linux/include/linux/cgroup.h
<<
>>
Prefs
   1#ifndef _LINUX_CGROUP_H
   2#define _LINUX_CGROUP_H
   3/*
   4 *  cgroup interface
   5 *
   6 *  Copyright (C) 2003 BULL SA
   7 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
   8 *
   9 */
  10
  11#include <linux/sched.h>
  12#include <linux/cpumask.h>
  13#include <linux/nodemask.h>
  14#include <linux/rcupdate.h>
  15#include <linux/cgroupstats.h>
  16#include <linux/prio_heap.h>
  17#include <linux/rwsem.h>
  18#include <linux/idr.h>
  19
  20#ifdef CONFIG_CGROUPS
  21
  22struct cgroupfs_root;
  23struct cgroup_subsys;
  24struct inode;
  25struct cgroup;
  26struct css_id;
  27
  28extern int cgroup_init_early(void);
  29extern int cgroup_init(void);
  30extern void cgroup_lock(void);
  31extern int cgroup_lock_is_held(void);
  32extern bool cgroup_lock_live_group(struct cgroup *cgrp);
  33extern void cgroup_unlock(void);
  34extern void cgroup_fork(struct task_struct *p);
  35extern void cgroup_fork_callbacks(struct task_struct *p);
  36extern void cgroup_post_fork(struct task_struct *p);
  37extern void cgroup_exit(struct task_struct *p, int run_callbacks);
  38extern int cgroupstats_build(struct cgroupstats *stats,
  39                                struct dentry *dentry);
  40extern int cgroup_load_subsys(struct cgroup_subsys *ss);
  41extern void cgroup_unload_subsys(struct cgroup_subsys *ss);
  42
  43extern const struct file_operations proc_cgroup_operations;
  44
  45/* Define the enumeration of all builtin cgroup subsystems */
  46#define SUBSYS(_x) _x ## _subsys_id,
  47enum cgroup_subsys_id {
  48#include <linux/cgroup_subsys.h>
  49        CGROUP_BUILTIN_SUBSYS_COUNT
  50};
  51#undef SUBSYS
  52/*
  53 * This define indicates the maximum number of subsystems that can be loaded
  54 * at once. We limit to this many since cgroupfs_root has subsys_bits to keep
  55 * track of all of them.
  56 */
  57#define CGROUP_SUBSYS_COUNT (BITS_PER_BYTE*sizeof(unsigned long))
  58
  59/* Per-subsystem/per-cgroup state maintained by the system. */
  60struct cgroup_subsys_state {
  61        /*
  62         * The cgroup that this subsystem is attached to. Useful
  63         * for subsystems that want to know about the cgroup
  64         * hierarchy structure
  65         */
  66        struct cgroup *cgroup;
  67
  68        /*
  69         * State maintained by the cgroup system to allow subsystems
  70         * to be "busy". Should be accessed via css_get(),
  71         * css_tryget() and and css_put().
  72         */
  73
  74        atomic_t refcnt;
  75
  76        unsigned long flags;
  77        /* ID for this css, if possible */
  78        struct css_id __rcu *id;
  79};
  80
  81/* bits in struct cgroup_subsys_state flags field */
  82enum {
  83        CSS_ROOT, /* This CSS is the root of the subsystem */
  84        CSS_REMOVED, /* This CSS is dead */
  85};
  86
  87/* Caller must verify that the css is not for root cgroup */
  88static inline void __css_get(struct cgroup_subsys_state *css, int count)
  89{
  90        atomic_add(count, &css->refcnt);
  91}
  92
  93/*
  94 * Call css_get() to hold a reference on the css; it can be used
  95 * for a reference obtained via:
  96 * - an existing ref-counted reference to the css
  97 * - task->cgroups for a locked task
  98 */
  99
 100static inline void css_get(struct cgroup_subsys_state *css)
 101{
 102        /* We don't need to reference count the root state */
 103        if (!test_bit(CSS_ROOT, &css->flags))
 104                __css_get(css, 1);
 105}
 106
 107static inline bool css_is_removed(struct cgroup_subsys_state *css)
 108{
 109        return test_bit(CSS_REMOVED, &css->flags);
 110}
 111
 112/*
 113 * Call css_tryget() to take a reference on a css if your existing
 114 * (known-valid) reference isn't already ref-counted. Returns false if
 115 * the css has been destroyed.
 116 */
 117
 118static inline bool css_tryget(struct cgroup_subsys_state *css)
 119{
 120        if (test_bit(CSS_ROOT, &css->flags))
 121                return true;
 122        while (!atomic_inc_not_zero(&css->refcnt)) {
 123                if (test_bit(CSS_REMOVED, &css->flags))
 124                        return false;
 125                cpu_relax();
 126        }
 127        return true;
 128}
 129
 130/*
 131 * css_put() should be called to release a reference taken by
 132 * css_get() or css_tryget()
 133 */
 134
 135extern void __css_put(struct cgroup_subsys_state *css, int count);
 136static inline void css_put(struct cgroup_subsys_state *css)
 137{
 138        if (!test_bit(CSS_ROOT, &css->flags))
 139                __css_put(css, 1);
 140}
 141
 142/* bits in struct cgroup flags field */
 143enum {
 144        /* Control Group is dead */
 145        CGRP_REMOVED,
 146        /*
 147         * Control Group has previously had a child cgroup or a task,
 148         * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set)
 149         */
 150        CGRP_RELEASABLE,
 151        /* Control Group requires release notifications to userspace */
 152        CGRP_NOTIFY_ON_RELEASE,
 153        /*
 154         * A thread in rmdir() is wating for this cgroup.
 155         */
 156        CGRP_WAIT_ON_RMDIR,
 157        /*
 158         * Clone cgroup values when creating a new child cgroup
 159         */
 160        CGRP_CLONE_CHILDREN,
 161};
 162
 163/* which pidlist file are we talking about? */
 164enum cgroup_filetype {
 165        CGROUP_FILE_PROCS,
 166        CGROUP_FILE_TASKS,
 167};
 168
 169/*
 170 * A pidlist is a list of pids that virtually represents the contents of one
 171 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 172 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 173 * to the cgroup.
 174 */
 175struct cgroup_pidlist {
 176        /*
 177         * used to find which pidlist is wanted. doesn't change as long as
 178         * this particular list stays in the list.
 179         */
 180        struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
 181        /* array of xids */
 182        pid_t *list;
 183        /* how many elements the above list has */
 184        int length;
 185        /* how many files are using the current array */
 186        int use_count;
 187        /* each of these stored in a list by its cgroup */
 188        struct list_head links;
 189        /* pointer to the cgroup we belong to, for list removal purposes */
 190        struct cgroup *owner;
 191        /* protects the other fields */
 192        struct rw_semaphore mutex;
 193};
 194
 195struct cgroup {
 196        unsigned long flags;            /* "unsigned long" so bitops work */
 197
 198        /*
 199         * count users of this cgroup. >0 means busy, but doesn't
 200         * necessarily indicate the number of tasks in the cgroup
 201         */
 202        atomic_t count;
 203
 204        /*
 205         * We link our 'sibling' struct into our parent's 'children'.
 206         * Our children link their 'sibling' into our 'children'.
 207         */
 208        struct list_head sibling;       /* my parent's children */
 209        struct list_head children;      /* my children */
 210
 211        struct cgroup *parent;          /* my parent */
 212        struct dentry __rcu *dentry;    /* cgroup fs entry, RCU protected */
 213
 214        /* Private pointers for each registered subsystem */
 215        struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
 216
 217        struct cgroupfs_root *root;
 218        struct cgroup *top_cgroup;
 219
 220        /*
 221         * List of cg_cgroup_links pointing at css_sets with
 222         * tasks in this cgroup. Protected by css_set_lock
 223         */
 224        struct list_head css_sets;
 225
 226        /*
 227         * Linked list running through all cgroups that can
 228         * potentially be reaped by the release agent. Protected by
 229         * release_list_lock
 230         */
 231        struct list_head release_list;
 232
 233        /*
 234         * list of pidlists, up to two for each namespace (one for procs, one
 235         * for tasks); created on demand.
 236         */
 237        struct list_head pidlists;
 238        struct mutex pidlist_mutex;
 239
 240        /* For RCU-protected deletion */
 241        struct rcu_head rcu_head;
 242
 243        /* List of events which userspace want to recieve */
 244        struct list_head event_list;
 245        spinlock_t event_list_lock;
 246};
 247
 248/*
 249 * A css_set is a structure holding pointers to a set of
 250 * cgroup_subsys_state objects. This saves space in the task struct
 251 * object and speeds up fork()/exit(), since a single inc/dec and a
 252 * list_add()/del() can bump the reference count on the entire cgroup
 253 * set for a task.
 254 */
 255
 256struct css_set {
 257
 258        /* Reference count */
 259        atomic_t refcount;
 260
 261        /*
 262         * List running through all cgroup groups in the same hash
 263         * slot. Protected by css_set_lock
 264         */
 265        struct hlist_node hlist;
 266
 267        /*
 268         * List running through all tasks using this cgroup
 269         * group. Protected by css_set_lock
 270         */
 271        struct list_head tasks;
 272
 273        /*
 274         * List of cg_cgroup_link objects on link chains from
 275         * cgroups referenced from this css_set. Protected by
 276         * css_set_lock
 277         */
 278        struct list_head cg_links;
 279
 280        /*
 281         * Set of subsystem states, one for each subsystem. This array
 282         * is immutable after creation apart from the init_css_set
 283         * during subsystem registration (at boot time) and modular subsystem
 284         * loading/unloading.
 285         */
 286        struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
 287
 288        /* For RCU-protected deletion */
 289        struct rcu_head rcu_head;
 290};
 291
 292/*
 293 * cgroup_map_cb is an abstract callback API for reporting map-valued
 294 * control files
 295 */
 296
 297struct cgroup_map_cb {
 298        int (*fill)(struct cgroup_map_cb *cb, const char *key, u64 value);
 299        void *state;
 300};
 301
 302/*
 303 * struct cftype: handler definitions for cgroup control files
 304 *
 305 * When reading/writing to a file:
 306 *      - the cgroup to use is file->f_dentry->d_parent->d_fsdata
 307 *      - the 'cftype' of the file is file->f_dentry->d_fsdata
 308 */
 309
 310#define MAX_CFTYPE_NAME 64
 311struct cftype {
 312        /*
 313         * By convention, the name should begin with the name of the
 314         * subsystem, followed by a period
 315         */
 316        char name[MAX_CFTYPE_NAME];
 317        int private;
 318        /*
 319         * If not 0, file mode is set to this value, otherwise it will
 320         * be figured out automatically
 321         */
 322        mode_t mode;
 323
 324        /*
 325         * If non-zero, defines the maximum length of string that can
 326         * be passed to write_string; defaults to 64
 327         */
 328        size_t max_write_len;
 329
 330        int (*open)(struct inode *inode, struct file *file);
 331        ssize_t (*read)(struct cgroup *cgrp, struct cftype *cft,
 332                        struct file *file,
 333                        char __user *buf, size_t nbytes, loff_t *ppos);
 334        /*
 335         * read_u64() is a shortcut for the common case of returning a
 336         * single integer. Use it in place of read()
 337         */
 338        u64 (*read_u64)(struct cgroup *cgrp, struct cftype *cft);
 339        /*
 340         * read_s64() is a signed version of read_u64()
 341         */
 342        s64 (*read_s64)(struct cgroup *cgrp, struct cftype *cft);
 343        /*
 344         * read_map() is used for defining a map of key/value
 345         * pairs. It should call cb->fill(cb, key, value) for each
 346         * entry. The key/value pairs (and their ordering) should not
 347         * change between reboots.
 348         */
 349        int (*read_map)(struct cgroup *cont, struct cftype *cft,
 350                        struct cgroup_map_cb *cb);
 351        /*
 352         * read_seq_string() is used for outputting a simple sequence
 353         * using seqfile.
 354         */
 355        int (*read_seq_string)(struct cgroup *cont, struct cftype *cft,
 356                               struct seq_file *m);
 357
 358        ssize_t (*write)(struct cgroup *cgrp, struct cftype *cft,
 359                         struct file *file,
 360                         const char __user *buf, size_t nbytes, loff_t *ppos);
 361
 362        /*
 363         * write_u64() is a shortcut for the common case of accepting
 364         * a single integer (as parsed by simple_strtoull) from
 365         * userspace. Use in place of write(); return 0 or error.
 366         */
 367        int (*write_u64)(struct cgroup *cgrp, struct cftype *cft, u64 val);
 368        /*
 369         * write_s64() is a signed version of write_u64()
 370         */
 371        int (*write_s64)(struct cgroup *cgrp, struct cftype *cft, s64 val);
 372
 373        /*
 374         * write_string() is passed a nul-terminated kernelspace
 375         * buffer of maximum length determined by max_write_len.
 376         * Returns 0 or -ve error code.
 377         */
 378        int (*write_string)(struct cgroup *cgrp, struct cftype *cft,
 379                            const char *buffer);
 380        /*
 381         * trigger() callback can be used to get some kick from the
 382         * userspace, when the actual string written is not important
 383         * at all. The private field can be used to determine the
 384         * kick type for multiplexing.
 385         */
 386        int (*trigger)(struct cgroup *cgrp, unsigned int event);
 387
 388        int (*release)(struct inode *inode, struct file *file);
 389
 390        /*
 391         * register_event() callback will be used to add new userspace
 392         * waiter for changes related to the cftype. Implement it if
 393         * you want to provide this functionality. Use eventfd_signal()
 394         * on eventfd to send notification to userspace.
 395         */
 396        int (*register_event)(struct cgroup *cgrp, struct cftype *cft,
 397                        struct eventfd_ctx *eventfd, const char *args);
 398        /*
 399         * unregister_event() callback will be called when userspace
 400         * closes the eventfd or on cgroup removing.
 401         * This callback must be implemented, if you want provide
 402         * notification functionality.
 403         */
 404        void (*unregister_event)(struct cgroup *cgrp, struct cftype *cft,
 405                        struct eventfd_ctx *eventfd);
 406};
 407
 408struct cgroup_scanner {
 409        struct cgroup *cg;
 410        int (*test_task)(struct task_struct *p, struct cgroup_scanner *scan);
 411        void (*process_task)(struct task_struct *p,
 412                        struct cgroup_scanner *scan);
 413        struct ptr_heap *heap;
 414        void *data;
 415};
 416
 417/*
 418 * Add a new file to the given cgroup directory. Should only be
 419 * called by subsystems from within a populate() method
 420 */
 421int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
 422                       const struct cftype *cft);
 423
 424/*
 425 * Add a set of new files to the given cgroup directory. Should
 426 * only be called by subsystems from within a populate() method
 427 */
 428int cgroup_add_files(struct cgroup *cgrp,
 429                        struct cgroup_subsys *subsys,
 430                        const struct cftype cft[],
 431                        int count);
 432
 433int cgroup_is_removed(const struct cgroup *cgrp);
 434
 435int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen);
 436
 437int cgroup_task_count(const struct cgroup *cgrp);
 438
 439/* Return true if cgrp is a descendant of the task's cgroup */
 440int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task);
 441
 442/*
 443 * When the subsys has to access css and may add permanent refcnt to css,
 444 * it should take care of racy conditions with rmdir(). Following set of
 445 * functions, is for stop/restart rmdir if necessary.
 446 * Because these will call css_get/put, "css" should be alive css.
 447 *
 448 *  cgroup_exclude_rmdir();
 449 *  ...do some jobs which may access arbitrary empty cgroup
 450 *  cgroup_release_and_wakeup_rmdir();
 451 *
 452 *  When someone removes a cgroup while cgroup_exclude_rmdir() holds it,
 453 *  it sleeps and cgroup_release_and_wakeup_rmdir() will wake him up.
 454 */
 455
 456void cgroup_exclude_rmdir(struct cgroup_subsys_state *css);
 457void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css);
 458
 459/*
 460 * Control Group subsystem type.
 461 * See Documentation/cgroups/cgroups.txt for details
 462 */
 463
 464struct cgroup_subsys {
 465        struct cgroup_subsys_state *(*create)(struct cgroup_subsys *ss,
 466                                                  struct cgroup *cgrp);
 467        int (*pre_destroy)(struct cgroup_subsys *ss, struct cgroup *cgrp);
 468        void (*destroy)(struct cgroup_subsys *ss, struct cgroup *cgrp);
 469        int (*can_attach)(struct cgroup_subsys *ss, struct cgroup *cgrp,
 470                          struct task_struct *tsk, bool threadgroup);
 471        void (*cancel_attach)(struct cgroup_subsys *ss, struct cgroup *cgrp,
 472                          struct task_struct *tsk, bool threadgroup);
 473        void (*attach)(struct cgroup_subsys *ss, struct cgroup *cgrp,
 474                        struct cgroup *old_cgrp, struct task_struct *tsk,
 475                        bool threadgroup);
 476        void (*fork)(struct cgroup_subsys *ss, struct task_struct *task);
 477        void (*exit)(struct cgroup_subsys *ss, struct task_struct *task);
 478        int (*populate)(struct cgroup_subsys *ss,
 479                        struct cgroup *cgrp);
 480        void (*post_clone)(struct cgroup_subsys *ss, struct cgroup *cgrp);
 481        void (*bind)(struct cgroup_subsys *ss, struct cgroup *root);
 482
 483        int subsys_id;
 484        int active;
 485        int disabled;
 486        int early_init;
 487        /*
 488         * True if this subsys uses ID. ID is not available before cgroup_init()
 489         * (not available in early_init time.)
 490         */
 491        bool use_id;
 492#define MAX_CGROUP_TYPE_NAMELEN 32
 493        const char *name;
 494
 495        /*
 496         * Protects sibling/children links of cgroups in this
 497         * hierarchy, plus protects which hierarchy (or none) the
 498         * subsystem is a part of (i.e. root/sibling).  To avoid
 499         * potential deadlocks, the following operations should not be
 500         * undertaken while holding any hierarchy_mutex:
 501         *
 502         * - allocating memory
 503         * - initiating hotplug events
 504         */
 505        struct mutex hierarchy_mutex;
 506        struct lock_class_key subsys_key;
 507
 508        /*
 509         * Link to parent, and list entry in parent's children.
 510         * Protected by this->hierarchy_mutex and cgroup_lock()
 511         */
 512        struct cgroupfs_root *root;
 513        struct list_head sibling;
 514        /* used when use_id == true */
 515        struct idr idr;
 516        spinlock_t id_lock;
 517
 518        /* should be defined only by modular subsystems */
 519        struct module *module;
 520};
 521
 522#define SUBSYS(_x) extern struct cgroup_subsys _x ## _subsys;
 523#include <linux/cgroup_subsys.h>
 524#undef SUBSYS
 525
 526static inline struct cgroup_subsys_state *cgroup_subsys_state(
 527        struct cgroup *cgrp, int subsys_id)
 528{
 529        return cgrp->subsys[subsys_id];
 530}
 531
 532/*
 533 * function to get the cgroup_subsys_state which allows for extra
 534 * rcu_dereference_check() conditions, such as locks used during the
 535 * cgroup_subsys::attach() methods.
 536 */
 537#define task_subsys_state_check(task, subsys_id, __c)                   \
 538        rcu_dereference_check(task->cgroups->subsys[subsys_id],         \
 539                              rcu_read_lock_held() ||                   \
 540                              lockdep_is_held(&task->alloc_lock) ||     \
 541                              cgroup_lock_is_held() || (__c))
 542
 543static inline struct cgroup_subsys_state *
 544task_subsys_state(struct task_struct *task, int subsys_id)
 545{
 546        return task_subsys_state_check(task, subsys_id, false);
 547}
 548
 549static inline struct cgroup* task_cgroup(struct task_struct *task,
 550                                               int subsys_id)
 551{
 552        return task_subsys_state(task, subsys_id)->cgroup;
 553}
 554
 555int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *ss,
 556                                                        char *nodename);
 557
 558/* A cgroup_iter should be treated as an opaque object */
 559struct cgroup_iter {
 560        struct list_head *cg_link;
 561        struct list_head *task;
 562};
 563
 564/*
 565 * To iterate across the tasks in a cgroup:
 566 *
 567 * 1) call cgroup_iter_start to initialize an iterator
 568 *
 569 * 2) call cgroup_iter_next() to retrieve member tasks until it
 570 *    returns NULL or until you want to end the iteration
 571 *
 572 * 3) call cgroup_iter_end() to destroy the iterator.
 573 *
 574 * Or, call cgroup_scan_tasks() to iterate through every task in a
 575 * cgroup - cgroup_scan_tasks() holds the css_set_lock when calling
 576 * the test_task() callback, but not while calling the process_task()
 577 * callback.
 578 */
 579void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it);
 580struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
 581                                        struct cgroup_iter *it);
 582void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it);
 583int cgroup_scan_tasks(struct cgroup_scanner *scan);
 584int cgroup_attach_task(struct cgroup *, struct task_struct *);
 585int cgroup_attach_task_all(struct task_struct *from, struct task_struct *);
 586
 587static inline int cgroup_attach_task_current_cg(struct task_struct *tsk)
 588{
 589        return cgroup_attach_task_all(current, tsk);
 590}
 591
 592/*
 593 * CSS ID is ID for cgroup_subsys_state structs under subsys. This only works
 594 * if cgroup_subsys.use_id == true. It can be used for looking up and scanning.
 595 * CSS ID is assigned at cgroup allocation (create) automatically
 596 * and removed when subsys calls free_css_id() function. This is because
 597 * the lifetime of cgroup_subsys_state is subsys's matter.
 598 *
 599 * Looking up and scanning function should be called under rcu_read_lock().
 600 * Taking cgroup_mutex()/hierarchy_mutex() is not necessary for following calls.
 601 * But the css returned by this routine can be "not populated yet" or "being
 602 * destroyed". The caller should check css and cgroup's status.
 603 */
 604
 605/*
 606 * Typically Called at ->destroy(), or somewhere the subsys frees
 607 * cgroup_subsys_state.
 608 */
 609void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css);
 610
 611/* Find a cgroup_subsys_state which has given ID */
 612
 613struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id);
 614
 615/*
 616 * Get a cgroup whose id is greater than or equal to id under tree of root.
 617 * Returning a cgroup_subsys_state or NULL.
 618 */
 619struct cgroup_subsys_state *css_get_next(struct cgroup_subsys *ss, int id,
 620                struct cgroup_subsys_state *root, int *foundid);
 621
 622/* Returns true if root is ancestor of cg */
 623bool css_is_ancestor(struct cgroup_subsys_state *cg,
 624                     const struct cgroup_subsys_state *root);
 625
 626/* Get id and depth of css */
 627unsigned short css_id(struct cgroup_subsys_state *css);
 628unsigned short css_depth(struct cgroup_subsys_state *css);
 629
 630#else /* !CONFIG_CGROUPS */
 631
 632static inline int cgroup_init_early(void) { return 0; }
 633static inline int cgroup_init(void) { return 0; }
 634static inline void cgroup_fork(struct task_struct *p) {}
 635static inline void cgroup_fork_callbacks(struct task_struct *p) {}
 636static inline void cgroup_post_fork(struct task_struct *p) {}
 637static inline void cgroup_exit(struct task_struct *p, int callbacks) {}
 638
 639static inline void cgroup_lock(void) {}
 640static inline void cgroup_unlock(void) {}
 641static inline int cgroupstats_build(struct cgroupstats *stats,
 642                                        struct dentry *dentry)
 643{
 644        return -EINVAL;
 645}
 646
 647/* No cgroups - nothing to do */
 648static inline int cgroup_attach_task_all(struct task_struct *from,
 649                                         struct task_struct *t)
 650{
 651        return 0;
 652}
 653static inline int cgroup_attach_task_current_cg(struct task_struct *t)
 654{
 655        return 0;
 656}
 657
 658#endif /* !CONFIG_CGROUPS */
 659
 660#endif /* _LINUX_CGROUP_H */
 661