        struct xfs_log_item     *log_items[LOG_ITEM_BATCH_SIZE];
1467        struct xfs_log_vec      *lv;
1468        int                     i = 0;
1469
1470        /* unpin all the log items */
1471        for (lv = log_vector; lv; lv = lv->lv_next ) {
1472                struct xfs_log_item     *lip = lv->lv_item;
1473                xfs_lsn_t               item_lsn;
1474
1475                if (aborted)
1476                        lip->li_flags |= XFS_LI_ABORTED;
1477                item_lsn = IOP_COMMITTED(lip, commit_lsn);
1478
1479                /* item_lsn of -1 means the item was freed */
1480                if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1481                        continue;
1482
1483                /*
1484                 * if we are aborting the operation, no point in inserting the
1485                 * object into the AIL as we are in a shutdown situation.
1486                 */
1487                if (aborted) {
1488                        ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1489                        IOP_UNPIN(lip, 1);
1490                        continue;
1491                }
1492
1493                if (item_lsn != commit_lsn) {
1494
1495                        /*
1496                         * Not a bulk update option due to unusual item_lsn.
1497                         * Push into AIL immediately, rechecking the lsn once
1498                         * we have the ail lock. Then unpin the item.
1499                         */
1500                        spin_lock(&ailp->xa_lock);
1501                        if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1502                                xfs_trans_ail_update(ailp, lip, item_lsn);
1503                        else
1504                                spin_unlock(&ailp->xa_lock);
1505                        IOP_UNPIN(lip, 0);
1506                        continue;
1507                }
1508
1509                /* Item is a candidate for bulk AIL insert.  */
1510                log_items[i++] = lv->lv_item;
1511                if (i >= LOG_ITEM_BATCH_SIZE) {
1512                        xfs_log_item_batch_insert(ailp, log_items,
1513                                        LOG_ITEM_BATCH_SIZE, commit_lsn);
1514                        i = 0;
1515                }
1516        }
1517
1518        /* make sure we insert the remainder! */
1519        if (i)
1520                xfs_log_item_batch_insert(ailp, log_items, i, commit_lsn);
1521}
1522
1523/*
1524 * Called from the trans_commit code when we notice that the filesystem is in
1525 * the middle of a forced shutdown.
1526 *
1527 * When we are called here, we have already pinned all the items in the
1528 * transaction. However, neither IOP_COMMITTING or IOP_UNLOCK has been called
1529 * so we can simply walk the items in the transaction, unpin them with an abort
1530 * flag and then free the items. Note that unpinning the items can result in
1531 * them being freed immediately, so we need to use a safe list traversal method
1532 * here.
1533 */
1534STATIC void
1535xfs_trans_uncommit(
1536        struct xfs_trans        *tp,
1537        uint                    flags)
1538{
1539        struct xfs_log_item_desc *lidp, *n;
1540
1541        list_for_each_entry_safe(lidp, n, &tp->t_items, lid_trans) {
1542                if (lidp->lid_flags & XFS_LID_DIRTY)
1543                        IOP_UNPIN(lidp->lid_item, 1);
1544        }
1545
1546        xfs_trans_unreserve_and_mod_sb(tp);
1547        xfs_trans_unreserve_and_mod_dquots(tp);
1548
1549        xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1550        xfs_trans_free(tp);
1551}
1552
1553/*
1554 * Format the transaction direct to the iclog. This isolates the physical
1555 * transaction commit operation from the logical operation and hence allows
1556 * other methods to be introduced without affecting the existing commit path.
1557 */
1558static int
1559xfs_trans_commit_iclog(
1560        struct xfs_mount        *mp,
1561        struct xfs_trans        *tp,
1562        xfs_lsn_t               *commit_lsn,
1563        int                     flags)
1564{
1565        int                     shutdown;
1566        int                     error;
1567        int                     log_flags = 0;
1568        struct xlog_in_core     *commit_iclog;
1569#define XFS_TRANS_LOGVEC_COUNT  16
1570        struct xfs_log_iovec    log_vector_fast[XFS_TRANS_LOGVEC_COUNT];
1571        struct xfs_log_iovec    *log_vector;
1572        uint                    nvec;
1573
1574
1575        /*
1576         * Ask each log item how many log_vector entries it will
1577         * need so we can figure out how many to allocate.
1578         * Try to avoid the kmem_alloc() call in the common case
1579         * by using a vector from the stack when it fits.
1580         */
1581        nvec = xfs_trans_count_vecs(tp);
1582        if (nvec == 0) {
1583                return ENOMEM;  /* triggers a shutdown! */
1584        } else if (nvec <= XFS_TRANS_LOGVEC_COUNT) {
1585                log_vector = log_vector_fast;
1586        } else {
1587                log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec *
1588                                                   sizeof(xfs_log_iovec_t),
1589                                                   KM_SLEEP);
1590        }
1591
1592        /*
1593         * Fill in the log_vector and pin the logged items, and
1594         * then write the transaction to the log.
1595         */
1596        xfs_trans_fill_vecs(tp, log_vector);
1597
1598        if (flags & XFS_TRANS_RELEASE_LOG_RES)
1599                log_flags = XFS_LOG_REL_PERM_RESERV;
1600
1601        error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn));
1602
1603        /*
1604         * The transaction is committed incore here, and can go out to disk
1605         * at any time after this call.  However, all the items associated
1606         * with the transaction are still locked and pinned in memory.
1607         */
1608        *commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags);
1609
1610        tp->t_commit_lsn = *commit_lsn;
1611        trace_xfs_trans_commit_lsn(tp);
1612
1613        if (nvec > XFS_TRANS_LOGVEC_COUNT)
1614                kmem_free(log_vector);
1615
1616        /*
1617         * If we got a log write error. Unpin the logitems that we
1618         * had pinned, clean up, free trans structure, and return error.
1619         */
1620        if (error || *commit_lsn == -1) {
1621                current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1622                xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT);
1623                return XFS_ERROR(EIO);
1624        }
1625
1626        /*
1627         * Once the transaction has committed, unused
1628         * reservations need to be released and changes to
1629         * the superblock need to be reflected in the in-core
1630         * version.  Do that now.
1631         */
1632        xfs_trans_unreserve_and_mod_sb(tp);
1633
1634        /*
1635         * Tell the LM to call the transaction completion routine
1636         * when the log write with LSN commit_lsn completes (e.g.
1637         * when the transaction commit really hits the on-disk log).
1638         * After this call we cannot reference tp, because the call
1639         * can happen at any time and the call will free the transaction
1640         * structure pointed to by tp.  The only case where we call
1641         * the completion routine (xfs_trans_committed) directly is
1642         * if the log is turned off on a debug kernel or we're
1643         * running in simulation mode (the log is explicitly turned
1644         * off).
1645         */
1646        tp->t_logcb.cb_func = xfs_trans_committed;
1647        tp->t_logcb.cb_arg = tp;
1648
1649        /*
1650         * We need to pass the iclog buffer which was used for the
1651         * transaction commit record into this function, and attach
1652         * the callback to it. The callback must be attached before
1653         * the items are unlocked to avoid racing with other threads
1654         * waiting for an item to unlock.
1655         */
1656        shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb));
1657
1658        /*
1659         * Mark this thread as no longer being in a transaction
1660         */
1661        current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1662
1663        /*
1664         * Once all the items of the transaction have been copied
1665         * to the in core log and the callback is attached, the
1666         * items can be unlocked.
1667         *
1668         * This will free descriptors pointing to items which were
1669         * not logged since there is nothing more to do with them.
1670         * For items which were logged, we will keep pointers to them
1671         * so they can be unpinned after the transaction commits to disk.
1672         * This will also stamp each modified meta-data item with
1673         * the commit lsn of this transaction for dependency tracking
1674         * purposes.
1675         */
1676        xfs_trans_unlock_items(tp, *commit_lsn);
1677
1678        /*
1679         * If we detected a log error earlier, finish committing
1680         * the transaction now (unpin log items, etc).
1681         *
1682         * Order is critical here, to avoid using the transaction
1683         * pointer after its been freed (by xfs_trans_committed
1684         * either here now, or as a callback).  We cannot do this
1685         * step inside xfs_log_notify as was done earlier because
1686         * of this issue.
1687         */
1688        if (shutdown)
1689                xfs_trans_committed(tp, XFS_LI_ABORTED);
1690
1691        /*
1692         * Now that the xfs_trans_committed callback has been attached,
1693         * and the items are released we can finally allow the iclog to
1694         * go to disk.
1695         */
1696        return xfs_log_release_iclog(mp, commit_iclog);
1697}
1698
1699/*
1700 * Walk the log items and allocate log vector structures for
1701 * each item large enough to fit all the vectors they require.
1702 * Note that this format differs from the old log vector format in
1703 * that there is no transaction header in these log vectors.
1704 */
1705STATIC struct xfs_log_vec *
1706xfs_trans_alloc_log_vecs(
1707        xfs_trans_t     *tp)
1708{
1709        struct xfs_log_item_desc *lidp;
1710        struct xfs_log_vec      *lv = NULL;
1711        struct xfs_log_vec      *ret_lv = NULL;
1712
1713
1714        /* Bail out if we didn't find a log item.  */
1715        if (list_empty(&tp->t_items)) {
1716                ASSERT(0);
1717                return NULL;
1718        }
1719
1720        list_for_each_entry(lidp, &tp->t_items, lid_trans) {
1721                struct xfs_log_vec *new_lv;
1722
1723                /* Skip items which aren't dirty in this transaction. */
1724                if (!(lidp->lid_flags & XFS_LID_DIRTY))
1725                        continue;
1726
1727                /* Skip items that do not have any vectors for writing */
1728                lidp->lid_size = IOP_SIZE(lidp->lid_item);
1729                if (!lidp->lid_size)
1730                        continue;
1731
1732                new_lv = kmem_zalloc(sizeof(*new_lv) +
1733                                lidp->lid_size * sizeof(struct xfs_log_iovec),
1734                                KM_SLEEP);
1735
1736                /* The allocated iovec region lies beyond the log vector. */
1737                new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
1738                new_lv->lv_niovecs = lidp->lid_size;
1739                new_lv->lv_item = lidp->lid_item;
1740                if (!ret_lv)
1741                        ret_lv = new_lv;
1742                else
1743                        lv->lv_next = new_lv;
1744                lv = new_lv;
1745        }
1746
1747        return ret_lv;
1748}
1749
1750static int
1751xfs_trans_commit_cil(
1752        struct xfs_mount        *mp,
1753        struct xfs_trans        *tp,
1754        xfs_lsn_t               *commit_lsn,
1755        int                     flags)
1756{
1757        struct xfs_log_vec      *log_vector;
1758
1759        /*
1760         * Get each log item to allocate a vector structure for
1761         * the log item to to pass to the log write code. The
1762         * CIL commit code will format the vector and save it away.
1763         */
1764        log_vector = xfs_trans_alloc_log_vecs(tp);
1765        if (!log_vector)
1766                return ENOMEM;
1767
1768        xfs_log_commit_cil(mp, tp, log_vector, commit_lsn, flags);
1769
1770        current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1771        xfs_trans_free(tp);
1772        return 0;
1773}
1774
1775/*
1776 * xfs_trans_commit
1777 *
1778 * Commit the given transaction to the log a/synchronously.
1779 *
1780 * XFS disk error handling mechanism is not based on a typical
1781 * transaction abort mechanism. Logically after the filesystem
1782 * gets marked 'SHUTDOWN', we can't let any new transactions
1783 * be durable - ie. committed to disk - because some metadata might
1784 * be inconsistent. In such cases, this returns an error, and the
1785 * caller may assume that all locked objects joined to the transaction
1786 * have already been unlocked as if the commit had succeeded.
1787 * Do not reference the transaction structure after this call.
1788 */
1789int
1790_xfs_trans_commit(
1791        struct xfs_trans        *tp,
1792        uint                    flags,
1793        int                     *log_flushed)
1794{
1795        struct xfs_mount        *mp = tp->t_mountp;
1796        xfs_lsn_t               commit_lsn = -1;
1797        int                     error = 0;
1798        int                     log_flags = 0;
1799        int                     sync = tp->t_flags & XFS_TRANS_SYNC;
1800
1801        /*
1802         * Determine whether this commit is releasing a permanent
1803         * log reservation or not.
1804         */
1805        if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1806                ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1807                log_flags = XFS_LOG_REL_PERM_RESERV;
1808        }
1809
1810        /*
1811         * If there is nothing to be logged by the transaction,
1812         * then unlock all of the items associated with the
1813         * transaction and free the transaction structure.
1814         * Also make sure to return any reserved blocks to
1815         * the free pool.
1816         */
1817        if (!(tp->t_flags & XFS_TRANS_DIRTY))
1818                goto out_unreserve;
1819
1820        if (XFS_FORCED_SHUTDOWN(mp)) {
1821                error = XFS_ERROR(EIO);
1822                goto out_unreserve;
1823        }
1824
1825        ASSERT(tp->t_ticket != NULL);
1826
1827        /*
1828         * If we need to update the superblock, then do it now.
1829         */
1830        if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1831                xfs_trans_apply_sb_deltas(tp);
1832        xfs_trans_apply_dquot_deltas(tp);
1833
1834        if (mp->m_flags & XFS_MOUNT_DELAYLOG)
1835                error = xfs_trans_commit_cil(mp, tp, &commit_lsn, flags);
1836        else
1837                error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags);
1838
1839        if (error == ENOMEM) {
1840                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1841                error = XFS_ERROR(EIO);
1842                goto out_unreserve;
1843        }
1844
1845        /*
1846         * If the transaction needs to be synchronous, then force the
1847         * log out now and wait for it.
1848         */
1849        if (sync) {
1850                if (!error) {
1851                        error = _xfs_log_force_lsn(mp, commit_lsn,
1852                                      XFS_LOG_SYNC, log_flushed);
1853                }
1854                XFS_STATS_INC(xs_trans_sync);
1855        } else {
1856                XFS_STATS_INC(xs_trans_async);
1857        }
1858
1859        return error;
1860
1861out_unreserve:
1862        xfs_trans_unreserve_and_mod_sb(tp);
1863
1864        /*
1865         * It is indeed possible for the transaction to be not dirty but
1866         * the dqinfo portion to be.  All that means is that we have some
1867         * (non-persistent) quota reservations that need to be unreserved.
1868         */
1869        xfs_trans_unreserve_and_mod_dquots(tp);
1870        if (tp->t_ticket) {
1871                commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1872                if (commit_lsn == -1 && !error)
1873                        error = XFS_ERROR(EIO);
1874        }
1875        current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1876        xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1877        xfs_trans_free(tp);
1878
1879        XFS_STATS_INC(xs_trans_empty);
1880        return error;
1881}
1882
1883/*
1884 * Unlock all of the transaction's items and free the transaction.
1885 * The transaction must not have modified any of its items, because
1886 * there is no way to restore them to their previous state.
1887 *
1888 * If the transaction has made a log reservation, make sure to release
1889 * it as well.
1890 */
1891void
1892xfs_trans_cancel(
1893        xfs_trans_t             *tp,
1894        int                     flags)
1895{
1896        int                     log_flags;
1897        xfs_mount_t             *mp = tp->t_mountp;
1898
1899        /*
1900         * See if the caller is being too lazy to figure out if
1901         * the transaction really needs an abort.
1902         */
1903        if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1904                flags &= ~XFS_TRANS_ABORT;
1905        /*
1906         * See if the caller is relying on us to shut down the
1907         * filesystem.  This happens in paths where we detect
1908         * corruption and decide to give up.
1909         */
1910        if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1911                XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1912                xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1913        }
1914#ifdef DEBUG
1915        if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1916                struct xfs_log_item_desc *lidp;
1917
1918                list_for_each_entry(lidp, &tp->t_items, lid_trans)
1919                        ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1920        }
1921#endif
1922        xfs_trans_unreserve_and_mod_sb(tp);
1923        xfs_trans_unreserve_and_mod_dquots(tp);
1924
1925        if (tp->t_ticket) {
1926                if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1927                        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1928                        log_flags = XFS_LOG_REL_PERM_RESERV;
1929                } else {
1930                        log_flags = 0;
1931                }
1932                xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1933        }
1934
1935        /* mark this thread as no longer being in a transaction */
1936        current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1937
1938        xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1939        xfs_trans_free(tp);
1940}
1941
1942/*
1943 * Roll from one trans in the sequence of PERMANENT transactions to
1944 * the next: permanent transactions are only flushed out when
1945 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1946 * as possible to let chunks of it go to the log. So we commit the
1947 * chunk we've been working on and get a new transaction to continue.
1948 */
1949int
1950xfs_trans_roll(
1951        struct xfs_trans        **tpp,
1952        struct xfs_inode        *dp)
1953{
1954        struct xfs_trans        *trans;
1955        unsigned int            logres, count;
1956        int                     error;
1957
1958        /*
1959         * Ensure that the inode is always logged.
1960         */
1961        trans = *tpp;
1962        xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1963
1964        /*
1965         * Copy the critical parameters from one trans to the next.
1966         */
1967        logres = trans->t_log_res;
1968        count = trans->t_log_count;
1969        *tpp = xfs_trans_dup(trans);
1970
1971        /*
1972         * Commit the current transaction.
1973         * If this commit failed, then it'd just unlock those items that
1974         * are not marked ihold. That also means that a filesystem shutdown
1975         * is in progress. The caller takes the responsibility to cancel
1976         * the duplicate transaction that gets returned.
1977         */
1978        error = xfs_trans_commit(trans, 0);
1979        if (error)
1980                return (error);
1981
1982        trans = *tpp;
1983
1984        /*
1985         * transaction commit worked ok so we can drop the extra ticket
1986         * reference that we gained in xfs_trans_dup()
1987         */
1988        xfs_log_ticket_put(trans->t_ticket);
1989
1990
1991        /*
1992         * Reserve space in the log for th next transaction.
1993         * This also pushes items in the "AIL", the list of logged items,
1994         * out to disk if they are taking up space at the tail of the log
1995         * that we want to use.  This requires that either nothing be locked
1996         * across this call, or that anything that is locked be logged in
1997         * the prior and the next transactions.
1998         */
1999        error = xfs_trans_reserve(trans, 0, logres, 0,
2000                                  XFS_TRANS_PERM_LOG_RES, count);
2001        /*
2002         *  Ensure that the inode is in the new transaction and locked.
2003         */
2004        if (error)
2005                return error;
2006
2007        xfs_trans_ijoin(trans, dp);
2008        return 0;
2009}
2010