linux/include/linux/dmaengine.h
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License as published by the Free
   6 * Software Foundation; either version 2 of the License, or (at your option)
   7 * any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc., 59
  16 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  17 *
  18 * The full GNU General Public License is included in this distribution in the
  19 * file called COPYING.
  20 */
  21#ifndef DMAENGINE_H
  22#define DMAENGINE_H
  23
  24#include <linux/device.h>
  25#include <linux/uio.h>
  26#include <linux/dma-mapping.h>
  27
  28/**
  29 * typedef dma_cookie_t - an opaque DMA cookie
  30 *
  31 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  32 */
  33typedef s32 dma_cookie_t;
  34#define DMA_MIN_COOKIE  1
  35#define DMA_MAX_COOKIE  INT_MAX
  36
  37#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
  38
  39/**
  40 * enum dma_status - DMA transaction status
  41 * @DMA_SUCCESS: transaction completed successfully
  42 * @DMA_IN_PROGRESS: transaction not yet processed
  43 * @DMA_PAUSED: transaction is paused
  44 * @DMA_ERROR: transaction failed
  45 */
  46enum dma_status {
  47        DMA_SUCCESS,
  48        DMA_IN_PROGRESS,
  49        DMA_PAUSED,
  50        DMA_ERROR,
  51};
  52
  53/**
  54 * enum dma_transaction_type - DMA transaction types/indexes
  55 *
  56 * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
  57 * automatically set as dma devices are registered.
  58 */
  59enum dma_transaction_type {
  60        DMA_MEMCPY,
  61        DMA_XOR,
  62        DMA_PQ,
  63        DMA_XOR_VAL,
  64        DMA_PQ_VAL,
  65        DMA_MEMSET,
  66        DMA_INTERRUPT,
  67        DMA_SG,
  68        DMA_PRIVATE,
  69        DMA_ASYNC_TX,
  70        DMA_SLAVE,
  71        DMA_CYCLIC,
  72};
  73
  74/* last transaction type for creation of the capabilities mask */
  75#define DMA_TX_TYPE_END (DMA_CYCLIC + 1)
  76
  77
  78/**
  79 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
  80 *  control completion, and communicate status.
  81 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
  82 *  this transaction
  83 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
  84 *  acknowledges receipt, i.e. has has a chance to establish any dependency
  85 *  chains
  86 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
  87 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
  88 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
  89 *      (if not set, do the source dma-unmapping as page)
  90 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
  91 *      (if not set, do the destination dma-unmapping as page)
  92 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
  93 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
  94 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
  95 *  sources that were the result of a previous operation, in the case of a PQ
  96 *  operation it continues the calculation with new sources
  97 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
  98 *  on the result of this operation
  99 */
 100enum dma_ctrl_flags {
 101        DMA_PREP_INTERRUPT = (1 << 0),
 102        DMA_CTRL_ACK = (1 << 1),
 103        DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
 104        DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
 105        DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
 106        DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
 107        DMA_PREP_PQ_DISABLE_P = (1 << 6),
 108        DMA_PREP_PQ_DISABLE_Q = (1 << 7),
 109        DMA_PREP_CONTINUE = (1 << 8),
 110        DMA_PREP_FENCE = (1 << 9),
 111};
 112
 113/**
 114 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
 115 * on a running channel.
 116 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
 117 * @DMA_PAUSE: pause ongoing transfers
 118 * @DMA_RESUME: resume paused transfer
 119 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
 120 * that need to runtime reconfigure the slave channels (as opposed to passing
 121 * configuration data in statically from the platform). An additional
 122 * argument of struct dma_slave_config must be passed in with this
 123 * command.
 124 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
 125 * into external start mode.
 126 */
 127enum dma_ctrl_cmd {
 128        DMA_TERMINATE_ALL,
 129        DMA_PAUSE,
 130        DMA_RESUME,
 131        DMA_SLAVE_CONFIG,
 132        FSLDMA_EXTERNAL_START,
 133};
 134
 135/**
 136 * enum sum_check_bits - bit position of pq_check_flags
 137 */
 138enum sum_check_bits {
 139        SUM_CHECK_P = 0,
 140        SUM_CHECK_Q = 1,
 141};
 142
 143/**
 144 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
 145 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
 146 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
 147 */
 148enum sum_check_flags {
 149        SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
 150        SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
 151};
 152
 153
 154/**
 155 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
 156 * See linux/cpumask.h
 157 */
 158typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
 159
 160/**
 161 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
 162 * @memcpy_count: transaction counter
 163 * @bytes_transferred: byte counter
 164 */
 165
 166struct dma_chan_percpu {
 167        /* stats */
 168        unsigned long memcpy_count;
 169        unsigned long bytes_transferred;
 170};
 171
 172/**
 173 * struct dma_chan - devices supply DMA channels, clients use them
 174 * @device: ptr to the dma device who supplies this channel, always !%NULL
 175 * @cookie: last cookie value returned to client
 176 * @chan_id: channel ID for sysfs
 177 * @dev: class device for sysfs
 178 * @device_node: used to add this to the device chan list
 179 * @local: per-cpu pointer to a struct dma_chan_percpu
 180 * @client-count: how many clients are using this channel
 181 * @table_count: number of appearances in the mem-to-mem allocation table
 182 * @private: private data for certain client-channel associations
 183 */
 184struct dma_chan {
 185        struct dma_device *device;
 186        dma_cookie_t cookie;
 187
 188        /* sysfs */
 189        int chan_id;
 190        struct dma_chan_dev *dev;
 191
 192        struct list_head device_node;
 193        struct dma_chan_percpu __percpu *local;
 194        int client_count;
 195        int table_count;
 196        void *private;
 197};
 198
 199/**
 200 * struct dma_chan_dev - relate sysfs device node to backing channel device
 201 * @chan - driver channel device
 202 * @device - sysfs device
 203 * @dev_id - parent dma_device dev_id
 204 * @idr_ref - reference count to gate release of dma_device dev_id
 205 */
 206struct dma_chan_dev {
 207        struct dma_chan *chan;
 208        struct device device;
 209        int dev_id;
 210        atomic_t *idr_ref;
 211};
 212
 213/**
 214 * enum dma_slave_buswidth - defines bus with of the DMA slave
 215 * device, source or target buses
 216 */
 217enum dma_slave_buswidth {
 218        DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
 219        DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
 220        DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
 221        DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
 222        DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
 223};
 224
 225/**
 226 * struct dma_slave_config - dma slave channel runtime config
 227 * @direction: whether the data shall go in or out on this slave
 228 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
 229 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
 230 * need to differentiate source and target addresses.
 231 * @src_addr: this is the physical address where DMA slave data
 232 * should be read (RX), if the source is memory this argument is
 233 * ignored.
 234 * @dst_addr: this is the physical address where DMA slave data
 235 * should be written (TX), if the source is memory this argument
 236 * is ignored.
 237 * @src_addr_width: this is the width in bytes of the source (RX)
 238 * register where DMA data shall be read. If the source
 239 * is memory this may be ignored depending on architecture.
 240 * Legal values: 1, 2, 4, 8.
 241 * @dst_addr_width: same as src_addr_width but for destination
 242 * target (TX) mutatis mutandis.
 243 * @src_maxburst: the maximum number of words (note: words, as in
 244 * units of the src_addr_width member, not bytes) that can be sent
 245 * in one burst to the device. Typically something like half the
 246 * FIFO depth on I/O peripherals so you don't overflow it. This
 247 * may or may not be applicable on memory sources.
 248 * @dst_maxburst: same as src_maxburst but for destination target
 249 * mutatis mutandis.
 250 *
 251 * This struct is passed in as configuration data to a DMA engine
 252 * in order to set up a certain channel for DMA transport at runtime.
 253 * The DMA device/engine has to provide support for an additional
 254 * command in the channel config interface, DMA_SLAVE_CONFIG
 255 * and this struct will then be passed in as an argument to the
 256 * DMA engine device_control() function.
 257 *
 258 * The rationale for adding configuration information to this struct
 259 * is as follows: if it is likely that most DMA slave controllers in
 260 * the world will support the configuration option, then make it
 261 * generic. If not: if it is fixed so that it be sent in static from
 262 * the platform data, then prefer to do that. Else, if it is neither
 263 * fixed at runtime, nor generic enough (such as bus mastership on
 264 * some CPU family and whatnot) then create a custom slave config
 265 * struct and pass that, then make this config a member of that
 266 * struct, if applicable.
 267 */
 268struct dma_slave_config {
 269        enum dma_data_direction direction;
 270        dma_addr_t src_addr;
 271        dma_addr_t dst_addr;
 272        enum dma_slave_buswidth src_addr_width;
 273        enum dma_slave_buswidth dst_addr_width;
 274        u32 src_maxburst;
 275        u32 dst_maxburst;
 276};
 277
 278static inline const char *dma_chan_name(struct dma_chan *chan)
 279{
 280        return dev_name(&chan->dev->device);
 281}
 282
 283void dma_chan_cleanup(struct kref *kref);
 284
 285/**
 286 * typedef dma_filter_fn - callback filter for dma_request_channel
 287 * @chan: channel to be reviewed
 288 * @filter_param: opaque parameter passed through dma_request_channel
 289 *
 290 * When this optional parameter is specified in a call to dma_request_channel a
 291 * suitable channel is passed to this routine for further dispositioning before
 292 * being returned.  Where 'suitable' indicates a non-busy channel that
 293 * satisfies the given capability mask.  It returns 'true' to indicate that the
 294 * channel is suitable.
 295 */
 296typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
 297
 298typedef void (*dma_async_tx_callback)(void *dma_async_param);
 299/**
 300 * struct dma_async_tx_descriptor - async transaction descriptor
 301 * ---dma generic offload fields---
 302 * @cookie: tracking cookie for this transaction, set to -EBUSY if
 303 *      this tx is sitting on a dependency list
 304 * @flags: flags to augment operation preparation, control completion, and
 305 *      communicate status
 306 * @phys: physical address of the descriptor
 307 * @chan: target channel for this operation
 308 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
 309 * @callback: routine to call after this operation is complete
 310 * @callback_param: general parameter to pass to the callback routine
 311 * ---async_tx api specific fields---
 312 * @next: at completion submit this descriptor
 313 * @parent: pointer to the next level up in the dependency chain
 314 * @lock: protect the parent and next pointers
 315 */
 316struct dma_async_tx_descriptor {
 317        dma_cookie_t cookie;
 318        enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
 319        dma_addr_t phys;
 320        struct dma_chan *chan;
 321        dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
 322        dma_async_tx_callback callback;
 323        void *callback_param;
 324#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 325        struct dma_async_tx_descriptor *next;
 326        struct dma_async_tx_descriptor *parent;
 327        spinlock_t lock;
 328#endif
 329};
 330
 331#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 332static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 333{
 334}
 335static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 336{
 337}
 338static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 339{
 340        BUG();
 341}
 342static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 343{
 344}
 345static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 346{
 347}
 348static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 349{
 350        return NULL;
 351}
 352static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 353{
 354        return NULL;
 355}
 356
 357#else
 358static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 359{
 360        spin_lock_bh(&txd->lock);
 361}
 362static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 363{
 364        spin_unlock_bh(&txd->lock);
 365}
 366static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 367{
 368        txd->next = next;
 369        next->parent = txd;
 370}
 371static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 372{
 373        txd->parent = NULL;
 374}
 375static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 376{
 377        txd->next = NULL;
 378}
 379static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 380{
 381        return txd->parent;
 382}
 383static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 384{
 385        return txd->next;
 386}
 387#endif
 388
 389/**
 390 * struct dma_tx_state - filled in to report the status of
 391 * a transfer.
 392 * @last: last completed DMA cookie
 393 * @used: last issued DMA cookie (i.e. the one in progress)
 394 * @residue: the remaining number of bytes left to transmit
 395 *      on the selected transfer for states DMA_IN_PROGRESS and
 396 *      DMA_PAUSED if this is implemented in the driver, else 0
 397 */
 398struct dma_tx_state {
 399        dma_cookie_t last;
 400        dma_cookie_t used;
 401        u32 residue;
 402};
 403
 404/**
 405 * struct dma_device - info on the entity supplying DMA services
 406 * @chancnt: how many DMA channels are supported
 407 * @privatecnt: how many DMA channels are requested by dma_request_channel
 408 * @channels: the list of struct dma_chan
 409 * @global_node: list_head for global dma_device_list
 410 * @cap_mask: one or more dma_capability flags
 411 * @max_xor: maximum number of xor sources, 0 if no capability
 412 * @max_pq: maximum number of PQ sources and PQ-continue capability
 413 * @copy_align: alignment shift for memcpy operations
 414 * @xor_align: alignment shift for xor operations
 415 * @pq_align: alignment shift for pq operations
 416 * @fill_align: alignment shift for memset operations
 417 * @dev_id: unique device ID
 418 * @dev: struct device reference for dma mapping api
 419 * @device_alloc_chan_resources: allocate resources and return the
 420 *      number of allocated descriptors
 421 * @device_free_chan_resources: release DMA channel's resources
 422 * @device_prep_dma_memcpy: prepares a memcpy operation
 423 * @device_prep_dma_xor: prepares a xor operation
 424 * @device_prep_dma_xor_val: prepares a xor validation operation
 425 * @device_prep_dma_pq: prepares a pq operation
 426 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
 427 * @device_prep_dma_memset: prepares a memset operation
 428 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
 429 * @device_prep_slave_sg: prepares a slave dma operation
 430 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
 431 *      The function takes a buffer of size buf_len. The callback function will
 432 *      be called after period_len bytes have been transferred.
 433 * @device_control: manipulate all pending operations on a channel, returns
 434 *      zero or error code
 435 * @device_tx_status: poll for transaction completion, the optional
 436 *      txstate parameter can be supplied with a pointer to get a
 437 *      struct with auxilary transfer status information, otherwise the call
 438 *      will just return a simple status code
 439 * @device_issue_pending: push pending transactions to hardware
 440 */
 441struct dma_device {
 442
 443        unsigned int chancnt;
 444        unsigned int privatecnt;
 445        struct list_head channels;
 446        struct list_head global_node;
 447        dma_cap_mask_t  cap_mask;
 448        unsigned short max_xor;
 449        unsigned short max_pq;
 450        u8 copy_align;
 451        u8 xor_align;
 452        u8 pq_align;
 453        u8 fill_align;
 454        #define DMA_HAS_PQ_CONTINUE (1 << 15)
 455
 456        int dev_id;
 457        struct device *dev;
 458
 459        int (*device_alloc_chan_resources)(struct dma_chan *chan);
 460        void (*device_free_chan_resources)(struct dma_chan *chan);
 461
 462        struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
 463                struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 464                size_t len, unsigned long flags);
 465        struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
 466                struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
 467                unsigned int src_cnt, size_t len, unsigned long flags);
 468        struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
 469                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
 470                size_t len, enum sum_check_flags *result, unsigned long flags);
 471        struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
 472                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
 473                unsigned int src_cnt, const unsigned char *scf,
 474                size_t len, unsigned long flags);
 475        struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
 476                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
 477                unsigned int src_cnt, const unsigned char *scf, size_t len,
 478                enum sum_check_flags *pqres, unsigned long flags);
 479        struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
 480                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 481                unsigned long flags);
 482        struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
 483                struct dma_chan *chan, unsigned long flags);
 484        struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
 485                struct dma_chan *chan,
 486                struct scatterlist *dst_sg, unsigned int dst_nents,
 487                struct scatterlist *src_sg, unsigned int src_nents,
 488                unsigned long flags);
 489
 490        struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
 491                struct dma_chan *chan, struct scatterlist *sgl,
 492                unsigned int sg_len, enum dma_data_direction direction,
 493                unsigned long flags);
 494        struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
 495                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 496                size_t period_len, enum dma_data_direction direction);
 497        int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
 498                unsigned long arg);
 499
 500        enum dma_status (*device_tx_status)(struct dma_chan *chan,
 501                                            dma_cookie_t cookie,
 502                                            struct dma_tx_state *txstate);
 503        void (*device_issue_pending)(struct dma_chan *chan);
 504};
 505
 506static inline int dmaengine_device_control(struct dma_chan *chan,
 507                                           enum dma_ctrl_cmd cmd,
 508                                           unsigned long arg)
 509{
 510        return chan->device->device_control(chan, cmd, arg);
 511}
 512
 513static inline int dmaengine_slave_config(struct dma_chan *chan,
 514                                          struct dma_slave_config *config)
 515{
 516        return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
 517                        (unsigned long)config);
 518}
 519
 520static inline int dmaengine_terminate_all(struct dma_chan *chan)
 521{
 522        return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
 523}
 524
 525static inline int dmaengine_pause(struct dma_chan *chan)
 526{
 527        return dmaengine_device_control(chan, DMA_PAUSE, 0);
 528}
 529
 530static inline int dmaengine_resume(struct dma_chan *chan)
 531{
 532        return dmaengine_device_control(chan, DMA_RESUME, 0);
 533}
 534
 535static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
 536{
 537        return desc->tx_submit(desc);
 538}
 539
 540static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
 541{
 542        size_t mask;
 543
 544        if (!align)
 545                return true;
 546        mask = (1 << align) - 1;
 547        if (mask & (off1 | off2 | len))
 548                return false;
 549        return true;
 550}
 551
 552static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
 553                                       size_t off2, size_t len)
 554{
 555        return dmaengine_check_align(dev->copy_align, off1, off2, len);
 556}
 557
 558static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
 559                                      size_t off2, size_t len)
 560{
 561        return dmaengine_check_align(dev->xor_align, off1, off2, len);
 562}
 563
 564static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
 565                                     size_t off2, size_t len)
 566{
 567        return dmaengine_check_align(dev->pq_align, off1, off2, len);
 568}
 569
 570static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
 571                                       size_t off2, size_t len)
 572{
 573        return dmaengine_check_align(dev->fill_align, off1, off2, len);
 574}
 575
 576static inline void
 577dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
 578{
 579        dma->max_pq = maxpq;
 580        if (has_pq_continue)
 581                dma->max_pq |= DMA_HAS_PQ_CONTINUE;
 582}
 583
 584static inline bool dmaf_continue(enum dma_ctrl_flags flags)
 585{
 586        return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
 587}
 588
 589static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
 590{
 591        enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
 592
 593        return (flags & mask) == mask;
 594}
 595
 596static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
 597{
 598        return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
 599}
 600
 601static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
 602{
 603        return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
 604}
 605
 606/* dma_maxpq - reduce maxpq in the face of continued operations
 607 * @dma - dma device with PQ capability
 608 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
 609 *
 610 * When an engine does not support native continuation we need 3 extra
 611 * source slots to reuse P and Q with the following coefficients:
 612 * 1/ {00} * P : remove P from Q', but use it as a source for P'
 613 * 2/ {01} * Q : use Q to continue Q' calculation
 614 * 3/ {00} * Q : subtract Q from P' to cancel (2)
 615 *
 616 * In the case where P is disabled we only need 1 extra source:
 617 * 1/ {01} * Q : use Q to continue Q' calculation
 618 */
 619static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
 620{
 621        if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
 622                return dma_dev_to_maxpq(dma);
 623        else if (dmaf_p_disabled_continue(flags))
 624                return dma_dev_to_maxpq(dma) - 1;
 625        else if (dmaf_continue(flags))
 626                return dma_dev_to_maxpq(dma) - 3;
 627        BUG();
 628}
 629
 630/* --- public DMA engine API --- */
 631
 632#ifdef CONFIG_DMA_ENGINE
 633void dmaengine_get(void);
 634void dmaengine_put(void);
 635#else
 636static inline void dmaengine_get(void)
 637{
 638}
 639static inline void dmaengine_put(void)
 640{
 641}
 642#endif
 643
 644#ifdef CONFIG_NET_DMA
 645#define net_dmaengine_get()     dmaengine_get()
 646#define net_dmaengine_put()     dmaengine_put()
 647#else
 648static inline void net_dmaengine_get(void)
 649{
 650}
 651static inline void net_dmaengine_put(void)
 652{
 653}
 654#endif
 655
 656#ifdef CONFIG_ASYNC_TX_DMA
 657#define async_dmaengine_get()   dmaengine_get()
 658#define async_dmaengine_put()   dmaengine_put()
 659#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 660#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
 661#else
 662#define async_dma_find_channel(type) dma_find_channel(type)
 663#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
 664#else
 665static inline void async_dmaengine_get(void)
 666{
 667}
 668static inline void async_dmaengine_put(void)
 669{
 670}
 671static inline struct dma_chan *
 672async_dma_find_channel(enum dma_transaction_type type)
 673{
 674        return NULL;
 675}
 676#endif /* CONFIG_ASYNC_TX_DMA */
 677
 678dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
 679        void *dest, void *src, size_t len);
 680dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
 681        struct page *page, unsigned int offset, void *kdata, size_t len);
 682dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
 683        struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
 684        unsigned int src_off, size_t len);
 685void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
 686        struct dma_chan *chan);
 687
 688static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
 689{
 690        tx->flags |= DMA_CTRL_ACK;
 691}
 692
 693static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
 694{
 695        tx->flags &= ~DMA_CTRL_ACK;
 696}
 697
 698static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
 699{
 700        return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
 701}
 702
 703#define first_dma_cap(mask) __first_dma_cap(&(mask))
 704static inline int __first_dma_cap(const dma_cap_mask_t *srcp)
 705{
 706        return min_t(int, DMA_TX_TYPE_END,
 707                find_first_bit(srcp->bits, DMA_TX_TYPE_END));
 708}
 709
 710#define next_dma_cap(n, mask) __next_dma_cap((n), &(mask))
 711static inline int __next_dma_cap(int n, const dma_cap_mask_t *srcp)
 712{
 713        return min_t(int, DMA_TX_TYPE_END,
 714                find_next_bit(srcp->bits, DMA_TX_TYPE_END, n+1));
 715}
 716
 717#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
 718static inline void
 719__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
 720{
 721        set_bit(tx_type, dstp->bits);
 722}
 723
 724#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
 725static inline void
 726__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
 727{
 728        clear_bit(tx_type, dstp->bits);
 729}
 730
 731#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
 732static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
 733{
 734        bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
 735}
 736
 737#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
 738static inline int
 739__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
 740{
 741        return test_bit(tx_type, srcp->bits);
 742}
 743
 744#define for_each_dma_cap_mask(cap, mask) \
 745        for ((cap) = first_dma_cap(mask);       \
 746                (cap) < DMA_TX_TYPE_END;        \
 747                (cap) = next_dma_cap((cap), (mask)))
 748
 749/**
 750 * dma_async_issue_pending - flush pending transactions to HW
 751 * @chan: target DMA channel
 752 *
 753 * This allows drivers to push copies to HW in batches,
 754 * reducing MMIO writes where possible.
 755 */
 756static inline void dma_async_issue_pending(struct dma_chan *chan)
 757{
 758        chan->device->device_issue_pending(chan);
 759}
 760
 761#define dma_async_memcpy_issue_pending(chan) dma_async_issue_pending(chan)
 762
 763/**
 764 * dma_async_is_tx_complete - poll for transaction completion
 765 * @chan: DMA channel
 766 * @cookie: transaction identifier to check status of
 767 * @last: returns last completed cookie, can be NULL
 768 * @used: returns last issued cookie, can be NULL
 769 *
 770 * If @last and @used are passed in, upon return they reflect the driver
 771 * internal state and can be used with dma_async_is_complete() to check
 772 * the status of multiple cookies without re-checking hardware state.
 773 */
 774static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
 775        dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
 776{
 777        struct dma_tx_state state;
 778        enum dma_status status;
 779
 780        status = chan->device->device_tx_status(chan, cookie, &state);
 781        if (last)
 782                *last = state.last;
 783        if (used)
 784                *used = state.used;
 785        return status;
 786}
 787
 788#define dma_async_memcpy_complete(chan, cookie, last, used)\
 789        dma_async_is_tx_complete(chan, cookie, last, used)
 790
 791/**
 792 * dma_async_is_complete - test a cookie against chan state
 793 * @cookie: transaction identifier to test status of
 794 * @last_complete: last know completed transaction
 795 * @last_used: last cookie value handed out
 796 *
 797 * dma_async_is_complete() is used in dma_async_memcpy_complete()
 798 * the test logic is separated for lightweight testing of multiple cookies
 799 */
 800static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
 801                        dma_cookie_t last_complete, dma_cookie_t last_used)
 802{
 803        if (last_complete <= last_used) {
 804                if ((cookie <= last_complete) || (cookie > last_used))
 805                        return DMA_SUCCESS;
 806        } else {
 807                if ((cookie <= last_complete) && (cookie > last_used))
 808                        return DMA_SUCCESS;
 809        }
 810        return DMA_IN_PROGRESS;
 811}
 812
 813static inline void
 814dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
 815{
 816        if (st) {
 817                st->last = last;
 818                st->used = used;
 819                st->residue = residue;
 820        }
 821}
 822
 823enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
 824#ifdef CONFIG_DMA_ENGINE
 825enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
 826void dma_issue_pending_all(void);
 827struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
 828void dma_release_channel(struct dma_chan *chan);
 829#else
 830static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
 831{
 832        return DMA_SUCCESS;
 833}
 834static inline void dma_issue_pending_all(void)
 835{
 836}
 837static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
 838                                              dma_filter_fn fn, void *fn_param)
 839{
 840        return NULL;
 841}
 842static inline void dma_release_channel(struct dma_chan *chan)
 843{
 844}
 845#endif
 846
 847/* --- DMA device --- */
 848
 849int dma_async_device_register(struct dma_device *device);
 850void dma_async_device_unregister(struct dma_device *device);
 851void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
 852struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
 853#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
 854
 855/* --- Helper iov-locking functions --- */
 856
 857struct dma_page_list {
 858        char __user *base_address;
 859        int nr_pages;
 860        struct page **pages;
 861};
 862
 863struct dma_pinned_list {
 864        int nr_iovecs;
 865        struct dma_page_list page_list[0];
 866};
 867
 868struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
 869void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
 870
 871dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
 872        struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
 873dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
 874        struct dma_pinned_list *pinned_list, struct page *page,
 875        unsigned int offset, size_t len);
 876
 877#endif /* DMAENGINE_H */
 878